Consistent Partial Identification

Sanjay Jain* and Frank Stephan’
Department of Computer Science, National University of Singapore, Singapore 117417
Email: sanjay @comp.nus.edu.sg and fstephan @comp.nus.edu.sg

Abstract

This study contrasts consistent partial identifica-
tion with learning in the limit. Here partial identifi-
cation means that the learner outputs an infinite se-
quence of conjectures in which one correct hypoth-
esis occurs infinitely often and all other hypotheses
occur only finitely often. Consistency means that
every conjecture is correct on all the data seen so
far. Learning in the limit means that the learner
outputs from some time on always the same cor-
rect hypothesis. As the class of all total-recursive
functions can be partially identified, the constraint
of consistency has to be added to make a mean-
ingful comparison to learning in the limit. For the
version of consistency where the learner has to be
defined and consistent on all inputs, it is shown
that the power of the learning criterion depends on
whether the function to be learnt is fed in canonical
order or in arbitrary order. In the first case, consis-
tent partial identification is incomparable to learn-
ing in the limit; in the second case, it is equivalent
to consistent learning in the limit with arbitrarily
fed input. Furthermore, the inference degrees of
these criteria are investigated. For the case where
the function is fed in canonical order, there are just
two inference degrees: the trivial one which con-
tains all oracles of hyperimmune free Turing de-
gree and the omniscient one which contains all or-
acles of hyperimmune Turing degree. In the case
that the function is fed in arbitrary order, the pic-
ture is more complicated and the omniscient in-
ference degree contains exactly all oracles of high
Turing degree.

1 Introduction

A learning situation may be described as follows. Consider
a learner receiving data, one piece at a time, about a target
concept. As the learner is receiving its data, the learner con-
jectures its hypothesis describing the target. As the learner
gets more and more data, its hypothesis may change. One

*Supported in part by NUS grant number R252-000-308-112.
Supported in part by NUS grant numbers R146-000-114-112
and R252-000-308-112.

may consider the learner to be successful if eventually its se-
quence of hypotheses converges to a correct hypothesis de-
scribing the target concept. This is essentially Gold’s [10]
model of learning in the limit. In this paper we will be mainly
concerned about learning functions. The data in this case
takes the form of the graph of the function, which is pre-
sented one datum at a time. The hypotheses of the learner
take the form of a program for computing the function. The
model of learning described above is referred to as Ex-learn-
ing, where the learner is expected to succeed with respect to
any order of presentation of the data, as long as all the ele-
ments of the graph of the target function is eventually pre-
sented to it.

Note that there is no requirement in the above criterion
that intermediate conjectures, output by the learner before it
converges to its final hypothesis, be consistent with the data
seen. In other words, the intermediate hypotheses may be
contradicted by the data already seen. If one requires that
the intermediate hypotheses be consistent with the data seen
upto that point, then we get the criterion of learning called
consistent learning [2]. It can be shown that there are concept
classes which can be learnt, but no learner which is consis-
tent on all data from the concept class can learn them (using
the Ex-model of learning discussed above). There are three
variation of consistent learning considered in the literature.

o A Cons-learner is expected to be consistent only on the
data which are from some valid target concept (from the
class of concepts being learnt) and the learner may be
inconsistent or may even be undefined on data which
are not from some target concept in the concept class
being learnt [2].

o An TCons-learner is expected to be consistent on all
possible data, even those which do not belong to any
possible target concept [13].

e An RCons-learner is expected to be defined on all pos-
sible data, though it may not be consistent on data which
do not belong to any concept from the class being learnt
[4, 21].

Besides the Ex-model of learning discussed above, there have
been several other learning models considered in the litera-
ture. One of the more common one is behaviourally cor-
rect learning (Bc-learning) [3], where it is required that after
some finite time the learner outputs only correct hypotheses,

but these hypotheses may not all be the same (in other words,
the hypotheses semantically converge to a correct one).

Osherson, Stob and Weinstein [18] relaxed the require-
ment that all but finitely many of the hypotheses be correct.
They required that: (a) some fixed correct hypothesis be out-
put infinitely often and (b) only one hypothesis is output in-
finitely often. This criterion of learning was called partial
learning. It was shown by [18] that the class of all total recur-
sive functions can be learnt by some learner in this fashion
(in fact, using a suitable definition for learning recursively
enumerable languages or partial functions, it can be shown
that the class of all recursively enumerable languages, or the
class of all partial functions, can be learnt in this fashion).
However, the learner doing the above was not consistent.
Therefore it is interesting to combine the two notions and
to see what can be learnt by consistent partial learners. It
turns out that this notion does no longer permit to learn all
recursive functions and is a real restriction, the severeness
of the restriction depends on whether the functions are pre-
sented by the canonical text or an arbitrary text. In this paper
we give a detailed study of the resulting criteria.

The paper is organized as follows. In Section 2 we give
the preliminaries and define formally the models related to
learning considered in this paper. In Section 3 partial learn-
ing is defined, along with consistent partial learning. Let
ConsPart, TConsPart and RConsPart denote partial learn-
ing where the learners are expected to be consistent in the
Cons, TCons and RCons sense, respectively, as discussed
above. We use the superscript arb or can to denote that the
above learning/consistency requirements are for all possible
order of presentation of data, or only for canonical presenta-
tion of data for the functions.

In Section 4 we consider when a learner can learn the
class of all total recursive functions: particularly access to
which oracles allows the learner to consistently partially learn
the class of all total recursive functions. Let R denote the
class of all total recursive functions. Theorem 6 shows that
R € TConsPart“*"[A] (respectively, RConsPart““" [A] and
ConsPart“"[A)) iff A has hyperimmune Turing degree. Ad-
ditionally, Theorem 6 shows that if A has hyperimmune-free
Turing degree, then TConsPart®"[A] = TConsPart®".
For learning from arbitrary order of presentation of data,
Corollary 9 shows that R € TConsPart®*[A] iff A is high.

Also, surprisingly TConsPart®®[4] is same as TCons®"*[A]
for all oracles A (Theorem 8).

In Section 5 we compare the consistent partial learning
criteria for arbitrary versus canonical texts. We show that
for r.e., nonrecursive and non-high oracles A it holds that
TConsPart™" ¢ TConsPart”"°[A] and TConsPart""’[A]
¢ TConsPart®™. Furthermore, if A <r K is 1-generic
then A is in the omniscient TConsPart®®"-degree and the
trivial TConsPart® ’-degree.

In Section 6 we compare consistent partial learning with
other criteria of learning such as Ex and Bc as well as com-
pare various versions of consistency. In particular, we show
that there exist classes of recursive functions which are par-
tially learnable by a consistent learner but not Be-learnable
(Theorem 15). Furthermore, there are classes of recursive
functions which are in Ex (even with minimal mind change

complexity) which cannot be partially learnt by a consistent
learner (Theorems 16 and 18).

Also, there are classes of recursive functions which are
RCons-learnable, but which are not TConsPart-learnable
(Corollary 17) and classes of recursive functions which are
Cons-learnable, but not RConsPart-learnable (Theorem 19).

In Section 7 we consider learning partial functions, where
the program output infinitely often by the learner is a partial
or total extension of the input function. Let P denote the
class of all partial recursive functions and S denote the class
of all partial recursive function which have a total recursive
extension. We show that, for learning partial functions by
partial extensions, P € ConsPart®"’[A] iff K <r A (Theo-
rem 20) and for learning partial functions by total extensions,
S € ConsPart®°[A] iff A is high (Theorem 21).

2 Preliminaries

Most recursion-theoretic notations are standard and follow
the textbooks of Odifreddi [16, 17], Rogers [19] and Soare
[20]. Background on inductive inference can be found in
[12]. Let N denote the set of natural numbers. For a set S,
|S| denotes its cardinality. |S| < = denotes that S is finite.
max(S) and min(.9) respectively denote the maximum and
minimum of the set .S, where max(f) is taken to be 0 and
min(f) is taken to be co. A & B denotes the set {2z : z €
AlU{2z+1:z € B}.

For a function 7, we say that n(z)| if n(z) is defined and
n(x)7 if n(z) is undefined. A 0-extension of a finite function
7 is the function f such that f(xz) = n(z) for all z in the
domain of n and f(z) = 0 for all z not in the domain of 7.

A programming system is an arbitrary partial recursive
function ¢ of two variables. Az.i(e,) is denoted by e,
and e is called a program or index for 1. 1) , denotes .
computed within s steps: that is ¢, () = e(z), if z < s
and 1. (x) halts within s steps;). s is undefined otherwise.
¢ denotes a fixed acceptable programming system [19]. ¢,
denotes the (partial) function computed by the e-th program
in the programming system (. Unless otherwise stated, pro-
grams and indices generally mean programs or indices in the
p-system. ® denotes a fixed Blum complexity measure [5]
for the programming system . R denotes the set of all total
recursive functions. P denotes the set of all partial recursive
functions.

We say that a total function g dominates a total function
f iff for all but finitely many n, g(n) > f(n). A set A is
high iff K’ <1 A’. This can also be characterized in terms
of domination: A is high iff there is a function f <p A
which dominates every recursive function [15].

A set A is 1-generic iff for all r.e. sets B C {0, 1}* there
exists an n such that either A(0)A(1)...A(n) € B or no
extension of A(0)A(1)... A(n) belongs to B.

A set A is said to be immune iff it is infinite and it does
not contain any infinite recursively enumerable set. A set A
is hyperimmune iff there is no recursive function f with |AN
{0,1,2,..., f(n)}| > nforall n. A set B has hyperimmune
Turing degree iff there is an A = B which is hyperimmune;
otherwise B has hyperimmune-free Turing degree.

We often also consider computations relative to an oracle
A. g defines a function g relative to an oracle A.

In the following, we review learning-theoretic notation.
A text (for a function) is a mapping from N to N x NU {#},
such that if (x,y) and (z,z) are in the range of the text
then y = z. Content of a text T, denoted content(7"), is
the set of pairs in the range of 1" (that is range of 7', except
for #). A text T is for a (possibly partial) function 7 iff
content(T) = {(x,n(z)) : n(x)|}. For atext T, T'[n] de-
notes the initial segment of 7" of length n. A finite sequence
is an initial segment of a text. Content of a sequence o, de-
noted content(c), is the set of pairs in the range of 0. Length
of o, denoted |o|, is the number of elements in the domain
of 0. SEQ denotes the set of all finite sequences. For fi-
nite sequences o and 7, o ¢ 7 denotes the concatenation of
o and 7, that is, o ¢ 7(x) is o(x) if x < |o|, 0 o 7(x) is
T(x —|ol|) if |o] <z < |o|+|7] and o o 7(z) is undefined if
x > |o|+ |7|. Furthermore, we sometimes write o ¢ (z, y) to
denote the concatenation of o with the sequence containing
just one element (z,y).

A text T is a canonical text for a total function f if T'(¢) =
(4, f(7)). When we are dealing with learning from canonical
text, we often identify the function with its canonical text.
Thus, f[n] represents T'[n], where T is the canonical text for
f. CanSEQ denotes the set of all finite initial segments of
canonical texts.

A learner is a mapping from SEQ to NU {?}. Intuitively,
? denotes no conjecture at this point. A learner M converges
on a text 7" to 4 iff for all but finitely many n, M (T'[n]) = i.

We mostly consider partial recursive learners only. In
some cases, we allow learners access to an oracle A. M
(with or without subscripts or superscripts such as primes)
ranges over partial recursive learners. M“ denotes a par-
tial recursive learner relative to oracle A. Unless otherwise
specified, a learner is assumed to be partial recursive.

The following two definitions give the basic learning cri-
teria for explanatory and behaviourally correct learning.

Definition 1 [6, 10] Let b € N U {x}.

o M Ex;-identifies f € R (written: f € Ex;,(M)) iff for
all texts T for f, there exists a program 4 for f such that
M converges on T to ¢ and there are at most b numbers
nwith ? £ M(T[n]) # M(T[n + 1]).

o M Exy-identifies C C R iff M Ex;-identifies each f €
C

e Ex, = {CCR : (3 partial recursive M)[C CEx,(M)]}.
Ex. is also referred to as Ex.

Definition 2 [3]Let f € RandC C R.
e M Bc-identifies f (written: f € Be(M)) iff for all texts
T for f, for all but finitely many n, Y s (7)) = f-
o M Bc-identifies C C R iff M Be-identifies each f € C.
e Bc = {C C R : (I partial recursive M)[C C Be(M)]}.

The following definition formally gives the definition for con-
sistent learning.

Definition 3 [2] A learner M is said to be consistent on a
text 7" iff for all n € N, M(T[n])| and content(T[n]) C
©M(T[n))- A learner is said to be consistent on a function f
iff it is consistent on all texts for f.

Definition 4 [2, 4, 13, 21]

o A learner M Cons-identifies C iff it Ex-identifies C and
it is consistent on each f € C.

o A learner M RCons-identifies C, iff it Cons-identifies
C and it is total.

o A learner M TCons-identifies C, iff it Ex-identifies C
and it is consistent on each f € R.

When learning total functions, we often consider learning
from canonical texts only. This does not make a difference
for Ex; or Be learning. But for consistent learning it matters
and we use the superscripts can and arb to make it clear.

o C € TCons“*" iff there is a recursive learner M which
is total, consistent on each f € R, and Ex-learns every
f € C from the text of the form (0, f(0)), (1, f(1)),...;
such texts are called canonical texts.

e C € TCons®" iff there is a recursive learner M which
is total, consistent on each f € R, and Ex-learns every
f € C from every text of the form (zq, f(z0)), (21,
f(z1)),... where xg,x1, ... must cover the whole set
N; such texts are called arbitrary texts.

Similarly one can define these two variants for other criteria
of learning. In the case that we do not specify in a definition
or theorem which case applies, we always assume that the
definition or the result would hold for both variants in the
same way.

3 Partial Learning

We now consider the definitions for partial and consistent
partial learning.

Definition 5 [18] Let f € RandC C R.

o M Part-identifies f (written: f € Part(M)) iff for all
texts 7" for f, there exists a program ¢ for f such that
— M(T[n]) = i for infinitely many n and
- forall j # i, M(T[n]) = j for only finitely many
n.
o M Part-identifies C iff M Part-identifies each f € C.
o Part = {C: (3IM)[C C Part(M)]}.

e We say that a learner M ConsPart-identifies C iff M
Part-identifies C and M is consistent on each f € C.

e We say that a learner M TConsPart-identifies C iff M
Part-identifies C and M is consistent on each f € R.

e We say that a learner M/ RConsPart-identifies C iff M
ConsPart-identifies C and M is total.

One can similarly identify the learning criteria TConsPart,
RConsPart and ConsPart with the collections of all classes
of functions learnable under the respective criterion. When
considering learning with oracles [1, 7, 9, 14], we use I[A]
to denote learning under criterion I where the learners are
allowed access to oracle A. We note that, for the notions I of
consistent learning defined here, I°*™ and 197 are different.
Furthermore, for many oracles A, I°"[A] and 1%"°[A] are
different.

4 Some Characterizations of Consistent
Partial Learning

In this section, we first characterize for every oracle A the
class TConsPart“"[A]. There are only two cases, either A
permits to learn the class of all recursive functions under this
criterion or A is trivial and the classes learnable are char-
acterized by some quite natural domination property. Ora-
cles of hyperimmune degree fall into the first and oracles of
hyperimmune-free degree fall into the second case.

Theorem 6 (a) If A has hyperimmune Turing degree then it
holds that R € ConsPart®”[A], R € TConsPart®"[4]
and R € RConsPart™"[A].

(b) If A has hyperimmune-free Turing degree then a class C
is in TConsPart®*"[A] iff there is a strictly increasing recur-
sive function g such that every f € C has an index e which
satisfies, for infinitely many n,

Vm < n [®(m) < g(max({n, f(0), f(1),..., f(n)}))]-
In particular; R ¢ ConsPart®"[A], R ¢ TConsPart“"[A]
and R ¢ RConsPart®"[A].

Proof. (a) Suppose A is hyperimmune. We show that R €
TConsPart“"[A]. A hyperimmune oracle A allows one to
construct a function 2% not dominated by any recursive func-
tion. Let ¢ be a one-one numbering of all partial recursive
functions [8]. Let () be a reduction from %) to ¢. Now a
learner M using oracle A is defined as follows.

M(f[<n7 6>]) = 7"(6), if f[(n,e)] - we,hA(n) and we,m
C f[{n,e)], where m is the number of times r(e) has been
output on proper initial segments of f[(n,e)]. Otherwise,
M(f[(n,e)]) = z such that z has not been output by M on
proper initial segments of f[(n,e)] and f[(n,e)] C p..

For any recursive function 1., let g(n) = min({s :
Ye[(n,€)] € e s}).

Then h“(n) is, for infinitely many n, larger than g(n).
For these infinitely many n, M on t).[(n, e)] will output r(e)
(note that the number of times r(e) is output on proper ini-
tial segments of c[(n, e)] is at most (n, e) and ¥, () €
Yel[(n, €)]). Thus, r(e) is output infinitely often by M on ..

For e’ # e, if ¥c[(n,e')] € e, then r(e’) would not
be output beyond . [(n, ¢'}]. Any number z not in the range
of r is output at most once. Thus, M TConsPart“"[A]-
identifies R.

(b) (=) Let M be an A-recursive TConsPart“"[A]-learner
for C. Now one constructs a function g as follows: g (n)
is the maximum of ®.(z) such that there is a finite sequence
o = (0,y0) (1,y1) ... (M, ym) with max({m, yo, y1, ...,
Ym}) < n, 2 < mand M(c) = e. This function g* is
then bounded by a strictly increasing recursive function g as
A is hyperimmune-free Turing degree [20]. When learning
f € C, M outputs one index e infinitely often. Then, for each
n such that the learner outputs e on input (0, f(0)), (1, (1)),
...y (n, f(n)), all values ®.(m) with m < n are bounded

by g(max({n, f(0), f(1),..., f(n)})). This completes one
direction.

(<) Assume that there is a recursive function g such that
every f € C has an index e which satisfies for infinitely many
n that

Vm < n [®c(m) < g(max({n, £(0), f(1),..., f(n)}))]-

Let pad be a recursive padding function (that is ppea(i,k) =
@;, for all 4, k, and pad is one—one). Now the learner M
works as follows.

1. Read the current input (0, f(0)), (1, f(1)), ..., (n, f(n)).

2. Determine the least ¢ < n such that either e = n or it
holds for all k£ < n that . (k) < g(max({n, f(0), f(1),

s F()1) A pe(k) = f(K).

3. Determine the number p of pairs (m, d) with m < n and
d < e such that for all & < m, ®4(k) < g(max({m,

FO),), f(m)D)) A pa(k) = f(k).
4. Output pad(e, p).

Given f € C, there is a least index e of f such that, for
infinitely many n and all ¥ < n, it holds that ®.(k) <
glmax({n, £(0), F(1),..., (WD) A ¢elk) = f(K). Thus
the number p of all pairs (m,d) with d < e and ®4(k) <
g(max({m, f(0), f(1),..., f(m)})) Apa(k) = [(k) forall
k < mis finite. It follows that M outputs pad(e, p) infinitely
often. Furthermore, each other possible value pad(d, ¢) with
(e,p) # (d, q) is output only finitely often: if ¢4 # f then d
passes the test in step 2 only for finitely many n; if g = @,
and d < e, then d passes the test in step 2 only for finitely
many n (by the hypothesis on e being the least); if g = @,
and d > e, then p as computed in step 3, is unbounded for
the corresponding d and, thus, each pad(d, ¢) is output only
for finitely many n. Hence C € TConsPart“*".

As R is dense, any ConsPart““"[A] learner for R is also a
TConsPart®"[A] learner for R. Thus, it suffices to show
that R ¢ TConsPart®"[A]. It is well-known that for ev-
ery recursive function g, there is a {0, 1}-valued recursive
function f such that for all e with ¢, = f and almost all
n, ®.(n) > g(n). Hence, R does not satisfy the character-
ization of the classes in TConsPart“"[A] for oracles A of
hyperimmune-free Turing degree given in part (b). O

Note that the characterization is independent of A and hence
the learning power of all the oracles of hyperimmune-free
degree is the same as TConsPart“*".

Corollary 7 If A has hyperimmune-free Turing degree then
TConsPart“"[A] = TConsPart“".

The next result characterizes TConsPart®™’[A] and shows
that it can be mapped back to a known criterion. Note that
the condition in the third item on domination implies that
there are infinitely many inference degrees for this criterion.

Theorem 8 For every oracle A and class C, the following
conditions are equivalent.

e C € TConsPart®’ [A];
e C € TCons"*[A];

o There is a strictly increasing A-recursive function g
such that every f € C has an index e which satisfies
®,(r) < gt (max({z, f(x)})) for almost all x.

Proof. By definition, TCons”"°[A] C TConsPart®’[A] is
true.

The implication from the third condition to the second
can be obtained by applying the algorithm to learn by enu-
meration [10]. On input o, the learner determines m to be
the maximum of all numbers which occur as first or second
component of a pair in content(c) and then outputs the least
e < m such that ®.(z) < g*(m) A p.(z) = y for all
(x,y) € content(o); if such an e does not exist, the learner
outputs some canonical index of the function which coin-
cides with the seen data and maps all unseen inputs to 0.
Clearly, the algorithm above is consistent on all inputs. Fur-
thermore, for any f € C, on any text 1" for f, the algo-
rithm converges to the least e such that (i) . = f and (ii)
for all but finitely many n, and (z, f(z)) € content(T'[n]):
e < my and ®.(z) < g*(m,), where m,, is the maxi-
mum of all numbers which occur as first or second com-
ponent of a pair in T'[n]. (Note that there exists such a e
due to the third condition). Thus the algorithm witnesses
TCons""’[A]-identification of C.

For the remaining implication from the first to the third
condition, assume that M is an A-recursive TConsPart®"’-
learner for C. Now let §*(n) be the maximum value of all
@ pr(0) () where o,z satisfy that [o| < n, content(o) con-
tains only pairs with both components in {0, 1,...,n} and
is the first coordinate of a pair in content(c). The function
g is total and A-recursive as it takes only the maximum
over finitely many sequences and M only outputs hypothe-
ses which are consistent on the data seen so far. Further-
more, one defines for every finite set D of indices the in-
dex amal(D) of the amalgamation of the indices such that
©amai(p) () takes the value y if there is an s and an e €
D such that p.(z) = y, Pc(z) = s and for all d € D,
[@g(x) > sor [Py(z) = s and pq(z) > y]]. As the amalga-
mation is an effective operation, there is a strictly increasing
A-recursive function g” such that P uma(py(m) < g (n)
whenever D C {0,1,...,n}, m < nand thereisad € D
with ®4(m) < g4 (n).

Fix f € C. Now one tries to noneffectively define, by
induction, the following text 7"

(0, f(0)).
Stage 2n + 1. Let E,, = {M(T[r]) : r < 2n+1}
Choose © > 2n + 2 and « > max({z, f(z)}) for
all pairs (z, f(z)) € content(T'[2n + 1]) such that ei-
ther ®.(x) > §”(max({z, f(z)})) or p. # f for all
e€ E,. LetT(2n+ 1) = (x, f(x)).

Stage 0. Set T'(0) =

Stage 2n + 2. Let (z, f(z)) = T(2n + 1). Let y be the
least number such that either y = « or (y, f(y)) does
not occur in content(7'[2n + 2]) and max({y fyh <
max({z, f(2)}). Let T(2n +2) = (y, f(y)).

We first show that the construction does not succeed in find-
ing a x in some stage 2n + 1. So suppose by way of con-
tradiction that the construction always finds the required x
in every stage 2n + 1. Then the construction gives a text 7’
for f. Furthermore, for all n, M on T'[2n + 2] or T'[2n + 3]
does not output any of the indices in F,, unless that index is
not an index for f (since, by definition of g, ® y7(7(2n42)) ()

and P 7 (7[2n+3)) are both bounded by §*(max {z, f(z)}),
where z is as found in stage 2n + 1). It follows that indices
for f are only repeated at most once by M and hence M
does not TConsPart®"*[A]-learn f, in contradiction to the
assumption.

Hence, the construction fails to find the required x in
stage 2n + 1 for some n. In this case it holds that, for al-
most all x, there is an e € E,, with ¢, = f A D (x) <
g4 (max({x, f(x)})). Now let d = amal({e € E, : p. =
f}). Note that o4 = f as all indices used in the amalgama-
tion are indices of f and the set of indices used is not empty.
Furthermore, for all sufficiently large z, F,, C {0,1,...,z}
and ®4(z) < g4 (max({z, f(2)})). O

Corollary 9 A is high iff R € TConsPart”’[A] iff R €
RConsPart®"’[A] iff R € ConsPart*"’[A].

Proof. Note that R is dense. Hence it holds for all oracles
A that R € TConsPart*"*[A] iff R € RConsPart*"’[A] iff
R € ConsPart*"’[A].

If A is high, then there is an A-recursive function gA
which dominates every recursive function. Thus if A is high,
then it follows using Theorem 8 that R € TConsPart*"*[A].

For the other direction, suppose R € TConsPart*"*[A].

Then R € TCons®’[A] and R € Ex[A]. Hence A is high
by a result of Adleman and Blum [1]. [J

Note that the above characterizations show that the inference
criteria TConsPart®” and TConsPart®® are closed under
union; this also holds for their relativized versions. That is,
if Cy,C1 € TConsPart®" then Cy U C; € TConsPart®".
This property does not hold for the criteria RConsPart®*",
RConsPart”?, ConsPart®®" and ConsPart®"’ by Theorem
18 below (since every class in Ex; is a union of two classes
in Exg, and Ex, C RConsPart®"?).

One might ask whether the equivalence in Theorem § can
be generalized.
Open Problem 10 (a) Is RConsPart®® = RCons®"?
(b) Is ConsPart®? = Cons®"*?

While for TConsPart®" there are only two inference de-
grees, we show below that the degree structures for the crite-
ria RConsPart®" and ConsPart“" are more complicated
and in each case there are uncountably many degrees. The
next theorem shows that for sets A, B of hyperimmune-free
degree there is a class C € RConsPart““"[A] which is not in
ConsPart®"[B] unless A <p B’. This implies that all non-
omniscient inference degrees are countable for these two cri-
teria.

Theorem 11 (a) If ConsPart“"[A] C ConsPart“"[B] then
A <p B’ or B has hyperimmune Turing degree.

(b) If RConsPart®"[A] C RConsPart®"[B] then A <r
B & K or B has hyperimmune Turing degree.

Proof. Let A be fixed and assume without loss of generality
that for every z, either 2z € A or 2z + 1 € A but not both.
In the following letC = {f : f(0) € AN f = sy} U{[:

f0) ¢ ANz [f(z) = O]}

This class C is RConsPart“"[A]-learnable by a learner
which on input (0, £(0)), (1, f(1)), ..., (n, f(n)) conjectures
a canonical index for f(0)f(1)... f(n)0° unless f(0) € A
and n > 1; in the latter case the learner conjectures f(1).

Assume now that the learner M/ ConsPart“"[B]-learns
C and that B has hyperimmune-free Turing degree. Note
that the proof of Theorem 16 below can be modified to show
that, for each z, the class {f : f(0) =z A f = @p(1)} is not
TConsPart“"[B]-learnable. Hence, for every x € A, there
is a function f ¢ C with f(0) = x such that for some n, ei-
ther M (using oracle B) is undefined on (0, f(0)), (1, (1)),
..., (n, f(n)) or M (using oracle B) on (0, £(0)), (1, f(1)),
..., (n, f(n)) outputs an index e which is not consistent with
(0, £(0)), (1, £(1)), ..., (n, f(n)). Therefore, there is a B’-
recursive function ¢ which finds such (0, £(0)), (1, f(1)),
..., (n, f(n)), for every x € A; for the z ¢ A, there is no
such witness as M must always output consistent conjectures
on data from any function f with f(0) ¢ A. Hence A is B’-
r.e. and, as exactly one of each pair 2z, 22 + 1 of numbers is
in A, A ST B/.

One can improve the above analysis in the case that M is
a RConsPart®"[B]-learner, M is everywhere defined and
hence ¢ (z) is a partial B @ K -recursive function as ¢(z) al-
ternately evaluates M on potential inputs (0, £(0)), (1, f(1)),
...y(n, f(n)) using B and then checks using K whether
the output obtained is consistent. Hence one has A <p
Bo K.O

5 Arbitrary versus Canonical Text

In the present section the influence of the data presentation
(arbitrary versus canonical text) on the learning power of
consistent partial learners is investigated. The next result
shows that for non-high oracles A, TConsPart”"’[A]-learn-
ability of classes of {0, 1}-valued functions implies that the
corresponding class is also TConsPart®®"-learnable while
the corresponding inclusion does not hold in general when
the condition of {0, 1}-valuedness is dropped. Furthermore,
some oracles A are in the omniscient TConsPart®"-degree
and trivial TConsPart® ’-degree; that is, depending on the
permitted form of data presentation to the learner, the oracle
is either omniscient or useless.

Theorem 12 (a) If A is not high then TConsPart®°[A] N
Ro,1 € TConsPart“".

(b) If A is re. and not recursive then TConsPart*"*[A] ¢
TConsPart“".

(¢) If A is 1-generic and A <7 K then TConsPart‘”b[A]
= TConsPart”" and R € TConsPart“*"[A].

Proof. (a) Assume that C € Rg 1 NTConsPart®’ [A] where
A is not high. The characterization of TConsPart®™’[A] in
Theorem 8 and the fact that every f € C is {0, 1}-valued
imply that there is an A-recursive function g** such that every
f € C has an index e with

VeonVm < n[®.(m) < gt(n)].

As A is not high, there is a recursive function g with g(n) >
g (n) for infinitely many n. Now every f € C has an index
e with

I°nVm < n[®.(m) < g(n)].

This implies then that C € TConsPart®" by Theorem 6.

(b) As Aisr.e. but not recursive, A is the range of a recursive
one-one sequence ag, a1, a2, . . . from which the convergence
module c4 can be defined as c4(n) = max({m: m =nV
am < n}). As A is not recursive, c4 is not dominated by
any recursive function.

Given an index d of a total recursive function, one defines
a recursive function Fy(n, m) as follows. Fy(n,m) is the
first k£ found (in some algorithmic search) such that k& > n,
k> m,ca(k) > pa(k), ca(k) > ®4(k) and k > p.(n) for
all e < n with ®.(n) < pq(k). Note that, as @g4 is recur-
sive, there exists such a k and one can recursively find one
such k from n, m. Furthermore, the complexity to find this
k is bounded by h(d,n,m, k,c*(k)) where h is a suitable
strictly increasing recursive function; note that it needs to
be c*(k) and not ¢*(n). Thus, one can compute Fy(n,m)
within time h/(d,n, m, Fy(n,m),c*(Fy(n,m))), for some
strictly increasing recursive function h’'.

Given any index d for a total recursive function, one can
define a strictly increasing recursive function f; inductively
as follows. f4(0) = F4(0,0) and f4(n+1) = Fy(n, fa(n)).
Consider the class C = {f; : @4 is total}.

Consider any index d for a recursive function. Note that,
by definition of F; and fy, for all n, for all e < n, either
Ge(n) # fan) or ®.(n) > a(fa(n)) = pa(max({n,
fa(0), fa(1),..., fa(n)})). Thus there exists no program e
computing fy4 such that ®.(n) < pq(max({n, f4(0), fa(1),
.., fa(n)})) for infinitely many n. Thus, C ¢ TConsPart**"
by Theorem 6. On the other hand, since F;(m,n) can be
computed within time h'(d, n, m, F4(n, m), ¢ (Fq(n,m))),
we have that the function fy has an index e with ®.(n) <
h'(d,n—1, fa(n—1), fa(n),ca(fa(n))), for some increas-
ing recursive function h”. Now we take "’ as '’ (n,m) =
max({h”(d,n —1,m',m,ca(m)) : d;m’ < m}) and have
that ®.(n) is bounded by i (n, f4(n)), for almost all n. It
follows that C € TConsPart*"’[A] — TConsPart°*".

(¢c) Let A <7 K and A be 1-generic. It is clear that R €
TConsPart®"[A] as every 1-generic set is hyperimmune
and thus has hyperimmune Turing degree.

Let C € TConsPart®"’[A] be a given class. Then, by
Theorem 8, there is an A-recursive function g* such that ev-
ery f € C has anindex e with ®.(n) < g*(max({n, f(n)}))
for almost all n. Let ag, a1, . . . be a recursive approximation
to A by finite strings (such approximation exists as A < K).
Define g(n) = g®m (n), where m(n) is the least k > n for
which the computation of g®* (n) terminates with || steps.
The function g is recursive.

Now let f and an index e of f be given such that ®.(n) >
g(max({n, f(n)})) for infinitely many n. The set {ctp, () :
®.(n) > g(max({n, f(n)}))} is re. and infinite; hence it
contains for every finite string A(0)A(1) ... A(k) an exten-
sion. As A is 1-generic, vy (y,) is a prefix of A(0)A(1)...
for infinitely many n and thus there are infinitely many n
with @ (n) > g”(max({n, f(n)})).

Thus, for every f € C, for the index e of f such that
®.(n) < g4 (max({n, f(n)})) for almost all n, we also
have that ®.(n) < g(max({n, f(n)})) for almost all n. It
follows that C € TConsPart®"®,

So the TConsPart“*"-degree of A is omniscient and the
TConsPart®"’-degree of A is trivial. [J

Theorem 13 IfTCons“" C ConsPart®"°[A] then A is high.

Proof. Given a total recursive function @., let @) (2n) =
. (n)+pe(n) and g0y (2n+1) be the least number m such
thatm # pg(2n+1) forall d < n with ®4(2n+1) < e(n).
Let Co = {@s(e) : @e is total}, let C; be all functions which
are almost everywhere 0 and let C = Cyp U C;.

One can construct a TCons“*"-learner for C as follows.
One can compute from f(0) f(1)...f(n) and e whether o)
coincides with f on inputs < n; in the case that this is true
for some e < n the learner outputs s(e) for the least such e;
otherwise the learner outputs a canonical index for the almost
everywhere 0 function f(0)f(1)...f(n)0%. It is easy to
verify that the above learner TCons“*"-identifies C.

The class C is dense and hence it is in ConsPart""’[A]
iff it is in TConsPart®"’[A]. It follows now from Theorem 8
that there is a function gA <t A such that every function
©s(e) With e being an index of a total function has an index
d with ®4(2n + 1) < ¢g4(2n + 1) for almost all n; note
here that () (2n + 1) < n. Thus, using definition of @),
one can conclude that . (n) < g*(2n + 1) for almost all n.
Hence, the function n — ¢g* (2n+ 1) dominates all recursive
functions and A is high. O

As a corollary we get the following result of Grieser [11]
who solved with this result an open problem from [22].

Corollary 14 (Grieser [11]) TCons“*" ¢ Cons®"™®.

6 Comparison of Learning Criteria

The first result is to show that consistent partial identification
from functions in canonical input order is not captured by be-
haviourally correct learning. The next results after that show
that the criteria Exg and Ex; fail to be included in various
criteria of partial consistent learning.

Theorem 15 TConsPart“" ¢ Be.

Proof. Let My, My, Ms, ... be a recursive sequence of all
partial-recursive learners. For every given e, we construct
a function f. effectively in e as follows. For this, one con-
structs in parallel to f. a strictly ascending sequence xg, x1,
..., depending on e, starting with 2o = 0 and f.(0) = e.

In stage n, define ,, 41 and f. on all y withy € {z,, +1,
Tn+2,...,Tpe1} as follows. z,1 = @, +2+1 for the first
z found (in some algorithmic search) such that @ (z,, + 2z +
1) = 0for d = M((0,£(0) (1, fo (1) ... (v, fuln))
(xn+1,0) (£, +2,0) ... (xn, + 2,0)). Let s be the time in
which z is found. Define f.(2,4+1) = fe(zn) + s+ 1 and
fely)y=0fory € {x,, + 1,2, +2,..., 2, + z}. Note that
the search for z in some stage n might fail and then f. is
partial. Note that index for f. can be found effectively from
e. Let ¢ be a recursive function such that ¢(e) is an index of
Je-

Now let C contain all functions f, where f. is total plus
all functions which are almost everywhere 0. Whenever M,
Bce-learns all functions which are almost everywhere 0, in

each stage n, the number z can be found and hence f. is
total. Furthermore, M, (fc[Tn+1]) is not a program for f.
and hence M, is not a Be-learner for C.

Note that there is a recursive function g such that when-
ever T,i1 exists in the definition of f. and n > e then
Qi) (y) < g(fe(wnir)) forall y < a,,41; this is because
of the complexity of finding the z to define x,,; is incor-
porated into the definition of f.(x,+1). Hence, using the
characterization of Theorem 6, g is a recursive function that
witnesses that {f. : f. is total} is in TConsPart“". Fur-
thermore, the class of all almost everywhere 0 functions is
in TConsPart®®". As TConsPart“" is closed under union,
C € TConsPart“*". J

This stands in contrast to the result from Theorem 8 that
TConsPart®® = TCons®® C Ex C Be. The next re-
sult shows that the self-describing functions are in Ex’ but
not in TConsPart“"™. The result is based on the fact that
the self-describing functions do not satisfy the domination-
property stated in Theorem 8. Here a function f is called
self-describing if v ;) = f.

Theorem 16 The class {f : vso) = f} of self-describ-
ing functions is in Exy but not in TConsPart®®" and not in
TConsPart®"°[A] for non-high oracles A.

Proof. Let C = {f : vs@) = f}. Clearly, C € Exq. Sup-
pose by way of contradiction that C € TConsPart®" as
witnessed by M. Then, by Kleene’s recursion theorem, there
exists an e such that ¢, (0) = e, and p.(z + 1) = min({y >
Vo) : M(pe[z+1]o (x4 1,y)) > x}).

Note that ¢, is total, by consistency of M. It follows that
M on @, outputs any program only finitely often, and thus
does not TConsPart“"-learn ¢, € C.

The second part of the theorem is witnessed by the fact
that for every recursive function f, there exists a self-describ-
ing function g such that, for all indices e of g and almost all
z, g(z) < z and ®.(z) > f(z). Such a g can be con-
structed from f by using Kleene’s recursion theorem such
that 0y = g and, for all z > 0, g(z) is the minimal value
y & {pec(z):e<axzAP(x) < f(x)}. Note that g(z) < z
forall x > 1.

Hence, whenever a function h dominates ®. for some
index e of the self-describing function g then h dominates
f. Thus it follows from the characterization in Theorem 8
that C € TConsPart*"*[A] only if there is an A-recursive
function h dominating all recursive functions. It follows that
such an oracle A must be high. J

It is easy to show that Exy C RConsPart®"® by simulating
the corresponding Exg-learner: as long as the Exg-learner
has not issued a hypothesis, the RConsPart®"’-learner out-
puts functions extending the data in a canonical way; then,
when the Exg-learner has output its unique hypothesis, the
RConsPart®’-learner just copies it.

Corollary 17 RCons®"’ ¢ TConsPart“".

While Ex, € RConsPart®?, this cannot be improved to
permitting one mind change as shown by the following the-
orem. Only for omniscient oracles holds the inclusion, if a
non-omniscient oracle is on the right side, the inclusion fails.

Theorem 18 (a) Ex; C ConsPart®"[A] iff A has hyperim-
mune Turing degree;
(b) Ex; C ConsPart‘”b[A] iff A is high.

Proof. The class C, which is used in both parts (a) and (b),
is the union of the following two classes:

Co = {f:¢50)-1=fAVz[f(x)>1]};
Ci = {f:3aWy[f(y) =0y >al}

It is easy to see that the class C is in Ex;: the learner first
conjectures f(0) — 1 and then updates the current conjecture
to f(0)f(1)...f(n)0> at the first time it has seen all the
data (0, £(0)), (1, (1), .., (n, f(n)) and f(n) = 0.

A ConsPart®"-learner or ConsPart®’-learner for C is
defined and consistent on all inputs o which do not contain
a pair of the form (z,0). This is due to the fact that every
such o is extended by a function in C;. Thus, from a given
ConsPart®"-learner (ConsPart® ’-learner) for C, one can
build a TConsPart“*"-learner (TConsPart® ’-learner) for
the class of self-describing functions by translating in the
data every pair (z,y) to (z,y + 1) and then translating back
the hypothesis e to ¢’ with p./ () = y & @c(z) = y + 1.
By Theorem 16 and Corollary 7, the class of self-describing
functions is not in TConsPart®"[A] for sets A of hyper-
immune-free Turing degree and hence C ¢ ConsPart®"[A]
for these A. By Theorem 16, the class of self-describing
functions is not in TConsPart**[A] for non-high oracles A;
s0 it follows that C ¢ ConsPart®*[A] for non-high A. This
completes the negative parts of (a) and (b).

The positive part of (a) follows from Theorem 6 and the
positive part of (b) follows from Corollary 9. []

The next result provides a class which is Ex;-learnable and

Cons®"’-learnable but which is not RConsPart°®"-learnable.

One could modify the class such that the positive parts would
be realized by the same learner, but that would make the
whole proof very technical and therefore only the slightly
weaker version is given. The idea would be to use the class

{95 : f € C}where gp(n) = (f(0), f(1),..., f(n)).
Theorem 19 Ex; N Cons®"® ¢ RConsPart®*".

Proof. Let My, My, ... denote a recursive enumeration of
all the learning machines. We first define (recursively in %) a
function g; (which may be partial) and satisfies g;(0) = i.

In stage s > 0, the algorithm will try to define g; on input
s. If g; is total then it will not be RConsPart“*"-identified
by M;. Otherwise, a suitable extension of g; would not be
RConsPart“"-identified by M.

Let Pf = {M;(g:[m]) : m < s}, denote the set of pro-
grams output by M; on g; as known at the beginning of stage
s. Note that, if stage s exists, then we have defined g; on in-
puts below s prior to the start of stage s, thus g;[s] is known
at the beginning of stage s. Note that | P?| < s + 1.

Stage 0:

1. Let g;(0) = 3.
2. Go to stage 1.
End stage 0.

Stage s with s > 0:

1. Search for y < s+ 1 such that M;(g;[s] < (s,v))] & Pf.
2. If and when such a y is found, let g;(s) = y.

3. Go to stage s + 1.

End stage s.

If g; is not total, let s be the stage which starts but does not
finish and let
fos(a) = {gi(x), ifx <s;

7 otherwise.
Now define
C = {gi: g;istotal and M; is total}
U {fi; : gi is not total and M is total}.

It is easy to verify that C ¢ RConsPart®". For this suppose
M; is total. If g; is total then M; does not RConsPart®*"-
identify g; (as the program output by M; at g;[s + 1] is not
present in 7). If g; is not total (where stage s started but did
not finish), then either M; is not total or M; is inconsistent
on g;[s] ¢ (s,7), for some j < s+ 1 (note that P? contains
at most s + 1 programs); thus A; does not RConsPart®"-
identify at least one of f; ;.

On the other hand, it can easily be verified that one can
Cons“"’-identify C. A learner may output a program for 0-
extension of the input, if (0,¢) is not present in the input
for any ¢. Otherwise, learner outputs program for g; (where
(0,1%) is in the input) until it receives an input o such that for
some s with 1 < s < max({w : (w,z) € content(c)}), in
stage s in the construction of g;, M;(g;[s] ¢ (s,y)) is defined
for all y < s+ 1 and each of these M;(g;[s] ¢ (s,y)) are
members of P;’; in that case, the learner outputs a canonical
program for f given as

y, if (z,y) € content(o);

z, otherwise;
where (2, z) € content(c) and 2’ =
max({y: (y,w) € content(c) for some w}).

fz) =

It is easy to see that the above learner would Cons-identify C.

To Ex; -identify C, note that a learner can initially output
7 until it sees (0,) in the input, for some i. At which point
the learner outputs a program for g; (which can be obtained
effectively from 7). The learner then continues to output this
program until it receives an input ¢ and finds an s with 1 <
s < max({w : (w,z) € content(c)}) such that, in stage s
in the construction of g;, M;(g;[s] ¢ (s,y)) is defined for all
y < s+ 1 and each of these M;(g;[s] ¢ (s, y)) are members
of P and the input o contains (z,y,), for some y,, for all
x < s; in that case, the learner outputs a canonical program
for

fla) =Y ifz <s, (z,y) € content(c);
"]| 2, otherwise; where (s, z) € content(c).

and never changes its mind from then onwards. []

It is open at present whether above theorem can be gener-
alized such that, for every A of hyperimmune-free Turing
degree, Cons®™” ¢ RConsPart®"[A]. Similarly, it is open
whether, for non-high A, Cons”"® ¢ RConsPart®"®[A].

7 Learning Partial Functions

In this section we consider learning of partial functions. In
this situation, the input to the learner is a text for the par-
tial function. For learnability, instead of requiring the learnt
program e to be a program for 1 we require it to be a pro-
gram for an extension of 7. (This learnt program is the final
program obtained in the limit, for Ex-learning, and the pro-
gram output infinitely often for Part-learning.) The notion
of consistency is as before.

The learnt program above may be required to be a par-
tial extension or total extension of the input; by a result of
Gold [10] it is impossible to avoid extensions when learning
all partial-recursive functions, even if one uses a very strong
oracle. The two theorems below consider each of these pos-
sibilities.

Theorem 20 For learning partial functions by partial exten-
sions, P € ConsPart®’[A] iff K <1 A.

Proof. (=) Suppose by way of contradiction that X' £ A
and M ConsPart®’[A]-learns P from arbitrary texts. Note
that M must be total and consistent on all members of SEQ.
Define A-recursive function g as follows.

g4(min({s : Yo € SEQ with |o| < 2n
and content(c) C {(z,y) : y < z,x < n}
[content(0) € @ar4(e),s]})
Let n(z) = min(N — {¢c ¢, () (7) : e < z}) (here n(z) is
undefined, if ¢, (z)1).

Now as K £ A, g%(z) < ®,(2) < oo for infinitely
many z € K. Let ug, u1, ... be an ascending listing of these
numbers z. Now consider M on the input text (ug, 7(uo)),
(z0,n(x0)), (u1,n(u1)), (w1,m(21)), ..., where xg, x4, . . .is
an ascending list of the domain of 7.

As M Part®-identifies 7, there is a number e which is
output infinitely often on the above text. If n > e and e is
output after (u,,,n(uy,)) or (z,,n(x,)) then

n) =

® Ve gA(u,)(Un) = n(uy,), by definition of g and consis-
tency of M, and

o n(u,)| # Pe b, (un) (Un), by definition of 7.

But this contradicts g (u,,) < @y, (uy).

(<) Using oracle for K, one can check consistency. Thus,
one can convert any partial learner M (without oracles) for
P to a consistent partial learner M’ by outputting the output
of M, if it is consistent, and some new program (not output
earlier) consistent with the input, otherwise. As P € Part®"®
(see [18]) the direction (<«=) follows. [J

Theorem 21 Let P = {neP: (3f € R)[n C fl}.
For learning partial functions by total extensions, P &€
ConsPart®™°[A] iff A is high.

Proof. The necessity of A to be high follows from Corol-
lary 9.

To see that P € ConsPart”b[A], for high A, consider
the following learner.

Let H be an A-recursive function such that, for all 7 € N,
limg o HA(i,t) = 1if ¢; is total, and lim;_, oo HA(i,t) =
0 if ¢; is not total.

The learner, on input o, outputs the first ¢ found such that:
(a) content(o) C ¢,
(b) there exists a t > |o| with H4(4,t) = 1 and

(c) for all j < 4, either there exists a t > |o| such that
HA(j,t) = 0, or there exists (z,y) € content(c) such

that p;(z)| # y.

It can be easily verified that the above learner witnesses P €
ConsPart®™’[A]. O

8 Conclusion

In this paper we considered consistent partial identification
of functions. We gave several characterizations about which
oracles allow a learner to consistenly partially identify all the
recursive functions. In particular, Theorem 6 showed that the
class R of all recursive functions can be ConsPart®"[A]-
identified (TConsPart“"[A]-identified, RConsPart“"[A]-
identified) iff A has a hyperimmune Turing degree. Fur-
thermore, Corollary 9 showed that R can be ConsPart®’-
identified (TConsPart®"°[A]-identified, RConsPart*"*[A]-
identified) iff A is high. Additionally, some characterizations
of TConsPart“*"[A] and TConsPart""’[A]-learnability in
terms of A-recursive functions being, infinitely often or al-
most always, above the time to compute the function to be
learnt were obtained for arbitrary oracles A, see Theorem 6
and Theorem 8. Theorem 11 showed that ConsPart“*"[A] C
ConsPart“"[B] iff B has hyperimmune Turing degree or
A <7 B’ and ConsPart®"[A] C ConsPart“"[B] iff B
has hyperimmune Turing degree or A <p B @ K.

We also compared learning from canonical versus arbi-
trary texts, and showed in particular that there are oracles A
for which TConsPart®™® degree is trivial but TConsPart“*"
degree is omniscient. This is in particular true for an oracle
A which is 1-generic and satisfies A <p K.

We also showed relationships between various consistent
partial identification criteria without oracles and compared
them with Be and Ex-learning criteria. In particular, there
are classes which can be TConsPart“"-identified but not
Bce-identified. On the other hand, there are classes which
can be Ex-identified with one mind change, but cannot be
ConsPart“*"-identified.

One of our surprising results, see Theorem 8, is the equiv-
alence TConsPart®”® = TCons®"’. It is an open problem
whether this also holds for the other consistency criteria: Is
RConsPart”® = RCons”? and ConsPart®® = Cons®"*?
These equivalences do not hold for learning from canonical
text.

Acknowledgments. We would like to thank Thomas Zeug-
mann for discussions on the topics of this paper. We also
thank the anonymous referees for several helpful comments.

References

[1] Lenny Adleman and Manuel Blum. Inductive infer-
ence and unsolvability. The Journal of Symbolic Logic,
56:891-900, 1991.

[2] Janis Barzdins. Inductive inference of automata, func-
tions and programs. In Proceedings of the 20th In-
ternational Congress of Mathematicians, Vancouver,
pages 455-560, 1974. In Russian. English translation
in American Mathematical Society Translations: Series
2,109:107-112, 1977.

[3] Janis Barzdins. Two theorems on the limiting synthesis
of functions. In Theory of Algorithms and Programs,
vol. 1, pages 82—88. Latvian State University, 1974. In
Russian.

[4] Lenore Blum and Manuel Blum. Toward a mathemati-
cal theory of inductive inference. Information and Con-
trol, 28:125-155, 1975.

[5] Manuel Blum. A machine-independent theory of the
complexity of recursive functions. Journal of the ACM,
14:322-336, 1967.

[6] John Case and Carl Smith. Comparison of identifica-
tion criteria for machine inductive inference. Theoreti-
cal Computer Science, 25:193-220, 1983.

[7] Lance Fortnow, William Gasarch, Sanjay Jain,
Efim Kinber, Martin Kummer, Steven Kurtz, Mark
Pleszkoch, Theodore Slaman, Robert Solovay and
Frank Stephan. Extremes in the degrees of inferabil-
ity. Annals of Pure and Applied Logic, 66:231-276,
1994.

[8] Richard Friedberg. Three theorems on recursive enu-
meration. Journal of Symbolic Logic, 23(3):309-316,
1958.

[9] William Gasarch and Mark Pleszkoch. Learning via
queries to an oracle. Proceedings of the Second An-
nual Conference on Computational Learning Theory
(COLT), 214-229, 1989.

[10] E.Mark Gold. Language identification in the limit. In-
formation and Control, 10:447-474, 1967.

[11] Gunter Grieser. Reflective inductive inference of re-
cursive functions. Theoretical Computer Science A,
397(1-3):57-69, 2008. Special Issue on Forty Years
of Inductive Inference. Dedicated to the 60th Birthday
of Rolf Wiehagen.

[12] Sanjay Jain, Daniel Osherson, James Royer and Arun
Sharma. Systems that Learn: An Introduction to Learn-
ing Theory. MIT Press, Cambridge, Massachusetts,
second edition, 1999.

[13] Klaus Peter Jantke and Hans-Rainer Beick. Combining
postulates of naturalness in inductive inference. Jour-
nal of Information Processing and Cybernetics (EIK),
17:465-484, 1981.

[14] Martin Kummer and Frank Stephan. On the structure of
degrees of inferability. Journal of Computer and Sys-
tem Sciences, Special Issue COLT 1993, 52:214-238,
1996.

[15] Donald Martin. Classes of recursively enumerable sets
and degrees of unsolvability. Zeitschrift fiir Mathema-
tische Logik und Grundlagen der Mathematik, 12:295—
310, 1966.

[16] Piergiorgio Odifreddi. Classical Recursion Theory.
North-Holland, Amsterdam, 1989.

[17] Piergiorgio Odifreddi. Classical Recursion Theory,
Volume II. Elsevier, Amsterdam, 1999.

[18] Daniel Osherson, Micheal Stob and Scott Weinstein.

[19]

(20]

(21]

[22]

Systems that Learn: An Introduction to Learning The-
ory for Cognitive and Computer Scientists. MIT Press,
1986.

Hartley Rogers. Theory of Recursive Functions and Ef-
fective Computability. McGraw-Hill, 1967. Reprinted
by MIT Press in 1987.

Robert 1. Soare. Recursively Enumerable Sets and
Degrees. A Study of Computable Functions and Com-
putably Generated Sets. Springer-Verlag, Heidelberg,
1987.

Rolf Wiehagen and Walter Liepe. Charakteristis-
che Eigenschaften von erkennbaren Klassen rekursiver
Funktionen. Journal of Information Processing and
Cybernetics (EIK), 12:421-438, 1976.

Rolf Wiehagen and Thomas Zeugmann. Learning and
consistency. Algorithmic Learning for Knowledge-
Based Systems, GOSLER Final Report, Springer LNAI
961:1-24, 1995.

