
Proceedings of the ATOP Workshop at

AAMAS 2009

Agent-based Technologies and

applications for

enterperise interOPerability

AAMAS Workshop, 12 May 2009

Editors:

Klaus Fischer

Jörg P. Müller

James Odell

Arne J. Berre

Preface

Today’s enterprises must adapt their software processes to work in open settings,
such as online marketplaces and, more generally, the Web, where business rela-
tionships exhibit a high degree of dynamism. Moreover, open settings are char-
acterized by the autonomy and heterogeneity of the enterprises. In such settings,
interoperability is a key concern: how do we ensure that diverse enterprises can
work together toward a mutually desirable end? Interoperability problems occur
at different levels: at the business level (how organizations do business together,
what needs to be described and how?), at the knowledge level (different formats,
schemas, and ontologies), and at the infrastructure level (the underlying infor-
mation and communication technologies and systems). Agents, Model-Driven
Architecture (MDA), and Service-Oriented Architecture (SOA) are complemen-
tary approaches to addressing the enterprise interoperability problem.

Agent technologies provide a cross-cutting approach promising to enable in-
telligent and proactive automation, adaptive planning and execution, decentral-
ized coordination, and semantic interoperability. Agents enable dynamic collab-
oration and orchestration in changing and unpredictable situations. MDA sup-
ports interoperability due to its promise of providing consistent models at dif-
ferent abstraction layers with well-defined mappings in between these layers and
provides mechanisms that generate artifacts for different platforms. SOA tries to
reach interoperability, focusing upon, but not restricted to, the information and
communication technology (ICT) level. It provides late-binding interoperability
between business process requirements and providers of service implementations
which results in loose coupling among software entities representing business
objects (processes, organizational units, etc.).

The workshop focuses on technologies that support interoperability in net-
worked organizations, on successful applications of these technologies, and on
lessons learned. The main goal is to stimulate a discussion on in how far agent
technologies can support interoperability in this context and to compare cur-
rent trends in the development of agent technologies with recent developments
in service-oriented and model-driven system design with respect to their ability
to solve interoperability problems. Regarding model-driven system design the
presentation and discussion of metamodels of the underlying technologies like
for example agent technologies and service-oriented architectures is especially of
interest.

Klaus Fischer
Jörg P. Müller
James Odell
Arne J. Berre

Budapest, May 2009

i

Organization

Klaus Fischer DFKI, Germany
Jörg P. Müller Siemens AG, Germany
James Odell Oslo Software, USA
Arne J. Berre SINTEF, Norway

Program Commitee

Sahin Albayrak TU Berlin, Germany
Bernhard Bauer University Augsburg, Germany
Amit Chopra North Carolina State University, USA
Michael Georgeff Monash University, Australia
Dominic Greenwood, Whitestein Technologies, Switzerland
Axel Hahn University Oldenburg, Germany
Christian Hahn DFKI, Germany
Øystein Haugen SINTEF, Norway
Sebastian Kämper, IWi, Germany
Stefan Kirn Hohenheim University, Germany
Margaret Lyell IAI, USA
Saber Mansour Oslo Software, France
Nikolay Mehandjiev, Manchester Business School, UK
Michele Missikoff LEKS, Italy
Eugenio Oliveira University of Porto, Portugal
Herve Panetto University Nancy, France
Omer Rana Cardiff University, UK
Ralph Ronnquist Intendico Pty. Ltd., Australia
Rainer Ruggaber SAP, Germany
Omeir Shafiq Digital Enterprise Research Institute, Austria
Iain Stalker, Unversity of Teesside, UK
Ingo Timm Goethe-University Frankfurt/Main, Germany
Jörg Ziemann IWi, Germany
Ingo Zinnikus DFKI, Germany

ii

Table of Contents

A multi-agent mediation platform for automated exchanges between busi-
nesses . 1

Carole Adam, Vincent Louis, Fabrice Bourge, and Sebastien Picant

Integration of agent-based Manufacturing Execution Systems into a Ser-
vice Oriented Architecture . 13

Sven Jacobi, Christian Hahn, and David Raber

A Modular Protocol Model for PIM4Agents . 25
Esteban León-Soto, Cristián Madrigal-Mora, Christian Hahn, Stefan

Warwas, and Klaus Fischer

System interoperability analysis by mixing system modelling and MAS: an
approach . 37

A.S.Rebai and V.Chapurlat

An Interoperability Framework for the Negotiation-Based Coordination of
Adaptive Supply Web Agents . 49

Christian Russ1 and Alexander Walz

Specification of strategies for negotiating agents . 61
René Schumann, Zijad Kurtanovic, and Ingo J. Timm

Selection of Resources For Missions Using Semantic-Aware Cooperative
Agents . 73

Murat Sensoy, Wamberto Vasconcelos, Geeth de Mel, and Tim Norman

Trust Evaluation for Reliable Electronic Transactions between Business
Partners . 85

Joana Urbano, Ana Paula Rocha, and Eugenio Oliveira

An integration of a Semantically Enabled Service Oriented Architecture
and Agent platforms . 97

Ingo Zinnikus, Srdjan Komazec, and Federico Facca

iii

A multi-agent mediation platform for automated

exchanges between businesses

Carole Adam1, Vincent Louis, Fabrice Bourge2, and Sebastien Picant2

1 RMIT University, Melbourne VIC 3000, Australia,
carole.adam@rmit.edu.au

2 Orange Labs, Caen, France,
firstname.surname@orange-ftgroup.com

Abstract. To automate electronic exchanges between business, the clas-
sical approach is to define beforehand an interacting protocol that must
then be rigorously followed. This imposes a costly design time and a
constrained runtime. We thus adopt a different approach, representing
companies with autonomous agents whose interaction is mediated by an
additional agent able to anticipate and resolve interoperability problems
at runtime. We build these agents using the agent platform JADE and
more precisely we designed an institutional plugin for JADE called JIA,
allowing agents to reason about institutional concepts such as obliga-
tions, norms and powers. This paper describes the functioning of JIA.

1 Introduction

To automate electronic exchanges between business, the classical approach is
to define beforehand an interacting protocol that must then be rigorously fol-
lowed. This imposes a costly design time and a constrained runtime. Several
works aimed at proposing standards for frequently exchanged documents [12,
5] and proposing libraries of reusable data models [11, 10], thus reducing de-
sign time, but obliging businesses to adapt their processes to these standards.
We thus adopt a different approach, representing companies with autonomous
agents whose interaction is mediated by another agent able to anticipate and
resolve interoperability problems at runtime. We build these agents using the
agent platform JADE (Java Agent DEvelopment Framework, [7]) and its exten-
sion JSA (JADE Semantics Add-on, [9]) allowing to develop cognitive agents
in compliance with the FIPA-ACL formal specifications [6]. More precisely we
designed an institutional extension for JSA called JIA, allowing agents to rea-
son about institutional concepts as formalised in Demolombe and Louis’ logic
of norms, roles and institutional powers [4]. This paper describes the function-
ing of JIA and of the mediation platform showing an example of the kind of
applications that the JIA framework allows to achieve3.

3 For now the mediation platform is a prototype used to demonstrate the possibilities
offered by the JIA framework. It has not been practically tested yet.

1

2 The mediation platform

Fig. 1. Architecture of the B2B mediation platform

Each enterprise has its own business process constraining its interaction with
other enterprises, but interoperability problems may arise if the business pro-
cesses of two interacting businesses do not match. Besides it would be too costly
to redefine the business process each time the enterprise has to interact with a
new partner. Now we can consider B2B exchanges as constrained by institutional
laws: the country laws ruling business, and the rules of the contract between the
two partners. Thus institutional agents, able to reason about such laws, may
offer a flexible solution to the potential interoperability problems.

We thus designed a multi-agent B2B mediation platform [1, 3] made up of the
following agents: an agent representing each enterprise; agents representing the
involved banks; an interface agent for each enterprise, allowing its representative
agent to communicate with the mediation platform; a mediator agent providing
debugging strategies; and an institution agent monitoring the interaction and
maintaining the registry of the institution. These agents evolve in a particular
institutional context specified by the generic rules of business exchanges, as well
as the specific rules negotiated in their contract of interchange.

In an example scenario, the interoperability problem concerns the delivery
and payment of an order. The client enterprise’s business process constrains it
to wait delivery before paying, while the provider enterprise’s one constrains it
to receive payment before delivering. Now if the provider accepts an order from
the client, both enterprises are obliged to act (client is obliged to pay, provider is
obliged to deliver), but none can act. We call this an interblocking situation. This
is where our mediator agent can intervene by finding in its library a debugging
strategies for this situation. This strategy consists in involving a third party
bank that can loan money to pay the provider, making him able to deliver; the
delivery then allows client to pay, and he reimburses the bank. The exchange
is constrained by the institutional laws. As it goes on, new obligations can be
generated, and agents adapt their behaviour subsequently. Finally the institution
agent monitors the exchange and can detect and sanction violation of these rules.

2

3 Functioning of JSA and JIA

3.1 JSA

Principle The JADE Semantic Add-on (JSA, [9, 8]) is a rule-based motor com-
pliant with the BDI logic used to formalise the semantics of the speech acts of the
standard FIPA-ACL [6]. It provides a set of basic interpretation rules accounting
for the intentional dimension of these speech acts. Thus, agents developed with
JSA (called Semantic Agents) are able to semantically interpret the exchanged
speech acts, provided that they use the same ontology. For example an agent
j receiving an Inform about a proposition p from another agent i deduces that
agent i believes that p and intends j to also believe p; other rules then lead j to
believe p himself. But the reasoning of Semantic Agents can be parameterised
by adding new interpretation rules or customising existing ones.

Fig. 2. JSA interpretation engine

Knowledge Base Semantic Agents have a knowledge base (below abbrevi-
ated as KBase) storing formulas representing their beliefs and intentions, and
equipped with several mechanisms. Observers monitor formulas asserted in the
KBase and react if their values change. Filters are of two types: assertion fil-
ters are applied before asserting a formula in the KBase, and may modify it, or
may define a particular way to store it; query filters are applied when a formula
is queried to the KBase and may modify or redirect the query. For instance an
agent handling images may have an assertion filter storing images in external
files (instead of storing a belief about their byte content, that would overflow
its KBase), and a query filter to get the queried image from the external file
where it is stored instead of from the KBase. Another simpler example is that
of other agents’ beliefs that are stored in nested KBases (one per other agent).
But before their storage in the agent’s KBase, formulas go through a complex
interpretation process.

3

Semantic Interpretation Principles (SIPs) Each agent is equipped with a
set of Semantic Interpretation Principles (SIPs). Their order of application is
important, so the SIPs are numbered and stored in an ordered table. Now the
perceived events generate new Semantic Representations (SR), that are objects
encapsulating a formula representing the event along with some attributes like
possible annotations and an interpretation index. This interpretation index is
used to determine which SIP will next interpret the SR. Each SR in the generated
list is successively interpreted by the agent’s SIPs, depending on its index.

Each SIP has a specific pattern of formula, and only deals with the incoming
SR if its encapsulated formula matches this pattern. It can consume the incoming
SR, modify its interpretation index in order to impact its subsequent interpre-
tation, produce new SRs, or perform any kind of processing. Its output is a new
list of SRs. If this list is empty the interpretation process is over and nothing
is asserted in the KBase. Otherwise the SRs in the list are further interpreted
by the next SIP indicated by their interpretation index. The interpretation is
over when all formulas have an interpretation index bigger than the number of
the last SIP of the agent. The resulting list of SRs, possibly modified by this
interpretation process, is finally asserted in the agent’s KBase (see figure 2).

For example Semantic Agents have a Belief Transfer SIP implementing the
sincerity hypothesis (agents trust each other). This SIP deals with beliefs of
other agents (e.g. interpreting agent i believes that agent j believes that ϕ) and
converts them into beliefs of the interpreting agent (e.g. agent i adopts the belief
that ϕ). This SIP can also be customized so that the agent trusts only some given
agents and does not trust others.

Actions Each agent is also equipped with a table of actions describing the
actions he knows, with their preconditions and effects. He can only use known
actions in his planning and reasoning. The default table contains at least all
FIPA-ACL communicative acts.

Semantic capabilities The Semantic Capabilities of an agent gather a set of
the previous features: a table of Semantic Interpretation Principles, a table of
Semantic Actions, and a KBase equipped with some filters and observers. These
features define the agent’s reasoning and behaviour.

3.2 JIA

JIA is an extension for the JSA, providing an additional set of interpretation
rules to account for the institutional dimension of various types of actions: com-
municative actions of the FIPA standard, additional institutional communicative
actions (declarations, promises), and application specific “material” actions. This
extension called JIA allows to develop Institutional Agents, that are an extension
of Semantic Agents, able to evolve in an institutional context. We have designed
a generic set of rules that are needed to specify the basic behaviour of such
agents. For example there are rules for interpreting new obligations, or violation

4

of obligations by other agents... Now any designer interested in programming
Institutional Agents can add new rules specific to his application, by specifying
them in the declarative language described below (paragraph 3.2). The code
allowing agents to deal with these rules is automatically generated.

JIA language We have extended the FIPA-SL language used in JSA with
the deontic and institutional operators defined in Demolombe and Louis’ logical
framework for norms, roles and institutional powers [4]. This extended language
is called xSL and features in particular operators for:

– impersonal obligations are directed at states of the world that are obliga-
tory, but no particular agent is responsible for them. Though the obligatory
state can be that a given action has been performed by a given agent, in this
case this agent is responsible for the fulfilment of this obligation;

– institutional facts are particular facts that cannot be physically observed,
but that are considered true in the context of a given institution (for instance
the fact that two people are married, the permission to drive a car when you
have your license, or the duty to vote when you are of age);

– normative consequences (also known as count as rules) allow to deduce
institutional facts from observable facts in the context of a given institution
(for example in the law of a country, being of age counts as the permission
to vote and the obligation to perform one’s national military service);

– institutional powers are particular kinds of count as rules concerning the
performance of actions. An agent has the power to establish a new insti-
tutional fact in a given institution if, in the context of this institution, his
performance of a given procedure under a given condition counts as this
new institutional fact. For example in the law of French Republic, mayors
have the power to marry people by performing a declaration under some
conditions like these people’s agreement.

Institutional Capabilities Institutional agents are endowed with Institutional
Capabilities instead of Semantic ones. Actually, Institutional Capabilities are an
extension of semantic ones, including the basic behaviour of semantic agents, but
enriching it with new abilities in relation with the management of institutions:
reaction to obligations, interpretation of the institutional dimension of actions...
In the following we give more details about the default behaviour specified by
Institutional Capabilities.

4 Institutional agents

4.1 Types of agents

JIA allows to design three basic types of agents.
The institution agent (unique in each institution) is the agent managing

the registry of the institution, thus omniscient about the institutional facts and

5

rules of his institution. It also “spies” (i.e. observes) all institutional actions
performed by other agents, in order to be aware of the evolution of the registry
of the institution (actions can modify this registry).

The mediator (also unique in each institution) has a database of debugging
strategies to manage problems encountered by other agents. The mediator can be
either reactive (only managing problems signalled by other agents) or proactive
(autonomously detecting and managing problems before they are signalled).

Standard agents constitute the normal members of the institution. Their
default behaviour can be customized by various parameters: laziness (do not
fulfill its obligation until explicit notification); conscientiousness (monitors other
agents’ obligations); and trustlessness (asks the institution to confirm any re-
ceived information).

The behaviour of all these kinds of agents is specified by the content of
their Institutional Capabilities. First their KBase is provided with a set of filters
responsible from the specific assertion and queries of institutional formulas; we
do not have enough space to list them here. Second they have a default list of
SIPs that is detailed in section 4.2.

4.2 Interpretation of Semantic Representations: list of SIPs

In Institutional Agents as in semantic ones, incoming Semantic Representations
are interpreted by a list of Semantic Interpretation Principles before being possi-
bly asserted into the agent’s KBase (see figure 2). We list here the SIPs that are
specific to Institutional Agents, sorted into several categories. We only briefly
describe them in this paragraph, since the most important ones will be described
in full details in the following sections.

SIPs in the action category interpret the specification or performance of
actions.

– Institutional Action Declaration: it interprets the institutional specification
of actions provided in the agent’s configuration files, and installs the mech-
anisms to manage these actions (see paragraph 5.3).

– Institutional Action Done: it interprets the performance of any action in
order to deduce its institutional effects and to inform concerned agents (see
paragraph 5.4).

– Obliged Action Done: it is also triggered by the performance of an action,
and retracts possible obligations fulfilled by this performance.

SIPs in the interaction category specify the agent’s behaviour towards other
agents, speech acts received from them, and the resulting commitments, beliefs,
intentions or obligations.

– Commitment Interpretation: it interprets new commitments taken by other
standard agents, and checks their validity (searches possible contradictions
with previously existing commitments).

6

– Conditional Obligation Interpretation: it interprets conditional obligations,
i.e. obligations that will hold once a condition becomes true; it thus adds
an observer on the agent’s KBase to monitor the condition in order for the
agent to be aware of his obligation as soon as it becomes true.

– Grounded Belief Transfer: it is only provided to trustless agents and make
them control each information from another agent, by asking the institution
if this agent has no contrary commitment on this information; the incoming
belief is transferred only after a positive answer from the institution.

– Institutional Belief Transfer: prevents agents from directly adopting beliefs
of other agents about institutional facts; these institutional facts are checked
by asking the institution, and only transferred after its confirmation.

– Institutional Intention Transfer: it interprets intentions of other agents (e.g.
resulting from a request from these agents) and decides to adopt them or
not. Requests from the institution are always obeyed, while the adoption of
intentions from standard agents depends on their institutional powers.

– Obligation Interpretation: it interprets new obligations for another agent to
perform an action, and settles the monitoring mechanism if the interpreting
agent should monitor the respect of this obligation (see parag. 6.1 for details).

– Obligation Notification: it interprets the notification of one of the agent’s
existing obligations by another agent, and forces the reinterpretation of this
obligation in order to possibly trigger the behaviour to respect it (indeed
lazy agents only try to fulfill their obligations once explicitly notified).

SIPs in the generic category implement some axioms of the logic and some useful
generic mechanisms.

– Since Formula Interpretation manages the predicate since, describing formu-
las that become true after another formula has become true. This is done
with an observer that monitors the condition formula in order to interpret
the main formula when it becomes true.

– Until Formula Interpretation manages the predicate until used to describe
formulas that are only true until another formula becomes true. This is done
with an observer monitoring the condition formula in order to retract the
main formula when it becomes false.

– Period Formula Interpretation interprets the predicate period as an abbre-
viation defined in function of the until and since predicates.

– Institutional Since Formula Interpretation and Institutional Until Formula
Interpretation implement mix axioms defining the links between temporal
operators (since and until) and institutional ones.

– Split Institutional Fact: it implements the axioms defining the distribution
of institutional fact operator over the and operator.

– Time Predicate: it allows agents to manage quantitative periods of time (for
example wait for 5 seconds before performing an action).

The planning category gathers SIPs that modify the agent’s planning.

– Future Obligation Interpretation: allows agent to immediately interpret their
future obligations (that will become true in the future, for instance encap-
sulated in a since formula) in order to start trying to fulfill them at once.

7

– Obligation Creation: it checks if the agent’s goal can become an obligation for
some agent by exerting some power. If so, the interpreting agent performs
the procedure of this institutional power, what obliges the other agent to
perform the intended action. For example a parent who has the intention
that his son’s room be clean has the power to command this son to clean it.

– Obligation Transfer: defines a basic obeying behaviour for Institutional Agents,
i.e. these agents always adopt the intention to fulfill their obligations. This
SIP can be customized to more finely define conditions of obedience.

– Perseverance: this SIP makes the agent persevere when he fails to perform
an obliged action. Actually he will monitor the feasibility precondition of
this action and try again to perform it once it becomes feasible.

The mediation category gathers SIPs that are not provided to standard
agents but only to the institution and/or mediator, to allow them to manage
problems in their institution (inter-blocking obligations, violated obligations,
complaints from standard agents).

– Blockade Detection: this SIP is used only by the mediator, and detects when
a new obligation provokes an inter-blocking with an existing one. An inter-
blocking is a situation where two obliged actions are both impossible to
perform unless the other one is performed first. For instance when a client
sends a purchase order to a provider, he gets obliged to pay and the provider
gets obliged to deliver; but it may be impossible for the client to pay before
delivery, and impossible for the provider to deliver before payment.

– Complaint Managing: this SIP allows the mediator and the institution agent
to handle complaints from agents about violated obligations in their insti-
tution. The institution agent delegates to the mediator, and the mediator
starts monitoring the obligation (see paragraph 6.2 for details about the
management of violations by the mediator).

– Mediation Failed: this SIP allows the institution agent to react when the
mediator informs him that he was not able to resolve a problem (a vio-
lated obligation). In this case the institution agent looks for the appropriate
sanction in a specification file and applies it to the guilty agent.

5 Institutional interpretation of actions

5.1 From intentions to action in JSA agents

As an introduction, we remind here the mechanisms provided by JSA to make
agents behave depending on their intentions. We have not modified this mecha-
nism but it will be useful to understand the sequel of the paper.

When an agent interprets one of his own intentions, it first goes through the
Goal Commitment SIP that checks if the agent already has this intention, or if
he has already reached it. In both cases, the intention is consumed by this SIP,
otherwise it is propagated to the next SIPs.

Rationality Principle and Action Performance are the two basic planning
SIPs available for JSA agents (the developer can add new ones to allow agents
to perform a more sophisticated planning).

8

– Rationality Principle interprets an intention that some proposition holds,
and checks all available actions (in the agent’s table of semantic actions)
to find one whose effect matches this proposition. If there exist one such
action this SIP returns the corresponding plan, otherwise the intention is
considered to be unreachable.

– Action Performance interprets an intention that some action is performed
the agent, and returns the plan consisting in performing this action.

Now in the following subsections we detail what is new in JIA to manage the
institutional dimension of actions performed by agents.

5.2 Specification file

Institutional features of actions are specified in xSL (extended Semantic Lan-
guage, the language described above in paragraph 3.2) in a configuration file
“<name>.actions”. Each action is characterised by five features: the name of
the concerned institution; the pattern of action; a list of agents that are spec-
tators of this action (and should thus be informed of every performance of this
action); a institutional precondition; and an institutional effect. This matches
the characterisation of institutional actions provided in [1].

5.3 Interpretation of the action declaration

At the agent setup, the specification of each action is interpreted. In particular it
goes through the Institutional Action Declaration SIP that performs four actions:

– it stores in the agent’s KBase formulas allowing to retrieve the names of the
observing agents, so that the author of an action knows which agents he has
to inform of the performance of this action;

– if the interpreting agent is the institution agent or the mediator of the insti-
tution in which this action is declared to be institutional, it stores a formula
to remember that the action belongs to this institution;

– it interprets the generic power for any agent to commit on the institutional
precondition of this action by performing it (implicit effect in accordance
with the semantic of institutional actions provided by [1]).

– it also interprets the powers corresponding to the deduction of the institu-
tional effect specified for this action.

Once stored in the agent’s KBase, these powers will be referred to by Institutional

Action Done SIP when this action is performed, in order to automatically deduce
their institutional implicit and explicit effect.

5.4 Interpretation of an action performance

Whenever an institutional action is performed, various agents are aware of its
performance: its author, the observing agents who are informed by the author,
and the institution agent and mediator of the corresponding institution, who spy

9

all actions in their institution. These agents interpret the information about the
performance of this action, in particular with the Institutional Action Done SIP.

If this action is the procedure of a power, this SIP checks its condition, and if
it is true it asserts its institutional effect (both were interpreted from the actions
specification file). If the agent performing this power procedure is conscientious

(see definition in paragraph 4.1), this SIP also makes him monitor the fulfilment
of the obligations he possibly created.

In the special case where the interpreting agent is the author of the action,
this SIP makes him inform other relevant agents of its performance:

– observing agents specified in the action declaration;
– interested agents, who have manifested this interest by requesting the per-

formance of this action or by notifying an obligation to perform it;
– concerned agents, i.e. agents who have new obligations created by the per-

formance of this action;
– the institution agents and mediators of all institutions he belongs to (these

agents select relevant information thanks to the list of actions belonging to
their institution that they have constituted while interpreting the actions
declarations).

6 Life cycle of an obligation

Obligations, among other institutional facts, are thus deduced by Institutional

Action Done SIP from the performance of institutional actions. In this section
we give more details about their subsequent life cycle, i.e. when agents decide to
fulfill them, and when they are finally retracted. But we also give details about
the management of violation cases: what happens when an agent cannot fulfill
his obligations, how it is detected by other agents, how they can complain to the
institution agent or the mediator, what these special agents can do to solve the
problem, and which sanctions can be applied if no solving strategy is found.

6.1 Interpretation and monitoring of other agents’ obligations

Standard agents are equipped with some interpretation rules to manage other
agents’ obligations.

New obligations The Obligation Interpretation SIP is triggered when an agent
observes a new obligation for another agent to perform an action, in two cases:
either the interpreting agent is the mediator of the institution in which this
obligation holds, he is proactive (definition in paragraph 4.1), and he is not
already managing a blockade involving this action; or the interpreting agent is
observing this action, and he is conscientious. In both cases an Obligation Respect

Observer is added to the interpreting agent’s KBase in order to monitor the
performance of the obliged action, and to specify the watching agent’s subsequent
behaviour in case of violation.

10

Monitoring of obligations An instance of Obligation Respect Observer is dy-
namically added to an agent’s KBase when he wants to monitor another agent’s
obligation. If the watched obligation is fulfilled, the agent stops watching it,
i.e. this observer is removed from his KBase. Otherwise a specific behaviour is
triggered to react to the violation of the watched obligation. The developer can
specify various parameters of this observer to customize this behaviour:

– the number of notifications of the violated obligation to the responsible agent
before complaining to the mediator or institution agent;

– the time interval between two successive notifications;
– the name of the mediator handling complaints about this obligation.

The violation management behaviour performed by standard agents consists
in two steps. First, the watching agent notifies the violated obligation to the
responsible agent; the number of notifications and the delay between them is
specified by the developer. Second the watching agent complains to the mediator,
or if no mediator is specified, complains directly to the institution agent.

The next section is dedicated to the different exception cases that can be
encountered. We will in particular detail the violation management behaviour
specified by Obligation Respect Observer for the mediator. We will also describe
the managing of complaints sent by standard agents.

6.2 Mechanisms for exceptions

Mediating strategies Agents observing a violated obligation can complain to
the mediator. Proactive mediators are also able to detect violated obligations by
themselves, from the spying of the agents’ actions. Both means of detection lead
to the same management behaviour, specified by Obligation Respect Observer.
There are two cases.

If there is an inter-blocking, i.e. a situation where two obligatory actions are
each one unfeasible while the other one was not performed, the mediator refers
to a specification file (in xSL) listing predefined solving strategies. If there is no
strategy, or if the strategy fails, the mediator informs the institution.

Otherwise, the mediator begins with notifying the violated obligation to the
responsible agent, as do standard agents. But at the end of the final timeout, if
the obligation was not fulfilled yet, he identifies the type of violation, depending
on if the agent was trying to perform an unfeasible action, or if he was not even
trying. He then signals the violation to the institution with a specific message
that standard agents cannot send.

Sanctions When the institution agent is informed by its mediator of an un-
solved problem (mediation failed on an inter-blocking situation, voluntary or
involuntary violation of an obligation), he refers to a configuration file listing
pre-specified sanctions associated with various situations. It selects the appro-
priate sanction depending on the description of the situation made by the medi-
ator, and declares this sanction to the guilty agent (for example the obligation
to pay a fine).

11

7 Conclusion

In this paper we have proposed an extension for JSA allowing to develop In-
stitutional Agents in the JADE platform. These agents are able to understand
the semantics of FIPA speech acts, but also to reason about new concepts of
norms, roles, powers... and to behave accordingly. Such institutional agents can
thus evolve in an institutional context while respecting its rules.

In [2] the authors propose a methodology for 3D electronic institutions aim-
ing at integrating humans and agents in a virtual 3D world. The institution is
specified and validated at design time so that no blocking can occur at runtime,
while our approach consists in detecting a blocking in real time and mediating
between the involved agents to resolve it. Moreover in this framework the par-
ticipants have to follow well-defined interaction protocols, which is more rigid
than the interaction allowed by the use of FIPA speech acts in our framework.

Our development framework4 has several assets. First it is compliant with the
FIPA standard, that is widely used in MAS. Moreover it blends mental attitudes
(beliefs, intentions) with social ones (obligations, powers) allowing an expressive
specification of the agents’ behaviour. Second it grounds on a logical framework
for institutional notions, ensuring the correctness of the agents’ reasoning.

Finally, designing agents able to deal with institutions and norms is essential
for future applications of Multi-Agent Systems, notably those oriented towards
electronic commerce. Besides we have applied our JIA framework to the design of
an industrial application prototype, offering to businesses a flexible and evolutive
solution to their interoperability problems.

References

1. C. Adam, V. Louis, and R. Demolombe. Formalising the institutional interpretation
of actions in an extended BDI logics. In ESAW, 2008.

2. A. Bogdanovych, M. Esteva, S. Simoff, C. Sierra, and H. Berger. A methodology
for 3D electronic institutions. In AAMAS. ACM, 2007. poster.

3. F. Bourge, S. Picant, C. Adam, and V. Louis. A multi-agent mediation platform
for automatic b2b exchanges. In ESAW, 2008. demonstration.

4. R. Demolombe and V. Louis. Norms, institutional power and roles: towards a
logical framework. In ISMIS, volume LNAI 4203, pages 514–523. Springer, 2006.

5. ebXML. Electronic business XML - iso 15000 standard. http://www.ebxml.org/.
6. FIPA. The foundation for intelligent physical agents. http://www.fipa.org.
7. JADE. The java agent development framework. http://jade.tilab.com.
8. V. Louis and T. Martinez. An operational model for the FIPA-ACL semantics. In

AAMAS’05 workshop on Agent communication (AC’05), 2005.
9. V. Louis and T. Martinez. Developping multi-agent systems with JADE, chapter

JADE semantics framework. John Wiley and sons inc., March 2007.
10. UBL - OASIS. Universal Business Language Technical Committee. http://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=ubl.
11. UN/CCL. United nations core component library. www.unece.org/cefact/

codesfortrade/codes_index.htm.
12. UN/EDIFACT. United Nations Directories for Electronic Data Interchange for Ad-

ministration, Commerce and Transport. http://www.unece.org/trade/untdid/.

4 This framework is now available open source as a community add-on for JADE [7].

12

Integration of agent-based Manufacturing Execution

Systems into a Service Oriented Architecture

Sven Jacobi1, Christian Hahn2, David Raber2

1 Saarstahl AG

Hofstattstrasse 106, 66333 Voelklingen, Germany

Sven.Jacobi@saarstahl.com

2 German Research Center for Artificial Intelligence

Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany

{Christian.Hahn, David.Raber}@dfki.de

Abstract. The production of steel normally constitutes the inception of many

supply chains in different areas of industry. Therefore, steel manufacturing com-

panies are strongly affected by bull whip effects and other unpredictable influ-

ences along their production chains. In the course of these integrated operations,

making the right decision at a certain stage can be the difference between earn-

ing or losing a great benefit. Improving their operational efficiency is required to

keep a competitive position on the market. Hence, flexible planning and schedul-

ing systems are needed to support these processes, which are based on consider-

able amounts of data, hardly processable manually anymore. MasDISPO xt is an

agent-based generic online planning and scheduling system for the observation

on MES-level of the complete supply chain of Saarstahl AG, a globally respected

steel manufacturer. This paper concentrates on the horizontal and vertical integra-

tion of influences of rough planning on detailed and the other way around. Based

on model-driven engineering business processes are modeled on CIM-level, a ser-

vice oriented architecture is presented for the interoperability of all components,

legacy systems and others wrapped behind services. Based on this, an agent-based

detailed planning and scheduling ensuring interoperability in horizontal and ver-

tical direction is approached effectively.

1 INTRODUCTION

The production chain of Saarstahl AG consists of a multitude of specialised and com-

plex metallurgical manufacturing processes with a lot of dependencies among them.

First, a blast furnace factory produces hot metal from iron ore, coke and limestone as

raw materials for the steel production. In fixed intervals distributed over the day, a de-

termined quantity of hot metal is sent by rail to the steel works for the next production

step. Inside the melting shop, steel of different quality grades is produced, according to

concrete customer orders and requirements. It is cast at continuous casting plants into

billets. A single production unit inside the steel works is called heat. A heat is part of a

sequence – a total ordered set of similar qualities of equal formats.

Afterwards, these billets are delivered to the rolling mills. Here, steel bars or wire

rods of different shapes and formats are produced. In fixed, cyclic rolling campaigns

13

Fig. 1: Supply Chain of Saarstahl AG

of limited capacities certain formats are produced. These cycles are dependent on the

rolling mills, billet supply by the steel works and concrete orders by customers, of

course. They vary between one to four weeks. After rolling, follow-up manufacturing

steps concerning steel bars are arrangement, pickling, annealing and saw cutting; wire

rods probably need a annealing and a pickling. Finally, the products are delivered to

the customers – mostly suppliers of the automotive, shipbuilding or aerospace sectors.

Figure 1 depicts the roughly described Supply Chain.

Given a working plan, MasDISPO xt schedules the execution of each concrete or-

der along the production chain. It monitors production on a rough—in weeks—and

detailed—in days and hours—level, and executes an online detailed planning and schedul-

ing for the different manufacturing steps in each single factory. It has to detect problems

in the production and handle them in order to return to normal production. The rough

working plan for each manufacturing level (shown in Figure 2) is calculated on demand,

before final order commitment. Depending on delivery date and order quantity certain

capacities at specified aggregates have to be roughly allocated.

Usual orders to Saarstahl vary between five to several hundreds of tons. Batch sizes

on each manufacturing level are fixed or limited, hence, orders have to be grouped

together in process units on each stage with local constraints to keep. For instance,

inside the steel works, a heat has a fixed size of 160t. The orders covered by a heat

have to be of same quality, same casting format and should have the same calcu-

lated processing step date. Additional restrictions concerning the production inside

14

Fig. 2: Rough planning according to order position

the steelwork describe a local problem. This is decribed in detail in MasDISPO – the

Multiagent System [Weiss, 1999], [Wooldridge, 2002] for the steelworks’ optimisation

[Jacobi et al., 2007].

It is not only the batch size which complicates mapping from one phase to another.

Inside the steelworks, orders are also grouped together by steel grades, whereas, on

the next phase – rolling – physical dimension is the most relevant criterion; while for

annealing treatments, the temperature is the most important one. Thus, every single

order has to be mapped into different units on different production phases. Therefore,

the groups created by each of these criterion cause production dependencies among

the orders and, consecuently, changes in one order’s schedule may impact the other’s

schedules at a given phase.

The average order backlog at Saarstahl is about 17500 orders, which makes it al-

ready a complex challenge to find an optimal mapping which keeps all constraints and

deadlines. However, the system has to, additionally, deal with the online problem of

dealing with new incoming orders and changing requirements by customers.

Normally, as a process step gets closer to a certain phase, the more concrete its al-

location and the more detailed its planning has to be. Therefore, this system has to deal

with smooth transitions between rough and detailed planning – a challenge which is

often only non satisfying matched by traditional centralised approaches [SAP, 2004].

Dependencies between rough and detailed planning, as well as, interconnections be-

tween different manufacturing phases have to be modeled.

15

As presented, the overall process chain is characterized by changes in customer

orders and it is affected by production setbacks or problems. Therefore, steel manufac-

turing companies must be flexible and dynamic, by adapting production plans fast in

order to meet customer requirements while still being cost-efficient.

Since these are requirements which need to be covered in almost every industrial

sector, there are a lot of commercial systems handling this. But these ERP systems

(enterprise resource planning) [Gronau, 2004] like APO (Advanced Planner and Op-

timizer) [Bartsch and Bickenbach, 2002] or APS (Advanced Planning and Scheduling)

are suitable for a rough planning only, but are frequently not very suitable for operations

planning. These existing solutions are dominated by centralized decision making pro-

cesses, mostly data driven and often not modeling the business processes they should.

Big software companies have adopted the strategy to provide integration mechanisms

for MES-level solutions [SAP, 2004] like the presented solution.

MasDISPO xt, a decentralised agent based approach, is the proposed solution of

this paper. In MasDISPO xt, every order is modeled as an agent. The agent calculates

and observes its own schedule from order entry, across rough and detailed planning,

and monitors the production up to the point of delivery. It responds to changes during

planning, scheduling and production by dynamically adapting the schedules. Also, each

aggregate of any factory is also modeled as an agent which also calculates its schedule

autonomously based on further local knowledge and restrictions.

The complete production chain is very complex and could not be addressed with the

appropriate detail in the context of only one paper. Therefore, this paper concentrates on

the horizontal and vertical integration of solutions provided for detailed planning into a

global perspective regarding rough planning and the other way round. As a presetting,

rough planning influences detailed planning and vice versa a rearranged detailed plan-

ning might impact the rough layer – probably on several manufacturing levels. Existing

ERP solutions cannot provide such integrations very suitable – the motivation for the

presented approach.

Section 2 describes the normal course of action concerning planning at Saarstahl in

more detail. Based on this, specific requirements are identified. Section 2 closes with

the presented approach. A general discussion of the deployed solution is described in 3.

Also, conclusions and ongoing work are presented.

2 Planning and Scheduling at Saarstahl AG

2.1 Problem description

Steel production in general is a very complex, dynamic and disassembling process. It

starts inside the blast furnace as hot metal and ends up in vast number of products

of different kinds. On each manufacturing step, there are lots of restrictions regarding

quality, size, dimension and others which determine the campaigns and batch units

on each processing step. Of course, time restrictions also have to be kept. Hence, a

delay on a certain step might have cascading effects along different branches of further

processing. As mentioned, the average order backlog of Saarstahl is about 17500 – each

order composed of several order positions and each position with up to 50 processing

steps. Hence, it is a challenge to keep planning and scheduling under control.

16

Competitive orientation concerning product concepts, technology and others are

discussed per annum at Saarstahl and give a direction for human resource planning or

machinery on a tactical level. In planning levels regarding sales, the global production

capacities for the different production phases are booked. After that, the planning pro-

cess continues by planning at lower levels. For each factory, the global planning level

provides the lower level with a set of orders for a specified time horizon. These assigned

orders are planned in more detail while going down in planning levels down to physi-

cal production systems. All these influences are correcting variables from ’above’ often

given just once.

On the other hand, physical production systems might have any delays which have

to be adopted by the planning system above. Delivery reliability or throughput are mea-

sured constantly and influence the next level above. These control variables go up to the

strategical planning on highest level. A cycle of interdependencies as shown in figure

3 is created. Flexibility across these different layers is needed to guarantee a flexible

planning and production process.

Fig. 3: Control Cycle of planning influences and dependencies

The planning horizon on highest level is quite rough, the closer it gets down to

production the shorter the horizon is. To realise this exchange of information, smooth

interfaces between the acting systems are needed. On a higher level planning level,

usually normal ERP-systems (enterprise resource planning) are used. These systems

probably also provide a advanced planning system (APS) for a rough planning. Beneath,

17

a so called manufacturing execution system is used for a detailed planning. The last

level is the automation level covered by ’SPS’ or ’SCADA’ (Supervisory Control and

Data Acquisition). A smooth vertical integration of these acting systems is needed to

guarantee a fast exchange of informations which is especially needed in steel production

since materials are often molten between two different processing steps and might not

cool down. Figure 4 depicts again the control cycle but from a system’s point of view.

Fig. 4: Planning pyramid at Saarstahl AG

Saarstahl is a historically grown company. Hence, a lot of obsolete legacy sys-

tems are still running. Integrations as described above are especially regarding dynamic

aspects viable unsatisfying by existing, commercial approaches. Driven by this need

Saarstahl decided to develop own solutions and participate in research projects like

the European funded project ’SHAPE’ (Semantically-enabled Heterogeneous Service

Architecture and Platforms Engineering) [SHAPE, 2008] which are dealing with these

problems.

2.2 Solution

The main idea in order to be able handling these problems is to model each single or-

der position as a software agent. Every single compolo agent (comission - position -

lot) calculates and observates its own schedule from order entry until invoicing. Instead

of handling a vast number of restrictions subject to the manufacturing step in general

only a few which are relevant for a single order position are handled by the entity au-

tonomously. A decentralised management of manufacturing control is received instead

of a centralised, data driven approach.

18

Definition 1. Having a finite set of factories F with elements fi, where fi is the factory

number i, aggregates A with elements a j, where a j is the factory number j

F = { f1, . . . , fn} n ∈ N

A = {a1, . . . ,am} m ∈ N

O being the finite set of all orders to be planned, with elements identified with the letter

o,

O = {o1, . . . ,oq} q ∈ N

Li being the ordered list of elements of A which are the suitable aggretates for order oi

in order of preference,

Li = {ax, . . . ,ay}

where

| Li |≤ n; i = 1, . . . ,q;

ax ∈ Li ∧ay ∈ Li∧
ax precedes ay in the list Li ⇒

ax is preferable over ay for order oi

L being the collection of preferences for all orders:

L = {L1, . . . ,Lq}

and the functions C, being the function which associates an aggregte to its associated

available capacity for a given period, and c, the function which associates each order

to its required capacity on an aggregate,

C : M → N

c : O → N

the top level plannning problem for assinging aggregates can be defined as the search

for a set P that associates each order in O to aggregates in A following the preferences

provided by L and making sure that the sum of all sizes provided by c(x) of the orders

associated to a specific furnace do not exceed the furnace’s specific maximal capacity

C(a j):

P = O×A

where

∀a j ∈ A :



 ∑
x∈{o|(o,a j)∈P }

c(x)





< C(a j) .

19

A solution P is produced by searching for each order oi ∈ O (sorted by arrival date)

a factory fi ∈ F and an aggregate a j ∈ A with available capacity, following the list Li.

Furthermore, Soq is the finite set of processing steps with elements sk, where sk is the

step number k necessary to meet customer requirements according oq. H is the function

assigning the number of different factories along the process chain of each single order

position.

S = {s1, . . . ,al} l ∈ N

H : Soq ×Soq → N

h(sk,sk+1) 7→

{

0 : f (ask
) = f (ask+1

)
1 : f (ask

) 6= f (ask+1
)

;

f (ask
) maps step sk on aggregate ask

to factory i min



∑
Soq

∑
k

h(ssk,sk+1
)





By minimizing this function transportation costs will be optimised. Of course, this is

not the single objective. Along the complete process chain, there are several and also

conflicting goals. But this is not addressed in this paper.

This general definition is valid across the complete supply chain for every single

order position in each local subsystem. Additional restrictions and others are taken into

account while going down on more detailed level. The degree of detailedness also de-

fines the framework for information exchange. The goal is to exchange as least data as

possible but still enough to guarantee transparency as demanded.

Fig. 5: Service Oriented Architecture of Saarstahl AG

20

How are existing legacy systems integrated into workflow and how are interactions

realised? This is solved by use of a Service Oriented Architecture (SOA). The idea of

the service oriented approach is straightforward. Existing legacy systems are wrapped

behind services which are part of the service oriented architecture of Saarstahl. A sim-

plified model of this architecture in which a lot of participants have been omitted is

choosen to explain this approach in more detail. Figure 5 depicts this model which is

based on SOAML [OMG, 2008]. In this scenario the internal architecture of Saarstahl

consists of only three participants namely sales department, steel works and compolo

agent. Each participant offers a number of services to wrap the functionality of the cor-

responding legacy systems in its domain. The behavior of each participant as well as

points of interaction with other participants are modeled by UML activities. Figure 6

depicts a sample interaction showing the steel works participant sending a production

report to the compolo agent.

Fig. 6: Activity: Steelwork informs compolo agent

The SOAML model represents an intermediate model in the whole model driven de-

velopment process only. The planning process and requirements are formalized for the

first time on computation-independent model (CIM level) via business process mod-

eling notation (BPMN) using ARIS [IDS Scheer AG , 2008] . The activity in figure

6 has been generated from the models while going down from CIM to PSM level.

Services like ’Inform Service’ provided by the compolo agent are specified and as-

signed. A model transformation to PIM level (platform-independent model) is done

using SOAML resulting in a model as shown in figure 5.

This is followed by another model transformation on PIM level to PIM4Agents

[Hahn et al., 2007]. The metamodel of agent aspect is centered on the concept of an

agent, the autonomous entity capable of acting in a specified environment. The trans-

formation to PIM4Agents is realized using the ATL (ATLAS transformation language)

[Eclipse-Foundation, 2009].

21

Two relevant mapping rules of the transformation are presented next to show how

they are applied for the presented model mappings.

Model mapping 1:

Head: SOAML:ParticipantArchitecture → PIM4Agents:Organization

Body: Every ParticipantArchitecture in the SOA model is mapped to a Organization a

specialisation of an agent. The details of this mapping are summarized by the following

table.

Target Source

Required roles OwnedAttributes which are of type ParticipantArchitect-

ure

Performed roles Every occurrence as an OwnedAttribute in some Partici-

pantArchitecture or ServiceArchitecture

OrganizationUse Owned CollaborationUses

Interaction Corresponding ServiceContracts to owned Collabora-

tionUses

In SOAML the concept ParticipantArchitecture is used to describe how internal

participants work together for a purpose by providing and using services expressed

as service contracts. This nicely corresponds to the notion of the Organization aspect

in PIM4Agents which describes how single autonomous entities cooperate within the

multi–agent system and how complex social structures can be defined. Collaborations

which are contained inside an Organization define the cooperation. Figure 7 depicts the

result of this transformation. An Organization is represented by a group of three actor

symbols. The input is the architecture as depicted in figure 5.

Fig. 7: Saarstahl Architecture modeled with PIM4Agents

22

Model mapping 2:

Head: UML:CollaborationUse → PIM4Agents:Collaboration

Body: The concept CollaborationUse in UML is mapped to a Collaboration that de-

fines which organizational members are bound to which kind of Actor as part of an

ActorBinding.

Target Source

Organization The containing ParticipantArchitecture or ServicesArchi-

tecture

InteractionInstance ServiceContract which types the CollaborationUse

Binding Collection of DomainRoles which are required by the

corresponding ServiceContract

actorBinding Collection of roles bound to this CollaborationUse

This mapping is again a one to one correspondance but the Collaboration concept

in PIM4Agents contains a bit more information than the CollaborationUse. Therefore

information from both CollaborationUse and ServiceContract are required to fill a Col-

laboration.

The final transformation is going down to platform specific model (PSM). On this

layer, a detailed planning – for instance concerning the production inside the steelwork

as described in [Jacobi et al., 2007] – is fulfilled. Also other systems are involved. Fig-

ure 8 summarizes the transformations as described.

Fig. 8: Model transformations CIM-PIM-PSM

23

3 Application use and payoff & Conclusion

The need for flexible integrated planning systems with a clear workflow and a fast in-

formation exchange are undeniable. Existing, commercial approaches cannot guarantee

such flexible interfaces. The agent based approach keeps calculation as ’local’ as pos-

sible instead of calculating complete new schedules for entire processing units caused

by any delay as provided by centralised planning tools. New solutions are related to

old, but invalid ones. So, observers are able understanding how to get from one solu-

tion to another. By use of a SOA, vertical integration but also horizontal integration of

information exchange is eased. Response times are reduced, because by use of services

provided by orders or certain aggregates both modeled as agents, informations are ex-

changed without any detours anymore. No informations are lost, because services are

embedded in specified protocols which ensure completeness.

The described examples of this paper state a subset of the different problems which

need to be solved along production inside supply chains. An automatic and responsive

planning system is needed. The decentralised approach with multiagent systems make

the system easier to handle, really models the demanded business processes and is able

to manage the huge data amount along production – requests which are not always met

by the existing centralised approaches. By use of SOA, a more flexible environment

easily to extent is received. The authors like to thank Saarstahl AG. Without their inno-

vation related mind the realisation of this would not have been possible.

References

[Bartsch and Bickenbach, 2002] Bartsch, H. and Bickenbach, P. (2002). Supply Chain Manage-

ment mit SAP APO. SAP Press, 2nd ed.

[Eclipse-Foundation, 2009] Eclipse-Foundation (2009). Atlas transformation language atl.

http://www.eclipse.org/m2m/atl/.
[Gronau, 2004] Gronau, N. (2004). Enterprise Resource Planning und Supply Chain Manage-

ment: Architektur und Funktionen. Oldenbourg (Muenchen).

[Hahn et al., 2007] Hahn, C., Madrigal-Mora, C., and Fischer, K. (2007). Interoperability

through a platform-independent model for agents. Proc. 3rd Inter. Conference on Interoper-

ability for Enterprise Software and Applications (I-ESA 2007).

[IDS Scheer AG , 2008] IDS Scheer AG (2008). Aris. http://www.ids-scheer.com/en/

ARIS/ARIS_Software/3730.html.

[Jacobi et al., 2007] Jacobi, S., Leon-Soto, E., Madrigal-Mora, C., and Fischer, K. (2007). Mas-

dispo: A multiagent decision support system for steel production and control. AAAI Innovative

Applications of Artificial Intelligence.

[OMG, 2008] OMG (2008). Service oriented architecture modeling language (soaml) - specifi-

cation for the uml profile and metamodel for services (upms). http://www.omg.org/docs/

ad/08-08-04.pdf.

[SAP, 2004] SAP (2004). Integration von mes-systemen in sap for mill products.

[SHAPE, 2008] SHAPE (2008). Semantically-enabled heterogeneous service architecture and

platforms engineering. http://www.shape-project.eu.

[Weiss, 1999] Weiss, G., editor (1999). Multiagent Systems: A Modern Approach to Distributed

Artificial Intelligence. KIT Press.

[Wooldridge, 2002] Wooldridge, M. (2002). An Introduction to Multiagent Systems. John

Whiley & Sons.

24

A Modular Protocol Model for PIM4Agents

Esteban León-Soto,
Cristián Madrigal-Mora, Christian Hahn, Stefan Warwas and Klaus Fischer

DFKI GmbH
Campus D3.2,

D-66123 Saarbrücken, Germany
{Esteban.Leon, Cristian.Madrigal, Christian.Hahn, Stefan.Warwas,

Klaus.Fischer}@dfki.de

Abstract. For a long time, many models for interaction protocols have
been proposed, very few of them approach the problem of modularity
in interaction protocols. In the present work an implementation of an
abstract model for interaction protocols is presented using a platform in-
dependent model for multi-agent systems (PIM4Agents). The advantages
of using a declarative method to give semantics to actions and protocols
come in handy at the time of representing in a concrete tool the correla-
tion between actions. Having explicit semantics of what actions can do
enables the possibility of having advanced tools that take advantage of
it. The present work explains how the abstract protocol model is intro-
duced in PIM4Agents, making it possible to develop model driven tools
for interaction protocols in multi-agent systems.

1 Introduction

In multi-agent systems, communication between agents plays a crucial
role. Since conversations can be quite complex and unpredictable, inter-
action protocols were invented, in order to reduce possible interactions
to those necessary to accomplish a certain purpose. They are a key con-
cept, since they are used to coordinate systems that are intended to work
together in an interoperable manner. Great amounts of work have been
invested into creating versatile and agile interaction protocol models,
being those proposed by the Foundation for Physical Intelligent Agents
(FIPA) the most popular [1]. Even so, none of these proposals provide a
model that supports modularity and a concrete mechanism to rule how
actions and protocols can be combined together to produce new proto-
cols. Some of the proposals do address this aspect, but only “in spirit”,
since this task of combining is left completely for the designer to define
and there are no concepts in the protocols that represent or support
these decisions.
PIM4Agents is a metamodel that has been developed with the purpose
of supporting model-driven development of multi-agent systems. Interac-
tion protocols are one of the concepts present in this meta-model, among
many others.
This work will describe, how a modular model for protocols is described
in PIM4Agents. This model has as main objective to support modularity.

25

As it will be explained in further detail, this model will define actions
in a declarative way, using propositions about the context of conversa-
tion. Doing this is of crucial importance, separating actions from their
semantic meaning: preconditions and effects allow to compare and a dif-
ferentiate in an explicit way which actions can be connected together
and which actions can replace other actions.
First we describe previous work done in the area of Multi-Agent Sys-
tems (MAS) modeling, in Section 2 we briefly expose a metamodel for
multi-agent systems called PIM4Agents and in Section 3 we describe the
abstract model we provide for achieving modularity in interaction pro-
tocols. After that, in Section 4 the way this model is implemented for
PIM4Agents is described, followed by Section 5, using an example, we
explain how this tool can be used. Finally, in Section 6 we evaluate and
compare results.

2 PIM4Agents

For designing MAS, a platform-independent domain-specific modeling
language called Dsml4MAS [2] has been developed. Like any language,
Dsml4MAS consists of an abstract syntax, formal semantics (see [3] for
more details) and concrete syntax (see [4] for more details). However, in
this paper we mainly focus on the abstract syntax.
The abstract syntax of Dsml4MAS is defined by a platform independent
metamodel for MAS called Pim4Agents defining the concepts and their
relationships. The core of the PIM4Agents is structured into different
viewpoints briefly discussed in the remainder of this section.
– Multiagent view contains the core building blocks for describing MAS.

In particular, the agents situated in the MAS, the roles they play
within collaborations, the kinds of behaviors for acting in a reac-
tive and proactive manner, and the sorts of interactions needed for
coordinating with other agents.

– Agent view defines how to model single autonomous entities, the
capabilities they have to solve tasks and their roles they play within
the MAS. Moreover, the agent view defines to which resources an
agent has access to and which kind of behaviors it can use to solve
tasks.

– Organization view defines how single autonomous agents are ar-
ranged to more complex organizations. Organizations in Dsml4MAS
can be either an autonomous acting entity like an agent, or simple
groups that are formed to take advantage of the synergies of its mem-
bers, resulting in an entity that enables products and processes that
are not possible from any single individual.

– Role view covers the abstract representations of functional positions
of autonomous entities within an organization or other social rela-
tionships. In general, a role in Dsml4MAS can be considered as set
of features defined over a collection of entities participating in a par-
ticular context. The features of a role can include (but not be limited
to) activities, permissions, responsibilities, and protocols. A role is
a part that is played by an entity and can as such be specified in
interactive contexts like collaborations.

26

– Interaction view focuses on the exchange of messages between au-
tonomous entities. Thereby, two opportunities are offered: (i) the
exchange of messages is described from the internal perspective of
each entity involved, or (ii) from a global perspective in terms of
agent interaction protocols focusing on the global exchange of mes-
sages between entities.

– Behavior view describes the vocabulary available to describe the in-
ternal behavior of intelligent entities. The vocabulary can be defined
in terms of combining simple actions to more complex control struc-
tures or plans that are used for achieving predefined objectives or
goals.

– Environment view contains any kind of Resource (i.e. Object, On-
tology, Service etc.) that is situated in the environment and can be
accessed and used by Agents, Roles or Organizations to meet their
objectives.

– Deployment view describes the run-time agent instances involved in
the system and how these are assigned to the organization’s roles.

To lay the foundation for further discussions on how to use Dsml4MAS
for modeling interactions, we focus on the interaction viewpoint in the
remainder of this section. Key PIM4Agents concepts for the present work
are illustrated in Fig. 1.

2.1 Interactions and Organizations in PIM4Agents

The interaction aspect of Dsml4MAS defines in which manner agents,
organizations or roles interact. A Protocol is considered as a special form
of an Interaction. In the deployment view, furthermore, the system de-
signer can specify how Protocols are used within Organizations. This is
done through the concept of a Collaboration that defines which organi-
zational members (which are of the type AgentInstance) are bound to
which kind of Actor as part of an ActorBinding. Beside a static binding,
the designer may want to bind the AgentInstances at run-time.

An interaction protocol as a pattern for conversation within a group of
agents can be more easily described using generic placeholders like ‘Initia-
tor’ or ‘Participant’ instead of describing the interaction between the par-
ticular agent instances taking part in the conversation. In Dsml4MAS,
this kind of interaction roles are called Actors that bind AgentInstances
at design time or even at run-time. Furthermore, Actors require and
provide certain Capabilities and Resources defined in the role view of
PIM4Agents.

Messages are an essential mean for the communication between agents
in MAS. In PIM4Agents, we distinguish between two sorts of messages,
i.e. Message and ACLMessage which further includes the idea of Per-
formatives. Messages have a content and may refer to an Ontology that
can be used by the participating Actors to interpret the Message and its
content.

27

Fig. 1. Key Concepts in PIM4Agents.

3 Modeling modularity for Protocols

An interaction protocol model must have certain properties to be capable
of supporting modularity. In this section these properties will be formally
defined.

First of all, actions and their effects must be represented explicitly sepa-
rated. In order to have a way of representing which actions and protocols
(which are composed actions) can have the same effects, actions will be
defined using some propositions that represent facts as seen from a global
perspective.

Actions will be defined as operations over some propositions and a set of
preconditions required by the action. These preconditions and operations
will define the semantic of actions and will allow to replace or connect
actions (or sets of them) with other ones that semantically have matching
preconditions and effects.

A protocol is seen as a mechanism to control interactions. These are
modeled as sets of possible actions and how these can be sequenced.
Protocols will be defined as a transition system using a model similar
to finite state machines. To represent how actions are to be organized:
nodes are state of the complete system and actions are connections from
one state to another.

In this specific case, state nodes will not be defined as a normal (concrete)
state (where all propositions of the complete system and their truth
value are specified), but as state descriptions, which represent sets of
concrete states that fulfill some constraints. These constraints consist of
true values assigned to some propositions, all concrete states belonging
to the same state description will have the same truth value assigned
to the propositions mentioned in the state description. Actions will be
represented as a set of operations over some propositions, bringing about
some facts or making them false. The post-conditions of an action can be
calculated by applying its operations to the preconditions of the action.

28

Using state descriptions and operations cope with the Frame Problem
[5] by allowing to refer only to what is relevant for each action.

3.1 Actions

Actions are a mapping of a state description, a label and a set of opera-
tions over some propositions to a state description.
A concrete state σ is an association of each proposition in P to a truth
value (true or false). A state description s ∈ S is defined as the set of
all concrete states σ that fulfill the constraints defined in s:

s(〈pa, true〉, . . . , 〈pk, true〉) = (1)

{σ ∈ Σ|〈pa, true〉 ∈ σ, . . . , 〈pk, true〉 ∈ σ}
where:
k ≤ |P |
Σ: Set of all states.

The set of operations O is an association of propositions with an operator
+ or −, meaning that the proposition p is set to true in case of +p or to
false in case of −p.
Actions must follow a principle of effectiveness, therefore the set of tar-
geted states s′ cannot be the same as the starting state description s.
The set of all actions is called A:

∆ : S × V × P(O)× S
A = {〈s, v, c ⊆ O, s′〉 ∈ ∆|(s′ 6= s)} (2)

where:
S: Set of all state descriptions
V : Set of all names for actions
O: Set of all operations over propositions in P of the form +p or −p.
Participants of an action are represented as roles (r) members of the
set of roles: r ∈ R. Every action is always performed by a role and is
targeted at another role. The set AR of actions associated to roles is:

AR : R×A×R (3)

where
ai = 〈rxi, 〈si, li, ci〉, ryi〉
∀ai ∈ AR : rxi 6= ryi

3.2 Propositions

Propositions are the fundamental concept for modeling actions. All propo-
sitions pi are members of the set of all distinct propositions P :

P = {p1, p2, p3, . . . , pn}

Propositions can be of two kinds, regarding the way participants can
be aware of their truth value: on one hand, perceptible propositions:

29

about facts that are observable by the participants, their truth value can
be known using sensing capabilities, on the other hand non-perceptible
propositions: about facts that can only be known if a participant takes
part of an action which sets an explicit truth value for the proposition.
There is no constraint on how propositions are to be defined and what
they should represent. Their only concrete objective in the current model
is to serve as mechanism to correlate similar actions. In the context of in-
teraction protocols, there are some facts that require special observation,
for which specific kinds of propositions will be defined:

Operational propositions Operational propositions are those that
are defined as some arithmetic or logical statement:
– Arithmetic proposition: algebraic statement intended to define how

facts are to be evaluated, for instance bid > value.
– Logical proposition: (also called conditional proposition) Used to

express some fact that might be brought about if a logical term is
valid, for instance bid > value ⇒ won means, that in case bid is
greater than value, won will be valid.

Timeouts There are certain cases where concrete time-windows are to
be specified in an interaction protocol. For this purpose timeouts will be
defined.
A Timeout T (tp, a) ∈ T , where a ∈ AR (the set of actions), T ⊆ P , is
a proposition member of the set of timeout propositions T that states
that the action a will be performed after a certain period of time tp
that starts to count after the action that brings about the timeout is
performed. Action a in a timeout is not necessarily performed by the
sending role mentioned in a, but instead it can be an assumption the
receiver of a can make. Also, this action will always have implicitly the
operation −T (tp, a) declared, hence, timeouts are removed automatically
after a is performed.

Commitments A commitment [6] C(ad, ac, p, c, T) ∈ P is defined as
the commitment of the debtor agent ad to the creditor agent ac to bring
about the proposition p ∈ P under the condition that the proposition
c ∈ P becomes true. After the condition c becomes true, agent ad is
expected by agent ac to perform some action that produces p to be true.
This action is to be performed before timeout T that represents the time
limit is enabled. This timeout starts to count as soon as the condition c
is brought about.
An unconditional Commitment C(ac, ad, p, T) is an abbreviation of a
commitment: C(ad, ad, p, true, T) which simply means that agent ac ex-
pects ad to bring about the proposition p within the time period specified
in T which is already running.

3.3 Interaction Protocols

An interaction protocol is a structure that represent a set of actions that
are organized in a desired way. It serves a purpose of encapsulating these
sets of actions in order to ease their management.

30

A protocol π is an association of preconditions in the form of one or more
state descriptions, a label, post-conditions in the form of one or more
state descriptions and a set of “roled” actions. The set of all protocols is
called Π:

Π : B × Vπ × E × P(Ar) (4)

where
B: the set of starting state descriptions, B ⊂ S
Vπ: Set of labels for protocols.
E: the set of ending state descriptions, E ⊂ S
B

⋂
E = ∅

A protocol cannot have disconnected actions in its definition:

∀a ∈ AR ∃ss ∈ S ∧A′R ⊂ AR : si = si−1(ci) for 0 < i ≤ k (5)

where:
a = 〈rx, 〈s, v, c〉, ry〉
A′R = {a0, a1, . . . , ak}
a 6∈ A′R and ai ∈ A′r
ai = 〈rxi, 〈si, vi, ci〉, ryi〉 for 1 ≤ i ≤ k
a0 = 〈rx0, 〈ss, v0, c0〉, ry0〉
si(c) : A function that calculates the state description result of applying
the operations in c to the state si.

A protocol is a directed graph where state descriptions are the nodes
which are linked together by actions. Actions represent a system transi-
tion from one state description to another in case the action is performed.
All starting states in this graph (where there are only outgoing actions)
will be part of B and all ending states will be part of E.

Protocol patterns Interaction protocols will present frequent pat-
terns in their structure. These patterns can be, atomic protocol, a pro-
tocol sequence, split and merge:

atomic protocol : The most basic kind of protocol, it is composed of a
single action. Pre- and post-conditions are the same of the action.

protocol sequence : A protocol composed of one single starting state
description and one single end state description.

protocol split : A protocol composed of a set of actions which all share
the same starting states.

protocol merge : A protocol composed of a set of actions which after
being performed will lead to the same state description.

31

3.4 Composition of protocols

Using the presented model of protocols a mechanism for composition and
modularization of protocols can be defined.
To produce a composed protocol, two protocols can be composed by
connecting one or more ending states of the first protocol to the equal
amount of starting states of the second protocol. To connect an ending
state e to a starting state b, the ending state e that will be the enabler
of the starting state b needs to be a subset of it: e ⊆ b. This way all
constraints demanded by the starting state b will be fulfilled by the
ending state e.

Fig. 2. Protocol composition example, π4 is composed of π1, π2 and π3. Dashed lines
represent where protocols are linked together.

In Figure 2 an example of composition is shown, in which a protocol π4
is composed of three other protocols: π1, π2 and π3. π1 is connected to
π3 because its end state matches exactly a starting state of π3: both of
them have a valid. π2 is connected also to π3, because its end state is a
subset of the other starting state of π3: π3 requires b to be valid and the
ending state of π2 fulfills that constraint, it is the set of states where b is
valid and c is not. This is allowed by the state the protocols is connecting
to.

4 Implementing Modular Protocols
in PIM4Agents

Based on the definitions in Section 3, we proceed to incorporate the Mod-
ular Protocol concepts into the Interaction Aspect of the PIM4Agents
(see Figure 3). Therefore, we define the ModularProtocol class as a spe-
cialization of Interaction, inheriting then the associations to ACLMes-
sages, which represent the previously defined actions, and Actors, which
represent the roles that take part in the interactions.
The ModularProtocol is a composition of StateDescriptions, which are
used to represent the intermediate states between ACLMessages and

32

Fig. 3. Partial View of the Modular Protocol Metamodel

also the preconditions and postconditions of the protocols. The Stat-
eDescription contains the Propositions that are known in the set of states
represented by it. When the preconditions of an ACLMessage match a
given StateDescription, the ACLMessage is added to the outgoingAc-
tions of the StateDescription. When the preconditions plus the applied
operations of the ACLMessage produce a given StateDescription, this
ACLMessage becomes one of the StateDescription incomingActions.

The ModularProtocol can be recursively composed of other protocols.
This composition is enabled by the StateDescriptions along with the
ProtocolBinding. In the ProtocolBinding, an incoming protocol is bound
to an outgoing protocol, when one of the incoming protocol’s postcon-
dition state descriptions contains a subset of the prepositions contained
in one of the outgoing protocol’s precondition state descriptions (see
3.4). In order to link the roles from the incoming protocol to the corre-
sponding roles in the outgoing protocol, the ProtocolBinding contains a
collection of ActorRename instances that map each incoming actor with
the corresponding outgoing actor.

As mentioned previously, the Propositions, along with the Operations,
describe the semantics of the ACLMessages and compose the StateDescrip-
tions. The Proposition class represents the base for all propositions and,
as depicted in Figure 4 and in correspondance to Section 3.2, it is further
specialized by four classes: Arithmetic, TimeoutProp1, Conditional and
Commitment. The Operation class is abstract and represents the base

1 TimeoutProp refers to the Timeout concept presented in Section 3.2 and it is
named so to avoid a name conflict with a TimeOut concept used previously in the
PIM4Agents

33

Fig. 4. View of the Propositions hierarchy

for the currently supported operations: MakeTrue (+) and MakeFalse
(−).
In the following section, we will present a small example by using the
concrete syntax that corresponds to the concepts introduced in this sec-
tion.

5 Example

In this section, we revisit the example shown in Section 3.4. In Figure
5, we find the graphical representation of ModularProtocol Pi4. It is
constituted by 3 subprotocols: Pi1, Pi2, and Pi3, depicted as rectangles.
The small squares attached to the sides of each subprotocol represent
each of the StateDescriptions that are pre- or post conditions of the
given protocol. The black arrows are the graphical representation of the
ProtocolBinding objects, linking the postconditions of one protocol with
the preconditions of the next.

Fig. 5. Graphical View for Protocol Pi4

The graphical editor allows the user to also access the internal content
of the nested protocol. By double clicking on the nested protocol Pi1,

34

Fig. 6. Graphical View for Protocol Pi1

the user is presented with the contents of Figure 6. Pi1 represents the
simplest protocol: a protocol with only one action. Therefore, the state
descriptions, that represent the states before and after Offer1 is executed,
are also the pre- and postconditions of Pi1.

6 Conclusion

The present work shows how a model for modular protocols is introduced
in the metamodel for multi-agent systems PIM4Agents. The utilized in-
teraction protocol model has the advantage of providing modularity and
explicit formal definitions for actions and protocols that explain what
these concepts are and hence, how they can be combined. A survey of
current approaches to interaction protocol models is provided by [7],
which shows many approaches to modeling protocols. This idea of hav-
ing protocols that can be combined to produce new ones has always been
the intention for FIPA specifications. It extends simple dialogue games
[8] models by focusing not only in the actions that can be performed
but also in their consequences. The contribution consists in establishing
a clear connection between actions and protocols and using this seman-
tics define clearly how they can be recombined. In [9] a very similar
approach is proposed, the main difference is that it proposes a method-
ology to model protocols that takes the evolution of such systems into
account. Our approach instead, uses a model driven approach as used in
PIM4Agents.

Given the advantages of this model, it is introduced in a comprehensive
metamodel for MAS, providing an agile model for protocols. This model
is then given a concrete meaning in the scenario of MAS connecting
it to the rest of concepts necessary for MAS. The advantage of this is
the possibility of creating new modeling tools that take advantage of
the properties of the modular protocol model. An initial implementation
has shown that the information present in the model helps to provide a
more proactive modelling tool. For instance, the developer can see, by

35

clicking an ending state of a protocol, which other starting states of other
protocols are compatible.
Some other aspects have also to be introduced, like defining transactions
or the relation of messages in this model and events. This approach
models interactions from a global perspective only, further work will be
to see how these protocols can be projected to specific roles, in other
words, how a specification of a participant can be extracted out of the
global model. PIM4Agents has mechanisms to represent also concepts
necessary to define this projection, therefore it is an important step to
introduce the abstract model of protocols in a concrete modelling tool.

References

1. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for
Specifying Multiagent Software Systems. In: ICSE 2000 Workschop
on Agent-Oriented Software. (2000)

2. Hahn, C.: A domain specific modeling language for multiagent sys-
tems. In Padgham, L., Parkes, C.P., Mueller, J., Parsons, S., eds.:
Proceedings of 7th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2008). (2008) 233–240

3. Hahn, C., Fischer, K.: The static semantics of the domain specific
modeling language for multiagent systems. In: Proceedings of the
9th International Workshop on Agent-Oriented Software Engineering
(AOSE 2008). Workshop at AAMAS’08, 13.5.2008. (2008)

4. Warwas, S., Hahn, C.: The contrete syntax of the platform indepen-
dent modeling language for multiagent systems. In: Proceedings of
the Agent-based Technologies and applications for enterprise inter-
OPerability (ATOP 2008)at AAMAS 2008. (2008)

5. McCarthy, J., Hayes, P.J.: Some philosophical problems from the
standpoint of artificial intelligence. Readings in nonmonotonic rea-
soning (1987) 26–45

6. Mallya, A.U., Singh, M.P.: A Semantic Approach for Designing Com-
mitment Protocols. In Eijk, R.V., ed.: Developments in Agent Com-
munication. Volume 3396 of LNAI., Springer (2005) 37–51

7. Miller, T., Mcginnis, J.: Amongst first-class protocols. In: Engineer-
ing Societies in the Agents World VIII: 8th International Workshop,
ESAW 2007, Athens, Greece, October 22-24, 2007, Revised Selected
Papers, Springer-Verlag (2008) 208–223

8. McBurney, P., Parsons, S.: Games that agents play: A formal frame-
work for dialogues between autonomous agents. J. of Logic, Lang.
and Inf. 11 (2002) 315–334

9. Desai, N., Choppra, A.K., Singh, M.P.: Amoeba: A Methodology
for Requirements Modeling and Evolution of Cross-Organizational
Business Processes. ACM Transactions on Software Engineering and
Methodology (to appear)

36

System interoperability analysis by mixing system
modelling and MAS: an approach

A.S.Rebai, V.Chapurlat

LGI2P- Laboratoire de Génie Informatique et d’Ingénierie de Production
Site EERIE de L’Ecole des Mines d’Alès, Parc Scientifique Georges Besse

30035 Nîmes cedex 1 – France – tel. (+33) (0)466 387 066
{ahmed-sami.rebai, vincent.chapurlat }@ema.fr

Abstract: In the current economical context, enterprises should work together,
collaborate, mix their different skills and competences and exchange their
different data all along collaborative processes to respond rapidly and with
efficiency to a business opportunity. In this way, due to the required
interactions and the different nature of each involved parts (persons, machines,
etc…), enterprises have to imagine and to anticipate in which way these
interactions will be made. This requires to detect and to limit the loss of
performance, integrity and stability the required interactions can induce. That’s
why it is important to study in an anticipatory way to characterize and to detect
causes and effects of a lack of enterprise interoperability within the
collaborative process. This paper presents an approach to model a collaborative
process in an enterprises network and to simulate its behaviour in order to study
its interoperability.

Keywords: Interoperability, Multi Agent Systems, Modelling System,
Simulation

Introduction

An enterprise network can be considered as a system of systems i.e. as a set of
subsystems which need to interact in a timely manner in order to fulfil a given
mission, respecting objectives but remaining independent from other subsystems. [1]
defines the systems of systems as a collaboration in which each system wouldn’t be
adequate to fulfil alone the mission, but together they are capable to do it within an
assembly way. Each one of these systems, specified, conceived, implemented and
maintained potentially independently of the others, corresponds to a specific project
which needs the intervention of distinct actors.
So, these systems will have to interact, and in order to do it in the best manner, they
must have a certain degree of interoperability which is defined as the capacity for two
(or more) systems to exchange information and to use the information which they
exchanged [2]. Here enterprises networks are composed of enterprises or enterprises

37

parts being involved in this (set of) collaborative process(es) for example in order to
apply a common production strategy or to manage health care organisation. All along
these processes, enterprises (parts) interact with another. So some requirements must
be respected enabling each enterprise part to exchange with these systems without
losses or defect. Indeed, each interaction can be at the origin of derived problems
(behavioural, functional or structural), losses of performance, and unpredictable
emergent behaviour. It becomes then crucial to be able to analyze the interoperability
in an anticipatory way in order to limit, at the time of the concretization of the
interaction in the real life, the losses, risks and even the damage able to be undergone
by the systems which are concerned.
This paper presents an approach to facilitate the detection of interoperability
problems, their causes and effects before any concretization. In the current stage of
development, the presented work focus on the organisational interoperability which is
related to the structure and the organisation of enterprises. This concerns for example
the definition of the responsibility and authority which induce and impact the quality
of the working conditions. So, the human nature and the organisational behaviours are
the main factors which can induce interoperability lack. In other words,
interoperability treated here is the potentiality of an enterprise to adapt its
organisation (human, equipment, behaviours…) to be able to collaborate with any
other enterprise in a better way with minimum efforts and costs. The proposed
approach is based on a enterprises network system modelling and analysis framework
taking into account principles of system and requirements modelling, techniques for
model verification and transformation from system model to multi agent system
(MAS) [3] [4] [5] and simulation using MAS.
After illustrating the problematic, the second part of the paper presents briefly the
modelling and verification part of the framework. The third part details the current
work and focus on the transformation of the system model to a MAS architecture on
which simulation allows then to analyze the interoperability.

Organisational interoperability problem illustration and related
requirements

Let us take for example the case of an enterprise network in the automobile field
which must collaborate together to conceive then to produce blocks of engine whose
components need the various fields of competences of these enterprises. So, they must
interoperate to ensure the success of this collaboration, not only on the level of the
design and the production by taking into account all the technical constraints to which
they must face together, but also on the level of the services associated as
maintenance, managing the end of the product life cycle.
Interoperability is then a stake which is advisable to analyze before any concretization
of an enterprise network. This induces several requirements:
1 - It is convenient to work starting from models. A model is a crucial tool of
representation and abstraction of the complexity of the enterprise: comprehension,
communication between actors and analysis become facilitated. A model is built for a
targeted project. In this case, the model may describe the collaborative process and

38

the different parts of enterprises involved in this collaborative process i.e. which
interact. Indeed, the objective is to model their interactions, their abilities, mission,
and behaviours. The concepts issued from system engineering [8], enterprise
modelling [9] or more largely systems of systems [1] are then analysed and used. In
enterprise modelling domain, in [10], the authors distinguish frameworks
architectures as CIMOSA [11] or PERA [12], operational methods as SADT,
MERISE [13], GRAI [14], OLYMPIOS [15]. Architectures provide essentially multi
view concept allowing representing an organisation by describing from a coherent
manner different points of view: functional, informational, decisional and so on.
Operational methods provides then numerous concepts and relations allowing to
manipulate models in one or several of these views. In the same way, system
engineering insists on the relation between systemic domain and system description
by proposing also multi view and multi paradigm approaches. Particularly, modelling
a system of systems can be facilitated by using frameworks such as DoDAF or
Zachman framework [1].
2 – Collaborative process modelling is not sufficient. It is necessary also to describe
the interoperability requirements. The current languages and frameworks of
modelling are limited to represent this requirement. Some works exists about the
development of interoperability rules as proposed in [16] who proposes conceptual
enrichments of modelling languages.
3 – Analyse mechanisms of the model may be then available in order to assume if the
models check the different interoperability requirements. The goal is not to analyze
the behaviour or the structure of each partner taken separately but to analyze the
impact of these behaviours and these organizations on their potential
interfaces/interactions with the other partners. Indeed, each identified interaction is a
potential source of problem (loss of performance, non synchronisation, etc.).

Multi views
Multi languages

Simulation
Interoperability
analysis Expert

Validation

Verification

M
od

el
 c

or
re

ct
io

n
fe

ed
ba

ck

Enterprises
network

A
dj

us
tm

en
t

Network and
enterprises parts

Modelling

Conceptual Graphs,
Model checking

techniques

Extended Agent
Model

Analysis
Framework Property Proof

Model quality
analysis

Modelling
f ramework

Im
pr

ov
em

en
t

M
o

d
el

tran
sfo

rm
ation

Fig. 1: Synthesis of the approach

39

The proposed approach schematised in Fig.1 considers two necessary and
complementary steps:
− A static manner allowing assuming the quality of the model i.e. a model without

misinterpretation or errors due to the modelling process. The property proof as
proposed in [17], not detailed here, is then used.

− A dynamic manner: the paper focuses on this type of approach by means of MAS
enriched architecture for the analysis of interoperability.

To summarize, the proposed approach aims to provide a modelling framework and an
analysis framework presented in the next parts.

Modelling framework

Regarding our problem, the proposed modelling framework has to take into account
the followings main requirements:

• To model the networks related partners i.e. to describe the collaboration process
concretizing the network objectives and each enterprise part concerned or
involved in this process.

• To model interoperability requirements (legal, policies, constraints …) having to
be checked by each partner (enterprise, resource, etc.) in order to be able to
assume its mission all along the collaborative process.

A system modelling framework called SAGACE [18] has been extended [19] for
supporting and guiding the collaborative process model building activity. As proposed
in enterprise modelling domain [20], it is a multi views, multi paradigms and multi
modelling languages framework summarized in the following. Each view permits
gathering and formalizing a given type of knowledge:
1. Functional view. The goal is to describe the mission of any partner in the
collaborative network but also its own mission, its objectives in terms of performance
and the different functions which are concerned by the collaboration.
2. Structural view. The goal is to describe the processes and activities of the partner
related to the collaborative process, its resources and their organization in order to
support these processes.
3. Behavioural view. The goal is to describe some potential operational scenarios and
configurations of each partners when they will really involved in the collaborative
process. This allows fixing some ideas about functioning modes, evolution rules
taking into account context and events.
4. Property view. This view allows describing the interoperability requirements under
the form of properties. A property is a constrained causal relation linking a set of
conditions called cause and a set of waited conclusions called effect. Specifying the
relation nature and constraints, the cause and the effect requires handling the
knowledge described into the three other views. It allows then to enrich the
collaborative process model with complementary knowledge linking the partial
models issued from each view. Other properties can be used for describing functional
or non-functional requirements, such as coherence rules between views and between
partial models, semantic rules, attribute evolution laws, expected behaviour,
constraints, and objectives.

40

Each view requires specific modelling languages which are unified, following the
MDA principles, both a common and unique collaborative process modelling meta
model. This one contains a coherent and sufficient set of concepts and of relations
between concepts required for representing the collaborative process. It allows us to
adapt and unify some existing and pre-selected modelling languages from the
domains of enterprise modelling and systems engineering that were suitable to each
view. For example, the functional view uses the objective modelling language
proposed by KAOS [21] and the IDEF-0 functional modelling language [22]. The
Unified Enterprise Modelling Language [23] allows one to describe the organizational
view. Finally, enhanced Functional Flow Block Diagrams (eFFBD) [24] permit to
describe operational scenarios in the behavioural view.

Analysis framework

As presented before, the analysis framework aims:
− From a static point of view i.e. independently from any temporal constraints, to

check the coherence of the different models and to assume its quality regarding the
study objectives.

− From a dynamic point of view i.e. taking into account the possible evolution (or
operational scenarios) to test if these scenarios are credible and if potential
emerging scenarios can be feared.

Step 1: static analysis

This step consists first in checking the coherence of the model (coherence between
different models coming from different views, internal coherence of the model
regarding its meta model and coherence of the usage of concepts and relations in the
model). Second it consists to prove that some interoperability requirements are
respected. For example, it is necessary to check if capability and capacity of a human
resource are adequate taking into account the activity in which this resource will be
involved.
This is done by proving in a formal and automated manner that a set of specified
properties are verified by the model. If this is not the case, the analysis process must
provide a counterexample that indicates the reasons for which the property is
unsatisfied. The modeller may then detect modelling errors, mistakes, or
misunderstandings, thereby increasing the level of confidence on the model.
To do this, [19] proposes formal rewriting mechanisms to translate the system model
towards a formal model. Verification tools such as model checkers or theorem provers
[25] can be then used. However, the proposed checking technique is based on a
formal knowledge representation and analysis language called Conceptual Graphs
[26].

Step 2: Dynamic analysis

41

The goal of this step is to simulate the behaviour of the model of the enterprises
network related as possible to its reality in order to assess the validity of the model.
Obviously, the simulation using MAS is seen as the best way to do it rather than
formal methods for many reasons. First, the increasing number of interactions
between different actors of the enterprise network when considered at the level of
individual resources, including elements of organisational knowledge, working
capital, human resources, machines, work in progress, computers and buildings,
behave the system much more complex with unpredictable events. Second, the MAS
can model the human resource, its behaviour, skills and so on by using the BDI
(Belief, Desire, intention) paradigms and then particular MAS architecture [27].

MAS for analyzing interoperability

MAS model

Different types of agents are:
− Required for the classical functioning of the simulation platform. JADE [28] has

been chosen for many reasons. It proposes a set of pre defined architecture of
agents and communication protocols which can be adapted and enriched for our
purpose. In particular, communication channel agent provides the road for the
interactions between agents and memorizes the messages exchanged. The
management system agent demands the other agents to register to be seen by all
other agent and it manages their life cycle. The Directory facilitator agent
memorizes descriptions of the agents as well as the services which they offer. The
agents can write their services in this agent and ask it to discover the services
offered by other agents.

− Required for representing the different enterprises entities (processes, resources ...).
Different agent models are then proposed. They are enriched by the BDI profile
and by linking them to other agents respecting particular constraints. The following
meta model presents a partial view of the used conceptual agent model.

These proposed agents are synthesised in Fig. 2:
− System agent: is a general concept of agent which recovers all types of agents.

Each agent can send and receive messages described by the Messages throw a
communication protocol defined by the Communication protocol. One or more
behaviour characterize each agent and it consists of three parts:
− A set of current beliefs, representing information the agent has in connection

with its current environment and his own state;
− A set of desires, representing the options available to the agent, i.e. the actions it

can do;
− A set of current intentions, representing the goals towards which the agent is

engaged and towards which it ask other agents to react.
BDI profile is written as a set of rules defining how each agent will evolve when
receiving messages from other agent. This BDI profile is defined by translating

42

the behavioural model described in the behavioural view of the pointed out system
model. As said before, this behavioural model is described as a finite state
machine (FSM) or by using behavioural modelling language such as eFFBD. So
taking into account the behavioural model of the modelled entity, the way the
agent responds to the messages can be then one shot, cyclic or according to a finite
state machine. Last, as proposed in the property view of the modelling framework,
each entity is characterized by a set of properties [29]. A property describes an
expectation which have to be checked taking into account its context and its
evolution stage: it allows detecting bad behaviours, errors or mistakes. A property
is used here for describing interoperability requirement as presented before. For
example, an organisation unit named ‘Maintenance Team’ may be always
composed of two technicians or a process may stop before end of the day. So
System Agent describing an entity is characterized by the same set of properties
and at each stage of its evolution, it must verify these properties. If a property
cannot be checked by the Interoperability analysis agent, it can be interpreted as a
lack of interoperability and a possible source of problem. The checking
mechanisms are proposed by [29]. All the other agents are built by using the same
architecture.

Fig. 2: Agent meta model partial view

− Resource agent: represents the different resources composing the enterprise
network structure.

ProcessorAgent

ResourceAgent

HumanResourceAgent

EquipmentResourceAgent

SoftwareResourceAgent

OrganisationalUnitAgent

CommunicationChannelAgent

EventGeneratorAgent

Message

CommunicationProtocol

0..*

1

0..*

1

Constraints

Desire Belief Intention

DirectoryFacilitatorAgent

ManagementSystemAgent

Behavior

1..*

1..*

1..*

1..*

HasDesire

1..*

1..*

1..*

1..*

HasBelief

1.. *

1..*

1.. *

1..*

HasIntention

Requirement
number : Integer
category : String
requirementExpression : String
requirementLanguage : String

SystemAgent

0..*

CommunicateWith

0..*

0..*

1

0..*

1

ListsServicesOf

1..*

1

1..*

1

Supervise

1..*
1..*

1..*
1..*

HasBehavior

1..*

0..*

1..*

0..*

Shoudrespect

InteroperabilityAnalysisAgent

43

− Processor agent: represents different processor, activities… of the enterprise
network. So processor agent behaviour is directly described in the behavioural
views attached to each system components (activities, processes, resources ...).

− Event generator agent: generates events described in the system model and
having to occur all along the system life cycle taking into account hazardous
generation algorithm.

− Interoperability analysis agent: observe all the messages exchanged between all
the other agents, and check at each evolution step if the interoperability
requirements are violated.

From system model to MAS

Starting from the model of the system, the translation step shortly illustrated in Fig.3
allows us to translate this model into MAS following a MDA technique as proposed
by [30] [31].
The left part of this figure in grey colour represents concepts coming from the system
model. The right part in yellow colour represents their corresponding concepts in the
MAS model. All the translation rules cannot be presented due to the limited place. For
example, the ‘system’ concept has as corresponding concept ‘AgentSystem’. The
concept ‘Belief’ found its correspondence into ‘environment’ and ‘ability’ concepts.
This is because the set of the beliefs of each agent is composed by two type of
information: the first one is about its environment and the second one is about itself
and its capacity which is presented in the system model by ‘ability’. So, in each
evolution step during the simulation, each agent receives information and performs
actions and updates its beliefs i.e. its information about the environment and itself.
The ‘intention’ of each agent will be deduced from ‘mission’, ‘finality’ and
‘objective’. It represents what the agent must do. During the simulation, these sets of
intentions changes according to the evolution of the agent beliefs. The concept
‘Desire’ has no corresponding one because it is deduced from the intention and
beliefs. In short, a BDI agent must update its beliefs with information which comes to
it from its environment, to decide which options are offered to it and this will consists
on its desires, to filter these options in order to determine new intentions and to
choose the action it will do according to all this information. The manner the agent
will react can be one shot, cyclic or FSM depending in the message received. In the
case of FSM behaviour, information is taking from its different configurations
described in the system model.

44

Fig. 3: Translation from system model to MAS

MAS in action

The objective of the MAS execution i.e. the simulation, is first to validate the
obtained MAS. Indeed, some scenarios are already described in the system model.
Following the used system modelling framework SAGACE, a scenario describes a
potential deployment of resources, in given configuration and context of the
environment, during processor execution taking into account the limited capability

HumanAptitudeVariabilityFactor
motivation
des ire
. ..

EventGeneratorAgent

ProcessorAgent

Processor
CanBeDelayed : Boolean
priority : Integer

Event
occurenceProbability : Integer
priority : Integer
eventType

t riggeringEvent

ResourceAgent

Capacity

0..*0.. *

DependsOn

Resource

Ability
preCondition : String
postCondition : String
timeToDoMin : Double
timeToDoMax : Double
abilityLevel : Integer

Environment

Objective

Finality

Mission
description : String

SystemAgent

Belief

Desire

Intention

Behavior

System
lifeDuration : String
updatingPeriod : String
disponibi lityPlanning : String

+IsComposedBy

+BelongsTo

Context

FSM

Configuration

InteroperabilityRequirments

InteroperabilityAnalysisAgent

InteroperabilityAnalysisAgentBehavior

45

and capacity of resources, the possible parallelism or synchronisation between
processors during their execution, etc. So, MAS simulation allows user to simulate if
these existing scenarios can be obtained by simulation. If it is the case, the MAS may
be then used for reaching a second objective.
This consists now to test if new scenarios can be obtained and particularly scenario
during which some interoperability problems may occur and cause prejudices to
collaborative process behaviour. In this case, the interactions i.e. the messages
exchanged between agents, are autonomously and dynamically established, dropped
and re-established depending on the collaboration needs at any time by taking into
account self-organisation principles. However, during their execution each agent must
respect the set of properties which constrain its behaviour (efficiency), its structure
(integrity) and its functionalities (for example its ability and capacity in the case of
human resource). If a property cannot be verified in the current state of the agent
taking into account the agent context, the obtained scenario can then describe a
possible source of interoperability problem.
The simulation process is then the following. As proposed before, simulating the
collaboration process requires assigning a Resource Agent to each concerned and
potential resource of the process. This one is described in a Processor Agent. Last, a
unique Event Generator Agent is built. It gathers the list of possible events coming
from the environment (external events such as customer enquiries, order, energy
break, etc.) or coming or required by each behavioural view of each system entity
(internal event such as start of a machine, etc.).
The Event Generator Agent computes a possible schedule of these events. It sends
messages according to event nature and event probability occurrence to the other
agents in order to activate them. The other agent will then run and exchange
messages. The interoperability analysis agent will observe and analyse these messages
by checking interoperability requirements at each evolution moment.
Each execution is of course unique. The autonomy left with the agents makes it
possible to obtain traces of different executions and then different statistics. Indeed, it
will be possible to analyze the similarity of the original process that should be
executed with the obtained scenarios according to the behaviour of the agents and
especially human resource agents whose behaviour is impacting by their belief, desire
and intention which corresponds on the real word to their motivation, skills, etc. The
information exchanged throw some messages like incomplete information, incoherent
information, message arrived too late to be useful, etc will enables us to analyse the
causes of this facts and the way they impact the interoperability.

Conclusion and Future Works

This paper presents an approach focusing on modelling and analysis of the
interoperability in enterprises networks. It insists particularly on dynamic analysis
mechanisms based on simulation of MAS model. In the current step of project
development, the enriched agent model, rewriting principles and simulation process
have to be implemented. For this, different behavioural models of each agent, the

46

different messages exchanged and how will this impact the enterprise network
interoperability have to be studied.

References

1. Luzeaux, D., Ruault, J.R. : Ingenierie des systèmes de systèmes: méthode et outils, Hermes
Lavoisier, [in French], (2008)

2. IEEE: A compilation of IEEE standard computer glossaries, standard computer dictionary,
(1990)

3. Brandolese, A., Brun, A., Portioli-Staudacher, A.: A Multi-Agent approach for the capacity
allocation problem, International Journal of Production Economics, Vol. 66, pp. 269--285,
(2000)

4. Ferber, J.: Les systèmes multi-agents : Vers une intelligence collective, Editions
InterEditions, [in French], (1995)

5. Weiss, G.: Multiagent systems: a modern approach to distributed artificial intelligence, MIT
Press, Cambridge, MA, USA, (1999)

6. Chen, D., Dassisti, M., Elvesaester, B.: Enterprise Interoperability –Framework and
knowledge corpus – Advanced report, INTEROP Deliverable DI.2, (2006)

7. ISO 14258: ISO 14258 –Industrial Automation Systems – Concepts and Rules for Enterprise
Models, ISO TC184/SC5/WG1, (1999)

8. INCOSE: System Engineering (SE) Handbook Working Group, System Engineering
Handbook, A «How To» Guide For All Engineers, http://www.incose.org/, (2004)

9. Vernadat, F. : Techniques de Modélisation en Entreprise: Applications aux Processus
Opérationnels, Paris, Edition Economica, [in French], (1999)

10. Pourcel, C., Gourc, D. : Modelisation d'entreprise par les processus : Activité, organisation
& applications, Cepadues, [in French], (2005)

11. AMICE: CIMOSA: Open System Architecture for CIM, Berlin, Springer, (1993)
12. Williams, T.: The Purdue Enterprise Reference Architecture, Computers in Industry, vol. 24

n° 2-3 pp. 141—158, (1994)
13. Tardieu, H., and al : La Méthode Merise : Principes et outils Editions d'Organisation, [in

French], (2000)
14. Doumeingts, G., and al : Production management and enterprise modelling, Computers in

Industry, vol. 42 n° 2-3 pp. 245—263, (2000)
15. Braesch, C., and al : La modélisation systémique en entreprise, Hermès, [in French], (1995)
16. Blanc, S., Ducq, Y., Vallespir, B. : Enterprise Interoperability : Interoperability

Characterization Using Enterprise Modeling and Graph Representation, Springer London,
(2007)

17. Chapurlat, V., Aloui S.: How to detect risks with a formal approach? From property
specification to risk emergence, in proceedings of Modelling, Simulation, Verification and
Validation of Enterprise Information Systems (MSVVEIS), Paphos, Cyprus, (2006)

18. Penalva, J. M.: SAGACE method: the modelling of human designed systems, COMETT'93,
(1993)

19.Aloui, Saber., and al : System engineering and enterprise modelling for risks management:
application to the drug circuit in a university hospital. URMPM - Union of Risk
Management for Preventive Medicine 2nd American Congress, Montreal, Canada 14-15
June, (2007)

20. Vernadat, F. B.: Enterprise Modelling and Integration: Principles and Applications,
Chapmann & Hall, (1996)

47

21. Bertrand, P., Darimont, R., Delor, E., Massonet, P.,Van Lamsweerde, A.: GRAIL/KAOS: an
environment for goal driven requirements engineering, 20th International Conference on
Software Engineering, IEEE-ACM, Kyoto, April (1998)

22. Menzel, C.P., Mayer, R. J.: The IDEF Family of Languages in Handbook on architectures of
information systems, Bernus P., Mertins K. and Schmidt G. ed., Berlin, Springer, (1998)

23. UEML: Deliverable D3.1: Requirements analysis: initial core constructs and architecture,
Unified Enterprise Modelling Language UEML Thematic Network - IST-2001-34229,
www.ueml.org, (2003)

24. Oliver, D. W., Kelliher, T. P., Keegan, J. G.: Engineering complex systems with Models and
Objects, McGraw-Hill, (2004)

25. Yahoda: Formal verification tools overview web site, http://anna.fi.muni.cz/yahoda/, (2003)
26. Sowa, J.F.: Conceptual structures: information processing in mind and machine, New York

(U.S.A.), Addison-Wesley, (1984)
27. Wooldridge, M., Jennings, N.: Intelligent Agents: Theory and Practice, Knowledge

Engineering Review, (1995)
28. JADE : JADE platform: Java Agent Development Framework, http://jade.tilab.com/, (2000)
29. Chapurlat, V., Kamsu-Foguem, B., Prunet F.: Enterprise model verification and validation:

an approach, Annual Review in Control, Volume 27, Issue 2, pp 185--197, (2003)
30. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework,

ASE'01, (2001)
31. MDA, Model Driven Architecture (MDA), Architecture Board ORMSC, Joaquin Miller and

Jishnu Mukerji Eds., (2001)

48

An Interoperability Framework for the Negotiation-
Based Coordination of Adaptive Supply Web Agents

Christian Russ1, Alexander Walz2

1 Dacos Software GmbH, Science Park 2, D-66123 Saarbrücken, Germany
christian.russ@dacos.com

2 University of Stuttgart, Graduate School of Excellence advanced Manufacturing
Engineering, Breitscheidstr. 2c, D-70174 Stuttgart, Germany

alexander.walz@GSaME.eu

Abstract. This paper suggests a design of an interoperability framework
supporting the identification of potential interaction partners as well as the
mapping of heterogeneous ontologies between them in a B2B-enabled supply
network domain. This framework can be used for realizing the negotiation-
based coordination of self-interested agents by using a described negotiation
protocol for bilateral price negotiations together with a corresponding adaptive
negotiation module. If autonomous supply agents are provided with the
described negotiation module they are able to adapt their negotiation strategies
to dynamically changing negotiation partners and market conditions
automatically. The effects of the adaptation processes of the intelligent business
agents are simulated and evaluated on the basis of a prototypical agent-based
supply network for computer manufacturing. A first focus is centered on the
emergence of niche strategies within a group of cooperating supply agents and a
second on the effects of different parameterizations of the learning process on
the overall profit of the supply network.

Keywords: Distributed Artificial Intelligence, Multiagent Systems, Simulation
Modeling and Output Analysis, Coherence and Coordination, Intelligent
Agents, Evolutionary Learning, Experimental Economics, Agent-based Supply
Chain Management, Supply Networks, Coordination Mechanism Design,
Bilateral Negotiation, Genetic Algorithms.

1 Introduction

A supply chain is a chain of possibly autonomous business entities that collectively
procure, manufacture and distribute certain products. Since today's markets are highly
dynamic, current supply chains are forced to respond to consumer demands more
accurately, flexibly and quickly than ever before.

In order to stay competitive, supply chain partner companies are forced to form
supply chains on the basis of more flexible and co-operative partnerships. For these
reasons, so-called supply webs (see Laseter [4] and Porter [5] - i.e. B2B-enabled
dynamic networks of supply chain units - will replace today's static supply chains to
an increasing extent.

Agents offer the advantage of being able to automatically form and manage such
changing partnerships since they can autonomously perform tasks on behalf of their
users and in doing so reduce transaction cost. But in the case of B2B-enabled dynamic

49

supply networks, there may occur a “clash of ontologies” between heterogeneously
designed agents that come together in such a dynamic and open environment in order
to negotiate and exchange resources not necessarily use the same ontologies.

Hence, an interoperability infrastructure has to be established consisting of
interoperability services (as directory, mediator and ontology services) and efficient
coordination mechanisms (e.g. specialized negotiation or auction mechanisms) that
help the heterogeneous supply chain agents to co-ordinate their local activities.

Therefore, for ensuring their operability we have suggested in this paper firstly an
interoperability framework provided by a interoperability service agent (ISA)
encapsulating directory, mediator and ontology services to the supply chain agents,
secondly, an automated protocol for bilateral price negotiations and thirdly a
corresponding negotiation module that enables evolutionary adaption of negotiation
strategies to changing negotiation partners in the described competitive context. The
negotiation module contains elaborated learning capabilities, enabling a self-
interested agent to learn from his negotiation history in order to adapt his negotiation
strategy. These three elements together provide a suitable interoperability framework
for interactions in an open supply web domain.

2 Interoperability Framework

Independent and heterogeneously designed supply chain agents may generally use
different internal denotations and representations for goods and services. For this
reason directory, mediator and ontology services have to be provided to them in order
in order to ensure their interoperability.

2.1 Interoperability Service Agent

Thus we propose a global interoperability service agent (ISA) encapsulating directory,
mediator and ontology services and providing them to the supply chain agents.

Fig 1. Matchmaking and ontology mapping by the interoperability service agent

50

The ISA allows the agents to find other agents with intersecting goals (i.e. who offer
or buy the same goods) by a directory service. This service administrates all the
agents within a simulation scenario with their unique names, addresses, agent type
and properties, i.e. capabilities, offered and demanded goods etc. On the other hand it
acts as a negotiation mediator by providing also a bilateral price negotiation protocol
with a common ontology usable by all agents as described in the next paragraph.

Additionally, the ISA may administrate several possible ontologies for the input
and output goods in the supply web domain and thus is able to map differing
ontologies of heterogeneously designed agents, which is important for the
matchmaking between agents with intersecting goals.

To find out if a mutually beneficial transaction can be carried out, each agent may
select another agent in the network to start a bilateral negotiation by using the ISA-
services a shown in Fig. 1.

If, e.g. the ISA has to pass on a request for buying a good X from an agent A to a
supplier agent B and semantics behind the denotation X is not known for the ISA, the
ISA may ask the agent A about the detailed description of good X. Since it may be the
case that this good is known in the reference ontology used by the ISA but is denoted
by another expression (e.g. “Y”) because the agents possess local heterogeneous
ontologies. Therefore A has to send all his knowledge about the specification of X to
the ISA. Then an ontology mapping service of the ISA tries to find a match between
the things agent A knows and the expressions it uses for and the knowledge and
expressions of the reference ontology used by the ISA. For realizing such an ontology
mapping service [8] suggests a mixture of two different methods, namely N-Grams
and WordNet. N-Grams computes a lexical relation between two words whereas
WordNet calculates a semantic similarity. The combination of the two concepts is
necessary because e.g. the words automobile and car are lexically very different from
each other whereas the meaning of both is closely the same and therefore WordNet
finds a strong relation.

2.2 Negotiation Protocol

Since the internal price ideas of an autonomous agent are not visible to another agent
in advance, the agents have to gather information about the negotiation space, while
they are negotiating with each other. The negotiation protocol used is a kind of
strategic choice protocol that is also adopted by humans in economic real-life
negotiations and is described in detail in the following.

Negotiation Acts

In the bilateral negotiation process, all agents are provided with the same action
alternatives derived from Pruitt’s strategic choice model [6]. This model states that
humans show specific behavior in economic negotiation scenarios and select in every
negotiation round from among five basic strategies, namely

1. unilateral concession: decreasing the distance between conflicting positions,

2. competitive behavior: remaining with one’s position and trying to argue the other
party out of his position by pressure, arguments, threats, etc.,

51

3. coordinative behavior: Bilaterally collaborating and dissolving the controversy,

4. idleness: not continuing the negotiation and making no counteroffer, or

5. demolition: withdrawing unilaterally from the negotiation.

Eymann [2] states that these basic building blocks of human negotiation strategy can
be further reduced to the following three negotiation action alternatives sufficient for
negotiations in the examined multi-agent domain:

1. Accept: the price proposal of the other agent is accepted and the transaction is
conducted. The buyer pays the end price to the seller and receives the product.

2. Propose: the agent at turn does not agree to the price proposal of his opponent and
makes a new proposal on his part. This new proposal can be equal to his last
proposal (no concession in this round of negotiation) or be newly calculated.

3. Reject: an agent breaks off the negotiation. Both agents thus have to search for
other negotiation partners to fulfill their needs.

Strategy Parameters

For modeling complex and not easily predictable strategic behavior on the basis of the
described action alternatives in automated negotiations we use six strategy
parameters that determine the negotiation strategy of an agent. These can take on
values from the interval [0;1] and are stored in a so-called genotype, a data structure
suitable for processing by a genetic algorithm:

1. acquisitiveness (A)
2. delta_change (DC)
3. delta_jump (DJ)
4. satisfaction (S)
5. weight_memory (WM)
6. reputation (R)

An agent possesses several genotypes that are evolutionarily adapted to varying
negotiation partners and market conditions as described in section 4. Each parameter
of a genotype influences non-deterministically an agent’s individual negotiation
behavior. Since the negotiation strategy of an agent is implemented as a finite state
machine where these parameters define the probabilities of changing from one of the
negotiation states (accept, propose, reject) to another and additionally define how
quickly, how often and to what extent concessions are made etc.

The acquisitiveness of an agent defines the probability that he will offer a
unilateral concession on his next “move”, i.e. as the seller lowering his asking price.
This parameter taking on a value of 1 would prohibit an agent from making any price
concession while a value of 0 would motivate him to always concede.

The delta_change parameter defines the step size of a monetary concession by
specifying a percent value by which the price distance between one’s last price
proposal and the counter offer of an opponent is reduced. An agent calculates his
individual step size for a concession at the beginning of a negotiation by using

current.stepSizeA = (asked_price – offered_price) * del_change .

52

This keeps the negotiation mechanism symmetric since neither sellers nor buyers are
handled in a preferred manner (for attributes of a coordination mechanism see [3]).

The delta_jump parameter defines the margin an agent wants to realize. The higher
the value of delta_jump, the higher is the aimed margin between the buying costs for
input goods and the demanded selling price will be. For this purpose, delta_jump
modifies the first price proposal of agent A in a price negotiation for a good as
follows:

proposal = agreement * (1.0 + del_jump)

where agreement equals the price of the last deal for the good.
The fourth parameter, satisfaction, defines the probability that an agent aborts the

negotiation and thus ensures that a negotiation does not continue on and on. The abort
probability after the nth negotiation round amounts to (1 – p_satisfaction)n.

To avoid individually nonsensical behavior the agents have a learning function to
detect unreasonable price proposals during a negotiation. Therefore an agent stores
transaction prices, i.e. the end prices of successful negotiations, from his negotiation
history in a data structure memory and calculates an internally “sensed” market price
(SMP) for each good of interest. This is necessary because there is no central
institution for declaring market prices. The information stored in memory is used to
compute his smp with exponential smoothing. Thereby, the parameter
weight_memory specifes how fast market changes have influence on the market price.

// update our memory of initial prices
memory = offeredPrice * weight_memory + memory * (1-weight_memory);

On this basis, at negotiation start each agent checks the first price proposal of his
opponent against his SMP. All counter-proposals lying between the SMP and its
doubled value are estimated as uncertain and a possible negotiation abort is tested
according to p_satisfaction:

if (offeredPrice >= memory) {
// ...then random reject check
If (randomNumberIsHigherThan(p_satisfaction)) {

reject = true;
}
// reject all offers more than double memory
if (memory != 0 && offeredPrice > 2 * memory) {

reject = true;
}

All counter-proposals exceeding the doubled SMP are directly rejected to avoid
extortion offers. The last parameter reputation, defines the probability of finishing a
deal correctly according to the reputation of a negotiation partner in the system.

The values of these six parameters describe completely the negotiation behavior
and are adapted by the following process in the course of a sequence of negotiations.

2.3 Negotiation Module

Each negotiation module of an agent possesses a genetic pool of genotypes. This pool

53

contains numerous genotypes that are employed in negotiations. After a negotiation
has been finished a fitness value is calculated for the genotype in depending on the
negotiation outcome. Then the genotype is stored in combination with the ascertained
fitness value as plumage in a data structure called population. The sizes of pool and
population can be flexibly set for the negotiation module of each agent.

After the start of a bilateral negotiation, the first step of an agent is to choose a
genotype - determining his strategy for this negotiation - out of his pool of genotypes.
Then, both agents negotiate until one of them aborts the negotiations or their price
proposals cross and they make a mutually beneficial deal. After a successful
negotiation both agents calculate a fitness value for the used genotype and store the
resulting combination of genotype and estimated fitness as a so-called plumage into
the population data structure.

Fig 2. Co-action of negotiation, information exchange, and learn process

If their information exchange mode is set to external or mixed, they will afterwards
send the resulting plumage to other agents, receive plumages from other allied agents
and store the self-calculated as well as the received plumages in their population. If
the number of stored plumages is larger than the population size the agents will start
their learning process by using their individually parameterized evolutionary learning
mechanism. This process is sketched in the Fig. 2.

54

3 Parameterization of the Negotiation Module

When the learning process is started all plumages within the population are assigned
to a selection method, which selects the plumages with the best fitness values and
assigns as many plumages to a recombination process as the pool size allows. In this
recombination process selected genotypes are recombined to new genotypes.
Optionally, the newly built genotypes can be modified by probabilistic mutation after
the recombination step. In the last step of the learning process, the old population of
the agent is deleted and the newly generated pool is assigned to the agent according to
his specific replacement scheme. After that the agent may start new negotiations. The
possible settings for the learning process are described in the following.

3.1 Parameterization of the Information Exchange

An agent learns either only by himself (internal learning mode), i.e. does not use the
experiences (in the form of plumages) of other agents. Or an agent has “colleagues”
that exchange information about successful finished negotiations with him in such a
way that he can use this information in his next evolution step (external learning
mode). An agent may also use both modes in parallel (mixed learning mode).

3.2 Parameterization of the Learn Process

Fitness Calculation

After a successfully finished negotiation, i.e. a mutually closed deal, the fitness value
for the genotype used in the negotiation is calculated. Our negotiation module offers
the agents’ designer the following fitness calculation methods:

1. The price_minus_average (PMA) fitness function uses the margin between the
current average price of a good and the current price:

fitness = avgPrice-currentPrice

2. The percental_average_proceeds (PAP) method takes the duration of a
negotiation into account by dividing the PMA fitness value by the average price
times the number of rounds in which this genotype was used.

typeurrentGenoroundsforCiceaverage

icecurrenticeaverage
fitness

*Pr

PrPr 


3. The percental_absolute_proceeds (PAB) method divides the value of the PMA
variant by a fixed basicPrice times roundsForCurrentGenotype.

typeurrentGenoroundsforCicebasic

icecurrenticebasic
fitness

*Pr

PrPr 


4. The percental_mean_proceeds (PMP) method uses the mean value (mediumPrice)
of the starting price proposals of both partners in the negotiation.

typeurrentGenoroundsForCicemedium

icecurrenticemedium
fitness

*Pr

PrPr 


55

Selection

1. Binary competition (BC): Two randomly selected individuals are compared and
the one with the higher fitness value is selected and copied in the new population.
This is done repeatedly until the new population has reached its defined maximum
size.

2. Roulette-Wheel-Selection (RWS): Each individual I is assigned a section on a
wheel based on his fitness value according to the formula:

  360
f (Ik)

f (In)
n1

N


, with

 : Angel assigned to the kth individual

)(KIf : Fitness value of the kth individual

N : Number of individuals

3. Deterministic Selection (DS): Based on the fitness value of the individual i an
expectation value is calculated:

Expectation E(X) =

 

N

k k

i
f

N
f

1

4. Deterministic Average Selection (DtS): In the case that the same genotype has
been used in several negotiations and thus is contained in the population more
than once this method calculates the average fitness value for each individual
genotype before the selection starts. The individual with the best fitness value
comes directly into the new population; the worst one is deleted and the remaining
genotypes are selected in the same manner as in the DS method.

5. Deterministic Average Selection with deletion of the worst individual (DAS): The
new population is filled up in the same way as with the standard deterministic
average selection until the number of individuals in the new population equals
pool size minus the value of BestIndividualsToSurvive. For the last place a new
genotype is generated as the mean value of each gene of the genotypes already
included in the new population.

Recombination

This crossover of individuals with good fitness values is a kind of macro mutation
which creates jumps in the search space and therefore helps to find a better solution.
1. n- Point- Crossover (nPC): The two best individuals are taken out and with a

probability, the crossover probability, these two are recombined or they are put
back in the population unchanged. If the two individuals are recombined they are
cut at ‘n’ randomly chosen positions and linked crossover. The new generated
genotypes replace their parents in the population.

2. Random Crossover (RaC): Two individuals are selected and for each gene it is
decided which is taken for the new one according to a probability identified by
preferBetterparent.

56

Mutation

Its main target is to keep the diversity in the population. Usual modifications
according to the Gaussian distribution are suggested in [1]. In our negotiation module
all values are in the interval [0;1] and calculated according to the formula

Gen= Gen + gaussWidth * nextGaussian(),

where nextGaussian returns a random number and gaussWidth is the breadth of the
Gaussian distribution. For each genotype in the population it is decided if it is mutated
- and if so it is changed at exactly one position.

Replacement scheme

After the creation of the new pool it has to be decided what to do with the old one. By
simply deleting the old pool there is a risk that all new genotypes are worse than their
parents. To protect the best individuals two replacement schemes are used:

1. Elitism:To protect the best ‘n’ individuals from being modified the individuals
with the highest fitness value are transferred into the new population unchanged.

2. Weak Elitism: As before, the best ‘n’ individuals are transferred into the new
population but before this they can be mutated, as described above.

4. Simulation Framework and Evaluation Results

4.1 The MACSIMA Multiagent Simulation Framework

To examine the dynamics within a supply network built up by autonomous agents
using the proposed interoperability framework as well as the described negotiation
module, we have used MACSIMA (Multi Agent Supply Chain SIMulAtion
Framework). The MACSIMA framework has been implemented in Java and offers a
set of generic supply chain agent types for instantiating supply network scenarios:

1. resource or supplier agents (Ri) supply raw materials to the network.
2. producer agents (Pi) stand in the middle of the value chain and buy raw materials

or semi-finished goods from resource agents or other producer agents as input
goods to their production function and offer their output goods for purchase.

3. consumer agents (Ci) stand at the end of the added value network and buy
products from the producers. They cannot run out of money, but however, have a
consumption function that specifies their maximal willingness to pay.

MACSIMA offers a GUI that simplifies the definition of topologies and enables one
to parameterize the learning process to much more detail as compared to the limited
learning features of precedent approaches (e.g. [2] and [7]).

4.2 Impacts of Evolutionary Adaptation

In our simulation runs conducted so far we have mainly concentrated on different
instantiations of a five-tier-supply-network for computer manufacturing. A first
scenario has been defined whereby genetic adaption was initially turned off for all

57

agents. All agents of the scenario were provided with the same static strategy
parameters (acquisitiveness = 0.5, delta_change = 0.25, delta_jump = 0.15,
satisfaction= 0.75, weight_memory = 0.2 and reputation = 1) – except for the
processor producers whose acquisitiveness parameter was set to 0.51 instead of 0.5.
The price fluctuations in the resulting simulation run are presented in Fig. 3 (a).

Fig. 3. Price fluctuations in (a) a setting with static strategy parameters and genetic
adaptation turned off for all and (b) turned on for processor producer agents

It can be seen that already the slight modification of the acquisitiveness parameter of
+0.01 leads to a crucial strategic advantage for the processor agents and enables them
to force their negotiation partners on adjacent tiers to significant concessions.

In a second simulation scenario we keep the settings of the foregoing scenario but
exclusively provide the 10 processor producer agents with the ability to learn from
previous negotiation outcomes. Their new learning capability empowers them to
benefit now much faster from their competitive advantage as shown in Fig. 3 (b).

4.3 Emergence of Niche Strategies

As we can see in the Fig. 4, this effect is not achieved because all of the 10
autonomously negotiating processor agents follow the same strategy.

Fig. 4. Emergence of niche strategies

58

Instead of this, some agents of the processor tier benefit from following a niche
strategy consisting in keeping the value of one’s own acquisitiveness parameter
slightly lower than the majority of the agents of the same type - or at least by
stabilizing it at the lower spectrum of their parameter value range.
Agents of the same type but of lower acquisitiveness than their colleagues can benefit
from this fact and increase their sales since their opponents expect no concession from
a processor agent and thus accept quickly, if unexpected concessions are made.

4.4 Parameter Settings for Maximizing Overall Profit and Turnover

We have examined the question of whether there exists a parameterization by which -
if applied by all the agents in a network - social welfare maximizing effects may be
expected. Therefore we have defined 50 simulation scenarios including two
“baseline” scenarios each with a different parameterization of the learning process
that is applied by all agents. In the first baseline setting learning was turned off for all
agents and in the second the STDEA mechanism [7] was used by all agents. A
summary of the evaluation results is given in Fig. 5. It can be seen that an infelicitous
parameter choice results in a waste of welfare in such a way that overall turnover and
sales may fall under the level of both baseline settings. Otherwise, an expert
parameterization outperforms the first baseline by approximately 400 percent.

The top parameterization we have found so far has the following settings:
<pool_size=3, population_size=40, information_exchange=mixed,
selection_method=roulette:wheel, recombination=n-point-crossover,
mutation_rate=0.5, Gaussian_width=0.01, replacement_scheme=elitism>.

Fig. 5. Expert parameterization of the learning mechanism maximizes profit and turnover

59

5. Conclusion

We have described the design of an interoperability framework supporting the
identification of potential interaction partners as well as the mapping of their possibly
heterogeneous ontologies. This framework is suitable for realizing the negotiation-
based coordination of self-interested agents in a B2B-enabled supply network domain.
For this purpose we have also presented a negotiation protocol for bilateral price
negotiations together with an adaptive negotiation module for taking part in
corresponding negotiations. We have described the design and implementation of a
negotiation module that can be used by autonomous agents for adapting their
negotiation strategies. The effects of the adaptation processes of the intelligent agents
have been simulated and evaluated using the MACSIMA framework for realizing a
prototypical agent-based supply network for computer manufacturing.

We have outlined some evaluation results with a first focus on the emergence of
niche strategies within a group of cooperating agents at one tier of a supply chain for
computer manufacturing. After that we have centered a second focus on the effects of
the application of different learning mechanism parameterizations on the overall
profit of supply networks. Our simulation results show that depending on the
parameter setting for the learning mechanism the overall profit and turnover of the
supply network can vary about 1000 percent.

References

1. Back, T., Fogel, D. B., and Michalewicz, Z., 1997. The Handbook of Evolutionary
Computation. Oxford University Press, 1997.

2. Eymann, T., 2000. AVALANCHE - Ein agenten-basierter dezentraler
Koordinationsmechanismus für elektronische Märkte, Inaugural-Dissertation, Albert-
Ludwigs-Universität Freiburg im Breisgau, 2000.

3. Fischer, K., Russ, C., and Vierke, G. 1998 Decision Theory and Coordination in Multi-
agent Systems. Research Report RR-98-02, DFKI, 1998.

4. Laseter, T. M. 1998. Balanced Sourcing: Cooperation and Competition in Supplier
Relationships. Jossey-Bass, ISBN: 0787944432, October 1998.

5. Porter, A. M. 2000. Supply management in 2010: Experts see big future for e-procurement.
In: Purchasing online, March 23, 2000.
http://www.manufacturing.net/magazine/purchasing/

6. Pruitt, D. G. 1981. Negotiation Behavior, Academic Press, New York, 1981.

7. Smith, R.E., Taylor, N., 1998. A Framework for Evolutionary Computation in Agent-Based
Systems, In: Looney, C., Castaing, J.: Proceedings of the 1998 International Conference on
Intelligent Systems, S. 221-224. 1998.

8. Teixera, D.D., Cardoso, H.L., and Oliveira, E. 2008. An Ontology-Mapping Service for
Agent-Based Automated Negotiation. In K. Fischer, A. J. Berre, J. P. Müller & J. Odell
(eds.), Proceedings of The AAMAS’08 Workshop on Agent-based Technologies and
Applications for Enterprise Interoperability (ATOP), pp. 1-12, Estoril, Portugal, May 13,
2008.

60

Specification of strategies for negotiating agents

René Schumann, Zijad Kurtanovic, and Ingo J. Timm

Information Systems and Simulation,
Goethe University Frankfurt am Main

Robert-Mayer-Str. 10, 60325 Frankfurt am Main, Germany
[reschu|zijad|timm]@informatik.uni-frankfurt.de

Abstract. Negotiations are an important part of today’s inter-enterprise
business processes. Interoperability in negotiations has addressed more
technical aspects, so far. Common protocols and shared ontologies can
provide sufficient solutions. Actually the interoperability on the process
level is more challenging, that is how the multiple attributes of a ne-
gotiation issue can be assigned simultaneously respecting all constraints
between the attributes in a way that the outcome is acceptable for both
human negotiators.
In this paper we present a negotiation model that allows agents to negoti-
ate on behalves of human negotiators. Therefore we formalize negotiation
strategies and use a meta model based on ECORE as a framework for
specifying negotiation strategies. To allow efficient negotiations among
agents, we present a technique for efficient representation and reasoning
about these negotiation strategies.

Key words: automated negotiation, tradeoff strategies, MDA

1 Introduction

Negotiations are an important part of today’s inter-enterprise business processes.
According to Pruitt [1] a negotiation is a process, by which two or more parties
try to reach a mutually acceptable agreement on some matter. So far these nego-
tiations are hard to automate. Nevertheless, the field of automated negotiations
is an important field in the multiagent system (MAS) research [2, 3].
Thus designing systems that implement business process including negotiations
between two or more companies is a hard task. This interoperability problem is
neither on the technical level. Common communication protocols and shared on-
tologies can be applied and thus lead to an interoperability on the system level.
Interoperability becomes critical on the process level. Within a negotiation a set
of parameters, like price or quality, has to be determined simultaneously. This
is complicated by the fact that commonly an agent does not know how the dif-
ferent parameters depend on each other for its opponent and what parameter
configurations are acceptable for him.

Within a negotiation encounter there may exist more than one deal satisfying
both parties [4, 5]. Thus when the negotiation runs in a conflict because of the

61

parties’ distinct interests and preferences, interaction can only proceed by mak-
ing new proposals with the aim of coming to a mutually acceptable agreement
[5]. Those new proposals can be found via tradeoffs, which are an important
aspect of negotiations in the human behavior [6, 4] and have been adopted for
software agents [7, 5, 8] as well. A tradeoff between two negotiation attributes
is a combination of attributes values. The main idea of a tradeoff thereby is to
improve one attribute while worsening of other attributes in return [8].

In this paper we encourage the notion of agency that agents act on behalf
of their owners, thus the agent should follow the negotiation strategies speci-
fied by its owner, the human negotiator. Thus the negotiation may have not
an optimal outcome from a game theory point of view, but the agents behave
in concern with its owner. The problem of acquiring such knowledge from the
human negotiator is often left open [3, 8]. But this information is an essential
requirement making use of automated negotiation in practical settings. Within a
negotiation strategy it is specified how the agent can generate alternative offers
based on tradeoffs, and how the agent behaves within a negotiation. This al-
lows automated negotiations within inter-enterprise business processes. Here we
present a specification language that allows the human negotiator to specify the
negotiation strategy in a comprehensive way, without prerequisite that he has
knowledge of the techniques used to implement its agent. Because typically the
human negotiator is not a programmer, capable to develop it’s agent by himself.
The specification language is based on the ECORE meta model which is part
of the Eclipse Modeling Framework (EMF) [9]. This allows an easier usage of
model driven architecture (MDA) concepts to automatically transform the speci-
fied negotiation strategy in software code that can be used by the software agent.
Thus the owner of the agent can be ensured, that the agent will act, as he has
specified, without a potential erroneous and expensive process of transforming
the specification into the agents code by hand.

The rest of this article is structured as follows. In the next section we present
the underlying negotiation process. We explain the entire protocol and outline,
what role the negotiation strategies have. In section 3 we refine the concept of
negotiation strategies by giving a formal definition and show how those strategies
can be defined using ECORE . We show that a negotiating agent using tradeoffs
has to solve a prioritized fuzzy constraint satisfaction problem (PFCSP) to gen-
erate suitable offers or counter offers. As the PFCSP is in general too complex to
be solved during a negotiation process that proceed under real time conditions
we demonstrate in section 4 how the negotiation process can be implemented
efficiently. The entire automated negotiation process is demonstrated in section
5. Finally we draw our conclusion and outline future work.

2 Negotiation model

In this work we use a negotiation model presented by Lou et al. [5]. It is a simple
negotiation setting with a bilateral negotiation. Two roles are defined: a buyer
and a seller agent. Both agents negotiate a contract with a number of attributes,

62

like price, quality, delivery or payment date. Each of the agents has a global
preference function that orders all permutations of all possible outcomes of the
negotiations. The agents operate in a semi-competitive environment. This is re-
flected by their behavior strategies which are based on the principled negotiation
approach [6]. That is, that they try to weaken their position only minimally e.g.
by minimal information disclosure, minimal relaxing their desires [5].

In the following we will outline the negotiation protocol and the negotiation
strategies relevant aspects.

2.1 Negotiation protocol and agent’s behaviors

The negotiation protocol is based on the alternating offers protocol [10]. Seller
agent’s behavior protocol is presented in figure 1. The states represent the al-

Fig. 1. Seller agent’s behavior protocol

lowed performatives he can send in a given negotiation context, except the
dashed one - this is interpreted as the initial state, in which the seller agent
is ready to take proposals from buyer agents. The edges represent the perfor-
matives of the buyer agent that can be received during a negotiation encounter.
During the negotiation the buyer can specify a set of constraints that each po-
tential offer has to met.
When the performative find is received the negotiation is initiated and the agent
can answer with performatives check or relax. He uses the performative check
when he finds an offer satisfying the currently published constraints of the buyer.
If there exist no such offer, the seller ask to relax at least one of the constraints,
so that he can find a suitable offer.

The buyer agent’s behavior protocol is presented in figure 2. The states and
edges are defined analogous to figure 1. The buyer agent is the initiator of a
negotiation and he does so by sending a find -performative to the seller agent.
While doing so he publishes the constraint with the highest priority to the seller1.
After he sends a find -performative he expects a check or relax performative from
the seller agent. If a check -performative is received, he checks the proposed offer
and answers with deal if it is acceptable, i.e. all constraints are met and the
acceptance threshold is exceeded. Otherwise he criticizes the offer by publishing
the constraint that is violated. If multiple constraints are violated the one with
the highest priority is chosen.
1 If there are different constraints with equal priority one is randomly chosen.

63

Fig. 2. Buyer agent’s behavior protocol

2.2 Negotiation strategy

The decision made in the agents behavior specification, like to decide which
counteroffer should be send, or if an offer should be accepted base on data
given by the user. These data is encoded in the negotiation strategy. Thus the
complexity of the negotiation strategies is independent from the complexity o f
the negotiation protocol or the agents behavior.

Of course not every deal is acceptable for the agents. Each agent has a min-
imal acceptance threshold that must be exceeded. This guarantees that e.g. the
seller agent does not agree to a deal with a negative profit. The seller agent has
a list of products. For each product a set of value vectors of negotiable attributes
is associated. The set of resulting possible deals can be computed by:

– a tradeoff strategy, given by the user,
– the global preference function, and
– user’s threshold that specifies what preference value is needed at least.

A tradeoff strategy specifies what combination of attributes form an acceptable
deal for the user. It specifies a set of tradeoffs and preferences over attribute
values and attributes value combinations. A tradeoff is a relation between two
attributes of the negotiations. It defines that in favor for worsening one attribute
the other has to improve at a certain rate.

The buyer agent has a requirement model for each product he is interested
in, which expresses his specifications about the desired products. This is done in
form of fuzzy prioritized constrains. Fuzzy constraints reflect a natural way of
modeling user’s requirements [5]. Often different priorities can be found in real
world settings, thus these fuzzy constraints are prioritized [11]. These require-
ments are derived from a tradeoff strategy given by the human negotiator, the
global preference function and user’s thresholds, as well.

So far it becomes clear that the specification of tradeoff strategies is an
essential part automating negotiations as outlined in this article. Therefore we
detail tradeoff strategies in the next section.

64

3 Tradeoff strategies

Within a tradeoff strategy all information about tradeoffs for a negotiation are
encoded. As sketched previously the tradeoff strategy is a set of pairs2 of at-
tributes which are in a tradeoff relation and a set of independent attributes. A
tradeoff function defines how much one attribute can be worsened, in favor for
improving the other. According to [8] this can be formalized as follows:

Definition 1
Let the value set of the attribute x be defined with X = [lx, rx], and let the value
set of y be Y = [ly, ry]. Then the function is called tradeoff function between
X and Y if it is continuous, monotonic and met the boundary condition. The
boundary condition assures, that if one attribute is assigned to the best value,
the other attribute has to be made worse [8].
The pair (x, y) is called a tradeoff pair.

For each tradeoff pair a preference function is defined, which specifies the prefer-
ence over the tradeoff alternatives. Tradeoff alternatives are value combinations
of the relevant tradeoff pair [8]. Independent attributes are not in a tradeoff re-
lation with other attributes. To each of them a preference function is associated.
A tradeoff strategy represents a directed forest, this is formalized in definition 2.

Definition 2
Let the negotiation attributes as nodes and the tradeoff pairs as directed edges be
given. The direction of an edge is defined by the tradeoff function (see definition
1). If this function has the form τ : X → Y , there exists an edge from node X
to Y . Then a tradeoff strategy represents a directed forest:

– Let a be a negotiation attribute. All values of a’s value set A are in a pref-
erence ordering relation �⊆ A×A: the preference direction is descending if
smaller values are allowed, ascending otherwise.

– To each tradeoff pair (a, b) the following is associated, with A and B as the
value sets of a and b respectively:
• A tradeoff function τ : A→ B in terms of definition 1.
• A tradeoff preference function p : A× B → [0, 1], which assigns to each

tradeoff alternative a preference value. It reflects a trapezoid formula of
three segments (analogue to the preference function in [8]) to describe the
increasing, steady and decreasing preference over tradeoff alternatives.

– Independent negotiation attributes are trees with only one node. For each
such negotiation attribute a a preference function is associated p : A→ [0, 1],
with A: ∀a, b ∈ A : a � b⇔ p(a) ≤ p(b).

An example of a tradeoff strategy is shown in figure 3. Hereby the value sets
are marked in the lower level of the nodes and user’s best tradeoff alternatives
are labeled at the edges. The edge going from the trapezoid to the first node
is labeled with the priority of the tree to which it connects. A more complex
2 Experience shows that tradeoffs between a pair of attributes are the most common

[4], hence we focus only on them.

65

Fig. 3. Exemplified tradeoff strategy

tradeoff strategy can have more complex tradeoff nets, which is sketched in
figure 4. In fact it is ensured that all tradeoff strategies can be represented as a
forest. This ensures some formal but also informal benefits. A tradeoff strategy
can be visualized in a clear and accustomed way to the users. Due to the acyclic
structure there cannot exist inconsistencies, which may be introduced by cycles.
This reduces the complexity specifying and validating those strategies. Moreover
this forest structure allows the use of efficient algorithms for reasoning about the
tradeoff strategies [12].

As already mentioned, a tradeoff strategy can be seen as a set of constraints.
In the negotiation scenario it’s often the case, that the constraints are fuzzy and
have different level of importance [13, 5]. In this regard the tradeoff strategy can
be modeled as a prioritised fuzzy CSP [11] in the following way:

– There is a set of variables with an associated value set; to each negotiable
attribute (i.e. variable) a value set is associated.

– From each tree a fuzzy constraint is derived; for negotiation attributes con-
nected as a tree - one fuzzy constraint.

Fig. 4. Tradeoff strategy as directed forest: nodes represent negotiation attributes,
edges tradeoff relations. L is an independent attribute

66

– A priority function ρ : T → [0,+∞) assigns to each tree (i.e. fuzzy con-
straint) a level of importance.

To gain the tradeoff strategies from the user we have developed a metamodel for
negotiation strategies, and thus tradeoff strategies in particular. Therefore we
used the meta-metamodel Ecore of the Eclipse Modeling Framework (EMF)
[9]. Basing on EMF allows us have the ability to integrate a graphical edi-
tor for tradeoff strategies in the near future and currently use the concepts of
model driven development for a more rapid development. Using EMF the meta-
model can be transformed to code. Prior to this a generator-model is needed - a
platform-specific model which supplies the EMF-generator with information like
the connections between multiple Ecore-models, the name of the generated files,
referenced Ecore-models etc. [14]. With use of the generated editor, a user can
model his negostrategy-based negotiation strategies visually, validate it against
the metamodel and save it as XMI-documents. These documents can be trans-
formed into data-objects representing the negotiation strategy used by an agent
specifying its negotiation strategy.

4 Efficient reasoning for negotiations

As outlined in the last section a tradeoff strategy forms a PFCSP. Problems of
this form are, as all CSPs, hard to solve [15]. To ensure an efficient negotiation
process a suitable representation and reasoning technique has to be identified.
The main idea to cope with this complexity is to compute a representation set of
acceptable deals prior to the negotiation. This representation set can be encoded
within a relational representation, as a set of tables. In fact it is necessary for
every tree of the tradeoff strategy (see e.g. figure 4) to generate one table. The
remaining information not kept in the tables like e.g. the preference directions
of attributes’ value sets needed for generation of critics are provided through the
code model of the negostrategy-metamodel. Thus during the negotiation process
reasoning about offers and the generation of critics can be done querying the
representation set, e.g. using SQL statements.

The computation of the set of acceptable deals is not done at compile time,
because context aspects, like the fact with whom a negotiation is done, can be
respected in the negotiation strategy. If these aspects have to be integrated in
the relational representation the resulting tables would be significantly larger,
as all possible contexts would have been respected.

The relational representation is a set of tables where each table represents
a fuzzy-constraint, that is equivalent to a set of tradeoffs with different prefer-
ences over some negotiable attributes. By joining the tables according to the tree
structure the valid combinations of attributes’ values can be derived and ordered
according to the preference function of the agent. Each row in a table represents
an assignment over all negotiation attributes in the tradeoff tree with respect
to the approximated tradeoff functions which is called a tradeoffconsistent as-
signment. For each cell in a column (i.e. negotiation attribute), a subset of the
value set is derived on the basis of the preference direction of the negotiation

67

attribute and the value contained in that cell. Thus to each row i.e. tradeoff-
consistent assignment, the agent can derive combinations of interval sets, which
represent a spectrum of possible tradeoffs over negotiable attributes represented
by that table. This allows the agents to search more efficiently for a mutually
acceptable solution i.e. over a set of potential solutions, rather than over single
point solutions each round. For each tree the procedure is as follows:

– First a representation set is generated from the root negotiation attribute,
containing a list of values from its value set.

– along the directed edges i.e. tradeoff relations the representation lists of
all remaining negotiation attributes are derived through the approximated
tradeoff functions.

– the preference of each row is computed, with the global preference function.

An example is shown in figure 5, this corresponds to the set of acceptable of the
negotiation strategy specified shown in figure 3. In this table all possible deals
that satisfy all tradeoff conditions are shown ordered by their preference value.

Fig. 5. Table of all possible attribute combinations of the attributes price, actuality
and contract duration

5 Automating Negotiations a case study

In this section we demonstrate the specification of a negotiation. We have de-
signed a simple scenario where the seller offers access to an information service,
that the buyer wants to subscribe. Attributes of the contract are

– price (PR)
– actuality of the data (AC)
– contract duration (CD)
– accounting period (AP)

From the seller’s perspective these attributes can have the following values: The
price can be in a range of [120,270] e, of course a higher price is preferred.
The delivered data can have an actuality of 1,2,4 or 6 hours. As more accurate
data is more expensive, older data is preferred. The seller assumes its optimal

68

ration between profit and accuracy gaining e 170,- for two hour old data. Possi-
ble contract durations are 6,12,18 or 24 month, longer durations are preferred.
Accounting periods can have a length of 1,3,4 or 6 month, shorter periods are
preferred, not given a credit to the customer.

From the buyer’s perspective the attributes have other desired values and
preferences, of course. The price should be in the interval between [100,200]
e, and of course a lower price is preferred. Actuality of the data should be
between two and five hours, more accurate data is preferred and a higher price
is acceptable. A fair ratio between accuracy and price for the buyer is paying
e 150,- for three hours old data. The contract duration can be in an interval
between [3,24] month, where a shorter duration is preferred being more flexible.
For a better (for the buyer a lower) price the buyer might be willing to accept
longer contract durations. Acceptable accounting periods can be one to three
month. Longer periods are preferred, but for a better price shorter ones can be
accepted.

The resulting tradeoff strategies can be specified as described in section 3. In
fact the tradeoff strategy of the buyer was shown in figure 3. The tradeoff strategy
of the seller is shown here in figure 6. Using the negotiation metamodel we have

Fig. 6. Seller tradeoff strategy

generated an EMF-editor that allows specifying these negotiation strategies in
a comprehensive way. After the negotiation strategies have been specified they
can be saved persistently using the XMI format.

Before the agents start a negotiation they have to build a relational represen-
tation of the set of acceptable deals induced by the tradeoff strategies. This set
defined by the buyer’s tradeoff strategy has already been presented in figure 53.
The resulting tables for the seller are shown in figure 7. If the two agents try to
negotiate about subscription terms for the information service the resulting ne-
gotiation trace is shown in table 1. The buyer starts the negotiation by selecting
the first top row of the table 5 which contains the most preferred combination of
attributes’ values according to his tradeoff strategy. According to his behavior
3 The directed forest representing buyer’s tradeoff strategy contains only one tree

which corresponds to one table

69

Fig. 7. Relational representation of seller’s tradeoff strategy. His thresholds are already
considered, thus only acceptable tradeoffs are shown

strategy he always tries to minimize the revelation of private information, thus
revealing only one constraint to the seller i.e. he requests a deal for a price ≤
e 160,-. The seller uses the SQL-select command and finds an offer that satisfies
buyer’s price constraint. He sends these appropriate contract conditions to the
buyer and asks him to evaluate his offer. In round 2 the buyer evaluates that the
offer is not acceptable because of some violated conditions e.g. for the offered
price a better actuality of data and shorter contract duration is expected. In
consequence he asks the seller to find another offer satisfying the price and the
additional violated actuality constraint. As the seller agent has no fitting offer4

he asks to relax these constraints. In doing so the buyer lowers his expected
satisfaction degree with the deal. Finally, after 2 more unacceptable offers from
the seller in rounds 4 and 6, a deal is reached in round 8.
If, for example, the buyer had more strict thresholds which limit his tradeoff
ability, then the negotiation could fail.

6 Conclusion

In this article we present a negotiation model that allows complex negotiations
among two agents acting on behalves of the human negotiators. This capabil-
ity allows automating negotiations as part of complex inter-enterprise business
processes, thus enabling interoperability on the process level. In doing so, it was
pointed out that the formal specification and modeling of negotiation strategies
is important. In particular tradeoff strategies are of relevance.

The main contribution of our work is that we have defined a formal repre-
sentation of negotiation strategies, for agents acting on behalve of human nego-
tiators. Thereby we use the ECORE meta model, to allow the negotiators them-
selves to describe the negotiation strategy. The transformation into executable
code that can be used by the agent is done via automatic transformation gaining
the advantages of a formal definition and the ideas of MDA. Thus the expensive
and possibly erroneous process of encoding these strategies by hand is avoided.

Due to the lack of space we have omitted more details of the meta-modeling
language for negotiations that we have specified. This meta-model includes a
4 In this case the SQL-select statement using buyer’s conditions applied on his rela-

tional representation shown in figure 7 returns an empty result set.

70

Round 1
Buyer

Performative: Find
Constraint: PR ≤ 160

Seller
Performative: Check
(PR:150,AC:4,CD:18,AP:1)

Round 2
Buyer

Performative: Find
Constraint: PR ≤ 160 ∧ AC ≤3

Seller Performative: Relax

Round 3
Buyer

Performative: Find
Constraint: PR ≤ 145 ∧ AC ≤3

Seller Performative: Relax

Round 4
Buyer

Performative: Find
Constraint: PR ≤ 175 ∧ AC ≤3

Seller
Performative: Check
(PR:165,AC:2,CD:18,AP:1)

Round 5
Buyer

Performative: Find
Constraint: PR ≤ 175 ∧ AC ≤3 ∧ CD ≤ 13

Seller Performative: Relax

Round 6
Buyer

Performative: Find
Constraint: PR ≤ 190 ∧ AC ≤3 ∧ CD ≤ 15

Seller
Performative: Check
(PR:180,AC:2,CD:12,AP:1)

Round 7
Buyer

Performative: Find
Constraint: PR ≤ 190 ∧ AC ≤3 ∧ CD ≤ 15 ∧ AP ≥ 2

Seller
Performative: Check
(PR:180,AC:2,CD:12,AP:3)

Round 8 Buyer Performative: Deal

Table 1. Full negotiation trace of buyer and seller (PR: price, AC actuality, CD con-
tract duration, AP accounting period)

graphic specification, too. As we have outlined, the presented specification of
tradeoff strategies is very expressive on the one hand, but on the other hand can
cause complex computational efforts, as tradeoff strategies can be described as
a prioritized fuzzy constraints satisfaction problem. Thus efficiently representa-
tions and reasoning is necessary to achieve implementable solutions. We have
shown that a relational representation of the set of acceptable deals induced by
the negotiations strategy can be computed be used during the negotiation.

An underlying vision of our project is to allow the human negotiator, who is
responsible for the negotiations, not for its technical implementation, to specify
his negotiation strategy in a form that can be transformed automatically into the
reasoning knowledge of the agent. Therefore we will extend our tooling. As the
negotiation specification meta model includes a graphical notation, we are going
to develop a visual editor for the specification of negotiation strategies. Making
it more convenient for the human negotiator. Moreover it is intendet to automate
more phases of the specification of multiagent negotiations using MDA princi-

71

ples. So further steps can be the specification and automated transformation of
negotiation protocols.

As the presented method follows an engineering approach to specify nego-
tiation strategies it is an open question what expressional power the presented
approach for specifying negotiation strategies has, compared to other approaches
like bargaining theory.

References

1. Pruitt, D.G.: Negotiation behavior. Organizational and occupational psychology.
Acad. Pr., New York, N.Y. (1981)

2. Wooldridge, M., Ciancarini, P.: Agent-oriented software engineering: the state of
the art. In: First international workshop, AOSE 2000 on Agent-oriented software
engineering, Secaucus, NJ, USA, Springer-Verlag New York, Inc. (2001) 1–28

3. Kraus, S.: Strategic negotiation in multiagent environments. Intelligent robots and
autonomous agents. MIT Press, Cambridge, Mass. (2001)

4. Steele, P.T., Beasor, T.: Business negotiation: A practical workbook. Gower,
Aldershot (1999)

5. Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.: A fuzzy constraint based
model for bilateral multi-issue negotiations in semi-competitive environments. Ar-
tificial Intelligence Journal 148(1-2) (2003) 53–102

6. Fisher, R., Ury, W.: Getting to yes: Negotiating agreement without giving in. 2.
edn. Mifflin, Boston (1991)

7. Mudgal, C., Vassileva, J.: Bilateral negotiation with incomplete and uncertain
information: A decision-theoretic approach using a model of the opponent. In:
In Klusch and Kerschberg (Eds.) Cooperative Information Agents IV, LNAI,
Springer-Verlag (2000) 107–118

8. Luo, X., Jennings, N.R., Shadbolt, N.: Acquiring user tradeoff strategies and
preferences for negotiating agents: A default-then-adjust method. Int. J. Hum.-
Comput. Stud. 64(4) (2006) 304–321

9. Foundation, T.E.: Graphical editing framework (gef).
http://www.eclipse.org/modeling/emf, accessable at 08.01.2009

10. Osborne, M.J., Rubinstein, A.: Bargaining and markets. Economic theory, econo-
metrics, and mathematical economics. Acad. Press, San Diego, Calif. (1990)

11. Luo, X., Lee, J., Leung, H., Jennings, N.R.: Prioritised fuzzy constraint satisfaction
problems: axioms, instantiation and validation. Int Journal of Fuzzy Sets and
Systems 136(2) (2003) 155–188

12. Russell, S.J., Norvig, P.: Artificial intelligence: A modern approach ; [the intelligent
agent book]. 2. ed. edn. Prentice Hall series in artificial intelligence. Prentice Hall,
Upper Saddle River, NJ (2003)

13. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction
problems: Handling priority, preference and uncertainty. Applied Intelligence 6
(1996) 287–309

14. Budinsky, F.: Eclipse modeling framework: A developer’s guide. The eclipse series.
Addison-Wesley, Boston, Mass. (2003)

15. Ghallab, M., Nau, D., Traverso, P.: Automated planning : theory and practice.
Elsevier, Kaufmann, Amsterdam et al. (2004)

72

Selection of Resources For Missions Using
Semantic-Aware Cooperative Agents �

Murat Sensoy, Wamberto Vasconcelos, Geeth de Mel, and Tim Norman

Department of Computing Science, University of Aberdeen, AB24 3UE, Aberdeen, UK
{m.sensoy, w.w.vasconcelos, g.demel, t.j.norman}@abdn.ac.uk

Abstract. Different organizations carry out various missions. Some missions
may be crucial for the organizations, and require critical but scarce resources.
Scarcity of these critical resources and importance of the missions create an in-
centive for the organizations to cooperate by sharing their resources with an ex-
pectation of carrying out their missions successfully even if the resources in hand
are limited. In this paper, we propose a multiagent framework where organiza-
tions’ missions are semantically described, and then a hierarchical multiagent
system represents each mission. Using the semantic description of the mission
plans, the agents reason about resources required for their missions and coopera-
tively decide on the resources that should be shared to carry out those missions.
This is achieved at different levels of the agent hierarchy where policies and con-
straints are used during the decision process. Our experiments show that our ap-
proach leads to a better utilization of the resources and significantly improves the
number of achievable missions when the number of available resources is limited.

1 Introduction

The word mission can be defined as a special duty given to a person, group, or an
organization to carry out. In a broad sense, many goal-oriented activities in real life can
be considered a mission, such as starting an enterprise, rescuing people after a flood
and so on. Even though missions can be very different, they require critical resources to
reach their final goals. Improper selection of the resources to be used for a mission may
lead to its definite failure. Therefore, determining the resources that should be used to
perform a mission is crucial, but not trivial. In real life, missions are planned by experts
and the resources that should be used by a mission is determined after careful analysis
of the mission’s requirements. This means that considerable effort and expertise are
required to determine the resources to be used by a mission.

Some missions may be critical and shall be given higher priority. For example, any
failure in the mission of rescuing people after a flood may have severe consequences.
Many organizations (e.g., United Nations, Red Cross, and so on) conduct hundreds of
critical missions each year. These organization may require valuable but scarce assets

� Research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and was accomplished

under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the

author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army

Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K.

Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright

notation hereon.

73

such as aerial vehicles (e.g., helicopters), and sensors (e.g., radars) to carry out their
missions. Therefore, they usually tend to share their assets to enable their missions to be
carried out successfully. At different levels, this leads to the necessity of interoperability
between different organizations to achieve their missions properly.

In this paper, we propose a framework where different organizations describe their
missions semantically using an ontology. In this framework, each mission is divided
into different operations, which are further divided into different tasks. All elements
of a mission are related to each other with temporal and logical relationships, which
are borrowed from OWL-S process ontology. This paper proposes a multiagent system
to represent each mission so that the agents cooperate to determine the resources that
can be shared among different tasks, operations and missions. We consider only the
missions that are related to Intelligence, Surveillance, Target Acquisition and Recon-
naissance domain. We select this domain to formulate and test our approach, because
of the existence of well-established ontologies and standards for describing resources
in this domain. However, our approach can easily be adapted to other domains as well
by replacing the used ontologies. We experimentally show that our approach leads to a
better utilization of the resources and significantly improves the number of achievable
tasks when the number of resources is limited.

The rest of the paper is organized as follows. In Section 2, we describe how mis-
sions are planned and represented semantically. In Section 3, we describe how semantic
matchmaking can be used to discover types of resources that can be used by a task.
In Section 4, we describe the proposed approach for associating a multiagent system
to each mission and cooperatively deciding on the resources that will be used by these
missions. In Section 5, we evaluate our approach and Section 6 presents a discussion.

2 Mission Planning

Mission planning is the process of composing a plan containing the required steps in
order to fulfill a mission. This plan should explicitly describe which operations are
required by the mission. Each operation may need to be carried out following a specific
schedule in order to achieve the goals of the mission. Hence, temporal relationships
between operations are essential in the context of mission plans.

In addition to temporal relationships, there may be logical relationships between the
operations while describing a mission plan. For example, we may need to specify that
an operation should only be run if a specific condition is detected in the field. Hence, a
representation of mission plans should be flexible enough to accommodate temporal and
assorted logical relationships among operations. Below, we enumerate nine constructors
used to define temporal and logical relationships between the operations of a plan:

1. Sequence: Defines a list of operations that need to be executed in order.
2. Split: Defines a set of operations that should be executed concurrently.
3. Split+Join: Defines operations that can only be executed after a set of concurrent operations

are accomplished. It defines a kind of synchronization point in the mission plan.
4. Any-Order: Defines a list of operations that can be done in any order.
5. Choice: Defines a set of operations from which one should be chosen and executed.
6. If-Then-Else: Defines two operations so that one of them should be chosen and executed if

a predefined condition holds; otherwise the other operation is executed.
7. Iterate: Defines an iteration over operation executions.

74

8. Repeat-While: Defines an iteration that continues while a predefined condition holds.
9. Repeat-Until: Defines an iteration that continues until a predefined condition holds.

Example 1 describes a mission that aims to provide relief to people injured in a
natural disaster in an area where a civil war threat the humanitarian efforts. In order to
fulfill this mission, a mission plan is prepared. This plan is depicted in Figure 1.

Example 1 We consider a hypothetical country in which there is an ongoing civil war between ethnical groups. An earth-
quake has recently hit and destroyed the eastern-most part of the country where thousands of civilians lost their homes and
some of them are dead or seriously injured. This region is surrounded by mountains, where caves in the terrain are used
by armed groups as shelters. Humanitarian volunteer organizations such as the Red Cross are willing to help the civilians.
However, possible attacks by the armed groups in the region prevent these organizations from coming and operating in the
region. In this setting, our mission is to enable these organizations to provide relief to those affected by the earthquake in the
region without facing any security issue.

In the plan represented graphically in Figure 1, first intelligence is collected. As
a result of this operation, the most appropriate place for building a camp for the in-
jured civilians is determined. If the camp
region is not clear, a cleaning operation is
initiated. After ensuring that the region is
clear, a camp and the required logistic chan-
nels are built using two different operations.
These operations can be executed in any or-
der. This means that the camp can be built
in parallel with, before or after building lo-
gistic channels. This decision of the mission
planner provides some flexibility on the ex-
ecution of the plan. That is, if resources are
scare, these two operations can be executed
sequentially to make use of the same re-
sources; otherwise they can be executed in
parallel to decrease the overall mission com-
pletion time. Just after building a camp and
setting up the logistic channels, a surveil-
lance operation is initiated to protect the
camp, roads to the camp and so on. In paral-

Gather Intelligence

If
clear Clean AreaNo

<any-order

any-order>

Yes

Build a camp Build logistic channels

split

join

split
Camp Surveillance

Escort Red Cross to the camp Escort civilians to the camp

Search civilians in need

Escort civilians to the camp

iterate

loop

Fig. 1: A mission plan for Example 1.

lel, humanitarian organizations are escorted and civilians are moved to the camp. After
civilians and volunteer organizations are in the camp, we start searching for civilians in
need and escort these civilians to the camp iteratively until the end of the mission.

Each operation is composed of tasks that are required to fulfill the objectives of the
operation. Tasks are atomic and cannot be further divided into subtasks. A successful
execution of an operation may require an ordered execution of tasks. Hence, within the
context of a specific operation, we may clearly define when and under which conditions
a task should be performed to achieve the objectives of the operation.

2.1 ISTAR Ontology

Missions are described using the concepts from an ontology that is specifically engi-
neered for Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR)
domain. we call this ontology as the ISTAR ontology. Figure 2 summarizes the main

75

concepts and relationships from this ontology. As shown in Figure 2, a mission may
comprise several operations and in turn each operation may comprise several tasks.
Therefore, tasks are located at the lowest level in the hierarchy. They specify how op-
erations will be fulfilled and in turn operations define how the missions will be accom-
plished. Each task may require capabilities to achieve its objectives and assets may pro-
vide various capabilities. Assets provide the capabilities that are required by the tasks.
Platform and System concepts are both assets, but systems can be attached to platforms.
Sensors are regarded in the ontology as a specialization of systems.

In our approach, the ISTAR ontology of Figure 2 is represented using Web Ontology
Language (OWL). Note that the ISTAR ontology shown in Figure 2 contains only core
concepts and relationships. However, it is
easily extended by adding other OWL on-
tologies to further elaborate different con-
cepts. For example, an OWL-based sensor
ontology composed of hundreds of sensor
types and instances is simply added to the
ISTAR ontology, so information about the
capabilities provided by a variety of sensors
is easily added to the ISTAR ontology. Sim-
ilarly, individual ontologies for other con-
cepts (e.g., Platform, Task, Operation etc.)
are added to the ISTAR ontology to en-

Mission

Operation

toAccomplish

toAccomplishcomprises

comprises

Capability

Asset

Platform System

Sensor

isA

provides

isA isA

mounts

attachedTo

toPerform

Task

allocatedTo

requires

Fig. 2: ISTAR ontology.

hance it. As stated before, tasks require different capabilities to achieve their objectives.
Capability requirements of tasks are divided into two categories:

1. Operational requirements: These are qualitative and quantitative parameters that specify
the desired capabilities for a task within a context of a specific mission, or operation. These
requirements are related to how the task should be executed in order to achieve desired op-
erational effectiveness and suitability. For example, a road surveillance task for the mission
in Figure 1 requires a high altitude capability as one of its operational capabilities, because
this task will be held in a mountainous area. If we remove this operational requirement from
the task, the task may not achieve its objectives for this specific mission.

2. Intelligence requirements: These requirements refer to the kinds of intelligence discipline
(e.g., Radar Intelligence (RADINT), Imagery Intelligence (IMINT), and so on) that are re-
quired for a task. These requirements are used to select the sensors that can support such
kind of intelligence. For example, if the road surveillance task requires IMINT intelligence,
then cameras providing IMINT capabilities can be used for this task.

Operational and intelligence requirements can be associated with a task in three
ways. First, a task can be defined abstractly in an ontology together with its default oper-
ational and intelligence requirements. Second, new
requirements can be explicitly placed onto the task
during the planning of a specific mission. Third,
constraints defined within the scope of the mission
may add new requirements to the task, or modify

Task

Road Surveillance

is
A

 IMINT_CapabilityConstant_Survailance

hasOperationalRequirement hasIntelligenceRequirement

Fig. 3: Abstract task example.
its existing requirements. Figure 3 shows how Road Surveillance task is defined ab-
stractly in an ontology. This task has two requirements: constant surveillance (opera-
tional requirement) and IMINT capability (intelligence requirement). If we assume that

76

the road surveillance task of the mission in Figure 1 is an instance of this task, then
it has these two requirements by default. During the planning phase of the mission in
Example 1, the IMINT capability of road surveillance task can be specialized further by
adding PHOTOINT as its intelligence requirement, where PHOTOINT is a subconcept
of IMINT and refers to "Photographic Intelligence".

Constraints imposed on the road surveillance task affects its requirements as fol-
lows. First, a high altitude operational requirement is added, because this task will
be executed in a mountainous area. Second,
because the road surveillance will be carried
out during the winter (when snow, rain and
fog are highly probable), Radar Intelligence
(RADINT) is added to the intelligence require-
ments of the task. Figure 4 shows the resulting
road surveillance task instance with its require-
ments. As explained above, constraints may af-
fect the requirements of a task. For this pur-

Task

Road Surveillance

is
A

road_surveillance_inst
hasIntelligenceRequirement

instance of

PHOTOINT High AltitudeRADINT

hasIntelligenceRequirement hasOperationalRequirement

IMINT_CapabilityConstant_Survailance

hasOperationalRequirement hasIntelligenceRequirement

Fig. 4: Task instance example.

pose, we may use rules that represent the relationships between the constraints (e.g.,
terrain and weather conditions) and requirements (e.g., high altitude and radar intelli-
gence). These rules are important because they capture the crucial domain knowledge.

Process

Atomic Process

Simple Process

Composite Process

Control Construct

Process Component
(Process U Control Construct)

Sequence

Split

Repeat Until

isA
isA

isA

isA

isA

isA

isA

realizes

realizedBy

collaps

expand

composedBy
components

If-Then-Else

OWL-S Process Ontology ISTAR Ontology

Mission

Operation

toAccomplish

toAccomplishcomprises

comprises

isA

isA

isA

Capability

Asset

Platform System

Sensor

isA

provides

isA isA

mounts

attachedTo

toPerform

Task

allocatedTo

requires

Fig. 5. Combination of OWL-S’s process ontology and ISTAR ontology.

2.2 Describing Mission Plans

At the end of mission planning, a description of a mission plan should be produced. This
description defines what steps are required to fulfill the mission in a timely manner. The
ISTAR ontology provides fundamental concepts and relationships required to describe
missions, operations, tasks, and so on. This ontology is written using a standard on-
tology language OWL [1]. Therefore, different software agents can easily understand,
interpret and reason about the descriptions written using this ontology. However, the
ISTAR ontology does not contain concepts and properties to describe temporal and log-
ical relationships between operations, or tasks within a mission. Therefore, a mission
plan that contains these relationships cannot be represented solely by the ISTAR ontol-
ogy. In order to represent plans like the one in Figure 1, we need another ontology that
has constructs to represent temporal and logical relationships between different entities.

77

OWL-S’s process ontology1 defines temporal and logical relationships between ser-
vices (processes). These relationships are the same as the relationships we have de-
scribed before. OWL-S defines three categories of processes: simple, atomic and com-
posite processes. Composite processes are described using atomic or other composite
processes using the aforementioned temporal and logical relationships (e.g., sequence,
split, if-then-else and so on). In our context, tasks can be considered as atomic pro-
cesses that accomplish sub-goals of operations and missions. Similarly, operations can
be considered as composite processes that are composed of tasks. Lastly, missions can
also be formalized as composite processes that are achieved by a set of operations.
Therefore, we can combine OWL-S’s process ontology and the ISTAR ontology in an
intuitive manner as shown in Figure 5. In this way, missions, operations and tasks can
be described iteratively with a standard formal semantics.

3 Semantic Matchmaking of Assets to Tasks

A mission plan contains operations and operations consist of tasks. Tasks require some
operational or intelligence capabilities. Similarly, sensors (e.g., IR cameras) and plat-
forms (e.g., Aerial Vehicles) have some capabilities that correspond to operational and
intelligence requirements of tasks. Therefore, there is a strong correspondence between
assets (sensors and platforms) and tasks. The purpose of this section is to exploit this
correspondence to determine types of assets necessary to carry out tasks related to the
operations of a mission. Once the necessary asset types are determined, concrete re-
sources (instances of the determined assets) can be allocated to the specific tasks.

We assume that for each task there should be one platform that satisfies all its op-
erational requirements. If a platform does not meet every operational requirements of
a task, it cannot be used for the task. For example, an Unmanned Aerial Vehicle (UAV)
that does not have high altitude capability cannot be used for the road surveillance task
of the mission in Figure 1.

We propose a matchmaking algorithm, which depends on the semantic description
of desired platforms and sensors required to accomplish a task. For this purpose, we
define configuration of assets that can be used to achieve a specific task as follows:

1. Adequate Platform: For a specific task t, a platform p is adequate if it meets every oper-
ational requirements of t. It is defined as follows: task(?t) ∧ platform(?p) ∧ ∀?c(hasOpReq(?t,?c) →
hasCapability(?p,?c)) ⇒ adequate(?t,?p)

2. Deployable Platform: For a specific task t, a platform is deployable if it is adequate and
it can mount sensors that meet every intelligence requirement of t. It is defined as follows:
task(?t) ∧ platform(?p) ∧ adequate(?t,?p) ∧ ∀?c (hasIntelReq(?t,?c) → ∃?s ∧ sensor(?s) ∧ mount(?p,?s) ∧ has-

Capability(?s,?c)) ⇒ deployable(?t,?p)

3. Deployable Configuration: For a task t, a deployable configuration is a set that contains
a deployable platform p and a bundle of sensors that can be mounted by p, where their
capabilities meet every intelligent requirement of t.

In this work, we use SPARQL [1], which is an RDF query language, with Pellet
reasoner [2] to list deployable configurations for a given task instance. Figure 6 demon-

1 http://www.daml.org/services/owl-s/1.1/Process.owl

78

strates an example SPARQL query for
getting deployable configurations for the
road surveillance task instance in Fig-
ure 4. This query returns a list of tuples
where each tuple is composed of one
deployable platform and a list of sen-
sors that are attachable to the platform
so that these sensors meet every intelli-

PREFIX istar: <http://www.csd.abdn.ac.uk/ita/istar#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT ?p ?s0 ?s1
WHERE {
 ?p rdf:type istar:Platform.
 ?s0 rdf:type istar:Sensor.
 ?s1 rdf:type istar:Sensor.
 ?p istar:mount ?s0.
 ?p istar:mount ?s1.
 ?p istar:hasCapability istar:Constant_Survaillance.
 ?p istar:hasCapability istar:High_Altitude.
 ?s0 istar:hasCapability istar:PHOTOINT.
 ?s1 istar:hasCapability istar:RADINT.
}

Fig. 6: SPARQL query example.

gence requirement of the road surveillance task instance together. Therefore, each of
the returned tuples corresponds to one deployable configuration.

4 Selection of Resources for Missions using Agents

In Section 3, we describe how we can list all possible deployable configurations for a
task using a reasoner and a query language. We should select one of these configurations
depending on a utility function for the task. Then, for the execution of the task, we need
to allocate specific instances of the assets referred in the chosen configuration. Note that
instances of assets are scarce. This means that even though a specific configuration is
best for the task, this configuration should not be chosen, because some of the assets
in the configuration may not have enough instances available for the task. Scarcity of
resources leads to a competition between tasks to acquire the instances of the desired
assets. In this competition, a higher priority task has the privilege to acquire resources
currently hold by lower priority tasks. Even if a task holds a specific instance of an
asset, it may be taken away before the completion of the task if it is needed by a higher
priority task and there is not another instance of the same asset available at the moment.

In this setting, proactive selection of the right configuration for each task becomes
crucial. We should select a deployable configuration for each task so that the instances
of these resources can be attainable for the tasks and the attained instances can be sus-
tainable until the completion of these tasks without any prevention by the higher pri-
ority task. In order to determine the most proper deployable configurations for each
task proactively, we propose to represent each mission plan as a virtual organization
composed of agents representing tasks, operations and the mission. In the proposed ap-
proach, agents representing tasks communicate with other agents representing higher
priority task to reveal the probability of sharing their resources. This way, agents coop-
erate to share their resources as much as possible, not only for better utilization of the
resources but also for decreasing the possibility of intervention by higher priority tasks.

4.1 Proposed Multiagent Architecture

In the proposed approach, for each mission, we construct a virtual organization. Fig-
ure 7 shows how these virtual organizations look like. Each virtual organization has
three levels: task level, operation level and mission level. At the task level, agents are
responsible for finding the best solution in order to fulfill the task they represent. There-
fore, they are knowledgeable about the details of the task they represent and each of
them may have its own utility function and metrics of success. At the operation level,
an agent is knowledgeable about the utility function, requirements and constraints of

79

the corresponding operation, as well as policies regarding the operation and the rela-
tionships between the tasks within the operation. Lastly, at mission level, an agent is
knowledgeable about the success measure of the mission, policies related to the mis-
sion, relationships between the operations within the mission and constraints of the
mission. Constraints include date, region, terrain and so on.

T2 T3

Mission
X

Operation
2

T5 T6

Operation
3

T4 T7 T8

Mission
Y

Operation
4

T9 T10

Operation
5

T1

Operation
1

Mission Level

In
te

rn
etOperation Level

Task Level

Fig. 7. Virtual organizations derived from two toy missions.

Operations within the same mission may have an opportunity to share their re-
sources, given the fact that they are bounded by the same constraints at the mission level
(e.g., region, terrain properties and so on). Example 2 provides a simple example of this
type of resource sharing. However, this may not be the case for the operations belonging
to different missions (i.e., they may have different regions, dates and so on). Similarly,
tasks belonging to the same operation may have a better opportunity for sharing their
resources with respect to other tasks that belongs to other operations or missions. That
is, tasks within the same operation are bounded by the same constraints of the oper-
ation, so they may share their resources if their requirements are similar. Example 3
provides a simple example for such a resource sharing. On the other hand, it is harder
for two tasks to share their resources if they belong to different operations, because each
operation may have different constraints that affect the tasks within the operation (e.g.,
tasks in different regions or on different dates may not share their resources). Therefore
it becomes a challenge to find different missions or operations so that the tasks within
those missions or operations can share their resources.
Example 2 The mission in Figure 1 has two consecutive operations that are executed iteratively one after another: Search
civilians in need and Escort civilians to the camp. Let us assume that both of these operations have similar operational
requirements. This means that these two operations may use the same platforms for their tasks. This leads to an opportunity
for using the same instances of assets for these consecutive operations. If using fewer asset instances has a better utility for
the mission, the mission agent may request the agents of these two operations to cooperate by using the same instances.

Example 3 Let us assume that there is an operation called detect and rescue civilians, which is further divided into two
tasks; detecting civilians in need and rescuing civilians. The best deployable configuration for the first task contains Global
Hawk as a platform and the best deployable configuration for the second task contains Black Hawk as its platform. Therefore
this operation requires two platforms Global Hawk and Black Hawk. However, using the same platform for both of the tasks
has a higher overall utility for the operation. Hence both agents representing these tasks compromise and decide to use a
Pave Hawk as platform, even if it is not the best solution for any of these tasks. Then, the sensors required for detecting and
rescuing civilians in need are attached to this single platform.

4.2 Choosing Deployable Configurations to Share Assets

In order to determine which tasks should share their assets during their execution, we
propose a protocol to be used with the multiagent architecture proposed in Section 4.1.
This protocol consists of four main steps illustrated in Figure 8 and explained below:

1. A mission agent X , willing to share assets with other missions, posts a message on
Missions’ Message Board. This message contains the constraints that the mission X

80

has (e.g., the region and date of the mission), as well as the priority of the mission.
Missions are willing to share their resources with higher priority missions. This is
intuitive, because if a low priority mission X with a priority level 1 shares an asset
A with a higher priority mission Y with priority level 5, then the asset A cannot be
taken away by other missions having priority lower than level 5.

2. To the message of the mission agent X , a set of other mission agents may respond
if their constraints comply with the constraints within the message and their poli-
cies do not prevent them from sharing their assets with the mission X . For example,
policies of a mission may not allow sharing assets with another mission unless these
two missions belong to the same authority. Mission agent X creates a Rendezvous
Point and invites responding mission agents to the rendezvous point, considering
its own policies too. Through the rendezvous point, operation agents belonging to
these missions can multicast IP messages among them and communicate to elab-
orate the possibility of sharing their assets. In our example of Figure 8, mission
agent X creates a rendezvous point and invites mission agent Y . This means that
operation agents of mission X and mission Y communicate through the rendezvous
point. Note that, if no mission agent responds to the message of the mission agent
X , it also creates a rendezvous point, but this time only its own operations commu-
nicate with one another through this rendezvous point to elaborate the possibility
of sharing among them as in Example 2.

3. Operations that have similar constraints and requirements create sets. While cre-
ating these sets, policies related to these operations are also taken into account. A
set may contain one or more operations. Then, for each set, a rendezvous point
is created. Using this rendezvous point, tasks under the operations within the set
communicate to decide on the assets that they can share. In Figure 8, we only show
the set composed of Operation1 and Operation5 for simplicity. The tasks within
these operations communicate through the created rendezvous point.

4. Each task agent in the rendezvous point computes the deployable configurations for
the related task using the approach of Section 3. Then, each task agent publishes
its desired deployable configurations and let other task agents vote for them. An
agent’s vote for a specific deployable configuration is based on the utility of sharing
the assets within the deployable configuration for the agent. Lastly, depending on
the voting results, each task agent decides on a deployable configuration that will
be used during its executions. That is, task agents select deployable configurations
that enable them to share as many resources as possible with others.

5 Evaluation

To evaluate our approach, we have prepared a set of missions 2 using the ISTAR ontol-
ogy as described in Section 2. This set includes 20 missions, 143 operations and 221
tasks. For each mission, we built a multiagent system as in Figure 7. Note that, for two
task agents to cooperate, they should be adequate to cooperate; at task level, operation
level or mission level, there should not be any reason to prevent these tasks from co-
operating (i.e., policies or conflicting constraints may lead to inadequacy to cooperate).

2 Available in XML format at http://www.csd.abdn.ac.uk/̃ murat/experiment.xml

81

Missions’
Message Board

Post a message

Operation 1 Operation 2 Operation 3 Operation 4 Operation 5

Rendezvous Point

Mission X-Mission Y

Mission X Mission Y

Rendezvous Point

Operation 1-Operation 5

Operation agents create rendezvous
points for their tasks.

Read the message

T1

T9
T10

Response to the message

Create a rendezvous
point for operations

to communicate

Fig. 8. Demonstration of the approach.

This leads us to determine a parameter in our evaluations, ratio of tasks adequate for co-
operation (Rac). For instance, Rac = 0.0 means that policies or conflicting constraints
(location and date of tasks) do not allow a task to cooperate or share its resources with
other tasks in the system. On the other hand, Rac = 1.0 means that policies and the
constraints are created in mission, operation and task levels so that each task is ade-
quate to cooperate or share its resources with other tasks in the system. Note that R ac

implies only the adequacy to share resources, but not the actual degree of resource shar-
ing. That is, if two tasks require different resources, they cannot share their resources
even though they are adequate to cooperate in terms of their policies or constraints.

In order to compare our approach, we also implement a naive approach to select
resources for the tasks. In this approach, for each task, we individually select the best
resources according to the requirements and the constraints of the task. Unlike our ap-
proach, this approach does not consider the cooperation or resource sharing between
the tasks. Hence, each resource is allocated to one task. Our experiments show that this
leads to 725 different resources (221 platforms and 504 sensors) having allocated.

Figure 9 shows the total number of required resources for different values of
Rac, when our approach is used. When Rac = 0.0, agents are not adequate
to cooperate, so the performance
of our approach is same as that
of the naive approach; the tasks
require 221 platform instances
and 504 sensor instances. How-
ever, when we increase Rac, our
approach causes more tasks to
come together and search for pos-
sible ways of sharing their re-
sources. This leads to a dramatic
decrease in the required number
of resources to carry out the mis-

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of tasks adequate for cooperation (Rac)

Nu
m

be
r o

f R
eq

ui
re

d
Re

so
ur

ce
s

Platforms
Sensors

Fig. 9: Required resources vs. Rac.

sions. When Rac = 1.0, our approach determine the resources that can be shared among
as many task as possible, so the number of required resources decreases to 54 (17 plat-
form instances and 37 sensor instances).

If there is not enough resources, a task cannot be executed. This may lead to

82

failure of an operation, which may further result in a failed mission. Therefore,
in the next step of our evalua-
tions, we measure how our ap-
proach improves the ratio of ex-
ecutable tasks when the number
of available resources is limited.
Figure 10 demonstrates the ratio
of executable tasks for different
Rac values, while the number of
resources ranges between 0 and
320. When tasks are not ade-
quate for cooperation, only 44%
of the task can be executed with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

Number of Available Resources

Ra
tio

 o
f E

xe
cu

ta
bl

e
Ta

sk
s

Rac=0.0
Rac=0.2
Rac=0.4
Rac=0.8
Rac=1.0

Fig. 10: Ratio of executable tasks vs. number of resources.

all of the 320 available resources (Rac = 0.0). For higher values of Rac, our approach
enables all of the tasks to be executed with fewer resources. This is expected, since our
approach enable tasks to discover their opportunities to share resources, so more tasks
are executed with fewer resources.

6 Discussion and Related Work

In this paper, we formulate a way of semantically representing plans to achieve mis-
sions. This representation enables us to describe the components of a mission plan
semantically in terms of their requirements and relationships between them. Hence, we
can reason about the resources necessary to carry out a mission as planned. Based on
the proposed semantic representation of the mission plans, we propose a multiagent
approach for the determination of the most convenient resources to carry out missions.
We show that using this approach, missions can be carried out with fewer resources.

Policies define a general attitude or approach which can be described in terms of
norms. For instance, the policy “resource x is expensive and its use should be regu-
lated” could give rise to norms being put in place, defining who is allowed or prohibited
to use x. Alternatively, policies can be seen as rules (as in, for instance, [3]) defining
when norms (that is, permissions, prohibitions and obligations) are put in place or are
revoked. Norms and policies have been used in disparate fields, ranging from security
models of programming languages such as Java to the management of resources in dis-
tributed systems [3]. Explicit norms and policies, as opposed to implicit ones embedded
in software, define computational behaviors in a flexible way [4].

Our approach supports policies and norms at different levels of abstraction (mission
level, operation level and task level). It also enables missions from different organiza-
tions to share their resources without revealing the details of their mission plans. Co-
operation policies of different organization may be different, so each mission considers
its own policies and norms while choosing other missions for cooperation.

Different approaches are proposed before to select resources (sensors) for tasks.
Many researches proposed utility-based solution. Johnson et al. propose to use energy
conservation while selecting resources for tasks [5], whereas Bar-Noy et al. propose
to select resources depending on the competition between the tasks [6]. In both case,
the utility of a resource to a task is based on the geographical distance between them.

83

Therefore, in an essence all resources are of the same type and any resource can provide
some utility to any task. We argue, this is not the general case and the reality is the con-
trary. Resources are heterogeneous (different capabilities, operational conditions etc.)
by nature. Therefore, not all resources could provide even some utility to a task.

Various ontologies are proposed in the literature to describe sensors, platforms and
so on. SensorML [7], OntoSensor [8] and Marine Metadata Interoperability project [9]
are well-known examples. None of these approaches provides a high level representa-
tion to describe mission plans as a whole. Mission plans introduced in this paper can
be considered as workflows, whose each component is described semantically using an
ontology. In the literature, there are approaches that describe workflows semantically
using an ontology [10]. However, these approaches do not consider multiagent systems
to cooperatively select resources to carry out workflows as we do in this paper.

The experiments in Section 5 show that our approach is promising and deserves fur-
ther research. Therefore, we are planning to extend our approach as follows. First, we
want to generalize our approach by replacing the ISTAR ontology with a more generic
ontology that will enable mission plans for various domains to be described easily (e.g.,
business missions such as starting an enterprise). Second, we want to extend our ap-
proach so that agents can create explanations for their choice of deployable configu-
rations. Hence, human participants of a mission can understand the rationale behind a
specific choice of resources for the mission.

References

1. Antoniou, G., Harmelen, F.v.: A Semantic Web Primer, 2nd Edition (Cooperative Informa-
tion Systems). The MIT Press (2008)

2. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL rea-
soner. Web Semant. 5(2) (2007) 51–53

3. Moffett, J., Sloman, M.: Policy Conflict Analysis in Distributed Systems Management. Jour-
nal of Organizational Computing (1993)

4. Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions. Volume 3476
of LNAI. Springer-Verlag (2004)

5. Johnson, M.P., Rowaihy, H., Pizzocaroz, D., Bar-Noy, A., Chalmers, S., Porta, T.L., Preece,
A.: Frugal sensor assignment. In: 4th IEEE International Conference on Distributed Com-
puting in Sensor Systems. (June 2008)

6. Bar-Noy, A., Brown, T., Porta, T.L.: Assigning sensors to competing missions. In: Proceed-
ings of the Globecom2008. (November 2008)

7. Robin, A., Havens, S., Cox, S., Ricker, J., Lake, R., Niedzwiadek, H.: OpenGIS© sensor
model language (SensorML) implementation specification. Technical report, Open Geospa-
tial Consortium Inc (2006)

8. Russomanno, D.J., Kothari, C.R., Thomas, O.A.: Building a sensor ontology: A practical ap-
proach leveraging iso and ogc models. In: Proceedings of the 2005 International Conference
on Artificial Intelligence (ICAI). (2005) 637–643

9. Bermudez, L., Graybeal, J., Arko, R.: A marine platforms ontology: Experiences and lessons.
In: Proceedings of the ISWC 2006 Workshop on Semantic Sensor Networks. (2006)

10. Wang, Y., Cao, J., Li, M.: Goal-driven semantic description and query for grid workflow. In:
SKG ’07: Proceedings of the Third International Conference on Semantics, Knowledge and
Grid, Washington, DC, USA, IEEE Computer Society (2007) 598–599

84

Trust Evaluation for Reliable Electronic
Transactions between Business Partners

Joana Urbano, Ana Paula Rocha, Eugenio Oliveira

Faculdade de Engenharia da Universidade do Porto – DEI-LIACC
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

{joana.urbano, arocha, eco}@fe.up.pt

In the digital economy era, commercial relationships between business partners
are increasing in flexibility, and temporary business binds tend to be created
whenever a business opportunity arises. Moreover, the instability in demand in-
creases the need for enterprises to procure new partners and the associate risk of
inter-operating with partners that might be unknown beforehand. Therefore, en-
terprises need mechanisms that allow to evaluate the confidence they have on
actual or potential partners, and to monitor this confidence in a continuous and
automatic way. This paper evaluates a computational trust and reputation
(CTR) system that provides estimated values of confidence on target partners.
This system asymmetrically aggregates positive and negative evaluations of
partners’ behaviour, and introduces the percentage of successful contracts in the
last t units of time as a first step to implement contextual factors in the partner’s
selection decision. The model was evaluated in an agent-mediated simulated
textile virtual market, also described in this paper. We compare our approach
with two other strategies of trust aggregation and present preliminary results
that show that the asymmetric aggregation of evaluations and the introduction
of the successful/violated contracts measure can improve the efficiency of the
automatic selection of reliable partners in certain population scenarios.

1. Introduction

In the new era of digital economy, commercial relationships between business part-
ners are increasing in flexibility, and business binds tend to be created whenever a
business opportunity arises. The emergent need for new products and services, with
increased quality, shorten time to market, and low price, and the instability in product
demand, is forcing enterprises to risk new, sometimes unknown, suppliers, possibly
spread all over the world. This new reality brings new technological, social, ethical,
and economical challenges and risks to the industry.

Moreover, the desired automation of business inter-organizational relationships en-
counters some barriers in key stages, such as the selection of partners, negotiation and
contract elaboration, particularly when there might be a large number of partners in
the play (e.g. textile industry) that are unknown beforehand. The construction of reli-
able and broader accepted mechanisms of trust and reputation will allow organiza-
tions to continuously update their confidence level on actual and potential partners, in
face of contextual changes. The benefits of such mechanisms are two-folded: i) allow

85

for a broader selection of partners, as it would be possible to infer confidence values
for a major number of partners (both from reputation transmission and definition of
contextual similarities/profiling); ii) make it safer for an organization to increment the
degree of tasks that could be automated, both in the partner selection process and in
the automated negotiation of contracts, based on trust and reputation mechanisms.
These mechanisms are, in fact, getting great attention from different research areas,
from social science and psychology to economics and computer science, particularly
in the multi-agent and the service oriented architecture communities.

Our current research work focuses on the automation of inter-organizational inter-
actions in two different but yet complementary tasks: the partners’ selection and the
negotiation of contracts in dynamic environments, taken as input confidence knowl-
edge derived from trust and reputation. In this paper, we present our model of compu-
tational trust and reputation (CTR); particularly, we describe its aggregation engine
that computes confidence values in a non-linear, asymmetric like way (i.e. confidence
generally grows slower and declines faster), using properties of the shape of a hys-
teresis curve. In order to better understand the role of CTR systems in the process of
selecting partners, we developed the simulated textile virtual marketplace (STexVM),
a multi-agent system where buyers and suppliers of textile fabrics worldwide have the
chance to conduct business. The aim of this system is three-folded: to study the dy-
namics of automated partner selection in an environment with different types of buy-
ers and suppliers; to evaluate our model of aggregation of trust based on the shape of
an hysteresis’ curve, already implemented; and to evaluate the model of contextual
fitness we are currently developing, which would bring organizational and business
context as extra knowledge to the computation of confidence scores.

The structure of this document is as follows: section 1 introduces the paper and
presents a brief revision on current research on trust and reputation. Section 2 presents
STexVM, an agent-mediated simulated textile virtual market that we build to evaluate
our approach. Section 3 presents our CTR system, and section 4 evaluates the model
and compares it with two other different strategies. Finally, section 5 concludes the
paper.

1.1 Literature Revision on Trust and Reputation

Current work on trust and reputation has diversified in multiple subfields. In the theo-
retical domain, there is important work on trust and reputation as elements of social
intelligence. [1] addresses the theoretical issues related to reputation and image1 in ar-
tificial societies and social simulation, and the authors extended recently their cogni-
tive model of reputation in order to more thoroughly address the transmission of repu-
tation ([2]). Probably the area where more research effort has been put, namely, in the
multi-agents community, is the representation and aggregation of social evaluations
into trust and/or reputation scores, which would serve as input to partner’s selection in
B2B scenarios. Some models have been proposed, from the simple eBay reputation

1 The authors consider both image and reputation as social objects, as they concern shared in-

formation about the target “presumed attitude towards socially desirable behaviour”. How-
ever, image is described as an evaluation belief, while reputation is a meta-belief, i.e., it is a
belief about other agents’ evaluations of a given target agent.

86

system that sums up integer values, to approaches that aggregates classifications using
means and weighted means [3][4][5], Beta distributions [6], Dirichlet distributions
[7], Bayesian approaches [8][9], and trust learning approaches [10] [11] [12]. Some of
these models are implemented using complex beliefs, desires and intentions (BDI) ar-
chitectures [5] [13]. A new trend of investigation on this area is the exploration of the
business context to improve the decision making, raising significantly the number and
type of information that the evaluator has in order to compute the trust. I.e., along
with social evaluations given by direct experience or through witnesses, a plethora of
new information related to the context of the business and of the organizations in-
volved can improve the prediction of behavior of partners in a very significant way.
However, few proposals have been made on this specific area [14], opening an enor-
mous world of research.

2. The STexVM System

The STexVM is a simulated virtual marketplace for trading textile goods that ensures
(as much as possible) reliable transactions, in a sense that it is able to detect business
partners that in some moment start behaving in a defective way. The simulated envi-
ronment is based on existent online virtual marketplaces where buyers and sellers in
the textile and fashion industry can post buying and selling leads (e.g. the Fi-
bre2Fashion marketplace).2

The STexVM follows the multi-agent paradigm, and is implemented over Jade
platform3, using the standard behaviours of Jade and FIPA4 performative and interac-
tion protocols. The key agents in this environment are buyers and suppliers. Buyers’
agents represent companies that periodically need to buy a given amount of fabric
(e.g. cotton, chiffon, voile) to textile suppliers. The type and quantity of fabric the
buyer needs to purchase in a period of time (round period) are defined at its time of
creation. At each negotiation round, a buyer can buy to one or more suppliers, until it
reaches the defined quantity for the round. Based on these requirements, we can stipu-
late that a buyer agent has two main objectives: i) to periodically buy the needed
quantity of the designated goods, in order to supply its operational activity; and ii) to
maximize the utility it gets from the acquired material. In our simulated environment,
the utility is related to the quantity and quality of the purchased goods it is able to buy
at every negotiation round. Therefore, the choice of a reputable partner is essential to
the lifecycle of the buyer.

Supplier agents represent textile companies that periodically need to sell a given
amount of fabric (e.g. cotton, chiffon, voile) to buyers. Each supplier shall provide
two different types of fabric, and the exact type and quantities of fabric the supplier
needs to sell in a period of time (round period) are defined at its time of creation. The
supplier agent was purposely designed to be simple, and its main objective is to peri-
odically sell a determinate amount of the goods it has to sell, emulating a real world
manufacturer and exporter of textile fabrics. The remaining agents of the STexVM

2 http://www.fibre2fashion.com/
3 http://jade.tilab.com/
4 http://www.fipa.org/

87

system are the Agent Simulation Manager, who manages the configuration parameters
related with buyers and suppliers; the Agent DF, which registers competences of buy-
ers and suppliers; and the Agent CTR, which gathers information about the perform-
ance of suppliers and computes their confidence scores on-demand, when requested
by the buyers. Figure 1 illustrates the relation between these agents.

2.1 Initial Configuration of Suppliers and Buyers

Each buyer and supplier that enters the simulated virtual marketplace gets a random
configuration over a predefined set of values. In order to perform our simulations in a
scenario that would approach a real textile environment, we picked and mangled real
data from online virtual marketplaces.

Fig. 1. Interactions between agents in the STexVM system

All suppliers in the STexM system assume the role of manufacturer & exporter, for
simplicity. Suppliers are characterized by a set of properties that are setup when a new
instance of a supplier is created; for each new supplier, two different fabrics are cho-
sen from the values presented in Table 1 (left), and they are associated to a quantity
randomly picked up from the values on the table (right). Each supplier also gets a
country of registration, a year of establishment, and the total number of staff and an-
nual sales. The latter three values are taken from real data collected from a virtual
marketplace in the textile domain. Finally, each supplier is initially assigned an esti-
mated “behaviour” from three possible values: “good”, “fair” and “bad”.

Buyers are characterized by their buying characteristics, related to the good they
need to buy periodically (number and type) and respective range of quantities. Again,
these values must be randomly picked up from the values in Table 1, every time a
new instance of the buyer agent is created.

88

Table 1. Type of fabrics (left) and quantities (right) that can be transacted in the virtual
marketplace

Type of Fabric (Good) Quantities (meters)
Blended, Chiffon, Cotton, Crepe, Denim, Dyed, Em-

broidery, Fibre Waste, Fleece, Grey, Interlock, Jersey,
Knitted, Lycra, Nylon, Polyester, Silk, Spandex, Terry
Cloth, Velour, Velvet, Viscose, Voile, Wool, Woven

500; 5,000; 25,000; 50,000;
80,000; 120,000; 180,000;

240,000; 500,000; 1,000,000

2.2 Selection of Partners

At every negotiation round, each buyer issues a call for proposals (cfp) that sends to
all registered sellers of the good in cause. A contract-net like negotiation occurs, and
the buyer selects a number n > 0 of partners that optimizes the expected utility in the
round, using equation (1).

(1)

In the equation above, i stands for the possible combinations of suppliers’ propos-
als that fit the quantity specified in the current cfp, not exceeding it; j represents the
suppliers considered in each of these combinations, and trustj is the confidence score
computed for supplier j at selection time Finally, utilj is the quantity proposed by each
supplier j in the round, normalized by the quantity specified in the cfp, i.e.,
quantj/Quant. In our system, a buyer can order less quantity than the maximum quan-
tity (Quant) defined in the cfp, but it cannot exceed Quant. Also, a buyer cannot ac-
cept partial quantities of the received bids.

3. The Proposed CTR Model

3.1 Aggregation using Non-Linear Curves

We developed an aggregation model that allows for the expression of non linearity in
the process of trust constructing. On one hand, it captures an important feature of the
dynamics of trust as defined in [1], the asymmetry, where trust is hard to gain and
easy to lose. On the other hand, our model extends the non-linearity concept to dis-
tinct phases on the process of trust construction. In this context, Melaye and De-
mazeau (2005) address the asymmetry question in [15], but focus their approach on
direct observations and do not consider different phases in the trust construction proc-
ess. At the extent of our knowledge, none of the existent CTR models addresses the
non-linearity of trust dynamics in a practical way.

In order to model the non-linear behaviour of our aggregation engine, we were in-
tuitively influenced by the physical phenomena of hysteresis, and developed simple
heuristics based on the hysteresis curve to pre-validate our assumptions, as described
above. Figure 2 shows a hysteresis curve obtained from the application of Rostilav
Lapshin formula [16] depicted in equation 2.

89

Fig. 2. The shape of a hysteresis curve with parameters a=0.1, bx=0.5, by=0.5, n=1 and m=3. In
the formula, a represents the coersitivity parameter, m and n are integers used to fit the curve
and bx and by are the saturation parameters.

(2)

In our model, the trust of a given supplier is captured in the OX axe (see picture
above). We use the rightmost plot of the curve to aggregate positive results (e.g.
evaluations, contract results), and the leftmost plot to aggregate negative results. This
signifies that the model captures sudden changes in the behaviour of the suppliers,
and that the impact of negative results is weaker when the confidence value of the
supplier is rather low or rather high, and stronger when the supplier is in the process
of acquiring trust, following here common sense about confidence construction.

3.2 Contextual Fitness

Social evaluations help the selector to predict how well a given candidate partner will
execute a task and to compare between several candidate partners. However, there are
some questions a selector would pose before making a decision that cannot be an-
swered by simply aggregating available classifications in the form of trust and reputa-
tion values. These questions involve somehow a certain level of intuition. As an ex-
emplificative case, consider a high tech company that fears to select a partner from a
country of origin without high technology tradition, even though this partner has
proved high quality work in the desired task in the recent past. This is the type of con-
textual knowledge we intend to incorporate in our CTR model, and we name it con-
textual fitness, as it will provide extra decision information to the selector by comput-
ing a value of how well the candidate partner fits in the selector current needs, as
defined in the issued cfp. Additionally, the selector can also provide additional prefer-
ential conditions, such as:

C1. DeliveryTime ≥ Price ≥ Quality; C2. OriginCountry !=p {countryA, countryB}

90

In C1, the selector expresses an order of preference among attributes of the CFP,
using the operator ≥, and in C2 the selector indicates that it preferentially would not
deal with candidate partners for a list of origin of countries. The contextual fitness
component, not yet formally described, is then an inference engine that analyses the
profile of the actual business, supported by the cfp and by conditions defined by the
selector, and the profile of the candidate partners, and infer how well they adapt. The
profile of the partners is given taking into account historical relevant classifications
stored at the CTR system and financial and organizational characteristics of the part-
ners stored in a registry service. We use again an example to help clarifying the value
of the contextual fitness component: let us imagine that an entity pretends to explore a
business opportunity in the fashion market and creates a virtual enterprise for the fab-
rication of fashionable t-shirts. This entity starts to look for partners in the fash-
ion/textile industry, including designers, garment manufacturers, fabrics suppliers, ac-
cessories’ dealer, etc. Now, for the sake of simplicity, consider that the selector
initiates the selection of partners’ process and issues this (rather simplistic) descrip-
tion of component “zipper”, included in the cfp:5

material: <cotton; nylon>; quantity: [10000-7500]; weight: <150; 200>;
color: <red; purple>; delivery time: 2 weeks

Consider also that the selector has defined the following contextual condition:

C1. Delivery Time = ABSOLUTE

Now, let us imagine that a given candidate partner has proven to be reliable in the
past in providing 150g red cotton zipper in two weeks, but he never traded more than
5000 units at a time. In this case, the inference engine can predict, based on the candi-
date profile, whether the candidate partner would be able to deliver such a quantity in
the cfp terms. The mentioned profile can be build upon several parameters, such as
the partner’s tendency in negotiation over the time, organizational information (e.g.
number of employees, country of origin, size of the industrial plants) and several fi-
nancial figures.

4. Simulated Experiments

We developed a simple simulation scenario to evaluate the proposed non-linear model
of trust aggregation and to compare it with other approaches. Therefore, we defined
four different strategies to partner selection and tested each one of them in the
STexVM system. The QUANT strategy orders candidate bids by decreasing quantity
and then keeps selecting every proposal with quantity equal or less than the remaining
quantity, until the quantity defined in the cfp is reached. This strategy does not take
into consideration the trust values of the suppliers. In the remaining three strategies,
the selection of partners is done taking into account the expected utility gain in select-

5 In the above example, the tuples indicated the preferred order of values (e.g. the selector pre-

fers zippers weighting 150g to 200g), and the first value in range parameters indicated the
preference of the selector (e.g. he accepts to deal quantities from 7500 to 10000 units, al-
though it prefers to buy as closed as the higher value possible).

91

ing one ore more suppliers in the current round, as specified in equation 1.6 Therefore,
strategy ASYM uses our non-linear aggregation engine to compute the trust compo-
nent, while the WMEAN strategy uses an aggregation engine that computes the mean
of the results weighted by the recency of the results (cf. [17]). As mentioned earlier,
there are several CTR models that use weighted means to aggregate social evalua-
tions, therefore the WMEAN strategy will allow us to compare our strategy with one
that is disseminated in the trust and reputation community. Finally, strategy ASYM+
adds the percentage of successful contracts of the supplier in the last N transac-
tions/units of time to the ASYM strategy, by multiplying this percentage with the con-
fidence score returned by the ASYM aggregation engine.

For all the strategies, in the first rounds of each experiment the buyers start to ex-
plore the space of available candidate partners, by randomly selecting the partners,
and after some rounds they progressively increase the exploitation by selecting part-
ners based on the chosen strategy. The experiments are homogeneous, in the sense
that in each simulation run we populated the simulated environment with buyers fol-
lowing the same strategy.

4.1 Experimental Methodology

In order to evaluate the four strategies described above, we used three different popu-
lations of suppliers’ agents. We consider three types of behaviour for suppliers
(“good”, “fair”, and “bad”), where the behaviour of a supplier is related to the results
of the contracts it makes during it lifecycle with buyer agents. Each supplier was as-
signed a behaviour at its creation time, following a uniform distribution over the three
possible values. We consider that the capacity of each type of suppliers in fulfilling
the contract is modelled by a Markovian process with two states (1 and 0, standing for
contract fulfilment and contract violation, respectively) and transition probabilities
P11 (Fulfilment-to-Fulfilment) and P01 (Violation-to-Fulfilment). The values consid-
ered for populations A, B and C are defined at Table 2.

Table 2. Values of the transition probabilities used in the experiments. P0 = 0.50 for all cases.

 Type “Good” Type “Fair” Type “Bad”
 P11 P01 P11 P01 P11 P01
Popul. A 0.90 1.00 0.80 0.75 0.50 0.50
Popul. B 0.90 0.90 0.90 0.70 0.90 0.50
Popul. C 0.70 0.70 0.70 0.70 0.70 0.70

6 We shall note that equation 1 takes into account three possible terms of inter-organizational

business contracts, namely, the delivery of the contracted good, the partial delivery of it (e.g.,
supplier x succeeds to deliver the fabric but supplier y does not), and the quality of the sup-
plied good, where 0 corresponds to an unacceptable quality good, and 1 corresponds to an
excellent quality product; although we restrict the classification of the received value to a
Boolean value, we intend it to be picked from a broader range of possible values, either dis-
crete (e.g., labels as “good”, “acceptable” and “not acceptable”) or continuous (e.g. in the [0,
1] range), in a future version of the system.

92

As can be seen from the table above, in population A, suppliers of type “Good”
have high probability of success and never fail two contracts in a row (once P00 is
zero). The remaining types correspond to worse behaviours. In population B, all sup-
pliers have the same, high probability of fulfilling a contract (P11 is 0.90), but suppli-
ers of type “Good” are less prone to fail more than one contract in a row than the re-
maining types of suppliers, being “Bad” the worst case. In population C, all suppliers
have the same (rather low) probability of fulfilling their obligations. Although the
proposed population modelling does not directly mirror reality, it allows us to study
how the different strategies respond to the resulting patterns of contract violations.

For each one of the four strategies defined above, we run 4 experiments per suppli-
ers’ population, in a total of 12 experiments or runs per strategy. Also, at each run, we
launched 15 buyers and 75 suppliers, and each buyer issued 50 cfp at corresponding
negotiating rounds. At this point, it is convenient to remind that a cfp discriminates
the fabric and the quantity of material that the buyer intends to purchase, and it is sent
to all suppliers that sell the desired fabric; in response, every supplier that receives a
cfp sends a proposal with, at maximum, the required quantity of the fabric material, or
refuses to propose if it not able to satisfy the cfp requirements in the current round.
Also, each supplier is able to replenish its stock at the start of each negotiation round.

Finally, the utility gained by each buyer at each negotiation round was recorded,
and at the end of the experiments the average utility of a buyer and the corresponding
standard deviation were evaluated for each one of the considered strategies. The aver-
age utility captures the capacity of the buyer in selecting good suppliers, and, this
way, allows for the evaluation of the performance of each one of the four strategies.
Table 3 presents compact data about the experiments.

Table 3. Values and parameters used in the experiments

Quantities 5000, 50000, 180000, 240000, 500000, 1000000

Fabrics Chiffon, Cotton, Denim, Dyed, Jersey, Fleece
buyers 15

of sellers 75
Types of sellers Chosen upon a uniform distribution over the

types {“good”, “fair”, “bad”}
issued CFP per buyer, per run 50

runs per strategy and per population 4
past results (Hyst+ strategy) 8
Exploit/Exploration formula Uniform distribution over f(x), where f(x) = 100

– roundi * 7 or 10, if (100 – roundi * 7 < 10)
Hysteresis parameters a = 0.1, bx = 0.5, by = 0.5, m=1, and n=3; the pa-

rameter α increases/decreases in steps of Π/12units.

4.2 Results and Conclusions

Figure 3 shows the average utility of buyer agents obtained per strategy and per popu-
lation, in percentage. In population A, the ASYM strategy outperforms the others
three, with buyers buying, in average, 83.81% of the desired good in the desired quan-

93

tity (ASYM+ reached 80.31%, QUANT 70.18% and WMEAN 79.67%). Concerning
population B, the ASYM+ got 83.73% of average utility, outperforming the remain-
ing three (ASYM: 81.81%, QUANT: 81.68%, and WMEAN: 82.27%). Finally, in
population C, the obtained results were quite similar (ASYM: 67.63%, ASYM+:
68.21, QUANT: 68.72% and WMEAN: 68.17%).

Average Utility per Buyer and per Strategy

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

ASYM ASYM+ QUANT WMEAN

A
B
C

Fig. 3. Average utility per buyer, strategy and population (A, B and C)

While ASYM and ASYM+ performed a little better that WMEAN and QUANT, in
reality we would expect that ASYM+ strategy would show greater advantage when
compared to the others three strategies, because of its ability to asymmetrically aggre-
gate trust and to take recency into account. Therefore, in order to understand the ef-
fect of random partner selection at the exploration rounds in the results, we traced the
last 50 transactions of every run, for each strategy and for each population, and aver-
aged the number of unsuccessful results (we remind here that at the last 50 transac-
tions the probability of a random selection of partners is 10%). Figure 4 shows the re-
sults we obtained. In reality, we observed that the strategy ASYM+ outperformed the
remaining strategies in population A (13% of violated contracts, against 14% of
ASYM, 22.50% of QUANT and 15.50% in WMEAN) and in population B (9% of
violated contracts, against 12.50% of ASYM, 16.50% of QUANT and 14% of
WMEAN). Considering population C, the WMEAN strategy presented poorer results
than the QUANT strategy (30% against 28.50%), and strategies ASYM and ASYM+
got an average of violated contracts of 24.50% and 25.50%, respectively.

In order to reduce the possibility of noise, we rerun the experiments for population
A and strategies ASYM+ and WMEAN, considering 12 runs for each strategy. We
observed that ASYM+ got an average of 12.17% of violated contracts in the last 50
transactions, outperforming once again WMEAN, which obtained 14.83% of contract
violations. Also, we observed that 80.17% of the suppliers selected in the last 50
transactions were of type “Good”, for the ASYM+ strategy, while this number re-
duced to 69.83% for the WMEAN strategy.

Analysing this latter data, we can conclude that the non-linear aggregation of trust
leads to a better estimate of the future behaviour of suppliers than the weighted mean
with recency approach, allowing for the effective reduction of violated contracts.
Moreover, the empirical analysis of the traces captured from the experiments shows
that such a model that embeds the historical construction of trust is more effective in
predicting patterns of behaviour than approaches that simply averages evaluations.

94

Average Violated Contracts per Buyer and
per Strategy (N=50 last transactions)

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

ASYM ASYM+ QUANT WMEAN

A
B
C

Fig. 4. Average number of violated contracts per buyer, strategy and population (last 50 trans-
actions)

4. Conclusions and Future Work

This document presented the STexVM system, a simulated virtual marketplace that
mirrors the posting of buying and selling leads of real textile virtual market, while
adding up an important component of automation of the process of partner selection,
essential to the interoperability concept. This system follows the multi-agent systems
paradigm, and was implemented in Java over the Jade Platform. One important com-
ponent of the developed prototype is it module of computational trust and reputation
(CTR), an aggregation engine that computes confidence scores using a non-linear,
hysteresis like approach.

We evaluated the performance of the non-linear strategy, measuring the number of
successful contracts per buyer in the total number of cfp issued by the buyer in each
experiment. Therefore, we measured the capacity of the buyer in selecting different
types of suppliers based on the estimated trust. Then, we compared this approach with
a trustless-based strategy that selects partners by the quantity they are available to
supply, and to a strategy that estimates the trust of suppliers using a weighted average
aggregator. The results obtained seem to validate our hypothesis that a non-linear
strategy allows for a better detection of good suppliers, leading to a reduced number
of broken contracts, when compared with strategies that aggregates evaluations based
on average statistics. Based on these results, another formalization of non-linearity
aside from the hysteresis approach might be explored. As future work, we will change
the STexVM system in order to keep contractual information about suppliers between
different experiments, avoiding the bootstrapping of the system and the associated
noise derived from the initial strong exploration phase.

Acknowledgements

The first author enjoys a PhD grant with reference SFRH/BD/39070/2007 from the
Portuguese Fundação para a Ciência e a Tecnologia.

95

References

1. Conte, R., M. Paolucci. 2002. Reputation in Artificial Societies: Social Beliefs for Social Or-
der, Kluwer Academic Publishers: Dordrecht, 2002, ISBN 1402071868

2. Salvatore, A., I. Pinyol, M. Paolucci, J. Sabater-Mir. 2007. “Grounding Reputation Experi-
ments. A Replication of a Simple Market with Image Exchange”, in Proceedings of the
Third International Model-to-Model Workshop, France, p.32-45 (2007)

3. Ramchurn, S., C. Sierra, L. Godo, N.R. Jennings. 2004. “Devising a trust model for multi-
agent interactions using confidence and reputation”, International Journal of Applied Artifi-
cial Intelligence (18) (2004) 833–852.

4. Sabater, J., C. Sierra. 2001. REGRET: A Reputation Model for Gregarious Societies. In
Fourth workshop on deception fraud and trust in agents societies, 61-70

5. Carbo J., J. Molina, J. Davila, 2001. “A BDI Agent Architecture for Reasoning About Repu-
tation”, in IEEE International Conference on Systems, Man, and Cybernetics, v2, 817-822

6. Jøsang A., R. Ismail. 2002. “The Beta Reputation System”, in Proceedings of the 15th Bled
Electronic Commerce Conference, Slovenia

7. Reece, S., A. Rogers, S. Roberts, and N. R. Jennings. 2007 A Multi-Dimensional Trust Mod-
el for Heterogeneous Contract Observations. In: Twenty-Second AAAI Conference on Arti-
ficial Intelligence, July 2007, Vancouver, Canada.

8. Zacharia, G., P. Maes. 2000. Trust management through reputation mechanisms. In Applied
Artificial Intelligence, 14(9), 881–908

9. Haller, J. 2007. A Bayesian Reputation System for Virtual Organizations, In Dagstuhl Semi-
nar Proceedings 06461, Negotiation and Market Engineering

10. Hang, C., Wang, Y., and Singh, M. P. 2008. An adaptive probabilistic trust model and its
evaluation. In Proceedings of the 7th international Joint Conference on Autonomous Agents
and Multiagent Systems -V3 International Conference on Autonomous Agents. International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 1485-1488.

11. Erete, I., E. Ferguson, and S. Sen. 2008. Learning task-specific trust decisions. In Proceed-
ings of the 7th international Joint Conference on Autonomous Agents and Multiagent Sys-
tems - Volume 3 International Conference on Autonomous Agents. International Foundation
for Autonomous Agents and Multiagent Systems, Richland, SC, 1477-1480

12. Smith M., M. desJardins. 2009. “Learning to trust in the Competece and Commitment of
Agents”, in Autonomous Agent Multi-Agent Systems (2009). 18:36-82

13. Sabater-Mir, J., I. Pinyol, D. Villatoro, G. Cuní. 2007. “Towards Hybrid Experiments on
reputation mechanisms: BDI Agents and Humans in Electronic Institutions”, in XII Confer-
ence of the Spanish Association for Artificial Intelligence (CAEPIA-07), V2, p.299-308

14. Rettinger, A., M. Nickles, and V. Tresp. 2008. A statistical relational model for trust learn-
ing. In Proceedings of the 7th international Joint Conference on Autonomous Agents and
Multiagent Systems - Volume 2, Richland, SC, 763-770.

15. Melaye, D., Y. Demazeau. 2005. “Modèles et Réseaux de Confiance”, in Les Cahiers Leib-
niz, n.º 142, Dec. 2005, ISSN: 1298-020X

16. Lapshin, R. V. 1995. Analytical model for the approximation of hysteresis loop and its ap-
plication to the scanning tunneling microscope. In Review of Scientific Instruments, volume
66, number 9, pages 4718-4730, September 1995

17. Huynh, T. D., N. R. Jennings, N. R. Shadbolt. 2006. An integrated trust and reputation
model for open multi-agent systems, in Autonomous Agents and Multi-Agent Systems, Vol.
13, N. 2, September 2006, pp. 119–154

96

An integration of a Semantically Enabled Service
Oriented Architecture and Agent platforms

Ingo Zinnikus1 and Srdjan Komazec2 and Federico Facca2

1 DFKI GmbH, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
ingo.zinnikus@dfki.de

2 STI Innsbruck, Technikerstrasse 21a, 6020 Innsbruck, Austria
{firstname.lastname}@sti2.at

Abstract. The capability to provide on-demand service access for SMEs
can further reduce costs and allow companies to concentrate investments
on their core businesses which in turn facilitates the overall competitive
advantage. In the FP7 European Project COIN, a platform for support-
ing SMEs is developed which combines the flexibility of an execution
environment for Semantic Web services with agent-based service compo-
sitions. One major benefit of the combination is that through this the
potential of agent systems, most notably flexibility, can be tapped. An
obstacle is the integration of dynamically discovered services which often
cannot be used by agents because of interoperability problems (e.g. data
heterogeneity). By delegating this task to WSMX, the agent platform
can concentrate on coordination tasks. This paper presents an approach
to integrate an implementation of the Semantically Enabled Service Ori-
ented Architecture (SESA) with an agent platform. The integration ap-
proach is motivated and described in the context of a high-level scenario
coming from the aeronautical industry.

1 Introduction

The last few years saw a growing need for a flexible and highly adaptive service
provisioning solutions. While large enterprises have enough resources to deploy
their own IT infrastructure and services, SMEs3 require more flexible options.
SMEs often cannot afford the cost of service deployment especially if those ser-
vices are needed in a limited time or number of transactions. The capability to
provide on-demand service access (when they are required and without the need
to invest in the maintenance cost) can further reduce costs and allow companies
to concentrate investments on their core businesses which in turn facilitates the
overall competitive advantage. These are some of the most relevant foundations
for the Software as a Service [7] paradigm.

In the FP7 European Project COIN4, a platform for supporting SMEs is de-
veloped which combines the flexibility of an execution environment for Semantic

3 abbr. Small and Medium Enterprises
4 http://www.coin-ip.eu

97

Web services with agent-based service compositions. The main objective of the
COIN Integrated Project is to allow industrial Networked Enterprises (supply
chains, collaborative networks, business ecosystems) to access the potentials of
the Future Internet and of the Internet of Services (IOS) in particular. This
objective is achieved by means of a Generic Service Platform (in the following:
COIN platform, i.e. the bridge between Enterprise Environments and Collabo-
rative Platforms EE/CP on the one side and the IOS on the other side), which is
a well known implementation of a SESA (i.e. WSMO [4]) enriched with security,
pervasiveness-scalability and intelligence properties. In particular, intelligence is
meant here as the capability of the COIN platform to properly interpret ser-
vice requests (or Goals in the WSMO terminology) originated by EE/CP and
to activate the service search-discovery-composition functions. In COIN, we are
addressing this issue mainly at design time, by providing agent-based mecha-
nism for an intelligent, business-driven decomposition of the goal and advanced
negotiation capabilities for the definition of the relevant service level agreements.

The execution environment for Semantic Web services is based on the Web
Service Execution Environment (WSMX). One major benefit of the combination
of WSMX and agents is that through this the potential of agent systems, most
notably flexibility, can be tapped. A notorious problem is the integration of
dynamically discovered services which often cannot be used by agents because
of interoperability problems (e.g. data heterogeneity). By delegating this task to
WSMX, the agent platform can concentrate on coordination tasks.

In this paper, we describe the details of our approach for integration. The
paper is structured as follows. In section 2, we describe the core components of
the COIN platform. In section 3, we introduce the scenario which we use for
illustration. The approach for service composition is presented in section 4. In
section 5, we discuss open issues and problems and conclude in section 6.

2 The COIN Platform

The COIN Platform represents a service provisioning platform capable of sup-
porting the SaaS-U paradigm for Enterprise Collaboration and Enterprise Inter-
operability services. The overall idea is to provide a set of services through the
platform that enable SMEs and large enterprise to create virtual organizations
leveraging collaborative services and exchanging information through integra-
tion services. All collaborative and interoperability services, according to the
service agreements subscribed by the different stakeholders of the platform, are
provided within a pay-per-use fashion (or other form of long term subscription
to the platform). As presented in Figure 1 the platform is composed of the Web
Service Execution Environment (WSMX5) as the foundation of the platform,
the TrustCoM6 security gateways which provide trust and security in a SOA
implementation, a Peer-to-Peer repository/registry (coming from Digital Busi-

5 http://www.w3.org/Submission/WSMX
6 http://www.eu-trustcom.com

98

ness Ecosystems project7) which provides fail-safe storage facilities, and agents
for intelligent service compositions and negotiations. This paper highlights the
integration details of WSMX and agent platforms.

SESA Platform
(Web Service Execution

Environment)

Network

`

Service
Requester

S
ec

ur
ity

 G
at

ew
ay

S
ec

ur
ity

 G
at

ew
ay

S
ec

ur
ity

 G
at

ew
ay

Se
cu

rit
y

G
at

ew
ay

Service
Provider X

Service
Provider Y

S
ec

ur
ity

 G
at

ew
ay

P2P Repository/
Registry

Y Node

X Node

Network

Network

Agent Platform
(Jack/Jade)

Fig. 1. The COIN Service Provisioning Platform

2.1 Semantically Enabled Service Oriented Architecture

The initial Web service technology stack allows exchange of messages between
the parties by leveraging SOAP8. Furthermore, it allows for description of the
technical interface for Web service consumption in the form of WSDL9. These
technologies form the soil foundation for an implementation of the Service Ori-
ented Architecture (SOA) paradigm that represents the dominant approach in
employing service orientation in delivery of business functions. However, these
technologies only support Web service usage by manual inspection and integra-
tion, i.e. existing SOA solutions are proving difficult to scale without a proper
degree of automation [8]. Tasks such as service discovery, selection and ranking,
composition, mediation, negotiation, and execution of Web services require that
involved services are completely characterized by their interfaces. However, in
traditional Web Service implementations, the lack of information to express the
meaning of the data and of the vocabulary referenced by the interface as well as
the lack of the formalization of the behavior is as a matter of fact prohibiting or
at least hindering the automation of the envisioned tasks.
7 http://www.digital-ecosystem.org
8 http://www.w3.org/TR/2000/NOTE-SOAP-20000508
9 http://www.w3.org/TR/wsdl

99

The concept of Semantic Web Services (SWS) [6] aims at providing more au-
tomated usage process of Web service by leveraging the Semantic Web [2]. SWS
utilize ontologies as the underlying data model in order to support semantic
interoperability between Web services and its clients and apply semantically en-
abled automated mechanisms that span the whole SWS lifecycle. More generally,
the introduction of semantics as an extension of SOA and creation of Semanti-
cally Enabled Service Oriented Architectures [3], provides for next generation of
service-oriented computing based on machine processable semantics.

In order to provide support for Semantic Web Services, two main approaches
are envisioned. The former one (the bottom-up) approach relies on changing
and extending existing models of Web services with the support for explicit
semantics. This approach is supported by W3C and some researcher groups
through the effort of SAWSDL10. The latter approach (the top-down approach)
utilizes existing Web service technology as foundational systems, layering the
semantics support on top of it. This approach is taken by several groups in
academia and most distinguishing representatives are Web Services Modeling
Ontology (WSMO)11 [4] and OWL-S12.

The Web Service Execution Environment (WSMX), presented in Figure 2,
is an execution environment, which intends to realize the SWS lifecycle. It is a
platform characterized by strong component decoupling, goal-driven Web service
usage and direct support for mediation facilities. WSMX is a reference imple-
mentation of the WSMO that acts as the comprehensive conceptual model which
describes various aspects of SWS consisting of formal descriptions of ontologies,
web services, goals and mediators.

The COIN platform, as an extension of WSMX, is embracing WSMO and
related set of languages, specifications and software environments.

2.2 Agents

Partners in inter-organizational collaborations are autonomous, socially cooper-
ating and coordinating by exchanging information (sending messages) and share
a need to adapt to changing environments. Thus, they display features which
are often attributed to agents.

According to the definition of weak agency [10], the key properties of agents
are:

– autonomy: agents are clearly identifiable problem solving entities with well-
defined boundaries and interfaces which have control both over their internal
state and over their own behaviour.

– reactivity: agents are situated (embedded) in a particular environment, i.e.
they receive inputs related to the state of their environment through sensors.
They then respond in a timely fashion, and act on the environment through
effectors to satisfy their design objectives.

10 http://www.w3.org/TR/sawsdl
11 http://www.w3.org/Submission/WSMO
12 http://www.w3.org/Submission/OWL-S

100

C
om

po
si

tio
n

S
el

ec
tio

n
an

d
R

an
ki

ng

D
at

a
M

ed
ia

tio
n

C
ho

re
og

ra
ph

y

Resource Manager Interface
Services Ontologies Mediators

Semantic Web Services Middleware (WSMX)

D
is

co
ve

ry

Goals

In
vo

ke
r

Execution Semantics

Core Management

`

Client

Network Network

Provider X

Provider Y

G
ro

un
di

ng

Fig. 2. Web Service Execution Environment

– pro-activeness: agents do not simply act in response to their environment,
they are designed to fulfill a specific purpose, i.e. they have particular ob-
jectives (goals) to achieve. Agents are therefore able to exhibit goal-directed
behaviour by taking the initiative and opportunistically adopting new goals.

– social ability: agents are able to cooperate with humans and other agents in
order to achieve their design objectives.

Drawing these points together, the essential concepts of agent-based com-
puting are: agents are capable of highly autonomous behaviour, representing
encapsulations of computational entities and functions, high level inter-actions
and organizational relationships within a society of agents situated in their en-
vironment.

2.3 Combining WSMX and Agents for Service Composition

WSMX as core component of the COIN platform offers functionality for discov-
ery and execution of services which are available and registered in the platform.
However, composition of services is in the responsibility of the user who has to
make sure that the result of an atomic service invocation can be used e.g. for
invoking another service. The idea of the COIN platform is to apply agents for
service composition within the platform. Here, we can distinguish two aspects:

– Static composition at design time: The sequence and combination of required
services is already known at design time. In this case, the service composition
can be predefined and made accessible through the platform.

– Dynamic composition at run time: Services are discovered and composed at
run time depending on a description of a complex goal.

Before we describe the details of the integration, in the following section
present the scenario which we use for illustration.

101

3 Scenario

The high-level scenario is assuming the existence of an aircraft building com-
pany (e.g. Company X) which needs to assemble an EFIS13 used to monitor and
control flight signals and parameters. A typical EFIS installation consists of a
number of devices such as data processors, flight display systems, data buses, and
sensors. In order to accomplish the task Company X needs to purchase required
components and arrange their transportation to its facilities. Additionally, Com-
pany X has specific preferences regarding the purchase and shipping tasks such
as minimizing the overall price and/or time needed to receive the parts. The
scenario further assumes presence of different selling and shipping companies
capable of (partially) fulfilling Company X overall goal, as presented in Figure
3. It is worth noting that all the selling and shipping partners are exposing their
business capabilities through Web service endpoints.

Hawker BargainerRummage

RunnerRacer

Muller Walker Weasel

Seller and Shipper Services

Company X

WSMX

JACK/JADE

COIN Platform

Fig. 3. Purchasing and shipping scenario

Taking into account a more concrete example Company X dispatches a goal
to the platform as presented by the WSML code snippet shown in Listing 1.1.
The goal formalizes the company’s purchase (lines 16-24) and shipment (lines
25-26) preferences with some additional constraints (e.g. flight display price can-
not exceed boundary of 7000 EUR as presented in line 20). The platform has
a registry which enumerates a number of seller (namely Rummage, Bargainer
and Hawker) and shipper (namely Runner, Walker, Racer, Muller and Weasel)
services as presented in Figure 3. None of the services is capable of fulfilling
the complete goal which makes cooperation between the SESA and the agent
platform inevitable.

From this brief scenario description a number of properties that the platform
needs to address can be derived:
13 abbr. Electronic Flight Instrument System

102

1 wsmlVariant ”http ://www.wsmo . org /wsml/wsml−syntax /wsml−r u l e ”
2
3 namespace { ”http ://www. coin−ip . eu/EFIS/ComplexGoal#”,
4 sop ”http ://www.wsmo . org /sws−cha l l enge /ShipmentOntologyProcess#”,
5 po ”http ://www. coin−ip . eu/EFIS#”}
6
7 goa l ComplexGoal
8
9 importsOntology {

10 sop#ShipmentOntologyProcess ,
11 po#ProductOntology}
12
13 c apab i l i t y GoalA1Capabil ity
14 pos t cond i t i on
15 definedBy
16 (?x [po#resX hasValue ? resX , po#resY hasValue ? resY ,
17 po#pr i c e hasValue ? xPr ice] memberOf po#Fl ightDi sp lay
18 and ? resX >= 1280
19 and ? resY >= 768
20 and ? xPr ice <= 7000
21 and ?y [po#processorMIPS hasValue ?MIPS,
22 po#pr i c e hasValue ? yPr ice] memberOf po#ProgrammableDisplayGenerator
23 and ? yPr ice <= 9400
24 and ?MIPS >= 16)
25 and ?z [sop#pr i c e hasValue ? zPr i c e] memberOf sop#PriceQuoteResp
26 and ?w[sop#pr i c e hasValue ?wPrice] memberOf sop#PriceQuoteResp
27 and ? p r i c e =(? xPr ice + ? yPr ice+ ?wPrice + ? zPr i c e) .

Listing 1.1. A snippet of the complex goal expressed in WSML

– Goal-based discovery and invocation of services - Company X needs to de-
scribe its goal in a formal way, independently of services. The platform should
solve the goal by leveraging logical reasoning over descriptions of goals and
services.

– Service decomposition - Company X describes a complex goal which has to
be decomposed by the platform in order to find matching services.

– Late service binding - Company X doesn’t know a priori which of the ser-
vices (i.e. companies) will fulfill its goal. The platform should be capable to
discover and invoke Web services at run-time according the the Company
X’s preferences (expressed through the goal description).

– Data interoperability - Company X and potential service candidates can ex-
press their requirements and capabilities in terms of different vocabularies
and languages. The platform should provide support for data heterogeneities
reconciliation.

4 Agent-based approach for service composition

The COIN platform provides the same interface and functionality as WSMX as
core component. Services can be registered, made accessible (by mappings, e.g.
lifting and lowering schema mappings), discovered and finally invoked by a user
through the platform by sending concrete data to the service. A user sends his
request to the platform in the form of a WSML goal which contains the data
necessary to eventually fulfill his aims.

103

However, services registered in the platform are in general atomic services
and are not automatically composed if a goal does not match a single service
description. This limits the capability of the platform since in many cases goals
as submitted by a user cannot be immediately satisfied by one service alone.
These goals are complex, i.e. no single web service registered in the platform
provides a sufficient functionality for fulfillment.

The approach we take for solving this restriction is based on the idea of
goal decomposition. Goals are domain-specific, i.e. the ontological expressions
used in the essential parts of goal description are based on domain ontologies.
To specify a generic way of handling these domain-specific expressions is hardly
realistic and feasible only for very simple scenarios. Therefore, we started with
a more modest approach and gradually made it more generic.

The first step in our solution is to pre-define a goal decomposition for a
specific domain. The assumption is that a complex goal as specified by a user
can be syntactically split up into expressions defining subgoals which are not
complex goals. The goal decomposition step takes a complex goal and generates
a list of subgoals to be sent to the platform.

The second step consists of specifying the sequence in whioh the subgoals
have to be processed. In a simple case, this sequence can be linear, but in more
complex cases, the process could involve even nested interactions. A further com-
plication in service composition is that inputs and outputs of service invocations
are dependent on each other. A service B may require as input an output value
of service A which has to be invoked before service B.

The sequence for subgoal processing is also predefined at design-time. The
overall approach is depicted in Figure 4.

Fig. 4. Agents orchestrating Semantic Web services

In the following, we describe the approach with reference to the agent plat-
form JACK [1], and then, using a model-driven approach, on a platform inde-
pendent level.

104

4.1 Service composition with JACK

BDI agents [5] have a built-in theory of a planning from second principles ap-
proach to problems solving. BDI agents seem to be an ideal means for flexible
service composition. On the one hand, BDI reasoning offers to the agents a flexi-
ble way to use the knowledge that is specified in the plan library of an agent. On
the other hand, BDI plans can be expressed with a modelling language which
nicely fits into a model driven approach to the specification of how service com-
position should be achieved. Flexibility w.r.t. service composition depends on
the ability to seamlessly invoke services discovered at run-time. Conceptually, a
BDI agent platform is very much in line with the WSML terminology, where a
Goal specifies a service request. A BDI agent which sends a goal to WSMX is
externalising the process of goal fulfillment instead of trying to achieve the goal
on its own.

We decided to use the JACK Intelligent Agents development environment
(JDE) for designing agents in the context of a service-oriented architecture.
A major advantage of JDE is that it allows using graphical models for the
specification of agent behaviours. We consider these models as the platform-
specific level for agent design. Important to note is that these platform-specific
models are directly executable in the runtime environment of JDE. BDI agents
support adaptive execution which is introduced by flexible plan choice, in which
the current situation in the environment is taken into account. A BDI agent has
the ability to react flexibly to failure in plan execution, where both features are
directly built into the framework of BDI reasoning.

For the scenario, the roles and teams presenting the actors are modeled first
(see Figure 5). These include a User (which in this case is WSMX, in fact), an
AgentComposition team for handling the (de-)composition, and teams and roles
for both Buyer and Shipper. The User sends the complex goal (which includes
concrete instance data needed for service invocation. e.g. an address for delivery)
to the Composition team which decomposes the goal and sends a subgoal for
buying to the BuyerTeam and a shipment subgoal to the ShipmentTeam. Buyer
and ShipmentTeam invoke the WSMX platform which handles the details of
service discovery and invocation.

The domain-specific composition for the scenario is published as Web service
and deployed into the COIN platform. The agent-based composition service pro-
vides an operation achieveGoal to WSMX which is invoked whenever no single
service can satisfy a goal sent by a user of the COIN platform.

4.2 Service composition with PIM4Agents

In the service composition modeled with JACK, the agent model and (rather
low-level) code related to service invocations is described on the same level.
However, in order to separate levels of concern, an abstraction step towards
independence of platforms-specific details is of benefit. Following the idea of
model-driven development, a platform-independent level provides an abstraction

105

Fig. 5. Scenario entities modelled in JACK

from a concrete execution platform and details which pertain to a programming
language (i.e. Java for JACK and Jade).

We use the PIM4Agents and its model editor [9] for describing the scenario on
a platform-independent level. The model can then be transformed automatically
to agent platforms (Jade and JACK are currently supported).

Again, the actors in the scenario are introduced first (see Figure 6). On the
PIM level, we decompose the goal and sequentially invoke the WSMX platform.
Hence, we distinguish between a User, a CompositionAgent and the agent re-
sponsible for invoking the WSMX platform (WSMXRequester).

The CompositionAgent has two plans at its disposal, one for decomposing
the complex goal and one for handling the sequence of interactions when sending
the subgoals to WSMX.

106

Fig. 6. Scenario modeled with PIM4Agents

5 Discussion and Open Issues

Agent-based service composition as presented in this paper follows the assump-
tion that in business scenarios most parts of a workflow are fixed and can be
modeled at design time. Service compositions have to be able to replace fail-
ing or inefficient services with different ones at runtime. When services inside a
composition are dynamically discovered, selected and bound, it may arise a need
to invoke services having an interface or protocol different from those originally
expected by the service requested and to solve the mismatches at runtime. The
integration with WSMX adds flexibility in the sense that (i) concrete interaction
partners in a workflow step are only determined at runtime (late binding) and
(ii) the details of the service invocation are handled by WSMX and hidden to
the agent platform.

The approach presented in this paper is still centered around design time.
In order to improve runtime flexibility, complex goals should be decomposed at
runtime, depending on available services.

Currently, the Composition service is published as WSDL service. More con-
sistent with the overall approach is to describe the domain-specific composition
as Semantic Web service and register it in the platform.

6 Conclusion and Future Work

In this paper, we presented an approach to integrate an implementation of a
SESA with agent platforms. The benefit of the integration is mutual since the
Agent platform can leverage SESA when it comes to service discovery and invo-
cation (i.e. late binding) and SESA can delegate complex goal fulfillment based
on predefined goal decompositions to the agents. The integration approach is
motivated and described in the context a high-level scenario coming from the
aeronautical industry.

107

Dynamic decomposition of goals will be further investigated, in order to
increase the adaptiveness of service compositions to changing environments.

Acknowledgments

The work published in this paper is (partly) funded by the E.C. through the
COIN IP. It does not represent the view of E.C. or the COIN consortium, and
authors are solely responsible for the paper’s content. The authors wish to ac-
knowledge the Commission for their support.

References

1. JACK Intelligent Agents, The Agent Oriented Software Group (AOS).
http://www.agent-software.com/, 2006.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

3. D. Fensel, M. Kerrigan, and M. Zaremba, editors. Implementing Semantic Web
Services: The SESA Framework. Springer-Verlag, 2008.

4. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, and
J. Domingue, editors. Enabling Semantic Web Services: The Web Service Modeling
Ontology. Springer-Verlag, Berlin, 2007.

5. A. S. Rao and M. P. Georgeff. Modeling rational agents within a BDI-architecture.
In J. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Reasoning (KR’91),
pages 473–484. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA, 1991.

6. M. Stollberg, C. Feier, D. Roman, and D. Fensel. Language Technology, Ontologies,
and the Semantic Web, chapter Semantic Web Services Concepts and Technology.
Kluwer Publishers, 2006.

7. M. Turner, D. Budgen, and P. Brereton. Turning software into a service. Computer,
36(10):38–44, Oct. 2003.

8. T. Vitvar, M. Zaremba, M. Moran, M. Zaremba, and D. Fensel. SESA: Emerg-
ing Technology for Service-Centric Environments. IEEE Software, 24(6):56–67,
November 2007.

9. S. Warwas and C. Hahn. The concrete syntax of the platform independent modeling
language for multiagent systems. In Proceedings of the International Workshop on
Agent-based Technologies and applications for enterprise interoperability (ATOP
2008), Estoril, Portugal, 2008.

10. M. J. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

108

	Preface.pdf
	ATOP2009Adam.pdf
	ATOP2009Jacobi.pdf
	ATOP2009Leon.pdf
	ATOP2009Rebai.pdf
	ATOP2009Russ.pdf
	ATOP2009Schuhmann.pdf
	ATOP2009Sensoy.pdf
	ATOP2009Urbano.pdf
	ATOP2009Zinnikus.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

