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Abstract

We study the negative consequences of selfish behavior ingested network and economic means
of influencing such behavior. We consider the model of seliting defined by Wardrop [30] and
studied in a computer science context by Roughgarden amtb3dP6]. In this model, the latency
experienced by network traffic on an edge of the network isretfan of the edge congestion, and
network users are assumed to selfishly route traffic on mimirtatency paths. The quality of a routing
of traffic is measured by the sum of travel times (tbil latency.

It is well known that the outcome of selfish routing Kash equilibriun) does not minimize the
total latency and can be improved upon with coordinationaAaient strategy for improving the selfish
solution is the principle omarginal cost pricingwhich asserts that on each edge of the network, each
network user on the edge should pay a tax offsetting the atiogeeffects caused by its presence.
By pricing network edges according to this principle, theffitiency of selfish routing can always be
eradicated.

This result, while fundamental, assumes a very stiommogeneitproperty: all network users are
assumed to trade off time and money in an identical way. Tlheaniee also ignores both the algorithmic
aspects of edge pricing and the unfortunate possibilityahaefficient routing of traffic might only be
achieved with exorbitant taxes. Motivated by these shamings, we extend this classical work on edge
pricing in several different directions and prove the falliog results.

e We prove that the edges of a single-commaodity network caayavibe priced so that an optimal
routing of traffic arises as a Nash equilibrium, even for v@eperal heterogeneous populations of
network users.

e When there are only finitely many different types of netwoskrs and all edge latency functions
are convex, we show how to compute such edge prices effigientl

e We prove that an easy-to-check mathematical condition erptpulation of heterogeneous net-
work users is both necessary and sufficient for the existehedge prices that induce an optimal
routing while requiring only moderate taxes, and mentiomseguences.
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1 Introduction

Selfish Routing and Edge Pricing. We study the negative consequences of selfish behaviororiet
and economic means of influencing such behavior. We focussimale model ofselfish routing defined

by Wardrop [30] and first studied from a computer sciencegaative by Roughgarden and Tardos [26]. In
this model, we are given a directed network in which each @dgsesses a latency function, describing the
common delay experienced by all traffic on the edge as a famcti the edge congestion. There is a fixed
amount of traffic wishing to travel from a source verteto a sink vertex; as in earlier works, we assume
that the traffic comprises a very large population of usershat the actions of a single individual have
negligible effect on network congestion. We measure thditgjue an assignment of traffic te-¢ paths by
the resulting sum of all travel times—thetal latency We assume that each network user, when left to its
own devices, acts selfishly and routes itself on a minimuenley path, given the network congestion due
to the other users. In general such a “selfishly motivatedigasnent of traffic to paths (dash equilibriun
does not minimize the total latency; put differently, theamme of selfish behavior can be improved upon
with coordination.

The inefficiency of selfish routing (and of Nash equilibrianengenerally) motivates strategies émping
with selfishness-methods for ensuring that noncooperative behavior reguli socially desirable outcome.
For selfish routing, an ancient strategy—discussed inflyyraa early as 1920 [22]—imarginal cost pric-
ing. The principle of marginal cost pricing asserts that on esige, each network user on the edge should
pay a tax equal to the additional delay its presence causd¢lsd@ther users on the edge. Several decades
later, researchers showed that this principle leads todhewing rigorous guarantee [4]: assuming all
network users choose routes to minimize the sum of the lptexgerienced and taxes paid, it is possible
to levy a tax on each network edge so that the resulting Nasftitergqum achieves the minimum-possible
total latency. Briefly, the inefficiency of selfish routingncalways be eradicated by pricing network edges
appropriately.

This guarantee, while fundamental, is unsatisfying in ssuespects. First, it assumes a very strong
homogeneityroperty: even though the model assumes a very large nurhibetwork users, all users are
assumed to trade off time and money in an identical way. Hawlshedges be priced with heterogeneous
network users? Second, the guarantee ignoresgjoeithmicaspect of edge pricing: how can edge prices be
efficiently computed? When many different sets of edge piiteduce a minimum-latency Nash equilibrium,
can we efficiently compute the “best” one? Finally, this tesusingle-minded in its pursuit of a routing
minimizing the total latency, and ignores the possibilitgttexorbitant taxes may be required to achieve such
a routing. When can the edges of a network be priced so thdfieiert routing results and, in addition, the
disutility of network users due to taxes is small?

Our Results. In this paper, we address these three issues and provelgegeilts about pricing networks
with heterogeneous users. We model heterogeneity in theniolg simple way: we associate to each
network user a scalaix(a) and assume thatseeks to minimize the latency it experiences pigs) times
the money it is required to pay. In the classical setuf,) = 1 for all usersa. Introducing the functiorny
allows the full spectrum of time vs. money tradeoffs, withnaadl value ofa(a) corresponding to a large
sensitivity to time, and a large value indicating sengigitd money. In this model, we prove the following.

e We show that for an arbitrary (single-commodity) networkl arheterogeneous community of traffic
in which all network users have some sensitivity to taxe&:) > 0 for all a), network edges can
be priced so that a minimum-latency routing of traffic arisssa Nash equilibrium. Thus, even
with heterogeneous traffic, optimally chosen edge taxesufesiently powerful to eliminate all of
the inefficiency of selfish routing. We remark that this résldesnot follow from the principle of
marginal cost pricing and is instead proved with a noncoestre fixed-point theorem.



e Under the additional assumptions that the functiotakes on only finitely many distinct values and
that all network latency functions are convex, we show howampute a set of optimal edge prices.
Such taxes need not be unique, and we prove that the set gftatiad taxes can be explicitly de-
scribed by a small set of linear inequalities; this desmpipermits optimization of a secondary
linear objective function, such as minimizing the taxeglgmi network users.

e We give a precise mathematical characterization of thetiome . for which a minimum-latency
routing of traffic can always be induced with small disufiltb network users due to taxes. As a
consequence, we find that in many settings, including thesidal model where(a) = 1 for all a,
inducing the minimume-latency routing can require extrgnoelstly taxes.

Related Work. The problems of analyzing and influencing selfish behavige ieeen extensively studied
by many different communities; even restricting attentimthe computer science literature, there are far too
many works to enumerate here. In what follows, we will discasly the results on pricing and on selfish
routing that are closest to the present work.

As discussed above, the model of selfish routing studied Wwasefirst defined by Wardrop [30] and
has been extensively studied ever since (see [25] for mamg neferences). Beckmann et al. [4] showed
that marginal cost taxes produce a minimum-latency routihtraffic whena(a) = 1 for all usersa.
This is accomplished by a simple application of the KarusiimkTucker theorem (see e.g. [21]) to an
appropriate convex program. Marginal cost pricing has bésmn studied with heterogeneous network users;
unfortunately, extending the techniques of [4] to this mgeaeral setting requires users with different
values to payifferent taxe®n the same edge [10, 28]. This solution is obviously unfgdtig as the number
of different user types grows large (indeed, we will in gaheonsider functions: taking on infinitely many
different values); moreover, this scheme requires knogdeaf a user’s type when it traverses an edge, to
charge it an appropriate tax. By contrast, we are seekinguic@owith asingletax placed on each edge; as
we will see, implementing this more ambitious goal requaaaathematical approach quite different from
that of marginal cost pricing.

The problem of optimally pricing shared resources has alstivated a large body of work in both the
welfare economics literature (see e.g. [19]) and by the odiwg community (see e.g. [17]). While work
in the networking literature has not considered our modeletfish routing, the scope of previous work in
economics is sufficiently broad to encompass the heterogeneaffic model considered here. However,
the general techniques of welfare economics for optimigiriges provide no method to ensure that such
prices can induce a selfish solution that is as socially delgiras the best cooperative outcome. By contrast,
our central existence theorem asserts that optimal tawesalsuffice to induce the best coordinated routing
of traffic.

Researchers have also studied how to compute optimal BXesently computing marginal cost prices
in the classical setup of homogeneous network traffic tutidmbe straightforward (via convex program-
ming) [4], but more general models and goals have also begliest The emphasis of work in the eco-
nomics literature has unfortunately been on general-par@migorithms that need not run in polynomial
time [19], even when specialized to the edge pricing problemnsidered in this paper. The transporta-
tion science community has recently made significant pasgir efficiently computing and characterizing
taxes that induce a minimum-latency routing of traffic [5, 18, 16]. This work considers only the case of
homogeneous traffic, but forms the basis of the algorithesailts in this paper.

The disutility to network users of edge pricing has appdydigen largely ignored in previous work. Our
approach is similar in spirit to work of Archer and Tardos3Pon “frugal mechanisms”—mechanisms (such
as auctions) that solve an optimization problem in an ineertompatible way and also make use of only
moderate incentives. In the context of selfish routing, evimus work [8] we studied the optimization prob-
lem of computing taxes that induce a Nash equilibrium witmimum-possible user disutility (accounting



for disutility due to both latency and taxes), for the casa@hogeneous traffic. In [8], we showed that this
optimization problem essentially reduces to the netwosigifeproblem of avoiding Braess’s Paradox [23]
and is hard to approximate to within any reasonable factor.

Organization. Section 2 formally introduces our model and states soméngiredries. In Section 3 we
show that edge taxes always suffice to induce a minimumdsgteouting of traffic, even when network
users are heterogeneous. In Section 4 we show how to comptltdaxes in networks with convex latency
functions when there are only finitely many different typésusers. In Section 5 we study the disutility
caused by these taxes, and characterize the user digribdtr which this disutility is small.

2 Preliminaries

Congested Networks and Flows. We consider a directed grajgh= (V, E') with sources and sinkt. We
denote the set of simplet paths inG by P, which we assume is nonempty. We allow parallel edges but
have no use for self-loops. There is one unit of traffic wighim travel froms and¢, modeled as the unit
interval [0, 1] endowed with Lebesgue measuré Each pointa < [0, 1] will be called anagent and is
thought of as a noncooperative and infinitesimal unit oficaf

By aflow, we mean a Lebesgue-measurable funcfiori0, 1] — P describing who goes where. There
are two ways to ignore some of the information provided by & tio recover more familiar combinatorial
objects. A flow naturally inducesfiow on pathswhich we define to be the vect¢¥r} pcp indexed bys-t
paths, withfp = A({a € [0,1] : f(a) = P}) the amount of traffic assigned to the patby f. A flow on
paths then inducesflow on edgesdefined as a vectdif, }.c z on edges withf. = > ... p fp the amount
of traffic using edge: en route froms to ¢. A flow on edges may correspond to many different flows on
paths, and a flow on paths corresponds to many different flows.

The networkG suffers from congestion effects; to model this, we assunoh eglgee possesses a
nonnegative, continuous, nondecreadeigncy functior?, that describes the delay incurred by traffic on
e as a function of the edge congestign The latency of a patl® in G with respect to a flowf is then
given bylp(f) = > .cple(fe). We measure the quality of a flow by itstal latencyL(f), defined by
L(f) = > peptp(f)fp or, equivalently, byL(f) = > . Lc(fe)fe. Evidently, any two flows inducing
the same flow on edges have equal total latency. We will cativa fhinimizing L(-) optimal or minimum-
latency such a flow always exists, for the set of flows on edges is a aohget and.(+) is continuous.

Finally, we will allow a set of nonnegativaxes{ . }.c to be placed on the edges of a netw6tkWe
denote the resulting network with taxes &§. We will call a triple of the form(G, ¢, o) or (G", ¢, ) an
instance

Nash equilibria. We now discuss how agents react to edge pricing. We assumeagdbata has a
money/time valuation ratio af(a). Thus, if a set- of taxes are placed on the edges of a network, agent
seeks a shortestt path relative to edge lengtifs(f.) + a(a)7.. We will assume that agents are sorted in
order of money-sensitivity, so that: [0, 1] — [0, cc] in @ nondecreasing function. We calla distribution
function We do not want to assume that distribution functions arentded, and therefore permit functions
a with a(1) = +o00; however, we will always assume thais finite on|0, 1).

We assume that noncooperative behavior results in a Naslibeégm—a “stable point” in which no
agent has an incentive to unilaterally alter its strategy,(its route froms to t). To make this precise, let
ch(f,7) = Lp(f) + a(a)Tp denote agent’s evaluation of pathP relative to taxes and latencies with
respect to the flowf, whererp = > __p 7e.

Allowing an arbitrary rate: > 0 of traffic requires only cosmetic changes to this paper.



Definition 2.1 A flow f : [0,1] — P is at Nash equilibriunor is aNash flowfor instance(GT, ¢, «) if for
every agent € [0, 1] and pathP € P,

C(}(a) (f> T) S CaP(f> T)' (l)

If (1) holds for agent:, we will say thatu is routed on a®*-minimum path (with the dependence frandr
understood). Existence of Nash flows follows from, for examiie quite general results of Schmeidler [27,
Thm 2].

Proposition 2.2 Any instancd G, ¢, «) admits a flow at Nash equilibrium.

Proposition 2.2 is reassuring, but gives us little insigib ihow Nash flows differ from arbitrary mea-
surable functions of0, 1]. We intuitively expect Nash flows to exhibit the followingcei structure. Agents
a € [0, 1] with a near 0, who value time far more than money, should be routedpath with very small la-
tency but possibly very large tax; agents slightly farth@agfrom 0 should route themselves on a path with
somewhat larger latency and somewhat smaller tax; at thex etireme, agents near 1—the biggest misers
of all—should be routed on a path that may have large latentpdssesses near-zero taxes. Motivated by
this discussion, we make a definition.

Definition 2.3 A flow f at Nash equilibrium iG7, ¢, «) is canonicalif:

(a) For any pattP € P, the agents assigned foby f form a (possibly empty or degenerate) subinterval
of [0, 1].

(b) If a1 < ag, thenlyq ) (f) < Lfiay)(f)-

(C) If a1 < ag, thean(m)(f) > Tf(ag)(f)'

Thus a canonical Nash floysplits [0, 1] into a finite number of subintervals (at most one pepath), in-
ducing an ordering on the paths to whitkssigns traffic that is nondecreasing in latency and nosésing
in taxes.

We have the following strengthening of Proposition 2.2.

Proposition 2.4 Every instancéG™, ¢, «) admits a canonical flow at Nash equilibrium.

The proof of Proposition 2.4 is essentially just a “rearemegnt” argument and shows the stronger statement
that an arbitrary Nash flow can be reorganized into a canboi@without changing its cost or the induced
flow on paths. The details are somewhat tedious and are onfrithen this abstract.

The uniqueness of Nash flows is not so universal. However,ave the following reasonably strong
uniqueness result whentakes on only finitely many values (i.e., whens a step function).

Proposition 2.5 If « takes on only finitely many values arfd, 2 are flows at Nash equilibrium for
(G™, 4, ), thenl (fl) = ¢.(f?) for all edgese. If in addition all latency functions are strictly increas-
ing, thenf! and f2 induce identical flows on edges.

We prove Proposition 2.5 using techniques from convex amogning. The approach is similar to that of
previous works [12, 25] and is therefore omitted from thistedct. Proposition 2.5 is also known to hold
for general distribution functions whenG is a set of parallel links [18, Prop 3.3]; we suspect that itho
for generalv and general network§, but have been unable to verify this.



Example 2.6 Consider a two-node network with two links, 1 and 2. If thekirhave latency functions
¢1(z) = z andly(z) = 1, then in the absence of taxes a flow at Nash equilibrium assitjtout a measure-
zero set of agents to the first link; in a canonical Nash flolagénts, except pOSSIb|y for agent 1 are
assigned to the first link. By contrast, the flow on edges ieduzy any optimal flowf is fl = f2 = —.

By placing a tax on the first link, we can discourage selfismtgyffom using it and alter the set of flows at
Nash equilibrium. ldeally, we seek a tax, that will be a fumrctof the distributiona of agent preferences,
that deters precisely half of the traffic (the half with gesdtsensitivity to taxes) and therefore induces a
minimume-latency routing. In the next two sections, we willdy how to find such taxes.

3 Existence of Optimal Taxes

In this section we show that carefully chosen edge pricegcadicate all inefficiency due to selfish routing,
even in the presence of agent heterogeneity. More precieelgn instancéG, ¢, o), call a setr of taxes
optimal if there is a minimume-latency rovf and a flowf™ at Nash equilibrium foG", ¢, «) so thatf
and f7 induce identical flows on edges; it follows thAt is also a minimum-latency flow. The classical
guarantee of marginal cost pricing states that, whes everywhere equal to 1 and all latency functions
are differentiable, the taxes = f. - £.(f.) for all edgese are optimal (where’, denotes the derivative of
) [4]. Here, we show that every instan@@, ¢, «) admits an optimal tax, assuming only that all traffic has
nonzero sensitivity to edge taxes (i.e., thét) > 0 for all agents:). Before proving this general result, we
consider a seemingly very special type of instance.

3.1 Well-Behaved Instances

In this subsection, we will consider an instari€é ¢, «) that satisfies four assumptions, and will call such
an instancevell behaved

(A1) G is adirected acyclic graph admitting a minimum-latency flf)with fe > (0 for all edgese.

(A2) Latency functions are “uniformly strictly increasinign the sense that for some> 0, £ (y) —le(x) >
0(y — x) for any edge: and anyy > = > 0.

(A3) The distribution functiorw is a step function, taking on only finitely many values.
(A4) The distribution functior satisfiesw(0) > 0; thus all agents have some sensitivity to taxes.

We will remove the first three assumptions in the next submectA little reflection shows that if a distri-
bution function fails to satisfy the assumption thdt:) > 0 whenevera > 0, an assumption only slightly
weaker than (A4), then there are instances (even resgittitwo-node, two-link networks) in which opti-
mal taxes do not exist.

We next prove that well-behaved instances admit optimadgaXOur proof will proceed in two parts.
The first part constructs a continuous “update map”, whigbgaets of taxes to intuitively “better” sets of
taxes. We will apply Brouwer’s fixed point theorem to showttihés update map has at least one fixed point.
This type of argument is quite standard in economics and ghewy; in particular, Nash’s theorem on the
existence of Nash equilibria in non-zero sum finite matrirnga can be proved in this way [20]. To finish
the proof, we must show that fixed points of the update mapherelésired sets of optimal taxes. Unlike
many fixed-point arguments in game theory (including thahaproof of Nash’s theorem [20]), this fact is
not at all obvious in our application; to prove it, we will mealletailed use of the combinatorial structure of
the underlying network.

Let (G, ¢, «) be a well-behaved instance, affica minimum latency flow withf, > 0 for all edgese
(assumption (Al)). For motivation, consider a taxhat need not be optimal. Since the instance is well
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behaved, Proposition 2.5 implies that all flows at Nash éayuiim for (G™, ¢, o) induce the same flow on
edges{fl}ecp. If fT = fe for all edgese, then is an optimal tax; if not, we wish to modify in a
way that steers the Nash flow towafd A natural heuristic is to increase the tax on edges viijth> fe

and decrease the tax on edges wfifh < fe. To apply a fixed-point theorem, we must also ensure that
our candidate tax vectors remain bounded throughout atramspnumber of iterations of our update map.
Based on this discussion, we define our update mag follows, wherél" is a large upper bound on the
maximume-allowable tax, to be chosen later:

r(r). = min { 7,max {0, (7. + - )

The mapl’ is well defined becausgr, ¢, «) is well behaved; in particularf] is uniquely defined by for
each edge, andf. > 0 for all edgese.

Proposition 3.1 The mad : [0, T)¥ — [0, T|¥ is continuous.

Proof Sketch. It suffices to prove that the map+— {f7 }.cg is continuous. Under assumptions (A2) and
(A3), this follows from a theorem of Dafermos and Nagurnely, [Thm 3.1] after applying a straightforward
reduction of Dafermos [3]. =

By Brouwer's fixed-point theorem [66], we have the following corollary.

Corollary 3.2 The mad : [0, 7] — [0, T]¥ has at least one fixed point.

It remains to show that a fixed point ®f is an optimal tax for the well-behaved instan@g, ¢, «).
Toward this end, let be a fixed point of". By the definition ofl", we can classify the edges Gfinto one
of three types with respect tg as follows: good if f7 = f.; oversaturatedif fr> f. andt, = T; or
undersaturatedif f7 < f. andr, = 0. We will call 7 agoodfixed point if all edges are good w.r#, and
abadfixed point otherwise. Writind, ., for max.cg ¢.(1) andn for the number of vertices a@F, our key
lemma is the following.

Lemma 3.3 If T > 3n3(,,,../a(0), thenl” has no bad fixed points.

The main theorem of this subsection follows immediatelyrfioemma 3.3 and the definitions.

Theorem 3.4 A well-behaved instance admits an optimal set of taxes.

We now discuss Lemma 3.3 and its proof, the details of whichbeafound in Appendix A. The lemma
should be intuitively plausible; in any bad fixed point, sotradfic inexplicably uses heavily taxed edges
instead of tax-free, undersaturated alternatives. On tlher thand, these oversaturated and undersaturated
edges can be scattered throughout the network in an aybitray; for this reason, making this intuitive
argument precise takes some work.

The proof of Lemma 3.3 hinges on defining an appropriate ordem the vertices ofr; this idea was
also used, for different purposes, in [23]. To describe ttup@rties we desire of this ordering, It be
a Nash flow for the well-behaved instan@@™, ¢, «) and, for a vertex, let d(v) denote the length of a
shortests-v path, usingr as edge lengths. The proof approach of Lemma 3.3 (see AppAhdnotivates
an ordering satisfying:

(P1) if f7 > 0 with e = (v, w), thenw follows v in the ordering

(P2) d-values of vertices are nondecreasing in the ordering.



SinceG and hencef” are acyclic, these two properties would be jointly attaieaball agents chose-

t paths with minimum-possible tax (see [23]); because of #ierogeneity of agent objective functions,
however, (P1) and (P2) can be mutually exclusive goals. &temmas of Appendix A show that, on the
other hand, it is possible to achieve (P1) whalgproximatelysatisfying (P2). This weaker statement turns
out to be sufficient to prove Lemma 3.3. Intuitively, this Wearesult is possible since for sufficiently
large taxes all agents are, to first order, choosing minintaxrpaths; edge latencies are only a second-order
effect. With all agent objective functions approximatetyual, we can define an ordering satisfying (P1)
and a relaxed version of (P2).

3.2 General Instances

In this subsection, we show that any instai€ég ¢, «) with «(0) > 0 admits a set of optimal taxes. To do
this, we remove assumptions (A1)—(A3) of the previous sciiim@ one by one.

The assumption that is directed acyclic and thdt7, ¢, /) admits an optimal flowf with f. > 0 on
every edge is easy to remove; without loss of generdliiy/, o) admits an acyclic optimal flow and edges
with f. = 0 can be effectively “deleted” with a sufficiently large taxetails are given in Appendix A.

Lemma 3.5 An instance satisfying assumptions (A2)—(A4) admits aimaptet of taxes.

We next remove assumption (A2), that latency functions aitoumly strictly increasing. The proof
approach is to approximate more general latency functioitts umiformly strictly increasing ones, and
conclude with a limiting argument. Again, details are pdad in Appendix A.

Lemma 3.6 An instance satisfying assumptions (A3)—(A4) admits aimaptet of taxes.

For our most general result, we approximate arbitrary ibision functions with step functions, and
apply a limiting argument. The proof is similar to that of Lera 3.6, and we omit it from this abstract.

Theorem 3.7 If instance(G, ¢, o) satisfiesx(0) > 0, then it admits an optimal set of taxes.

Remark 3.8 A tax 7 is by definition optimal for(G, ¢, «) if someflow at Nash equilibrium foG™, ¢, «)
induces the same flow on edges as an optimal flow and is thenefimimum-latency. The uniqueness asser-
tion of Proposition 2.5 implies that, so long as the distiifufunctiona takes on only finitely many values,
all Nash flows induced by an optimal tax are minimum-latency. YWakof no analogous uniqueness result
for more general distribution functions (although we sas$jleere is one to be discovered); it is therefore
conceivable that in an instance with a general distribufiimttion, some Nash flows induced by an optimal
tax fail to be minimum-latency.

4 Computing Optimal Taxes

The existence results of the previous section are highhcastructive. Theorem 3.4, asserting the exis-
tence of optimal taxes for well-behaved instances, relieBmuwer’s fixed point theorem, and no efficient
algorithms for finding Brouwer fixed points are known (see ELE]). The extensions to Theorem 3.4 given
in Subsection 3.2 require further nonconstructive argus@ng., extracting a convergent subsequence from
a sequence in a compact set). In this section, we use the dubtigy of Bergendorff et al. [5] (who only
considered agents with identical objective functions) simav how to efficiently compute optimal taxes for
an instance with finitely many different types of agents amavex edge latency functiordsin fact, we will

2Throughout this section, we assume some reasonable egcofilatency and distribution functions; see F4.1] or [25,
§5.2] for typical approaches. We assume that a distributioictfon that is a step function with steps require§(k) input bits to
describe.



show this in a very strong way: we will prove that the set ofiropt taxes can be explicitly described by
a polynomial-size set of linear inequalities. Thus an optitax can not only be efficiently found, but in
fact the optimal tax that optimizes some secondary linegatiie function, such as minimizing the taxes
paid by network users, can also be computed efficiently. & besstructive results complement and do not
subsume the existence theorems of Section 3, even in thiakpase of finitely many distinct agent types;
on the contrary, these existence results provide the selgace that our linear description of the set of
optimal taxes describes a non-empty set!

It can be shown that the existence of an efficient algorithgotopute an optimal tax or an optimal flow
in a network with arbitrary continuous, nondecreasingrieyefunctions implies P=NP (proof deferred to
the full version). To circumvent this difficulty, in this 9esn we assume that all network latency functions
are convex. Under this assumption, the total lateh¢y is a convex function and an optimal flow can
be computed efficiently using convex programming-his assumption is satisfied by most (but not all)
latency functions of interest, including polynomials witbnnegative coefficients and popular queueing
delay functions; see [24] for some specific examples.

We now proceed to our algorithmic results. For an instdii&e, «) in which « takes on a finite number
of valuesa; < --- < ag, we will call the agents with a(a) = «a; theith commodityIf f is a flow for such
an instance, we will Writg‘f}(j) for the number (i.e., Lebesgue measure) of agents of conynodssigned

to the pathP, and similarlyfe(i) for the number of agents of commodityhat use edge in their assigned
routes. We begin with a reformulation of the definition of assNflow, which is an easy consequence of the
fact that all agents in a flow at Nash equilibrium select sgirpaths according to their personal objective
functions.

Lemma 4.1 Let(G, ¢, «) be an instance where takes on a finite number of values < - -- < aj. Then:

(a) a flow on paths{fp} is induced by some flow at Nash equilibrium for™, ¢, ) if and only if it
minimizeszle Zpep[ép(f) + omp]fl(ﬁ) over all possible flows on patHsr};

(b) a flow on edgeg f.} is induced by some flow at Nash equilibrium @&, 2, ) if and only if it
minimizesy*_ Soeplle(fe) + aiTe]fe(Z) over all possible flows on edgé¢g. }.

Lemma 4.1(a) corresponds more directly to the “all agerestsshortest paths” intuition, but Lemma 4.1(b),
which follows easily from the first assertion, will be morefid for our purposes.

Lemma 4.1 provides an extremely handy criterion for prothag a set of taxes is optimal. In particular,
Ietf be an optimal flow for an instandé, ¢, «) in which « is a step function taking on values < --- <
o Define thecostC () of f by 3% | 5™ e (fo) +aire] /. Lemma 4.1 implies that the flow on edges
{fe}eeE is induced by some flow at Nash equilibrium f@ ", ¢, ) if and only if the optimal value of the
mathematical program

k
min Y > [le(fe) + aire] £

i=1ecE
subject to:
(P) ST 3T D = by, vie{l,... khweV
e=(v,w) e=(w,v)
>0 Vec Ei=1,2,...,k

3More exactly, under this assumption an optimal flow can bepded to arbitrary precision in polynomial time. This is the
best that could be hoped for, since an exact description optimal flow may require irrational numbers. We will not diss this
minor detail further in this abstract.



is C(f), whereb; ,, is the number; of agents of commodityif w = ¢, is —r; if w = s, and is 0 otherwise.
Since f andr are fixed, this is a linear program. By an argument similahtt proving Proposition 2.5,
the assumption that all edge latency functions are convetiesithat all optimal flows induce the same
edge latencies; hence, this linear program is independehe @hosen optimal flovf. It follows from this
observation that a tax is optimal if and only if the optimal value of (P) '(é’(f).

We now apply strong LP duality to (P), thereby finding that &rsef taxes is optimal fofG, ¢, «) if
and only if the optimal value of the linear program

k
max Y riz
i=1

subject to:
(D) 20 =0 Vie{l,... k}
2 — 2 < le(fe) + aire Ve =(v,w) € E;i=1,2,...,k

equalsC(f). The optimal value of both (P) and (D) is at m@&tf) (to see this, take'? = 7% for all 4
ande in (P)). Thus a set of taxes is optimal if and only if the following set of equatand inequalities
has a solution irn:

2{) =0 Vie{l,..., k}

Zz(lf)_zt(;i) (fe)‘i’ai're Ve=(v,w) € E,i=1,2,....k
k

Zrzzt ZZ fe +az7_e f(

1=1 1=1 ecE

The number of constraints is polynomialkrand in the size ofr and, since an optimal flow on edges can be
efficiently computed when latency functions are convexsifgtem can be constructed in polynomial time.
The final key observation is this: this system is not onlydinm = for fixed r, but is linear in(z, 7) even
whenr is allowed to vary An optimal tax can thus be found by linear programming; tkistence of such
atax is assured by Theorem 3.7.

We summarize the results of this section in a theorem.

Theorem 4.2 Let (G, ¢, «) be an instance with convex latency functions in whictakes on only finitely
many distinct values. Then a linear description of the tagp8mal for (G, /¢, «) can be computed in
polynomial time. In particular, a set of optimal taxes candoenputed in polynomial time.

5 The Cost of Optimal Taxes

We have shown that optimal taxes exist under quite generalitons (Theorem 3.7). While this answers
a very basic question about the power of edge pricing, Time&& makes no guarantee about the disutility
caused to agents due to such (possibly very large) taxekislsdction, we address this issue.

To account for the disutility caused to agents by taxes, vieneikthe total latency objective function of
Section 2. For a flow for an instancéG", ¢, ), we define theostC|(f, 7) of the flow f by

1
Ctfr) = [ ofr)da

wherech(f, 7) = £p(f) + a(a)Tp (See also Section 2). This definition agrees with that ofiSeet in the
special case when takes on only finitely many different values. The definitiaigotal latencyL(-) and
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costC(-,7) agree if and only ifr = 0. We also note that two different flows inducing the same flow on
paths can have different costs (cf., the simpler total lateneasure).

As we have spent the previous two sections studying taxdsntiramize the total latency of Nash
flows, a natural next goal would be to study taxes that mirentiie cost of Nash flows. Unfortunately, this
optimization problem is provably intractable (assumingt N P) [8]. Instead, we will confine our attention
to the cost of optimal taxes (taxes that induce a minimumeniat flow). Put differently, we investigate the
guestion: how costly is a tax-induced minimum-latency irmf

Our contribution is a complete characterization of theritistion functionsa: for which the disutility
due to optimal taxes is always at most a constant factor ttheeglisutility due to latency—i.e., times the
latency of an optimal flow. We emphasize that this is an exétgratrong guarantee, and that there is no
reason a priori to believe thahydistribution function has this property. To better appaeeihis, we discuss
a modification of Example 2.6. Suppose we replace the latemugtion of link 1 in that example by the
highly nonlinear functior?(x) = P for largep. A simple calculation (see e.g. [26]) shows that, in the
absence of taxes, the total latency (or equivalently, tist) @¥ a Nash flow is arbitrarily larger than that of
a minimum-latency flovxf asp — oo. In this example, the guarantee above has the followingemprence:
even though with no taxes the cost of a Nash flow is arbitréaityer than’ f ), by adding taxes—by making
the cost functiormore severe-we can attain a Nash flow with cost within a constant factak of).* Thus,
for some distributionsy, taxes can improve the cost of a Nash flow by an arbitrarilyddactor.

To begin our analysis, we formalize the guarantee we debmealstribution function.

Definition 5.1 A distribution functiona is p-cheapwith parametep > 1 if the following property holds:
for every instancéG, ¢, o) with «(0) > 0, there is a set of optimal taxes and a minimum-latency flgf¥
at Nash equilibrium fofG", ¢, «) such that

C(]m—»T) < P L(fT)
A distribution function ischeapif it is p-cheap for some finitp > 1.

It is easy to show that not all distribution functions areageln fact, by considering only two-node two-
link networks in which one link has the constant latency fiorc/(x) = 1, we can derive the following
necessary condition grrcheap distributions (see Appendix B for a proof). In outestzent of the condition,
we employ the notatiom(z~) to mean the left limifim,, ;. o(z,) of a distribution functionx at a point
z. This limit always exists because distribution functions assumed nondecreasing, and is equal(tg
whenq is continuous at.

Lemma 5.2 If « is a p-cheap distribution function, then

[ at@da< o= aG - @)

forall z € (0,1).

Condition (2) is in essence a “growth condition”, assertimat o.(a) grows extremely quickly witlu. The
simplest distribution functions satisfying (2) for somédueaof p are the functionsyv(a) = (1 — a)~* for
k> 1.

Remark 5.3 One particular consequence of condition (2) is that a cheésfpiition functiona is un-
bounded (for bounded, the right-hand side of (2) vanishes a9 1). Thus, step functions with finitely
many values are not cheap.

“This arguably counterintuitive effect of taxation is reiairent of the famous Braess’s Paradox [7, 23], but can alsordn
networks in which Braess’s Paradox cannot (such as in nksaafrparallel links).
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Far more remarkable than the necessary condition of Lemgrawhich remains necessary even when
restricting attention to two-node, two-link networks—setfact that condition (2) is alssufficientfor a
distribution to bep-cheap. We state this result next; its proof is postponedpipefdix B.

Theorem 5.4 A distribution functiony with «/(0) > 0 is p-cheap if and only if

[ at@da < (= 1)- 0z - 2
forall z € (0,1).

Remark 5.5 The condition of Theorem 5.4 is quite strong and is not satidfiy most distribution functions,
and thus optimal taxes are in general quite costly. Nonetlsele find it surprising thainy natural distri-
bution function is cheap, and satisfying that cheap distidim functions admit such a crisp mathematical
characterization.
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A Proofs from Section 3

A.1 Proofs from Subsection 3.1

We now implement the program described at the end of SulbseBti.

Lemma A.1 Let(G, ¢, ) be a well-behaved instance, withvertices and/, ., = max.cp ¢.(1). Let taxes
7 induce Nash flowf™, and supposd’ > 3n3(,,../a(0). For a vertexv, let d(v) denote the length of a
shortests-v path, usingr as edge lengths. Suppogg > 0, wheree = (v, w). Then

T

T, — ——.
¢ 3n2

d(w) — d(v)
Proof. Sincef? > 0there is an agent € [0, 1] that uses edgein its s-t path. LetP; be the path that agent
a uses to get from to w. Let P, be ans-w path with minimum-possible tax,(w). Sincef” is a Nash flow,
agenta uses a*-minimum path; thusép, (f7) + a(a)tp, < €p,(f7) + a(a)Tp,. Sincerp, > d(v) + 7
and7p, = d(w), we can derive

dw) = d(v) z e + ﬁ[h(ﬁ) —tp,(f)] 2 7~ ﬁe&(ﬁ) > 7, — ”(f’(g)

SinceT > 3n3l,4./(0), the lemma follows.m

Lemma A.2 Under the assumptions and notation of Lemma A.1, supposeithepathP from v to w with

fI >0forall e € P. Then

d(w) — d(v) > mp — an

Proof. Sum the previous lemma up over all edge$’inm

Given a well-behaved instan¢é&’”, /, o) and a Nash flowf™, an ordering of the vertices @f is good
if it satisfies property (P1) of Subsection 3.1 anduiffollowing v with d(w) < d(v) implies a pathP
from v to w with f7 > 0 on every edge of’. A good ordering can always be constructed, for example by
topologically sorting the vertices @f w.r.t. the edges with f7 > 0 and breaking ties among incomparable
vertices by putting the vertex with smallévalue first. The next lemma proves that a good orderingfiegis
a relaxed version of property (P2) of Subsection 3.1.

Lemma A.3 Suppose, after adopting the assumptions and notation ofrizem 1 and placing a good or-
dering on the vertices @, vertexw follows vertexv in the ordering. Then,

T
3n’

d(w) > d(v)

Proof. Letw follow v in the good ordering. If(w) > d(v) the lemma holds. lfi(w) < d(v), then there
must be a patt® from v to w with f7 > 0 for all e € P. The lemma now follows from Lemma A.2 and the
nonnegativity ofr. m

We can now prove Lemma 3.3.

Proof of Lemma 3.3.Assume for contradiction thdt has a bad fixed point for the well-behaved instance
(G, 4, ) inducing a Nash flowf™. Sincer is bad, f7 # fe for some edge.. As bothf and f7 induce
acyclic s-t flows on edges carrying one unit of flow, it is straightforwandshow that there is at least one
oversaturated edge, say= (v, w).
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We seek undersaturated edges to contrast against thetovatsd edge. We will discover such edges
by looking at a particular type of-t cut. Toward this end, place a good ordering on the vertices. Ve
will write = < y if vertex = precedes (or is equal t@)in this ordering. All statements in the sequel that
assume some ordering on the vertices refer to the ordetir8y theith consecutive cut @, we mean the
partition of G's vertex set into two classes where one class is theifisttices ofG.
Let v andw be theith andjth vertices according tes. Sincef > 0, property (P1) of good orderings
implies thats < v < w =< ¢. It follows thatj > ¢ and that consecutive cuisi + 1,...,5 — 1 are in
fact s-t cuts. Moreover, property (P1) of good orderings and thetfedtthe netf™-flow across any-t cut
is 1 (see e.g. Tarjan [29]) implies that the tofdtflow escaping any of these consecutive cuts is precisely
1. By contrast, the totaf—ﬂow escaping each of these cuts is at least 1 (it may be mioree sur good
ordering need not be a topological one w.r.t. the edgeih f. > 0). That consecutive cutsthrough; — 1
each contain an oversaturated edge (nan®lynplies, by counting, that each such cut also contains an
undersaturated edge. Sincés a bad fixed point of', the tax on each of these undersaturated edges is O.
We next identify a collection of undersaturated edges tbavérs” the consecutive cutshroughj — 1.
Precisely, let; = (v, w;) denote an undersaturated edge crossingttheonsecutive cut. We necessarily
havev; < v;ifin additionw; = w, the process halts. Otherwise, wedgbe an undersaturated edge cross-
ing the consecutive cut whose last source-side vertex isRepeating this process, we obtain a sequence
e1,...,ep of undersaturated edges with= (v;, w;) andw, > w. This process must halt with < » since
the headqwy, ..., w,} of the undersaturated edges are strictly increasing.
We next claim thati(w,) < d(v;) + % This follows directly from a chain of inequalities of two
different types. Firstd(w;) < d(v;) fori = 1,2,...,p since undersaturated edges are untaxed (asa
bad fixed point). The second type of inequality assertsdfa) < d(w;_1) + % fori =2,3,...,pandis
an immediate consequence of Lemma A.3. Interleaving thveséypes of inequalities proves the claim.
We are now prepared to derive a contradiction. Sinces v < w =< wi, two further applications of
Lemma A.3 imply that
T 2 2
d(w) —d(v) < 3 [1 + } 3T,
since we can assume that> 2. On the other hand, sinee= (v, w) is an oversaturated edgg, > 0 and
=T; by LemmaA.l,

d(w) — d(v) > (1_3—;>T2%T.

These two incompatible inequalities provide a contradictshowing that the bad fixed pointannot exist.
[ ]

A.2 Proofs from Subsection 3.2

Proof of Lemma 3.5.Let (G, ¢, «) denote an instance satisfying assumptions (A2)—(A4) of8ction 3.1.
This instance(G, ¢, ) must admit an optimal flowf for which the edges with f. > 0 form a directed
acyclic graph, since removing flow cycles from a flow on edgeg decreases its total latency.

Let G denote the subgraph 6f of edges Withfe > 0. The instanceé, ¢, o) is then well behaved, so by
Theorem 3.4 there is a sebf taxes inducing a Nash floW” for (G7, ¢, a) with f, = f7 foralle € G. Let
T = max_ s T, and extend- to all the edges ofx by settingr, > n(7T" + lrnaz/(0)) Wheneverfe =0,
wherel,,q, = max, gz fe(1).

We claim thatf™ is also a Nash flow fofG™, ¢, «). To prove it, it suffices to show that no agent
wants to use an-t path of G” containing an edge with f, = 0. This holds since agent € [0,1]
experiences personal cost at masét,,,.. + «(a)T) on the pathf™(a), and would incur cost greater than

n(%ﬁmm + a(a)T) > n(lmas + (a)T) on any path of3™ including an edge with f. = 0. m
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We will need a statement slightly stronger than Lemma 3.hénsequel. The proofs of Theorem 3.4
and Lemma 3.5 do not use any properties of the optimum fl@ian instance other than that it is acyclic;
we thus have the following extension of Lemma 3.5 for indgdaeyclic flows that need not be minimum-
latency.

Corollary A.4 Let (G, 4, «) denote an instance satisfying assumptions (A2)-(A4) oé&ution 3.1 and let
f be an acyclic flow. Then there is a sebf taxes and a Nash flof for (G™, ¢, «) such thatf] = f,. for
alle € G.

Proof of Lemma 3.6.Let (G, ¢, «) denote an instance satisfying assumptions (A3)—(A4) of8ction 3.1,
admitting acyclic optimal flowf. For a positive integek and an edge of G, define?* () = £, (z) + £. We
note thatt* — ¢ uniformly on [0, 1)¥. For eachk, the instancéG, ¢*, ) satisfies assumptions (A2)—(A4)
of Subsection 3.1; thougf need not be optimal fofG, ¢*, o), Corollary A.4 applies and there is a sét
of taxes and a Nash flo* for (G™, /%, ) such thatf* = /. for all e € G. By Proposition 2.4, there is
no loss of generality in assumin@ to be canonical (see Definition 2.3).

We next show how the sequencgs®} and{f*} can be chosen to lie in compact subspaces of finite-
dimensional Euclidean space. This is straightforwarddges; inspection of the proofs of Theorem 3.4 and
Lemma 3.5 shows that the maximume-allowable tax can be ce=drby some function that depends only on
n = |V(G)|, bmaez = maxecp Le(1), anda(0). These three parameters remain uniformly bounded over the
sequencd (G, /¥, a)} of instances, so the sequenieé'} of taxes can be chosen to lie in the compact subset
[0, T]¥ of RE, for sufficiently largeT .

Arguing about the sequence of floyg*} is more delicate, since each flow is actually a function define
on the unit interval. However, since each flgi is canonical, it suffices to deal with more elementary
objects. Toward this end, to each canonical flsfwe associate aummary vector® in [—1, 1]7’X{1’2}.

The two components af* corresponding to patl € P describe the left and right endpoints of the interval
of agents assigned tB in f*, or by convention are both -1 if no such agents exist. SiRds a finite
set, summary vectors are finite-dimensional. The canofiwal f* can be recovered front*, up to the
measure-zero set of subinterval endpoints.

The sequencelr*} and{v*} of taxes and summary vectors are sequences in the compaesipa’|”
and[—1, 1]7*{1:2} We can thus select a convergent subsequen¢érpfuy)}. Retaining the original index
scheme for simplicity, this implies the existence of cogeett sequences® — 7 andv* — v, with a
canonical flowf* corresponding te” at Nash equilibrium fotG, ¥, o) for eachk. The sum of subinterval
lengths in each vectar® is one; since these vectors lie in a common finite-dimensispece, this property
is preserved in the limit. It follows that the vectodefines a canonical floy in a natural way. As before,
the route assignments ¢gfare completely determined up to the measure-zero set ofsafext correspond
to endpoints of the subintervals of We will call these agentendpoints Since each flowf* induces the
same flow on edges % so does the flowf. To finish the proof, we need only show thatis at Nash
equilibrium for (G™, ¢, «). We proceed by contradiction.

If f fails to be at Nash equilibrium fdiG", ¢, «) but only endpoints are unsatisfied, then such endpoints
can be harmlessly reassigned to their preferred routesottupe a Nash flow fo(G™, ¢, «) inducing the
same flow on edges g“s Otherwise, an agent € [0, 1] that is not an endpoint is not onc&minimum path
in f; put differently, for some patl? € P,

Cp(f) +ala)tp < Ly (f) + ala)Ts)-

Since(7*,v*) — (7,v), £¢ — ¢ uniformly on[0, 1], a is not an endpoint of, anda(a) < oo, for sufficiently
largek we havef*(a) = f(a) and

(%) + ala)Th < By (fF) + ala) T o)-
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This contradicts thaf* is at Nash equilibrium fofG, ¢*, o), completing the proof.m

B Proofs from Section 5

Proof of Lemma 5.2.Supposex is ap-cheap distribution function. L&t be a two-node two-link network
with links 1 and 2, and withi; (=) = 1. For any real numberg, ¢ € (0, 1) there is a choice for the latency
function ¢; such that any optimal rovf saﬂsﬁesfl = ¢ and/y( fl) = ¢o. The function¢; can be chosen
to be a polynomial (with possibly very large degree), if dedi

Choosey, g2 € (0,1) and?; as above; these choices can be arbitrary so longiasontinuous a; .
This imposes little restriction ofy sincecx, as a nondecreasing function, is discontinuous at onlytediyn
many points. Next, let be an optimal set of taxes fg¢+, ¢, ) and f™ a minimum-latency flow at Nash
equilibrium for (G™, ¢, «) with the properties promised by Definition 5.1. There is r&slof generality in
assuming thaf ™ is canonical (see Definition 2.3). Sinég(f1) = ¢ < 1 = £5(f>) and the Nash flow™
must assign agents to both links (sinf:lee (0,1)), 1 > 7 must hold. Subtracting a common tax from
the two links leaveg™ at Nash equilibrium and only decreage§f”, 1), so there is no loss of generality
in assuming that, = 0. SincefT is canonical and is an optimal tax, agent[@ fl) are assigned to link 1
and agent$f1, 1] are assigned to link 2; sineeis continuous af1, agentf; is indifferent between its two
options. This implies that

G(fH) +alfi)yn =1

and hence, = (1 — ¢1(f1))/a(f1).
Sincea is p-cheap,

fi
L) + /0 a(a)yry da = C(f7.7) < p- L(f7).

Substituting forr; and rearranging, we can derive

fl ~ 1 o
| ata)da < (o= af) [W - ﬁ] .

Sincel; ( fl) can be chosen arbitrarily close to zero for any choicélof/ve find that
| a@da< (o= Da)1 - 2 ()
0

at all pointsz € (0, 1) at whicha is continuous.
Taking left limits in (3) along points at which is continuous, we find that

[ a@da < (0= 1a)i1 -,

for all z € (0,1). Sincea was an arbitraryp-cheap distribution, we have derived the promised necgssar
condition. m

Proof of Theorem 5.4Let o denote a distribution function satisfying0) > 0 and

/0 “afa)da < (p—1) - a(z)[1 - 2] (4)

forall z € (0,1). We will assume for simplicity that is continuous; this assumption can be removed with
minor modifications to the following proof.
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Fix an instancéG, ¢, «); from Theorem 3.7 we know there is some optimal tax. We neitrckome-
thing stronger.

Claim: The instancéG, ¢, «) admits an optimal tax with the property that somet path of G receives
zero tax.

Proof of Claim. Let 7 be an optimal tax fofG, ¢, ), inducing a flowf™ at Nash equilibrium that induces
the same flow on edges as an acyclic minimum—latencyfloﬂiopologically sort the vertices of so that all
flow-carrying edges go forward in the vertex ordering. Bagig with the vertex precedingand proceeding
backwards in the vertex ordering, perform the following rgpien for each vertex # s: if r, > 0 is the
minimum tax on any flow-carrying edge with tail subtractr, from the tax on each flow-carrying edge with
tail v and addr, to the tax on each edge (flow-carrying or not) with head his operation does not affect
the total tax on any-t path used byf™ and can only increase the tax on otBer paths; hence the flow
f7 remains at Nash equilibrium after these modifications. Whensources is reached, subtraet from
the tax on all flow-carrying edges with tail Again, f™ remains at Nash equilibrium. At the conclusion of
these modifications, every vertex with an outgoing flowygag edge has at least one such edge with zero
tax. This implies that somet path—indeed, an-t path of flow-carrying edges—possesses zero mx.

Let 7 be an optimal tax fo(G, ¢, ) that assigns zero tax to somé path, and letf” be a minimum-
latency flow at Nash equilibrium faiG7, ¢, ). We can takef™ to be a canonical flow. LeP;, P, ..., P,
denote the paths to whicf" assigns traffic. In what follows, we will abbreviafg, by f;, Cp,(f7) by ¢,
andrp, by 7.

Sincef7 is canonical, we can assume without loss of generalitythat /o < --- < /,,, thatT) > 75 >
--- > 7, and that the subinterval of agents assigned to patbrecedes (if0, 1]) that of agents assigned
to path P; if and only if ¢ < j. Thus[0,1] is split into p subintervals, with theth subinterval the agents
assigned byf™ to pathP;. With our assumptions and notation in place, we can now whigecost off” in
a manageable form:

PR
C(f7) = ;/Fil[ﬁi—l—a(a)n] da
p F
= L(f )—|—;Ti /Fil a(a) da (5)

whereF; = 23:1 f; denotes the amount of flof” assigns to the paths with index at mestDefining
A; =1 — 141 >0forie{l,2,...,p— 1} andA, = 7,, equation (5) is equivalent to
p F;
CU) =L+ Ai/O a(a) da.
=1
Since condition (4) holddjm.;; a(2) = 400 and there are agents with arbitrarily largevalue. Since
somes-t path is assigned zero tax byand ™ is at Nash equilibrium, it follows that, = 0. Hence,
p—1 F;
C(f7)=L(f7) + ZAZ-/O o(a) da.
=1
By hypothesis (4),

p—1
CUT) < LU +(p=1))_ Aia(Fy)(1 - F), 6)
=1
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We next make further use of the assumption tffats at Nash equilibrium. Since is continuous and
f7 is a Nash flow, for each < p the agentF; is indifferent between the patt#3 and P, ;. Thus,

Ui + a(F;)1i = Ligr + o(F) T

implying that
A,a(E) = €i+1 — EZ

Plugging this equality into (6) we find that

p—1
C(f7) < L(fM)+(p-1) Z(ﬁm —4)(1 - F)
=1
p—1 p
= LUM+ (-1 > filtis1—4)
i=1 j=i+1

p

= L(fN)+(p—1)Y_ filti — 1)
i=2

< LM+ (=1 bl
=1
= p-L(f7),

which completes the proofm
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