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Abstract. Data integration typically seeks to provide the illusion that
data from multiple distributed sources comes from a single, well managed
source. Providing this illusion in practice tends to involve the design of
a global schema that captures the users data requirements, followed by
manual (with tool support) construction of mappings between sources
and the global schema. This overall approach can provide high quality
integrations but at high cost, and tends to be unsuitable for areas with
large numbers of rapidly changing sources, where users may be willing
to cope with a less than perfect integration. Pay-as-you-go data inte-
gration has been proposed to overcome the need for costly manual data
integration. Pay-as-you-go data integration tends to involve two steps.
Initialisation: automatic creation of mappings (generally of poor qual-
ity) between sources. Improvement: the obtaining of feedback on some
aspect of the integration, and the application of this feedback to revise
the integration. There has been considerable research in this area over a
ten year period. This paper reviews some experiences with pay-as-you-go
data integration, providing a framework that can be used to compare or
develop pay-as-you-go data integration techniques.

1 Introduction

Data integration brings together data from multiple sources, in ways that isolate
users from inconsistent representations. Data integration has been seen as an
important area for decades, as commercial organisations often find themselves
with large numbers of databases, whose combined use can be important for data
analysis [5]. More recently, the growing interest in big data has given rise to
the realisation that data wrangling – the process of combining and cleaning the
data sets that are required for analysis – is an important, and expensive, part
of many big data projects [28].

In classical data integration, data integration and domain experts work to-
gether, with tool support, to capture the data requirements of an application,
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and to identify how data from different sources can be combined to meet these
requirements. This approach, with significant expert input, is at the high-cost,
high-quality end of the spectrum, and is suitable for, and targeted at, reasonably
stable enterprise environments.

The classical approach is less well suited to settings in which: there are enor-
mous numbers of sources; sources come, go or change rapidly; there are diverse
or unstable requirements; or there is no budget for employing data integrators.
Such settings are not uncommon. For example, in many domains there may be
hundreds or thousands of potentially relevant data sets on the web, from which
structured representations can be obtained using data extraction techniques [20].
In such settings, systematic manual data integration that produces a perfect
solution is not a practical proposition. For example, consider an e-commerce
company that is interested in price comparison with competitors; relevant data
sources come and go on a daily basis, and both format and contents change reg-
ularly. A typical online retailer will struggle to manually integrate the relevant
sources in order to support well-informed decisions.

Pay-as-you-go data integration, sometimes referred to as dataspaces [22], has
been proposed as an alternative to the classical approach. A range of proposals
have been made for pay-as-you-go approaches [23], which tend to involve: Ini-
tialisation: automatic creation of integrations that are generally of poor quality;
followed by Improvement: the obtaining of feedback on some aspect of the inte-
gration, and the application of this feedback to revise the integration. Feedback
may be: explicit, e.g. annotations on correct/incorrect result values; or implicit,
e.g. inferring matches or rankings from query logs.

Although there have been a good many proposals for pay-as-you-go data in-
tegration techniques, we know of little work on methodologies to enable their
systematic development. In this paper, we identify some themes that have re-
curred across multiple proposals, and describe how these themes can be used to
characterise the behaviour of several representative proposals.

The paper is structured as follows. Section 2 outlines the key challenges that
may need to be faced by a data integration process. Section 3 presents the main
contribution of the paper, in the form of a framework that captures recurring
themes that can be used for designing or comparing pay-as-you-go techniques.
This framework is then illustrated in practice to describe a collection of proposals
in Section 4. Some conclusions and areas for further investigation are provided
in Section 5.

2 Data Integration

The overall task of data integration can be considered to consist of a series of
steps, as illustrated in Figure 1. For certain integration activities, some of these
steps may not be required, there may be extra steps, or the process may be
iterative. However, these are common components of an integration lifecycle:

Source Selection identifies data sources that may be relevant to a data inte-
gration task (e.g. [17]).
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Fig. 1. Abstract data integration lifecycle.

Schema Extraction identifies recurring structures (and the data that conform
to them) in the deep web (e.g. [20]) or in sources that do not conform to
formal schemas (e.g. in linked open data [12]).

Matching identifies correspondences between elements in different schemas, for
example suggesting that an attribute in one represents the same notion as
an attribute in another (e.g. [33]).

Mapping Generation produces queries that can be used to translate data
from one schema to another (e.g. [19]).

Mapping Selection chooses between the generated mappings, to identify a
subset that is correct and/or meets the requirements of the application (e.g.
[7]).

Entity Resolution identifies duplicate instances within a data collection (e.g.
[18]).

Data fusion combines information from duplicate instances to create the in-
stances of a target representation (e.g. [6]).

These steps can be carried out automatically, manually or semi-automatically.
In automated approaches, algorithms generate candidate solutions; for example,
for Matching syntactic similarity measures can be used to compare schema el-
ements, and for Mapping Generation alternative mappings can be generated
that take into account the results from Matching. In manual approaches, hu-
man experts create solutions by exploring the relevant information using generic
tools; this is likely to be inefficient in practice, as human decision-making can
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be informed by the results of automated analyses. As a result, classical data in-
tegration is a semi-automatic process, in which, for example, candidate matches
and mappings from automated techniques are reviewed and revised by experts.
In the classical approach, this integration effort is expended up front, before a
carefully refined integration is presented to users. In the pay-as-you-go approach,
integrations can be refined at any point using human effort, and that effort may
not require experts.

3 Pay-as-you-go Data Integration

As discussed in Section 1, pay-as-you-go data integration tends to involve two
phases, Initialisation and Improvement.

The Initialisation phase involves automated techniques generating a best ef-
fort initial integration. The Improvement phase involves feedback of some type,
first on the initial integration, but later on the best version that can be gener-
ated based on the feedback obtained to date. Thus the Improvement phase is
intrinsically incremental, and the payment for the pay-as-you-go approach can
take different forms. For example, consider the e-commerce example from the
introduction. One form of feedback could be from the data scientists of the e-
commerce company, who annotate the different sites from which data has been
retrieved using a relevance score. This form of feedback requires knowledge of the
price comparison task, but not knowledge of data integration, and the payment
is in the form of the time of the data scientist. Another approach to feedback
could crowdsource information on entity resolution (e.g. [35]). This form of feed-
back requires the ability to recognise which products are the same, which might
be considered to involve a common-sense comparison, and the payment is in the
form of money to the crowd workers.

In this paper we focus on the Improvement phase of pay-as-you-go data
integration, and in particular discuss recurring features in the design of pay-as-
you-go techniques that can be used both to characterise existing proposals and
to design new ones. Recurring features of pay-as-you-go proposals are illustrated
in Figure 2, and discussed below; examples of each of these features for a series
of case studies are provided in Section 4.

Identify problem. Individual proposals tend to relate to a single data inte-
gration step from Figure 1, and sometimes to a specific feature within a
step.

Define objective. There is a need to characterise what constitutes a good
solution to the problem; this may be in the form of a generic measure, such
as precision or recall, or using a metric that is specific to the problem.

Define search space. The Improvement phase of pay-as-you-go data integra-
tion typically refines the automatic technique used for Initialisation. The
automatic technique uses an algorithm to generate candidate solutions. The
search for candidate solutions must in some way be able to take into account
the objective.
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Fig. 2. Steps in the pay-as-you-go data integration process.

Define objective function in terms of feedback. The objective function is
used in the search for effective solutions to assess the effectiveness of the
solutions in terms of the feedback. This in turn involves pinning down the
type of feedback required.

Choose search function. The search function is an algorithm that, given some
feedback, explores alternative solutions to the problem, in a way that seeks
to maximise (or minimise) the objective function in terms of the feedback.

Evaluate result. As the objective function in terms of the feedback always
approximates the objective, it is important to assess empirically how much
feedback is needed to allow the search to identify well behaved solutions.

4 Pay-as-you-go Case Studies

In this section, we revisit several proposals for the improvement stage of pay-
as-you-go data integration proposals in the light of the features from Section 3,
with a view to showing how these steps capture their key features.

4.1 Mapping Selection

In this section, we show how the framework can be applied to characterise the
selection of mappings that together meet user-specified quality requirements [3].
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Identify problem. Given a set of matches, it is possible to automatically gen-
erate a set of candidate mappings. For example, the following were among the
mappings generated by a commercial schema mapping tool for populating a
table with schema (name, country, province).

M1 = SELECT name, country, province from Mondial.city
M2 = SELECT city, country, province from Mondial.located

The problem can be defined as follows: given a set of candidate mappings,
and feedback on their results, identify the subset that best meets the users
requirements in terms of precision and recall. Thus in this problem, we as-
sume that the user may be willing to trade off precision (the fraction of the
returned result that is correct) with recall (the fraction of the correct results
that are returned).

Define objective. Following on from the problem statement, we can identify
several different objectives, here cast as constrained optimization problems.
For a set of candidate mappings M :
Variant 1:

maximise (for some s ⊆ M) precision(s)
such that recall(s) > threshold

Variant 2:

maximise (for some s ⊆ M) recall(s)
such that precision(s) > threshold

Thus we assume that the user can specify the extent to which they can
tolerate a reduction in quality along one dimension, and then the objective
is to do as well as possible on the other. For example, if the user thinks that
they can tolerate one in five of the results being incorrect, then Variant 2
would be used, with a threshold of 0.8.

Define search space. Here the search space is the set of all subsets of the set
of the candidate mappings. A set with n elements has 2n subsets.

Define objective function in terms of feedback. The objective is defined
in terms of the precision and recall of a set of mappings. The precision and
recall depend on the ground truth, but we do not know the ground truth.
Thus the ground truth needs to be estimated based on the feedback. As a
result, here we assume that the feedback takes the form of user annotations
that tuples in mapping results are correct (true positives) or incorrect (false
positives).
For example, the precision of a mapping m in the context of user feedback
UF , can be estimated by counting the true positives (tp) and false positives
(fp) in UF :

precision(m,UF ) = |tp(m,UF )|
|tp(m,UF )|+|fp(m,UF )|

where the function tp(m,UF ) (resp. fp) returns the set of tuples from the
result of m that are annotated as true positives (resp. false positives) in UF .
The precision of a set of mappings can be estimated in an analogous manner.
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Choose search function. Different search functions could be used to explore
the sets of possible mappings; in the original paper a Mesh Adaptive Direct
Search is employed [3].

Evaluate result. In the original paper [3], the results were evaluated to identify
how much feedback was required to enable the search to reliably identify
collections of mappings that meet the objectives. The experiments showed
that results were unreliable until enough feedback has been obtained for each
mapping to enable a dependable estimate of its precision and recall to be
obtained, but that suitably reliable estimates could often be obtained with
feedback on modest numbers of tuples per mapping (in the empirical study,
this was typically around 10).

4.2 Entity Resolution

In this section, we show how the framework can be applied to characterise the
pay-as-you-go configuration of entity resolution.

Identify problem. Entity resolution is the task of identifying different records
that represent the same entity. It is also known as duplicate detection, in-
stance identification and merge-purge[18]. As pairwise record comparison is
O(n2) on the number of records, entity resolution tends to involve both:
1. Blocking: fast but approximate identification of candidate pairs; and
2. Clustering: more careful but costly grouping of candidate pairs into clus-

ters, where each cluster is intended to contain all the records that rep-
resent a single entity.

Both Blocking and Clustering have control parameters such as thresholds,
and clustering has a distance function. The problem can be defined as follows:
given feedback on pairs of records that indicate if they represent the same
entity, identify control parameter settings that lead to the most effective
assignments of records to clusters.

Define objective. The objective is to maximise the correctness of the assign-
ments of records to clusters, taking into account which records should be
clustered together and which should not.

Define search space. The search space is the set of configuration parameters
used by the underlying entity resolution strategy; in our work, we have built
on the proposal of Costa et al. [13]. This particular proposal has 8 control
parameters and a set of weights in a distance function, such that there is one
weight per matching attribute; thus a typical search space contains at least
12 numerical dimensions.

Define objective function in terms of feedback. The objective is defined
in terms of the fraction of the values that have been correctly clustered
together, which depends on the ground truth, which is not available. Thus
the ground truth needs to be estimated based on the feedback; we use the
following measure of correctness, which requires that the feedback takes the
form of match or unmatch annotations on pairs of records. The correctness
of a clustering C in the context of user feedback UF , can be estimated by



8

counting the extent to which the expectations in the feedback are met in the
clustering, thus:

correctness(C,UF ) = |mm(C,UF )|+|uu(C,UF )|
|mm(C,UF )|+|uu(C,UF )|+|mu(C,UF )|+|um(C,UF )|

where mm(C,UF ) returns the matched records in the feedback that ap-
pear together in clusters, uu(C,UF ) returns the unmatched records in the
feedback that do not appear together in clusters, mu(C,UF ) returns the
matched records in the feedback that do not appear together in clusters,
and um(C,UF ) returns the unmatched records in the feedback that appear
together in clusters.

Choose search function. Different search functions could be used to explore
the space of configuration parameters; in our case we have used an evolu-
tionary search.

Evaluate result. For entity resolution, there are a number of standard test
data sets; we have evaluated our approach using several of them [29]. The
results showed that even with feedback on a few percent of the records,
substantial improvements in correctness can be observed.

4.3 Grouping Users

In pay-as-you-go data integration tasks, the feedback obtained from users may
be subjective. For example, for one user looking for holidays, only beach holidays
would be suitable participants in an answer (and thus for the user true positives
in a mapping result), whereas a beach holiday is likely to be seen as a false
positive if presented as an option to someone who is interested in going skiing.

In this section, we show how the framework can be applied to support a
pay-as-you-go approach to grouping users, with a view to sharing feedback [4].

Identify problem. Given a collection of users with different interests, can we
cluster these users in a way that allows the sharing of feedback, and thus
more cost-effective pay-as-you-go integration?

Define objective. Clusters of users need to be produced that have the property
that a better integration can be obtained by using the feedback of all the
users in the cluster to inform the integration, than when using only the
feedback of the user.
Lets assume that we are interested in sharing feedback for mapping selection,
as described in Section 4.1. As mapping selection depends on estimates of
precision and recall that use feedback, the objective is to cluster users based
on their consistency in terms of precision.

Define search space. The search space is the set of possible clusters.
Define objective function in terms of feedback. Clustering depends on a

distance function. In this case, the distance between users is defined as the
average difference in the precision estimates obtained for mappings for which
they have provided feedback:

distance(ui, uj) =

∑n

k=1
precision(mk,UFui

)−precision(mk,UFuj
)

n
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where ui, uj are different users, each mk is a candidate mapping, and preci-
sion estimates the precision of a mapping for a given user’s feedback, using
the definition from Section 4.1.

Choose search function. A hierarchical clustering algorithm was used.
Evaluate result. Experimental results showed that, when a user was within a

distance of 0.1 of the centroid of a cluster, the feedback of the cluster was
almost as valuable as feedback provided by the user.

5 Conclusions

Pay-as-you-go integration shows promise as a paradigm, at least in part because
there seems to be no alternative in increasingly prominent cases. For data inte-
gration tasks where there are numerous sources, these sources change rapidly, or
there is little budget for manual integration, the pay-as-you-go approach with
its blend of automation and incremental improvement promises to provide cost-
effective, best-effort solutions.

In this paper we have presented a framework for describing and designing the
improvement phase of pay-as-you-go data integration, and have illustrated the
framework using representative data integration tasks. There have been many
proposals for pay-as-you-go data integration (e.g. [3, 10, 11, 25, 27, 34]), but these
have typically been developed in isolation, and without the benefit of shared
methodologies or design principles. It is hoped that the proposal in this paper
will prove to be helpful in leading to more systematic and efficient design of
pay-as-you-go systems.

In what follows, we elaborate on related areas of ongoing investigation and
future research.

Crowdsourcing. There has been significant interest in the use of crowdsourc-
ing for obtaining information for different data management tasks (e.g. [2, 8,
32]), and as a source of feedback for pay-as-you-go data integration (e.g. [21, 31,
35]). For the most part work has focused on paid microtasks for systems such
as Amazon Mechanical Turk3 or CrowdFlower4, but it seems entirely possible
that other approaches, for example that combine domain experts with paid mi-
crotasks, could be effective (e.g. [1]). Here open issues include: identifying what
feedback collection tasks are best suited to what groups of people, and the sys-
tematic design of crowdsourcing tasks.

Efficient Collection of Feedback. As explicit (as opposed to implicit) feedback
involves human effort, it must be considered to be expensive to collect, and thus
there is a need to obtain the most cost-effective feedback. Here there have been a
range of approaches, using active learning or bespoke algorithms for identifying
which feedback to obtain next [14, 26, 24, 37, 36, 38], as well as investigations into
which workers should be recruited to carry out a task [9, 40]. Although there has

3 https://www.mturk.com
4 http://www.crowdflower.com
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been significant progress in both these areas, it is not always clear which forms
of active learning best suit (or do not suit) different tasks, or how to decide what
feedback to collect: (i) when there are several different tasks to carry out that
may benefit from feedback; or (ii) how to share feedback across different parts
of the data integration lifecycle.

Systematic Integration of Evidence. There is potentially a lot of evidence to
inform pay-as-you-go integration, with the combination of automation that can
make use of any available evidence, and the provision of feedback to refine the
results of automated techniques. Evidence sources include: results of matching,
mapping and quality algorithms; feedback of different sorts from different groups,
of different qualities; logging information on the use of integrations; and results
of analyses on integrated data sets. Thus there is also a need for an integrated
approach to data integration, in which all the available evidence is used together
systematically.

There are a several results on evidence accumulation for data integration
(e.g. [15, 39]), but most current work on pay-as-you-go data integration involves
a single type of feedback for a single task. The real breakthrough may come
from greater ambition, in which more sources and more techniques provide an
additional opportunity rather than an additional challenge (e.g. as demonstrated
in the absence of feedback in knowledge base construction [16, 30]).
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