Adaptive Routing with End-to-End feedback: Distributed
Learning and Geometric Approaches

Baruch Awerbuch *

ABSTRACT

Minimal delay routing is a fundamental task in networks. Since
delays depend on the (potentially unpredictable) traffic distribu-
tion, online delay optimization can be quite challenging. While
uncertainty about the current network delays may make the cur-
rent routing choices sub-optimal, the algorithm can nevertheless
try to learn the traffic patterns and keep adapting its choice of
routing paths so as to perform nearly as well as the best static
path.

This online shortest path problem is a special case of online
linear optimization, a problem in which an online algorithm must
choose, in each round, a strategy from some compact set S C
R4 5o as to try to minimize a linear cost function which is only
revealed at the end of the round. Kalai and Vempala [4] gave an
algorithm for such problems in the transparent feedback model,
where the entire cost function is revealed at the end of the round.
Here we present an algorithm for online linear optimization in the
more challenging opaque feedback model, in which only the cost
of the chosen strategy is revealed at the end of the round. In
the special case of shortest paths, opaque feedback corresponds
to the notion that in each round the algorithm learns only the
end-to-end cost of the chosen path, not the cost of every edge in
the network.

We also present a second algorithm for online shortest paths,
which solves the shortest-path problem using a chain of online
decision oracles, one at each node of the graph. This has several
advantages over the online linear optimization approach. First,
it is effective against an adaptive adversary, whereas our linear
optimization algorithm assumes an oblivious adversary. Second,
even in the case of an oblivious adversary, the second algorithm
performs better than the first, as measured by their additive re-
gret.

*Department of Computer Science, Johns Hopkins Univer-
sity, 3400 N. Charles Street, Baltimore MD 21218, USA.
Email: baruch@cs.jhu.edu. Supported by NSF grants
ANIR-0240551 and CCR~0311795.

TDepartment of Mathematics, MIT, 77 Massachusetts Ave.,
Cambridge, MA 02139, USA. Email: rdk@math.mit.edu.
Supported by a Fannie and John Hertz Foundation Fellow-
ship.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

STOC' 04, June 13-15, 2004, Chicago, lllinois, USA.

Copyright 2004 ACM 1-58113-852-0/04/000655.00.

Robert D. Kleinberg *

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems— Routing and
layout

General Terms
Algorithms, Theory

Keywords

Routing, online decision problem, multi-armed bandit prob-
lem, online linear optimization

1. INTRODUCTION

1.1 The learning models

We consider online learning algorithms (or equivalently,
repeated games between an online algorithm and an adver-
sary) in a framework which is typically dubbed “the multi-
armed bandit problem.” The name derives from the metaphor
of a gambler selecting slot machines in a rigged casino [1],
though Internet routing is the most compelling motivation
in the present context. The general framework, adopted
from [1], can be described as follows.

e A set S of strategies is given.

e The algorithm interacts with an adversary in a series
of T steps.

e In each step j, the algorithm picks a strategy z; € S,
and the adversary selects a cost function ¢; : S — R.
The adversary is adaptive, in that c¢; may depend on

e The algorithm incurs cost ¢;(x;), and receives as feed-
back the value of ¢;(z;).

e The algorithm’s regret is defined as the difference in
expected cost between the algorithm’s sequence of choices
and that of the best fixed strategy in S, i.e.,

Z Cj($j):| - I;ﬂelng: E[c;(2)].

J

Regret = E

The following two variations of the model are of interest.
Transparent feedback means that the entire cost func-

tion c; is revealed, in contrast to the opaque feedback model

specified above, in which only the cost of the chosen strategy

is revealed. In the learning literature, the transparent and
opaque models are referred to as the “best expert” [7] and
“multi-armed bandit” problems [1], respectively.

An oblivious adversary (in contrast to an adaptive ad-
versary) does not see the algorithm’s past decisions. It
chooses the entire sequence of cost functions ci,...,cr up
front.

1.2 The problems

We focus in this paper on two problems, both in the
opaque feedback model above.

o Dynamic shortest paths: The strategy space consists
of paths from a sender s to a receiver r in a directed
graph G = (V, E). The cost function is specified by
assigning lengths to the edges of G, charging a path
for the sum of its edge lengths, and receiving the total
path length as feedback. The goal is to match the cost
of a shortest path of at most H edges from s to r, in
the aggregate cost metric.

e Online linear optimization: In this more general prob-
lem [4], the strategy space is a compact subset of R4,
the cost functions are linear, and the feedback consists
of the cost of the chosen point.

The dynamic shortest paths problem may be applied to
overlay network routing, by interpreting edge costs as link
delays. In our formulation, the feedback is limited to expos-
ing the end-to-end delay from sender to receiver; this models
the notion that no feedback is obtained from intermediate
routers in the network.

1.3 New contributions
We present:

1. The first opaque-feedback online linear optimization al-
gorithm, against an oblivious adversary, with regret
O(T*?3Md*'?), where d is the dimension of the prob-
lem space and M is an upper bound on the costs in
each step.

2. The first polynomial regret online shortest-path algo-
rithm against an adaptive adversary, achieving regret

19 (T2/3H7/3(m10g Alog(m - T))l/S) for the shortest

paths problem of length H in a graph with m edges
and max-degree A, during T' time steps.

The online linear optimization algorithm may be applied
in the special case of shortest paths of length H; here we
have d = m—n+2 (the dimension of the vector space of s—r
flows) and M = H, leading to a weaker regret bound than
that achieved by Algorithm 2, and in a weaker adversarial
model. As in [1], the challenge in both algorithms is to deal
with the incomplete (i.e. opaque) feedback. However, even
the full-feedback versions of these problems do not allow
greedy solutions and require the framework of randomized
learning algorithms [4, 6, 8].

For the linear optimization problem, the novel idea in our
work is to compute a special basis of the linear strategy
space, called a barycentric spanner, which has the property
that all other strategies can be expressed as linear combina-
tions with bounded coefficients of the basis elements. Against
an oblivious adversary, we can sample basis elements oc-
casionally, obtaining “good enough” estimates about the

costs of all other strategies, and feeding these estimates into
the linear optimization algorithm of Kalai and Vempala [4],
which accomplishes small regret and polynomial computa-
tion time with the help of an optimization oracle. We also
provide a polynomial-time construction of the barycentric
spanner, using the same optimization oracle as a subrou-
tine. However, our analysis of the algorithm must assume
an oblivious adversary, as an adaptive adversary may be
able to outwit this strategy by choosing the cost functions
carefully.

Our shortest paths algorithm, which works against an
adaptive adversary, can be viewed as a distributed learning
algorithm with a “local expert” at each node in the graph
making local decisions about which outgoing edge to take
on the shortest path towards the receiver r. Ideally, each
node would know the past costs of each edge. However, this
information is not available; instead the local expert is only
given the total end-to-end path cost, for all prior sample
paths passing through that vertex. The local agent can now
try to correlate past decisions with the overall quality of the
paths obtained, and can notice that some outgoing edges
appear to lead to better global decisions than other outgo-
ing edges. What makes this judgement quite confusing is
that the quality of such decisions depends on the decisions
of downstream and upstream nodes, as well as on the deci-
sions of the adaptive adversary, who has knowledge of the
algorithm and of its past random choices. Thus, the adver-
sary has significant power to confuse the measurements of
the local algorithm, and it is somewhat surprising that there
exists an online algorithm which successfully defeats such an
adversary.

1.4 Comparison with existing work

The only existing solution for either one of the above
problems, in the opaque model considered here, has been
given by Auer et al [1], who presented an algorithm achiev-
ing O(v/TK log K) regret for the K-armed bandit problem.
Note that the for the shortest paths problem, the cardinality
of the strategy space may be exponential in the size n of the
vertex set of G (i.e. K =2%M™). On some simple instances,
e.g. a chain of n vertices with two parallel edges between
each pair of vertices in the chain, the algorithms of [1] do
in fact exhibit exponential (2(™) regret. All other existing
work does not apply to our case as it assumes much more
favorable feedback models than the ones considered in this
paper.

Below we describe relevant work for other feedback mod-
els. For the full-feedback (transparent) case, many results
are known. Littlestone and Warmuth’s seminal weighted-
majority algorithm [7] achieves O(y/T log K) regret for K
strategies and cost functions taking values in [0,1], a case
known as the best-expert problem because of the metaphor
of learning from the advice of K experts. Kalai and Vem-
pala [4] considered the best-expert problem when the strat-
egy set S is contained in R? and the cost functions are lin-
ear (and again take values in [0, 1]), presenting an algorithm
which achieves O(1/T log d) regret in this case. (This bound
depends only on the dimension d, hence it is applicable even
if the cardinality of S is exponential or infinite.) By consid-
ering the set of s—r paths in G as the vertices of the polytope
of unit flows from s to r, Kalai and Vempala demonstrated
that O(v/T logm) regret is achievable in the setting where
the lengths of all edges are revealed at the end of each time

step, i.e. the “best-expert version” of the dynamic shortest
path problem.

In subsequent work, Awerbuch and Mansour [2] used a
“prefix” feedback model, where feedback was available on
all the prefixes of the path selected, and showed that learn-
ing the shortest path is possible by using the best-expert
algorithm [7] as a black box. Blum et al [3] have considered
a “partially transparent model” where feedback is provided
on each edge of the selected path, but not on the other edges
of the graph.

Our Algorithm 2 is structurally similar to the Awerbuch-
Mansour algorithm [2] in that it proceeds in phases and
involves local decision making at the nodes. However, [2]
requires richer feedback, and in addition it works only for an
oblivious adversary. The stronger adaptive adversary model
as in [1] is capable of biasing the Awerbuch-Mansour al-
gorithm’s estimates by a careful choice of the cost func-
tions in each phase, causing the algorithm to fail. The
novelty of our solution is the introduction of a somewhat
non-intuitive “prefix” probability distribution, schematically
illustrated in Figure 4. Sampling from this distribution en-
ables us to obtain a regret bound against an adaptive ad-
versary. If the adversary is oblivious, it would be possible
to use any stationary prefix distribution, as in [2].

2. ONLINE LINEAR OPTIMIZATION

2.1 Problem formulation

As in [4], we consider an online optimization problem in
which the strategy space is a compact set S C R, and the
cost functions are linear functions specified by a sequence of
cost vectors c¢i1,...,cT € R chosen by an oblivious adver-
sary.

On each time step, the adversary picks a cost vector c;
and the algorithm chooses a strategy x; € S, receiving as
feedback the value of ¢; - x;, i.e. the cost of the chosen
strategy. The cost vectors themselves are never revealed; it
is this feature which distinguishes our problem from the one
solved in [4]. We will assume that there is an upper bound
M on the costs, i.e. that |cj-x| < M for all z € S.

Note that this problem generalizes the classical multi-
armed bandit problem as well as the dynamic shortest path
problem stated above. The multi-armed bandit problem is
the case where S is a set of d points composing a basis of
R?. To interpret the online shortest-paths problem in this
framework, the vector space in question is RF, the space of
real-valued functions on the edge set. A path may be con-
sidered as a function taking the value 1 on each of its edges,
0 elsewhere. The strategy space S is again a finite point
set, consisting of all the points in R¥ represented by paths
from s to r with length < H. The cost functions are linear;
their coefficients are in fact given by the corresponding edge
lengths.

2.2 Overview of algorithm

As stated in the introduction, the transparent-feedback
version of the problem has been solved by Kalai and Vem-
pala in [4]. Our plan is to use their algorithm as a black
box (the K-V black box), reducing from the opaque-feedback
case to the transparent-feedback case by dividing the time-
line into phases and using each phase to simulate one round
of the transparent-feedback problem. We randomly subdi-
vide the time steps in a phase into a small fraction of steps

\ 4
\ 4

@ (b)

Figure 1: (a) A bad sampling set (b) A barycentric
spanner.

which are used for explicitly sampling the costs of certain
strategies, and a much larger fraction of “exploitation” steps
in which we choose our strategy according to the black box,
with the aim of minimizing cost. The feedback to the black
box at the end of the phase is an unbiased estimate of the
average of the cost vectors in that phase, generated by aver-
aging the data from the sampling steps. (Ideally, we would
also use the data from the exploitation steps, since it is
wasteful to throw this data away. However, we do not know
how to incorporate this data without biasing our estimate
of the average cost vector. This shortcoming of the algo-
rithm explains why our analysis works only in the oblivious
adversary model.)

We now address the question of how to plan the sampling
steps so as to generate a reasonably accurate and unbiased
estimate of the average cost vector in a phase. One’s in-
stinct, based on the multi-armed bandit algorithm of [1],
might be to try sampling each strategy a small percentage
of the time, and to ascribe to each strategy a simulated cost
which is the average of the samples. The problem with this
approach in our context is that there may be exponentially
many, or even infinitely many, strategies to sample. So in-
stead we take advantage of the fact that the cost functions
are linear, to sample a small subset X C S of the strategies
— a basis for the vector space spanned by S — and extend
the simulated cost function from X to S by linear inter-
polation. In taking this approach, a subtlety arises which
accounts for the main technical contribution of this section.
The problem is that the average of the sampled costs at a
point of X will generally differ from the true average cost
by a small sampling error; if the point set X is badly cho-
sen, these sampling errors will be amplified by an arbitrarily
large factor when we extend the simulated cost function to
all of S. (See Figure 2.2. In that example, S is a triangle
in R%. The point set on the left is bad choice for X, since
small sampling errors can lead to large errors at the upper
left and lower right corners. The point set on the right does
not suffer from this problem.)

To avoid this pitfall, we must choose X to be as “well-
spaced” inside S as possible. We formulate this notion of
“well-spaced subsets” precisely in Section 2.3; such a sub-
set will be called a barycentric spanner. Using barycentric
spanners, we give a precise description and analysis of the
online linear optimization algorithm sketched above. We
then illustrate how these techniques may be applied to the
dynamic shortest path problem.

¢

2.3 Barycentric spanners

Definition 2.1. Let S C R? be a subset which is not con-
tained in any lower-dimensional linear subspace of R%. A
point set X = {z1,...,2q4} C S is a barycentric spanner
for S if every z € S may be expressed as a linear combi-
nation of elements of X using coefficients in [—-1,1]. X is
a C-approximate barycentric spanner if every x € S may
be expressed as a linear combination of elements of X using
coefficients in [-C, C].

Proposition 2.2. If S is a compact subset of R which is
not contained in any linear subspace of dimension less than
d, then S has a barycentric spanner.

Proof. Choose a subset X = {z1,...,zq4} C S maximizing
|det(x1,...,2q)|- (The maximum is attained by at least one
subset of S, by compactness.) We claim X is a barycentric
spanner of S. For any = € S, write z = Zle a;x;. Then

d
| det(x, z2, x3,...,24)| = |det (Z AiTi, T2, L3, .. .,zd>‘
i=1
d
= Zaidet(xi,xz,xg,...,xd) = |a1]| |det (z1,...,z4q)]|
i=1

from which it follows (by the maximality of | det(z1, ..., z4)|)
that |a1| < 1. By symmetry, we see that |a;| < 1 Vi, and
we conclude (since x was arbitrary) that X is a barycentric
spanner as claimed. |

Observation 2.3. The proof of Proposition 2.2 actually es-
tablished the following stronger fact. Let X = {x1,...,z4}
be a subset of S with the property that for any x in S and
any i € {1,...,d},

|det(z, X_;)| < C|det(z1,x2,...,zq)|

Then X is a C-approximate barycentric spanner for S. Here
X_; denotes the following (d — 1)-tuple of vectors

Xfi = (5017$27. ey Li—1, Li41y .- ,md).

Proposition 2.4. Suppose S C R? is a compact set not
contained in any proper linear subspace. Given an oracle
for optimizing linear functions over S, for any C' > 1 we
may compute a C-approrimate barycentric spanner for S in
polynomial time, using O(d?log(d)) calls to the optimiza-
tion oracle.

Proof. The algorithm is shown in Figure 2. Here, as else-
where in this paper, we sometimes follow the convention of
writing a matrix as a d-tuple of column vectors. The matrix
(e1,...,eq) appearing in the first step of the algorithm is the
identity matrix. The “for” loop in the first half of the algo-
rithm transforms this into a basis (1, x2,...,24) contained
in S, by replacing the original basis vectors (ei,...,eq)
one-by-one with elements of S. Each iteration of the loop
requires two calls to the optimization oracle, to compute
Zo = argmaxges |det(x,X_;)| by comparing the maxima
of the linear functions

li(x) :=det(z, X—;), —Li(x)=—det(z,X_;).

This x¢ is guaranteed to be linearly independent of the vec-
tors in X_; because ¢; evaluates to zero on X_;, and is
nonzero on Ig. (Zi is non-zero on at least one point x € §
because S is not contained in a proper subspace of Rd.)

/* First, compute a basis of R? contained in S. */
(z1,..-,2q) — (€1,...,€q);
fori=1,2,...,d do
/* Replace z; with an element of S,
while keeping it linearly independent from X_;. */

x; «— argmax,cs | det(z, X_;)|;
end

/* Transform basis into approximate barycentric spanner. */
while 3z € S, i € {1,...,d} satisfying
|det(z, X_;)| > C|det(z;, X_;)|
Ti — ;
end
return (z1,z2,...,24)

Figure 2: Algorithm for computing a C-approximate
barycentric spanner.

Lemma 2.5 below proves that the number of iterations
of the “while” loop in the second half of the algorithm is
O(dlogs(d)). Each such iteration requires at most 2d calls
to the optimization oracle, i.e. two to test the conditional for
each index ¢ € {1,...,d}. At termination, (x1,...,zq) is a
2-approximate barycentric spanner, by Observation 2.3. O

Lemma 2.5. The total number of iterations of the “while”
loop is O(dlog(d)).

Proof. Let M; = (z1,%2,...,%i,€i+1,.-.,€d) be the matrix
whose columns are the basis vectors at the end of the i-th it-
eration of the loop. (Columns i+ 1 through d are unchanged
at this point in the algorithm.) Let M = My be the matrix
at the end of the “for” loop, and let M’ be the matrix at the
end of the algorithm. Henceforth in this proof, (z1,...,zq)
will refer to the columns of M, not M’. It suffices to prove
that det(M')/ det(M) < d%?, because the determinant of
the matrix increases by a factor of at least C' on each iter-
ation of the “while” loop. Let U be the matrix whose i-th
row is u; := e;' M; ', i.e. the i-th row of M, '. Recalling

the linear function ¢;(z) = det(z, X—;), one may verify that

ti(z) d

Ui = Ti(z0) Vo € RY, (1)
by observing that both sides are linear functions of x and
that the equation holds when « is any of the columns of
M;. Tt follows that |u;z| < 1 for all z € S, since z; =
arg maxges |4i(z)|. In particular each column of UM’ is a
vector in [—1,1]% and therefore has length < d'/2. Hence
det(UM') < d¥?. (The determinant of a matrix cannot
exceed the product of the L?-norms of its column vectors.)
Again using equation (1), observe that w;x; is equal to 0 if
j < i, and is equal to 1 if j = 4. In other words UM is
an upper triangular matrix with 1’s on the diagonal. Hence
det(UM) = 1. O

2.4 Algorithm

Without loss of generality, assume that S is not contained
in any proper linear subspace of R?%; otherwise, we may re-

place R? with its linear subspace span(S) and run the algo-
rithm in this subspace.

The algorithm will employ a subroutine known as the
“Kalai-Vempala algorithm with parameter €.” (Henceforth
the “K-V black box.”) The K-V black box is initialized
with a parameter ¢ > 0 and a set S C R? of strategies. It
receives as input a sequence of linear cost functions ¢; : S —
R, (1 < j < t), taking values in [—-M, M]. Given a linear
optimization oracle for S, it computes a sequence of prob-
ability distributions p; on S, such that if P N ,x(t) are
random samples from p1,...,p:, respectively, and x is any
point in S,

1 t
_ZCJ (J)
t =

See [4] for a description and analysis of the Kalai-Vempala
algorithm with parameter €. Their paper differs from ours
in that they assume the cost vectors satisfy ||c;|l1 < 1, and
express the regret bound as

o[5e m] p(5+5)+ S o

where D is the L'-diameter of S. To derive (2) from this,
let {z1,...,zq} be a 2-approximate barycentric spanner for
S, and transform the coordinate system by mapping z; to
(Md)ei, for i« = 1,...,d. This maps S to a set whose
L'-diameter satisfies D < 4Md?, by the definition of a 2-
approximate barycentric spanner. The cost vectors in the
transformed coordinate system have no coordinate greater
than 1/d, hence they satisfy the required bound on their
L*-norms.

Our algorithm precomputes a 2-approximate barycentric
spanner X C S, and initializes an instance of the K-V black
box with parameter £, where ¢ is to be determined later. Di-
vide the timeline 1,2, ..., T into phases of length 7 = [d/d],
where § is also a parameter to be determined later. (The
time steps in phase ¢ are numbered 7(¢ — 1) + 1,7(¢ —
1)+ 2,...,7¢. Call this set of time steps 7.) Within each
phase, select a subset of d time steps uniformly at random,
and choose a random one-to-one correspondence between
these time steps and the elements of X. The step in phase
¢ corresponding to x; € X will be called the “sampling step
for x; in phase ¢;” all other time steps will be called “ex-
ploitation steps.” In a sampling step for x;, the algorithm
chooses strategy x;; in an exploitation step it chooses its
strategy using the K-V black box.

At the end of each phase, the algorithm updates its black-
box K-V algorithm by feeding in the unique cost vector cg
such that, for all ¢ € {1,...,d}, ¢y - x; is equal to the cost
observed in the sampling step for x;.

t
< O(eMd® + Md®/et) +) c;()
j=1

Theorem 2.6. The algorithm achieves regret of O(Md>/3T?/3)

against an oblivious adversary, where d is the dimension of
the problem space.

Proof. Note that the cost vector ¢, satisfies |cy - 2| < M for
all z; € X, and that its expectation is ¢4 et % Zjer) Ccj
Let t = [T/7]. The performance guarantee for the K-V

algorithm ensures that for all x € S,

t 2 t
%Z%.% go(st%rAi—f) +%ZC¢.J;7 (4)
=1 =1

where x4 is a random sample from the probability distribu-
tion specified by the black box in phase ¢. Henceforth we’ll
denote the term O(eMd? 4+ Md?/et) on the right side by R.
Now let’s take the expectation of both sides with respect
to the algorithm’s random choices. The key observation is
that E[cy - ;] = E[Ce - x;]. This is because ¢y and z; are
independent random variables: ¢y depends only on decisions
made by the algorithm in phase ¢, while z; depends only on
data fed to the K-V black box before phase ¢, and random
choices made by the K-V box during phase ¢. Hence

Elcy - x;] = Elcy] - E[z;] = ¢4 - Elz;] = E[Cy - x;].

Now taking the expectation of both sides of (4) with respect
to the random choices of both the algorithm and the black
box, we find that for all z € S,

t t
1 1
E ¥ZE¢~JJ¢ < R+EZE¢~£C
=1] =1
1<] 1<
LSS am| < i LY o
p=1j€T,] $=1j€Ty
1 &] 1 &
E TZCJ x| < R+Tzcj'x
j=1 | Jj=1
T 7 T
E ch~:cj < RT+ch~:c.
Jj=1 i j=1

The left side is an upper bound on the total expected cost of
all exploitation steps. The total cost of all sampling steps is
at most Mdt = §MT. Thus the algorithm’s expected regret
satisfies

Regret < RT+6MT
Md2

o) (5Md2T + + 5MT)

3
O ((6+5d2)MT+ M;l) .

Setting € = (dT)71/37 § = d®3T~1/3 we obtain

Regret = O(T**Md*'®).

a

2.5 Application to dynamic shortest paths

To apply this algorithm to the dynamic shortest path
problem, the vector space R? will be the space of all flows
from s to r in G, i.e. the linear subspace of R™ satisfying
the flow conservation equations at every vertex except s,r.
(Thus d = m —n+2.) The set S of all paths of length < H
from s to 7 is embedded in R? by associating each path with
the corresponding unit flow. Specifying a set of edge lengths
defines a linear cost function on R? by assigning to each flow
a cost equal to the weighted sum of the lengths of all edges
used by that flow, weighted by the amount of flow travers-
ing the edge. The linear optimization oracle over S may
be implemented using a suitable shortest-path algorithm,

such as Bellman-Ford. The algorithm in Figure 2 describes
how to compute a set of paths which form a 2-approximate
barycentric spanner for S. Applying the bound on regret
from section 2.4, we obtain

Regret = O(T**Hm"?).

We should mention that maximal linearly-independent sets
of paths are not always approximate barycentric spanners.
In fact, there are examples of graphs of size n having a
maximal linearly-independent set of paths which is not a
C-approximate barycentric spanner for any C' = 20(n)

3. DYNAMIC SHORTEST PATHS
3.1 The model

For j = 1,2,...,T, an adversary selects a cost function
C; : E — [0,1] for a directed graph G(V,FE). C; may
depend on the algorithm’s choices in previous time steps.
The online algorithm must select a (not necessarily simple)
path of length less than or equal to H from a fixed source
s to a fixed receiver r, receiving as feedback the cost of this
path, defined as the sum of C;(e) for all edges e on the path
(end-to-end delay). Our goal is to minimize the algorithm’s
regret, i.e., the difference between the algorithm’s expected
total cost, and the total cost of the best single path from s
to r.

3.2 Algorithm Structure

As in [2], the algorithm will transform our arbitrary input
graph G(V, E) with n vertices and m edges into a levelled
directed acyclic graph G = (fﬂE)7 such that a replica of
each node is present at each layer of the graph. Each layer
of the graph contains n vertices and m edges, and altogether
there are |V| =7 =n- H nodes and |E| =m = m - H edges
in G. The top level of G contains a source vertex s, and the
bottom level contains a receiver vertex r. For every vertex v
in G, h(v) denotes the height of v, i.e. the number of edges
on any path from v to r. Let d(v) denote the outdegree of
v, and A the maximum outdegree in G.

The algorithm (presented in Figure 3) requires three sub-
routines, described below:

e A “black-box expert algorithm” BEX(v) for each vertex
v, which provides a probability distribution on outgo-
ing edges from v.

e A sampling algorithm suffix(v) for sampling a random
path from v to r.

e A sampling algorithm prefix(v) for sampling a random
path from s to v.

Informally, BEX(v) is responsible for selecting an outgoing
edge e = (v, w) lying on a path suffix(v) from v to r which is
nearly as cheap (on average) as possible. Assuming that all
vertices downstream from v are already selecting a nearly-
cheapest path to r, the task of BEX(v) is therefore to iden-
tify an edge e so that the observed total cost of all edges
from v to r, averaged over all sample paths traversing e, is
nearly minimized. However, the feedback for each such sam-
ple path is the total end-to-end cost of the path, including
the cost of edges lying between s and v, so it is necessary
to cancel out the “noise” contributed by such edges. This
necessitates sampling this initial portion of the path from a

e — (mlog(A) log(T)/T)'/?;
§ — (mlog(A)log(mT)/T)/3;
T — [2mlog(mT)/d];
Initialize BEX(v) with parameter ¢ at each v € V.
for ¢=1,...,[T/7], do
for j=7(¢p—1)+1,7(¢p—1)+2,...,7¢ do /* Phase ¢ */
/* Sample a path 7; from s to r. */
With probability §, /* Exploration */
Choose e = (v, w) uniformly at random from E;
Construct ; by joining random samples from
prefix(v), suffix(w) using e;
. « prefix(v); ﬂ? — {e}; 7r;-r — suffix(w).
Else, /* Exploitation */
Sample 7; from suffix(s);
T, <—@; 7rQ<—Q); 7'(Jf<—7'rj.
Receive feedback Cjj ().
xj(e) — 1forall e € W? U7r;.r.
end /* End phase ¢ */
Ve € E,
tg(e) — By x5(e)]
Cole) — (X e xi(€)Cj(m5))/1e(e)
Vv € V, update BEX(v) using scores Cg(e).
end /* End main loop */

Figure 3: Algorithm for online shortest paths

rather complicated distribution prefix(v) which is described
in Section 3.5.

To ensure that each BEX(v) receives enough feedback, the
algorithm runs in phases of length 7 = [2mlog(mT)/d],
with each phase simulating one round in the best-expert
problem for BEX(v). At each time step j within a phase ¢,
a path 7; from s to r is sampled at random, independently,
according to a rule which mixes “exploration” steps with
probability § and “exploitation” steps with probability 1—4.
In an exploration step, an edge e = (v, w) is selected at ran-
dom, and the algorithm samples a random path through e
using prefix(v), suffix(w). This is illustrated in Figure 4. In
an exploitation step, a path is selected according to the dis-
tribution suffix(s), which simply uses the best-expert black
box at each visited vertex to choose the next outgoing edge.
In each step, the edges belonging to the prefix portion of
the path are considered “tainted” and all other edges are
marked. The marked edges receive a feedback score equal
to the total cost of the sampled path. These scores are used
to compute a cost vector Cy which is fed into BEX(v) at
the end of the phase, so that the probability distribution
on paths may be updated in the next phase. The formula
defining Cy has a relatively simple interpretation: it is the
total cost of all non-tainted samples on an edge, divided by
the expected number of such samples. The tainted samples
for an edge e are ignored because the portions of the path
preceding and following e come from a conditional proba-
bility distribution which we cannot control, and could bias
the score assigned to that edge in the case of an adaptive
adversary.

Theorem 3.1. The algorithm in Figure 3 achieves regret

of
0 (H2 (mH log Alog(mHT))"/*1% 3)

against an adaptive adversary, for paths of length < H in a
graph with m edges and mazx-degree A, during time T'.

Figure 4: The recursive path sampling. Prefix dis-
tribution prefix(v) is generated recursively by con-
catenating prefix(q) for vertex ¢ with suffix(u|v), for a
random edge (q,u) at prior layer.

Before proving this theorem, we must of course finish spec-
ifying the algorithm by specifying the implementations of
BEX(v), suffix(v), prefix(v).

3.3 Specification ofex(v)

The implementation of BEX(v) relies on an algorithm which
we may call the “best-expert algorithm with parameter €.”
This algorithm is initialized with a parameter € and a finite
set of K experts, which we will identify with {1,2,..., K}
henceforth. It receives as input a sequence of non-negative
cost vectors ci, ..., ct, with some known upper bound M on
the costs; in our case, we’ll set this upper bound to be 3H.
It computes, for each 7 = 1,2,...,¢ a probability distribu-
tion p; on {1,2,..., K}, depending only on ¢i,...,¢cj—1. If
this black box is chosen to be one of the algorithms in [4, 5],
then [4, 5] prove a tight upper bound on the regret of the
algorithm. Specifically, for all k € {1,2,..., K}, the total
cost of option k is related to the algorithm’s expected cost
by

t

>3 piles(i) < Y0+ 0 (et + M) M. (5)

j=1i=1 j=1

3.4 Specification ofuffix(v)

The probability distributions on outgoing edges, specified
by the black-box expert algorithms BEX(v) at each vertex,
naturally give rise to a probability distribution suffix(v) on
paths from v to r. To sample a random path from suffix(v),
choose an outgoing edge from v according to the probability
distribution returned by BEX(v), traverse this edge to arrive
at some vertex w, and continue sampling outgoing edges
using the best-expert black box at each visited vertex until
r is reached.

3.5 Specification oOfprefix(v)

We will define the distribution of path prefixes prefix(v)
with the following goal in mind: in a step which contributes
feedback for v (i.e. when v is incident to 7T;-)U7Tj+)7 the portion
of the path m; preceding v should be distributed indepen-

dently of v’s choice of outgoing edge. (For a precise math-

ematical statement, see Claim 3.2 below.) This property is
desirable because the goal of BEX(v) is to learn to choose an
edge e = (v, w) which approximately minimizes the average
cost of e plus suffix(w). However, the round-trip feedback
scores observed by v contain an extra term accounting for
the cost of the edges from s to v. The property proved in
Claim 3.2 ensures that this extra term contributes an equal
cost, in expectation, for all of v’s outgoing edges; hence it
cannot bias BEX(v) against choosing the best outgoing edge.

The desired distribution prefix(v) is defined recursively, by
induction on the distance from s to v, according to the rule
of thumb that a random path drawn from prefix(v) should
be indistinguishable from a random path, drawn according
to the algorithm’s sampling rule, in which v € 7. More
precisely, if s = v, then prefix(v) is the empty path. Else, let
F<¢ denote the o-field generated by the algorithm’s random
choices prior to phase ¢, let

Py(v) Pr(v € 7rj+|\.7:<¢)
(1 —9)Pr(v € suffix(s)||F<g)

DY

e=(qu)€E

%Pr(v € suffix(u)|| F<y),

and let suffix(ul|v) denote the distribution on u — v paths
obtained by sampling a random path from suffix(u), con-
ditional on the event that the path passes through v, and
taking the subpath reaching from u to v. (A random sample
from suffix(u||v) can be generated in linear time by a simple
back-propagation algorithm, in which the edge preceding v
is selected at random from the requisite conditional distri-
bution, and the portion of the path preceding this edge is
sampled recursively by the same procedure.) Then prefix(v)
is the random path generated by the following rule:

e Sample from suffix(s||v) with probability
(1 —6) Pr(v € suffix(s)[| F<g) /Py (v).
e For all e = (q,u) € E, with probability
(6/m) Pr(v € suffix(u)[|F<s)/Ps(v),

sample from suffix(u||v), prepend the edge e, and then
prepend a random sample from prefix(q).

Claim 3.2. Conditional on F<y and the event v € m;, the
sub-path of m; reaching from s to v is distributed indepen-
dently of x;(e) for all e € A(v),j € ¢.

Proof. Let m be any path from s to v. We will prove that
Pr(m C mjlxj(e) = 1A Fy) = Pr(prefix(v) = 7[| F<g).

This suffices to establish the claim, since the right side is
manifestly independent of x;(e). For the remainder of the
proof, we will simplify notation by dropping the “F.4”
from our expressions for probabilities; each such expression
should implicitly be interpreted as a conditional probabil-
ity, in which we condition on F.4 in addition to whatever
other events or random variables might be present in the
expression.
If x;(e) = 1, then either e € 7} or e € W;r. Now,

Pr(w C mjlle € ﬂ';)) = Pr(prefix(v) = m);

this is merely a restatement of the procedure for sampling
a random path through edge e in an exploration step. It

remains to show that

Pr(m C mjlle € 7T]+) = Pr(prefix(v) = 7).

We first observe that, conditional on v belonging to 71';-r7 the
outgoing edge from v is sampled according to the black-box
distribution at v, independently of the path preceding v;
thus

Pr(m C mjlle € 7rj+) =Pr(rm Cmj|lv e 7rj+)
Now,
Py(v) Pr(m C
Pr(v € m)) Pr(m C mllv € m}")
= Pr(r Cmy)
(1 —0)Pr(r C mj||m) = 0)
>
e=(u,w)eE

= Py(v) Pr(r = prefix(v)),

mjllv € 7)

g 0
2 Pr(r C || =
= Pr(m C mjl|m; = e)

where the last line follows from the construction of the dis-
tribution prefix(v) specified above. Dividing both sides by
Py(v), we obtain Pr(r C m;llv € 7,) = Pr(r = prefix(v)),
as desired. O

3.6 Analysis of the algorithm

In this section we’ll prove Theorem 3.1, which bounds the
algorithm’s regret. Let ¢ := [T/7] denote the number of
phases. Let C~(v), C"(v) be the average costs of the paths
prefix(v), suffix(v), respectively, i.e.

C™(0) = 33 BIC(prefix(v)
Ctw) = %ZE[Cj(sufﬁx(v))].

Il
-

J

Let OPT(v) denote the average cost of the best fixed path
from v to r, i.e.

OPT(v) = min Z E[C

paths m:v—t T

where the expectation is over the algorlthm s random choices,

which in turn influence the cost functions C; because the ad-
versary is adaptive.

In the case of an oblivious adversary, OPT(v) is simply
the cost of the best path from v to r. In the case of an
adaptive adversary, it is a bit tougher to interpret OPT (v):
the natural definition would be “OPT (v) is the ezpectation
of the minimum cost of a fixed path from v to r,” but instead
we have defined it as the minimum of the expected cost of a
fixed path, adopting the corresponding definition in [1]. We
leave open the question of whether a similar regret bound
can be established relative to the more natural definition of
OPT.

Our plan is to bound C*(v) — OPT(v) by induction on
h(v). We think of this bound as a “local performance guar-
antee” at the vertex v. The local performance guarantee at
s supplies a bound on the expected regret of the algorithm’s
exploitation steps; we’ll combine this with a trivial bound
on the expected cost of the exploration steps to obtain a
global performance guarantee which bounds the expected
regret over all time steps.

3.6.1 Local performance guarantees

Fix a vertex v of degree d, and let ps denote the probabil-
ity distribution on outgoing edges supplied by the black-box
expert algorithm at v during phase ¢. The stated perfor-
mance guarantee for the best-expert algorithm (5) ensures
that for each edge eo = (v, wop),

t

i > pole)C Z (eo +0(6Ht+legA)7

¢=1lecA(v) d=1

provided M = max{Cy(e) : 1 < ¢ < t,e € E} < 3H.
By Chernoff bounds, the probability that Cy(e) > 3H is
less than (7aT) 2, because Cy(e) can only exceed 3H if
the number of samples of e in phase ¢ exceeds its expec-
tation by a factor of 3, and the expected number of samples
is > 2log(mT). Applying the union bound, we see that
the probability that M > 3H is less than (mT)™'. We'll
subsequently ignore this low-probability event, since it can
contribute at most (HT)/(mT) <1 to the overall expected
regret. ~

Expanding out the Cy(-) terms above, using the definition
of Cy, we get

Sy Zpd";)Ci () (6)

¢=1 eEA(v) jE€P

S S) e

XJ €0)Cj(j)—'—O(EHt—'—
p=1j€¢

o logA)
116 (€0) € '
Now let’s take the expectation of both sides with respect

to the algorithm’s random choices. We’ll use the following
fact.

Claim 3.3. Ife = (v,w) then

B, [x;(e)C ()] = (”">—”) (A;(0) + By (w) + Bo[C5(@)])

pu
where Ey[] denotes E[-||F<y], and

Aj(v) = Eg4[Cj(prefix(v))]
Bj(w) = Eg[C;(suffix(w))].

Proof. Conditional on F., and on the event x;(e) = 1, the
portion of the path preceding v is distributed according to
prefix(v) (this was proved in claim 3.2) and the portion of
the path following w is distributed according to suffix(w)
(this follows from the definition of x;(e) and of suffix(w)).
Moreover, for any edge €,

Ey[Ci(e)llx;(e) = 1] = E4[Cj(€')],

because x;(e) is independent of any decisions made by the
algorithm during phase ¢ and before step j, while the ad-
versary’s choice of C; depends only only on F.4 and on the
decisions made in phase ¢ before step j. Thus,

Es[Cj(m))lIxi(e) = 1] = A;(v) + Bj(w) + Eg[C;(e)]

Eo[x;(e)Cj(m;)] = Pr(x;(e) = 1| F<s)Eo[C;(m;)lIx;(e) = 1]
= (H4D) 0+ Biw) + B

O

Now consider taking the expectation of both sides of (6).
The left side will become

ps(e) pole)
Z Z o (e) T

¢=1 eEA(v) JjEP

—ZZW

j=leeA(v)

- (4;(v) + Bj(w) + Eg[C;(e)])

)+ Bj(w) + Ey[C;(€)]),

while the sum on the right side will become

zz oleo)

o= 136¢

1 T
= v) + Bj(wo) + Ee[Cj(e

7_

o))

Plugging this back into (6), the terms involving prefix(v) on
the left and right sides will cancel, leaving us with

IS pele)

(E[Cj(e)] + Bj(w)])

j=1lecA(v)
1 & Hlog A
- Z (Eg[Cj(eo)] + Bj(wo)) + O (th + f))
j=1
Note that the left side is equal to
= Z E[C; (suffix(v))] = C T (v) /T,
while the right side is equal to
(ZE)+C+(wo)/T+O(EHt+H12gA).
Thus we have derived
O () < C* o) + 3 E{C eo)] 4 0 (EHT + %) .

Jj=1

)
3.6.2 Global performance guarantee

Claim 3.4. Let A denote the mazimum outdegree in G. For
all v,

C* () < OPT(v) + O (eHT + M) h(v).

€

Proof. The proof uses the following simple observation about
OPT (v):

OPT(v)

eo=(v,wo) | “—
Jj=1

min {Z E[C;(e0)] + OPT(wo)} .

Now the claim follows easily from equation (7) by induction
on h(v). |

_ o N1/3
Theorem 3.5. Setting § = ¢ = (w) ,

algorithm suffers regret

the

O (H7/3(m log(A) log(mHT))l/STQ/S) .

- (4;(v) + Bj(wo) + Eg[Cj(eo

)

Proof. The exploration steps are a § fraction of all time
steps, and each contributes at most H to the regret, so
they contribute at most T H to the regret. The contri-
bution of the exploitation steps to the regret is at most
C™(s) — OPT(s). Applying Claim 3.4 above, and substi-

tuting 7 = M, we see that

21 log(A) log(mT)) 2

C*t(s) —OPT(s) =0 (ET +

€
Thus
Regret < 6TH+O (eT—|— 2m 10g(A2§10g(mT)) 7
€
€

Plugging in the parameter settings specified in the theorem,
we obtain the desired conclusion. O

4. ACKNOWLEDGEMENTS

We would like to thank Avrim Blum, Adam Kalai, Yishay
Mansour, and Santosh Vempala for helpful discussions relat-
ing to this work, and Brendan McMahan for pointing out
an error in a preliminary version of this paper.

5. REFERENCES

[1] Peter Auer, Nicold Cesa-Bianchi, Yoav Freund, and
Robert E. Schapire. Gambling in a rigged casino: the
adversarial multi-armed bandit problem. In Proceedings
of the 36th Annual Symposium on Foundations of
Computer Science, pages 322-331. IEEE Computer
Society Press, Los Alamitos, CA, 1995.

Baruch Awerbuch and Yishay Mansour. Online
learning of reliable network paths. In PODC, 2003.
Avrim Blum, Geoff Gordon, and Brendan McMahan.
Bandit version of the shortest paths problem. Perosnal
communication, July 2003.

Adam Kalai and Santosh Vempala. Efficient algorithms
for the online decision problem. In Proc. of 16th Conf.
on Computational Learning Theory, Wash. DC, 2003.
N. Littlestone and M. Warmuth. The weighted
majority algorithm. Imformation and Computation,
108(2):212-260, 1994.

Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. In IEEE Symposium on
Foundations of Computer Science, pages 256261, 1989.
Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. Information and
Computation, 108:212-261, 1994. A preliminary version
appeared in FOCS 1989.

Eiji Takimoto and Manfred K. Warmuth. Path kernels
and multiplicative updates. In COLT Proceedings, 2002.

