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Abstract

We study the negative consequences of selfish behavior in a congested network and economic means
of influencing such behavior. We consider the model of selfishrouting defined by Wardrop [30] and
studied in a computer science context by Roughgarden and Tardos [26]. In this model, the latency
experienced by network traffic on an edge of the network is a function of the edge congestion, and
network users are assumed to selfishly route traffic on minimum-latency paths. The quality of a routing
of traffic is measured by the sum of travel times (thetotal latency).

It is well known that the outcome of selfish routing (aNash equilibrium) does not minimize the
total latency and can be improved upon with coordination. Anancient strategy for improving the selfish
solution is the principle ofmarginal cost pricing, which asserts that on each edge of the network, each
network user on the edge should pay a tax offsetting the congestion effects caused by its presence.
By pricing network edges according to this principle, the inefficiency of selfish routing can always be
eradicated.

This result, while fundamental, assumes a very stronghomogeneityproperty: all network users are
assumed to trade off time and money in an identical way. The guarantee also ignores both the algorithmic
aspects of edge pricing and the unfortunate possibility that an efficient routing of traffic might only be
achieved with exorbitant taxes. Motivated by these shortcomings, we extend this classical work on edge
pricing in several different directions and prove the following results.

• We prove that the edges of a single-commodity network can always be priced so that an optimal
routing of traffic arises as a Nash equilibrium, even for verygeneral heterogeneous populations of
network users.

• When there are only finitely many different types of network users and all edge latency functions
are convex, we show how to compute such edge prices efficiently.

• We prove that an easy-to-check mathematical condition on the population of heterogeneous net-
work users is both necessary and sufficient for the existenceof edge prices that induce an optimal
routing while requiring only moderate taxes, and mention consequences.
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1 Introduction

Selfish Routing and Edge Pricing. We study the negative consequences of selfish behavior in networks
and economic means of influencing such behavior. We focus on asimple model ofselfish routing, defined
by Wardrop [30] and first studied from a computer science perspective by Roughgarden and Tardos [26]. In
this model, we are given a directed network in which each edgepossesses a latency function, describing the
common delay experienced by all traffic on the edge as a function of the edge congestion. There is a fixed
amount of traffic wishing to travel from a source vertexs to a sink vertext; as in earlier works, we assume
that the traffic comprises a very large population of users, so that the actions of a single individual have
negligible effect on network congestion. We measure the quality of an assignment of traffic tos-t paths by
the resulting sum of all travel times—thetotal latency. We assume that each network user, when left to its
own devices, acts selfishly and routes itself on a minimum-latency path, given the network congestion due
to the other users. In general such a “selfishly motivated” assignment of traffic to paths (aNash equilibrium)
does not minimize the total latency; put differently, the outcome of selfish behavior can be improved upon
with coordination.

The inefficiency of selfish routing (and of Nash equilibria more generally) motivates strategies forcoping
with selfishness—methods for ensuring that noncooperative behavior results in a socially desirable outcome.
For selfish routing, an ancient strategy—discussed informally as early as 1920 [22]—ismarginal cost pric-
ing. The principle of marginal cost pricing asserts that on eachedge, each network user on the edge should
pay a tax equal to the additional delay its presence causes for the other users on the edge. Several decades
later, researchers showed that this principle leads to the following rigorous guarantee [4]: assuming all
network users choose routes to minimize the sum of the latency experienced and taxes paid, it is possible
to levy a tax on each network edge so that the resulting Nash equilibrium achieves the minimum-possible
total latency. Briefly, the inefficiency of selfish routing can always be eradicated by pricing network edges
appropriately.

This guarantee, while fundamental, is unsatisfying in several respects. First, it assumes a very strong
homogeneityproperty: even though the model assumes a very large number of network users, all users are
assumed to trade off time and money in an identical way. How should edges be priced with heterogeneous
network users? Second, the guarantee ignores thealgorithmicaspect of edge pricing: how can edge prices be
efficiently computed? When many different sets of edge prices induce a minimum-latency Nash equilibrium,
can we efficiently compute the “best” one? Finally, this result is single-minded in its pursuit of a routing
minimizing the total latency, and ignores the possibility that exorbitant taxes may be required to achieve such
a routing. When can the edges of a network be priced so that an efficient routing results and, in addition, the
disutility of network users due to taxes is small?

Our Results. In this paper, we address these three issues and prove several results about pricing networks
with heterogeneous users. We model heterogeneity in the following simple way: we associate to each
network usera a scalarα(a) and assume thata seeks to minimize the latency it experiences plusα(a) times
the money it is required to pay. In the classical setup,α(a) = 1 for all usersa. Introducing the functionα
allows the full spectrum of time vs. money tradeoffs, with a small value ofα(a) corresponding to a large
sensitivity to time, and a large value indicating sensitivity to money. In this model, we prove the following.

• We show that for an arbitrary (single-commodity) network and a heterogeneous community of traffic
in which all network users have some sensitivity to taxes (α(a) > 0 for all a), network edges can
be priced so that a minimum-latency routing of traffic arisesas a Nash equilibrium. Thus, even
with heterogeneous traffic, optimally chosen edge taxes aresufficiently powerful to eliminate all of
the inefficiency of selfish routing. We remark that this result doesnot follow from the principle of
marginal cost pricing and is instead proved with a nonconstructive fixed-point theorem.
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• Under the additional assumptions that the functionα takes on only finitely many distinct values and
that all network latency functions are convex, we show how tocompute a set of optimal edge prices.
Such taxes need not be unique, and we prove that the set of all optimal taxes can be explicitly de-
scribed by a small set of linear inequalities; this description permits optimization of a secondary
linear objective function, such as minimizing the taxes paid by network users.

• We give a precise mathematical characterization of the functions α for which a minimum-latency
routing of traffic can always be induced with small disutility to network users due to taxes. As a
consequence, we find that in many settings, including the classical model whereα(a) = 1 for all a,
inducing the minimum-latency routing can require extremely costly taxes.

Related Work. The problems of analyzing and influencing selfish behavior have been extensively studied
by many different communities; even restricting attentionto the computer science literature, there are far too
many works to enumerate here. In what follows, we will discuss only the results on pricing and on selfish
routing that are closest to the present work.

As discussed above, the model of selfish routing studied herewas first defined by Wardrop [30] and
has been extensively studied ever since (see [25] for many more references). Beckmann et al. [4] showed
that marginal cost taxes produce a minimum-latency routingof traffic whenα(a) = 1 for all usersa.
This is accomplished by a simple application of the Karush-Kuhn-Tucker theorem (see e.g. [21]) to an
appropriate convex program. Marginal cost pricing has alsobeen studied with heterogeneous network users;
unfortunately, extending the techniques of [4] to this moregeneral setting requires users with differentα-
values to paydifferent taxeson the same edge [10, 28]. This solution is obviously unsatisfying as the number
of different user types grows large (indeed, we will in general consider functionsα taking on infinitely many
different values); moreover, this scheme requires knowledge of a user’s type when it traverses an edge, to
charge it an appropriate tax. By contrast, we are seeking a solution with asingletax placed on each edge; as
we will see, implementing this more ambitious goal requiresa mathematical approach quite different from
that of marginal cost pricing.

The problem of optimally pricing shared resources has also motivated a large body of work in both the
welfare economics literature (see e.g. [19]) and by the networking community (see e.g. [17]). While work
in the networking literature has not considered our model ofselfish routing, the scope of previous work in
economics is sufficiently broad to encompass the heterogeneous traffic model considered here. However,
the general techniques of welfare economics for optimizingprices provide no method to ensure that such
prices can induce a selfish solution that is as socially desirable as the best cooperative outcome. By contrast,
our central existence theorem asserts that optimal taxes always suffice to induce the best coordinated routing
of traffic.

Researchers have also studied how to compute optimal taxes.Efficiently computing marginal cost prices
in the classical setup of homogeneous network traffic turns out to be straightforward (via convex program-
ming) [4], but more general models and goals have also been studied. The emphasis of work in the eco-
nomics literature has unfortunately been on general-purpose algorithms that need not run in polynomial
time [19], even when specialized to the edge pricing problems considered in this paper. The transporta-
tion science community has recently made significant progress in efficiently computing and characterizing
taxes that induce a minimum-latency routing of traffic [5, 13, 14, 16]. This work considers only the case of
homogeneous traffic, but forms the basis of the algorithmic results in this paper.

The disutility to network users of edge pricing has apparently been largely ignored in previous work. Our
approach is similar in spirit to work of Archer and Tardos [2,3] on “frugal mechanisms”—mechanisms (such
as auctions) that solve an optimization problem in an incentive-compatible way and also make use of only
moderate incentives. In the context of selfish routing, in previous work [8] we studied the optimization prob-
lem of computing taxes that induce a Nash equilibrium with minimum-possible user disutility (accounting
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for disutility due to both latency and taxes), for the case ofhomogeneous traffic. In [8], we showed that this
optimization problem essentially reduces to the network design problem of avoiding Braess’s Paradox [23]
and is hard to approximate to within any reasonable factor.

Organization. Section 2 formally introduces our model and states some preliminaries. In Section 3 we
show that edge taxes always suffice to induce a minimum-latency routing of traffic, even when network
users are heterogeneous. In Section 4 we show how to compute such taxes in networks with convex latency
functions when there are only finitely many different types of users. In Section 5 we study the disutility
caused by these taxes, and characterize the user distributions for which this disutility is small.

2 Preliminaries

Congested Networks and Flows. We consider a directed graphG = (V,E) with sources and sinkt. We
denote the set of simples-t paths inG by P, which we assume is nonempty. We allow parallel edges but
have no use for self-loops. There is one unit of traffic wishing to travel froms andt, modeled as the unit
interval [0, 1] endowed with Lebesgue measureλ.1 Each pointa ∈ [0, 1] will be called anagent, and is
thought of as a noncooperative and infinitesimal unit of traffic.

By aflow, we mean a Lebesgue-measurable functionf : [0, 1] → P describing who goes where. There
are two ways to ignore some of the information provided by a flow to recover more familiar combinatorial
objects. A flow naturally induces aflow on paths, which we define to be the vector{fP}P∈P indexed bys-t
paths, withfP = λ({a ∈ [0, 1] : f(a) = P}) the amount of traffic assigned to the pathP by f . A flow on
paths then induces aflow on edges, defined as a vector{fe}e∈E on edges withfe =

∑

P :e∈P fP the amount
of traffic using edgee en route froms to t. A flow on edges may correspond to many different flows on
paths, and a flow on paths corresponds to many different flows.

The networkG suffers from congestion effects; to model this, we assume each edgee possesses a
nonnegative, continuous, nondecreasinglatency functionℓe that describes the delay incurred by traffic on
e as a function of the edge congestionfe. The latency of a pathP in G with respect to a flowf is then
given byℓP (f) =

∑

e∈P ℓe(fe). We measure the quality of a flow by itstotal latencyL(f), defined by
L(f) =

∑

P∈P ℓP (f)fP or, equivalently, byL(f) =
∑

e∈E ℓe(fe)fe. Evidently, any two flows inducing
the same flow on edges have equal total latency. We will call a flow minimizingL(·) optimalor minimum-
latency; such a flow always exists, for the set of flows on edges is a compact set andL(·) is continuous.

Finally, we will allow a set of nonnegativetaxes{τe}e∈E to be placed on the edges of a networkG. We
denote the resulting network with taxes byGτ . We will call a triple of the form(G, ℓ, α) or (Gτ , ℓ, α) an
instance.

Nash equilibria. We now discuss how agents react to edge pricing. We assume that agenta has a
money/time valuation ratio ofα(a). Thus, if a setτ of taxes are placed on the edges of a network, agenta
seeks a shortests-t path relative to edge lengthsℓe(fe) + α(a)τe. We will assume that agents are sorted in
order of money-sensitivity, so thatα : [0, 1] → [0,∞] in a nondecreasing function. We callα adistribution
function. We do not want to assume that distribution functions are bounded, and therefore permit functions
α with α(1) = +∞; however, we will always assume thatα is finite on[0, 1).

We assume that noncooperative behavior results in a Nash equilibrium—a “stable point” in which no
agent has an incentive to unilaterally alter its strategy (i.e., its route froms to t). To make this precise, let
ca
P (f, τ) = ℓP (f) + α(a)τP denote agenta’s evaluation of pathP relative to taxesτ and latencies with

respect to the flowf , whereτP =
∑

e∈P τe.

1Allowing an arbitrary rater > 0 of traffic requires only cosmetic changes to this paper.
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Definition 2.1 A flow f : [0, 1] → P is at Nash equilibriumor is aNash flowfor instance(Gτ , ℓ, α) if for
every agenta ∈ [0, 1] and pathP ∈ P,

ca
f(a)(f, τ) ≤ ca

P (f, τ). (1)

If (1) holds for agenta, we will say thata is routed on aca-minimum path (with the dependence onf andτ
understood). Existence of Nash flows follows from, for example, the quite general results of Schmeidler [27,
Thm 2].

Proposition 2.2 Any instance(Gτ , ℓ, α) admits a flow at Nash equilibrium.

Proposition 2.2 is reassuring, but gives us little insight into how Nash flows differ from arbitrary mea-
surable functions on[0, 1]. We intuitively expect Nash flows to exhibit the following nice structure. Agents
a ∈ [0, 1] with a near 0, who value time far more than money, should be routed ona path with very small la-
tency but possibly very large tax; agents slightly farther away from 0 should route themselves on a path with
somewhat larger latency and somewhat smaller tax; at the other extreme, agents near 1—the biggest misers
of all—should be routed on a path that may have large latency but possesses near-zero taxes. Motivated by
this discussion, we make a definition.

Definition 2.3 A flow f at Nash equilibrium in(Gτ , ℓ, α) is canonicalif:

(a) For any pathP ∈ P, the agents assigned toP by f form a (possibly empty or degenerate) subinterval
of [0, 1].

(b) If a1 ≤ a2, thenℓf(a1)(f) ≤ ℓf(a2)(f).

(c) If a1 ≤ a2, thenτf(a1)(f) ≥ τf(a2)(f).

Thus a canonical Nash flowf splits [0, 1] into a finite number of subintervals (at most one pers-t path), in-
ducing an ordering on the paths to whichf assigns traffic that is nondecreasing in latency and nonincreasing
in taxes.

We have the following strengthening of Proposition 2.2.

Proposition 2.4 Every instance(Gτ , ℓ, α) admits a canonical flow at Nash equilibrium.

The proof of Proposition 2.4 is essentially just a “rearrangement” argument and shows the stronger statement
that an arbitrary Nash flow can be reorganized into a canonical one without changing its cost or the induced
flow on paths. The details are somewhat tedious and are omitted from this abstract.

The uniqueness of Nash flows is not so universal. However, we have the following reasonably strong
uniqueness result whenα takes on only finitely many values (i.e., whenα is a step function).

Proposition 2.5 If α takes on only finitely many values andf1, f2 are flows at Nash equilibrium for
(Gτ , ℓ, α), thenℓe(f

1
e ) = ℓe(f

2
e ) for all edgese. If in addition all latency functions are strictly increas-

ing, thenf1 andf2 induce identical flows on edges.

We prove Proposition 2.5 using techniques from convex programming. The approach is similar to that of
previous works [12, 25] and is therefore omitted from this abstract. Proposition 2.5 is also known to hold
for general distribution functionsα whenG is a set of parallel links [18, Prop 3.3]; we suspect that it holds
for generalα and general networksG, but have been unable to verify this.
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Example 2.6 Consider a two-node network with two links, 1 and 2. If the links have latency functions
ℓ1(x) = x andℓ2(x) = 1, then in the absence of taxes a flow at Nash equilibrium assigns all but a measure-
zero set of agents to the first link; in a canonical Nash flow, all agents, except possibly for agent 1, are
assigned to the first link. By contrast, the flow on edges induced by any optimal flowf̂ is f̂1 = f̂2 = 1

2 .
By placing a tax on the first link, we can discourage selfish agents from using it and alter the set of flows at
Nash equilibrium. Ideally, we seek a tax, that will be a function of the distributionα of agent preferences,
that deters precisely half of the traffic (the half with greatest sensitivity to taxes) and therefore induces a
minimum-latency routing. In the next two sections, we will study how to find such taxes.

3 Existence of Optimal Taxes

In this section we show that carefully chosen edge prices caneradicate all inefficiency due to selfish routing,
even in the presence of agent heterogeneity. More precisely, for an instance(G, ℓ, α), call a setτ of taxes
optimal if there is a minimum-latency floŵf and a flowf τ at Nash equilibrium for(Gτ , ℓ, α) so thatf̂
andf τ induce identical flows on edges; it follows thatf τ is also a minimum-latency flow. The classical
guarantee of marginal cost pricing states that, whenα is everywhere equal to 1 and all latency functions
are differentiable, the taxesτe = f̂e · ℓ

′
e(f̂e) for all edgese are optimal (whereℓ′e denotes the derivative of

ℓe) [4]. Here, we show that every instance(G, ℓ, α) admits an optimal tax, assuming only that all traffic has
nonzero sensitivity to edge taxes (i.e., thatα(a) > 0 for all agentsa). Before proving this general result, we
consider a seemingly very special type of instance.

3.1 Well-Behaved Instances

In this subsection, we will consider an instance(G, ℓ, α) that satisfies four assumptions, and will call such
an instancewell behaved.

(A1) G is a directed acyclic graph admitting a minimum-latency flowf̂ with f̂e > 0 for all edgese.

(A2) Latency functions are “uniformly strictly increasing” in the sense that for someδ > 0, ℓe(y)−ℓe(x) ≥
δ(y − x) for any edgee and anyy ≥ x ≥ 0.

(A3) The distribution functionα is a step function, taking on only finitely many values.

(A4) The distribution functionα satisfiesα(0) > 0; thus all agents have some sensitivity to taxes.

We will remove the first three assumptions in the next subsection. A little reflection shows that if a distri-
bution function fails to satisfy the assumption thatα(a) > 0 whenevera > 0, an assumption only slightly
weaker than (A4), then there are instances (even restricting to two-node, two-link networks) in which opti-
mal taxes do not exist.

We next prove that well-behaved instances admit optimal taxes. Our proof will proceed in two parts.
The first part constructs a continuous “update map”, which takes sets of taxes to intuitively “better” sets of
taxes. We will apply Brouwer’s fixed point theorem to show that this update map has at least one fixed point.
This type of argument is quite standard in economics and gametheory; in particular, Nash’s theorem on the
existence of Nash equilibria in non-zero sum finite matrix games can be proved in this way [20]. To finish
the proof, we must show that fixed points of the update map are the desired sets of optimal taxes. Unlike
many fixed-point arguments in game theory (including that inthe proof of Nash’s theorem [20]), this fact is
not at all obvious in our application; to prove it, we will make detailed use of the combinatorial structure of
the underlying network.

Let (G, ℓ, α) be a well-behaved instance, and̂f a minimum latency flow withf̂e > 0 for all edgese
(assumption (A1)). For motivation, consider a taxτ that need not be optimal. Since the instance is well
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behaved, Proposition 2.5 implies that all flows at Nash equilibrium for (Gτ , ℓ, α) induce the same flow on
edges,{f τ

e }e∈E . If f τ
e = f̂e for all edgese, thenτ is an optimal tax; if not, we wish to modifyτ in a

way that steers the Nash flow toward̂f . A natural heuristic is to increase the tax on edges withf τ
e > f̂e

and decrease the tax on edges withf τ
e < f̂e. To apply a fixed-point theorem, we must also ensure that

our candidate tax vectors remain bounded throughout an arbitrary number of iterations of our update map.
Based on this discussion, we define our update mapΓ as follows, whereT is a large upper bound on the
maximum-allowable tax, to be chosen later:

Γ(τ)e = min

{

T,max

{

0,

(

τe +
f τ

e

f̂e

− 1

)}}

.

The mapΓ is well defined because(G, ℓ, α) is well behaved; in particular,f τ
e is uniquely defined byτ for

each edgee, andf̂e > 0 for all edgese.

Proposition 3.1 The mapΓ : [0, T ]E → [0, T ]E is continuous.

Proof Sketch. It suffices to prove that the mapτ 7→ {f τ
e }e∈E is continuous. Under assumptions (A2) and

(A3), this follows from a theorem of Dafermos and Nagurney [11, Thm 3.1] after applying a straightforward
reduction of Dafermos [9,§3].

By Brouwer’s fixed-point theorem [6,§6], we have the following corollary.

Corollary 3.2 The mapΓ : [0, T ]E → [0, T ]E has at least one fixed point.

It remains to show that a fixed point ofΓ is an optimal tax for the well-behaved instance(G, ℓ, α).
Toward this end, letτ be a fixed point ofΓ. By the definition ofΓ, we can classify the edges ofG into one
of three types with respect toτ , as follows: good, if f τ

e = f̂e; oversaturated, if f τ
e > f̂e andτe = T ; or

undersaturated, if f τ
e < f̂e andτe = 0. We will call τ a goodfixed point if all edges are good w.r.t.τ , and

abadfixed point otherwise. Writingℓmax for maxe∈E ℓe(1) andn for the number of vertices ofG, our key
lemma is the following.

Lemma 3.3 If T ≥ 3n3ℓmax/α(0), thenΓ has no bad fixed points.

The main theorem of this subsection follows immediately from Lemma 3.3 and the definitions.

Theorem 3.4 A well-behaved instance admits an optimal set of taxes.

We now discuss Lemma 3.3 and its proof, the details of which can be found in Appendix A. The lemma
should be intuitively plausible; in any bad fixed point, sometraffic inexplicably uses heavily taxed edges
instead of tax-free, undersaturated alternatives. On the other hand, these oversaturated and undersaturated
edges can be scattered throughout the network in an arbitrary way; for this reason, making this intuitive
argument precise takes some work.

The proof of Lemma 3.3 hinges on defining an appropriate ordering on the vertices ofG; this idea was
also used, for different purposes, in [23]. To describe the properties we desire of this ordering, letf τ be
a Nash flow for the well-behaved instance(Gτ , ℓ, α) and, for a vertexv, let d(v) denote the length of a
shortests-v path, usingτ as edge lengths. The proof approach of Lemma 3.3 (see Appendix A) motivates
an ordering satisfying:

(P1) if f τ
e > 0 with e = (v,w), thenw follows v in the ordering

(P2) d-values of vertices are nondecreasing in the ordering.
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SinceG and hencef τ are acyclic, these two properties would be jointly attainable if all agents choses-
t paths with minimum-possible tax (see [23]); because of the heterogeneity of agent objective functions,
however, (P1) and (P2) can be mutually exclusive goals. Three lemmas of Appendix A show that, on the
other hand, it is possible to achieve (P1) whileapproximatelysatisfying (P2). This weaker statement turns
out to be sufficient to prove Lemma 3.3. Intuitively, this weaker result is possible since for sufficiently
large taxes all agents are, to first order, choosing minimum-tax paths; edge latencies are only a second-order
effect. With all agent objective functions approximately equal, we can define an ordering satisfying (P1)
and a relaxed version of (P2).

3.2 General Instances

In this subsection, we show that any instance(G, ℓ, α) with α(0) > 0 admits a set of optimal taxes. To do
this, we remove assumptions (A1)–(A3) of the previous subsection one by one.

The assumption thatG is directed acyclic and that(G, ℓ, α) admits an optimal flowf̂ with f̂e > 0 on
every edge is easy to remove; without loss of generality,(G, ℓ, α) admits an acyclic optimal flow and edges
with f̂e = 0 can be effectively “deleted” with a sufficiently large tax. Details are given in Appendix A.

Lemma 3.5 An instance satisfying assumptions (A2)–(A4) admits an optimal set of taxes.

We next remove assumption (A2), that latency functions are uniformly strictly increasing. The proof
approach is to approximate more general latency functions with uniformly strictly increasing ones, and
conclude with a limiting argument. Again, details are provided in Appendix A.

Lemma 3.6 An instance satisfying assumptions (A3)–(A4) admits an optimal set of taxes.

For our most general result, we approximate arbitrary distribution functions with step functions, and
apply a limiting argument. The proof is similar to that of Lemma 3.6, and we omit it from this abstract.

Theorem 3.7 If instance(G, ℓ, α) satisfiesα(0) > 0, then it admits an optimal set of taxes.

Remark 3.8 A tax τ is by definition optimal for(G, ℓ, α) if someflow at Nash equilibrium for(Gτ , ℓ, α)
induces the same flow on edges as an optimal flow and is therefore minimum-latency. The uniqueness asser-
tion of Proposition 2.5 implies that, so long as the distribution functionα takes on only finitely many values,
all Nash flows induced by an optimal tax are minimum-latency. We know of no analogous uniqueness result
for more general distribution functions (although we suspect there is one to be discovered); it is therefore
conceivable that in an instance with a general distributionfunction, some Nash flows induced by an optimal
tax fail to be minimum-latency.

4 Computing Optimal Taxes

The existence results of the previous section are highly nonconstructive. Theorem 3.4, asserting the exis-
tence of optimal taxes for well-behaved instances, relies on Brouwer’s fixed point theorem, and no efficient
algorithms for finding Brouwer fixed points are known (see e.g. [15]). The extensions to Theorem 3.4 given
in Subsection 3.2 require further nonconstructive arguments (e.g., extracting a convergent subsequence from
a sequence in a compact set). In this section, we use the methodology of Bergendorff et al. [5] (who only
considered agents with identical objective functions) andshow how to efficiently compute optimal taxes for
an instance with finitely many different types of agents and convex edge latency functions.2 In fact, we will

2Throughout this section, we assume some reasonable encoding of latency and distribution functions; see [1,§14.1] or [25,
§5.2] for typical approaches. We assume that a distribution function that is a step function withk steps requiresΩ(k) input bits to
describe.
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show this in a very strong way: we will prove that the set of optimal taxes can be explicitly described by
a polynomial-size set of linear inequalities. Thus an optimal tax can not only be efficiently found, but in
fact the optimal tax that optimizes some secondary linear objective function, such as minimizing the taxes
paid by network users, can also be computed efficiently. These constructive results complement and do not
subsume the existence theorems of Section 3, even in the special case of finitely many distinct agent types;
on the contrary, these existence results provide the sole assurance that our linear description of the set of
optimal taxes describes a non-empty set!

It can be shown that the existence of an efficient algorithm tocompute an optimal tax or an optimal flow
in a network with arbitrary continuous, nondecreasing latency functions implies P=NP (proof deferred to
the full version). To circumvent this difficulty, in this section we assume that all network latency functions
are convex. Under this assumption, the total latencyL(·) is a convex function and an optimal flow can
be computed efficiently using convex programming.3 This assumption is satisfied by most (but not all)
latency functions of interest, including polynomials withnonnegative coefficients and popular queueing
delay functions; see [24] for some specific examples.

We now proceed to our algorithmic results. For an instance(G, ℓ, α) in whichα takes on a finite number
of valuesα1 < · · · < αk, we will call the agentsa with α(a) = αi theith commodity. If f is a flow for such

an instance, we will writef (i)
P for the number (i.e., Lebesgue measure) of agents of commodity i assigned

to the pathP , and similarlyf (i)
e for the number of agents of commodityi that use edgee in their assigned

routes. We begin with a reformulation of the definition of a Nash flow, which is an easy consequence of the
fact that all agents in a flow at Nash equilibrium select shortest paths according to their personal objective
functions.

Lemma 4.1 Let (G, ℓ, α) be an instance whereα takes on a finite number of valuesα1 < · · · < αk. Then:

(a) a flow on paths{f̃P } is induced by some flow at Nash equilibrium for(Gτ , ℓ, α) if and only if it

minimizes
∑k

i=1

∑

P∈P [ℓP (f̃) + αiτP ]f
(i)
P over all possible flows on paths{fP};

(b) a flow on edges{f̃e} is induced by some flow at Nash equilibrium for(Gτ , ℓ, α) if and only if it

minimizes
∑k

i=1

∑

e∈E[ℓe(f̃e) + αiτe]f
(i)
e over all possible flows on edges{fe}.

Lemma 4.1(a) corresponds more directly to the “all agents select shortest paths” intuition, but Lemma 4.1(b),
which follows easily from the first assertion, will be more useful for our purposes.

Lemma 4.1 provides an extremely handy criterion for provingthat a set of taxes is optimal. In particular,
let f̂ be an optimal flow for an instance(G, ℓ, α) in whichα is a step function taking on valuesα1 < · · · <

αk. Define thecostC(f̂) of f̂ by
∑k

i=1

∑

e∈E[ℓe(f̂e)+αiτe]f̂
(i)
e . Lemma 4.1 implies that the flow on edges

{f̂e}e∈E is induced by some flow at Nash equilibrium for(Gτ , ℓ, α) if and only if the optimal value of the
mathematical program

min
k

∑

i=1

∑

e∈E

[ℓe(f̂e) + αiτe]f
(i)
e

subject to:

(P )
∑

e=(v,w)

f (i)
e −

∑

e=(w,v)

f (i)
e = bi,w ∀i ∈ {1, . . . , k}, w ∈ V

f (i)
e ≥ 0 ∀e ∈ E, i = 1, 2, . . . , k

3More exactly, under this assumption an optimal flow can be computed to arbitrary precision in polynomial time. This is the
best that could be hoped for, since an exact description of anoptimal flow may require irrational numbers. We will not discuss this
minor detail further in this abstract.
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is C(f̂), wherebi,w is the numberri of agents of commodityi if w = t, is−ri if w = s, and is 0 otherwise.
Sincef̂ andτ are fixed, this is a linear program. By an argument similar to that proving Proposition 2.5,
the assumption that all edge latency functions are convex implies that all optimal flows induce the same
edge latencies; hence, this linear program is independent of the chosen optimal floŵf . It follows from this
observation that a taxτ is optimal if and only if the optimal value of (P) isC(f̂).

We now apply strong LP duality to (P), thereby finding that a set τ of taxes is optimal for(G, ℓ, α) if
and only if the optimal value of the linear program

max
k

∑

i=1

riz
(i)
ti

subject to:

(D) z(i)
si

= 0 ∀i ∈ {1, . . . , k}

z(i)
w − z(i)

v ≤ ℓe(f̂e) + αiτe ∀e = (v,w) ∈ E, i = 1, 2, . . . , k

equalsC(f̂). The optimal value of both (P) and (D) is at mostC(f̂) (to see this, takef (i)
e = f̂

(i)
e for all i

ande in (P)). Thus a setτ of taxes is optimal if and only if the following set of equations and inequalities
has a solution inz:

z(i)
si

= 0 ∀i ∈ {1, . . . , k}

z(i)
w − z(i)

v ≤ ℓe(f̂e) + αiτe ∀e = (v,w) ∈ E, i = 1, 2, . . . , k
k

∑

i=1

riz
(i)
ti

=
k

∑

i=1

∑

e∈E

[ℓe(f̂e) + αiτe]f̂
(i)
e .

The number of constraints is polynomial ink and in the size ofG and, since an optimal flow on edges can be
efficiently computed when latency functions are convex, thesystem can be constructed in polynomial time.
The final key observation is this: this system is not only linear in z for fixed τ , but is linear in(z, τ) even
whenτ is allowed to vary. An optimal tax can thus be found by linear programming; the existence of such
a tax is assured by Theorem 3.7.

We summarize the results of this section in a theorem.

Theorem 4.2 Let (G, ℓ, α) be an instance with convex latency functions in whichα takes on only finitely
many distinct values. Then a linear description of the taxesoptimal for (G, ℓ, α) can be computed in
polynomial time. In particular, a set of optimal taxes can becomputed in polynomial time.

5 The Cost of Optimal Taxes

We have shown that optimal taxes exist under quite general conditions (Theorem 3.7). While this answers
a very basic question about the power of edge pricing, Theorem 3.7 makes no guarantee about the disutility
caused to agents due to such (possibly very large) taxes. In this section, we address this issue.

To account for the disutility caused to agents by taxes, we extend the total latency objective function of
Section 2. For a flowf for an instance(Gτ , ℓ, α), we define thecostC(f, τ) of the flowf by

C(f, τ) =

∫ 1

0
ca
f(a)(f, τ)da

whereca
P (f, τ) = ℓP (f) + α(a)τP (see also Section 2). This definition agrees with that of Section 4 in the

special case whenα takes on only finitely many different values. The definitionsof total latencyL(·) and
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costC(·, τ) agree if and only ifτ = 0. We also note that two different flows inducing the same flow on
paths can have different costs (cf., the simpler total latency measure).

As we have spent the previous two sections studying taxes that minimize the total latency of Nash
flows, a natural next goal would be to study taxes that minimize the cost of Nash flows. Unfortunately, this
optimization problem is provably intractable (assumingP 6= NP ) [8]. Instead, we will confine our attention
to the cost of optimal taxes (taxes that induce a minimum-latency flow). Put differently, we investigate the
question: how costly is a tax-induced minimum-latency routing?

Our contribution is a complete characterization of the distribution functionsα for which the disutility
due to optimal taxes is always at most a constant factor timesthe disutility due to latency—i.e., times the
latency of an optimal flow. We emphasize that this is an extremely strong guarantee, and that there is no
reason a priori to believe thatanydistribution function has this property. To better appreciate this, we discuss
a modification of Example 2.6. Suppose we replace the latencyfunction of link 1 in that example by the
highly nonlinear functionℓ(x) = xp for largep. A simple calculation (see e.g. [26]) shows that, in the
absence of taxes, the total latency (or equivalently, the cost) of a Nash flow is arbitrarily larger than that of
a minimum-latency flowf̂ asp → ∞. In this example, the guarantee above has the following consequence:
even though with no taxes the cost of a Nash flow is arbitrarilylarger thanL(f̂), by adding taxes—by making
the cost functionmore severe—we can attain a Nash flow with cost within a constant factor ofL(f̂).4 Thus,
for some distributionsα, taxes can improve the cost of a Nash flow by an arbitrarily large factor.

To begin our analysis, we formalize the guarantee we desire of a distribution function.

Definition 5.1 A distribution functionα is ρ-cheapwith parameterρ ≥ 1 if the following property holds:
for every instance(G, ℓ, α) with α(0) > 0, there is a setτ of optimal taxes and a minimum-latency flowf τ

at Nash equilibrium for(Gτ , ℓ, α) such that

C(f τ , τ) ≤ ρ · L(f τ ).

A distribution function ischeapif it is ρ-cheap for some finiteρ ≥ 1.

It is easy to show that not all distribution functions are cheap. In fact, by considering only two-node two-
link networks in which one link has the constant latency function ℓ(x) = 1, we can derive the following
necessary condition onρ-cheap distributions (see Appendix B for a proof). In our statement of the condition,
we employ the notationα(z−) to mean the left limitlimzn↑z α(zn) of a distribution functionα at a point
z. This limit always exists because distribution functions are assumed nondecreasing, and is equal toα(z)
whenα is continuous atz.

Lemma 5.2 If α is aρ-cheap distribution function, then
∫ z

0
α(a) da ≤ (ρ − 1) · α(z−)[1 − z] (2)

for all z ∈ (0, 1).

Condition (2) is in essence a “growth condition”, assertingthatα(a) grows extremely quickly witha. The
simplest distribution functions satisfying (2) for some value of ρ are the functionsα(a) = (1 − a)−k for
k > 1.

Remark 5.3 One particular consequence of condition (2) is that a cheap distribution functionα is un-
bounded (for boundedα, the right-hand side of (2) vanishes asz ↑ 1). Thus, step functions with finitely
many values are not cheap.

4This arguably counterintuitive effect of taxation is reminiscent of the famous Braess’s Paradox [7, 23], but can also occur in
networks in which Braess’s Paradox cannot (such as in networks of parallel links).
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Far more remarkable than the necessary condition of Lemma 5.2—which remains necessary even when
restricting attention to two-node, two-link networks—is the fact that condition (2) is alsosufficientfor a
distribution to beρ-cheap. We state this result next; its proof is postponed to Appendix B.

Theorem 5.4 A distribution functionα with α(0) > 0 is ρ-cheap if and only if
∫ z

0
α(a) da ≤ (ρ − 1) · α(z−)[1 − z]

for all z ∈ (0, 1).

Remark 5.5 The condition of Theorem 5.4 is quite strong and is not satisfied by most distribution functions,
and thus optimal taxes are in general quite costly. Nonetheless, we find it surprising thatanynatural distri-
bution function is cheap, and satisfying that cheap distribution functions admit such a crisp mathematical
characterization.

Acknowledgements

We thank Aaron Archer, David Eppstein, Rob Freund, Eric Maskin, Yuval Rabani, Andreas Schulz, Ilya
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A Proofs from Section 3

A.1 Proofs from Subsection 3.1

We now implement the program described at the end of Subsection 3.1.

Lemma A.1 Let(G, ℓ, α) be a well-behaved instance, withn vertices andℓmax = maxe∈E ℓe(1). Let taxes
τ induce Nash flowf τ , and supposeT ≥ 3n3ℓmax/α(0). For a vertexv, let d(v) denote the length of a
shortests-v path, usingτ as edge lengths. Supposef τ

e > 0, wheree = (v,w). Then

d(w) − d(v) ≥ τe −
T

3n2
.

Proof. Sincef τ
e > 0 there is an agenta ∈ [0, 1] that uses edgee in its s-t path. LetP1 be the path that agent

a uses to get froms to w. Let P2 be ans-w path with minimum-possible tax,d(w). Sincef τ is a Nash flow,
agenta uses aca-minimum path; thus,ℓP1

(f τ ) + α(a)τP1
≤ ℓP2

(f τ ) + α(a)τP2
. SinceτP1

≥ d(v) + τe

andτP2
= d(w), we can derive

d(w) − d(v) ≥ τe +
1

α(a)
[ℓP1

(f τ ) − ℓP2
(f τ )] ≥ τe −

1

α(a)
ℓP2

(f τ ) ≥ τe −
nℓmax

α(0)
.

SinceT ≥ 3n3ℓmax/α(0), the lemma follows.

Lemma A.2 Under the assumptions and notation of Lemma A.1, suppose there is a pathP fromv to w with
f τ

e > 0 for all e ∈ P . Then

d(w) − d(v) ≥ τP −
T

3n
.

Proof. Sum the previous lemma up over all edges inP .

Given a well-behaved instance(Gτ , ℓ, α) and a Nash flowf τ , an ordering of the vertices ofG is good
if it satisfies property (P1) of Subsection 3.1 and ifw following v with d(w) < d(v) implies a pathP
from v to w with f τ

e > 0 on every edge ofP . A good ordering can always be constructed, for example by
topologically sorting the vertices ofG w.r.t. the edgese with f τ

e > 0 and breaking ties among incomparable
vertices by putting the vertex with smallerd-value first. The next lemma proves that a good ordering satisfies
a relaxed version of property (P2) of Subsection 3.1.

Lemma A.3 Suppose, after adopting the assumptions and notation of Lemma A.1 and placing a good or-
dering on the vertices ofG, vertexw follows vertexv in the ordering. Then,

d(w) ≥ d(v) −
T

3n
.

Proof. Let w follow v in the good ordering. Ifd(w) ≥ d(v) the lemma holds. Ifd(w) < d(v), then there
must be a pathP from v to w with f τ

e > 0 for all e ∈ P . The lemma now follows from Lemma A.2 and the
nonnegativity ofτ .

We can now prove Lemma 3.3.

Proof of Lemma 3.3.Assume for contradiction thatΓ has a bad fixed pointτ for the well-behaved instance
(G, ℓ, α) inducing a Nash flowf τ . Sinceτ is bad,f τ

e 6= f̂e for some edgee. As both f̂ andf τ induce
acyclic s-t flows on edges carrying one unit of flow, it is straightforwardto show that there is at least one
oversaturated edge, saye = (v,w).
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We seek undersaturated edges to contrast against the oversaturated edgee. We will discover such edges
by looking at a particular type ofs-t cut. Toward this end, place a good ordering on the vertices ofG. We
will write x � y if vertex x precedes (or is equal to)y in this ordering. All statements in the sequel that
assume some ordering on the vertices refer to the ordering�. By theith consecutive cut ofG, we mean the
partition ofG’s vertex set into two classes where one class is the firsti vertices ofG.

Let v andw be theith andjth vertices according to�. Sincef τ
e > 0, property (P1) of good orderings

implies thats � v ≺ w � t. It follows that j > i and that consecutive cutsi, i + 1, . . . , j − 1 are in
fact s-t cuts. Moreover, property (P1) of good orderings and the factthat the netf τ -flow across anys-t cut
is 1 (see e.g. Tarjan [29]) implies that the totalf τ -flow escaping any of these consecutive cuts is precisely
1. By contrast, the total̂f -flow escaping each of these cuts is at least 1 (it may be more, since our good
ordering need not be a topological one w.r.t. the edgese with f̂e > 0). That consecutive cutsi throughj − 1
each contain an oversaturated edge (namely,e) implies, by counting, that each such cut also contains an
undersaturated edge. Sinceτ is a bad fixed point ofΓ, the tax on each of these undersaturated edges is 0.

We next identify a collection of undersaturated edges that “covers” the consecutive cutsi throughj − 1.
Precisely, lete1 = (v1, w1) denote an undersaturated edge crossing theith consecutive cut. We necessarily
havev1 � v; if in additionw1 � w, the process halts. Otherwise, we lete2 be an undersaturated edge cross-
ing the consecutive cut whose last source-side vertex isw1. Repeating this process, we obtain a sequence
e1, . . . , ep of undersaturated edges withei = (vi, wi) andwp � w. This process must halt withp ≤ n since
the heads{w1, . . . , wp} of the undersaturated edges are strictly increasing.

We next claim thatd(wp) ≤ d(v1) + T
3 . This follows directly from a chain of inequalities of two

different types. First,d(wi) ≤ d(vi) for i = 1, 2, . . . , p since undersaturated edges are untaxed (asτ is a
bad fixed point). The second type of inequality asserts thatd(vi) ≤ d(wi−1) + T

3n
for i = 2, 3, . . . , p and is

an immediate consequence of Lemma A.3. Interleaving these two types of inequalities proves the claim.
We are now prepared to derive a contradiction. Sincev1 � v ≺ w � w1, two further applications of

Lemma A.3 imply that

d(w) − d(v) ≤
T

3

[

1 +
2

n

]

≤
2

3
T,

since we can assume thatn ≥ 2. On the other hand, sincee = (v,w) is an oversaturated edge,f τ
e > 0 and

τe = T ; by Lemma A.1,

d(w) − d(v) ≥

(

1 −
1

3n2

)

T ≥
11

12
T.

These two incompatible inequalities provide a contradiction, showing that the bad fixed pointτ cannot exist.

A.2 Proofs from Subsection 3.2

Proof of Lemma 3.5.Let (G, ℓ, α) denote an instance satisfying assumptions (A2)–(A4) of Subsection 3.1.
This instance(G, ℓ, α) must admit an optimal floŵf for which the edgese with f̂e > 0 form a directed
acyclic graph, since removing flow cycles from a flow on edges only decreases its total latency.

Let G̃ denote the subgraph ofG of edges withf̂e > 0. The instance(G̃, ℓ, α) is then well behaved, so by
Theorem 3.4 there is a setτ of taxes inducing a Nash flowf τ for (G̃τ , ℓ, α) with f̂e = f τ

e for all e ∈ G̃. Let
T = maxe∈G̃ τe, and extendτ to all the edges ofG by settingτe > n(T + ℓmax/α(0)) wheneverf̂e = 0,
whereℓmax = maxe∈G̃ ℓe(1).

We claim thatf τ is also a Nash flow for(Gτ , ℓ, α). To prove it, it suffices to show that no agent
wants to use ans-t path of Gτ containing an edgee with f̂e = 0. This holds since agenta ∈ [0, 1]
experiences personal cost at mostn(ℓmax + α(a)T ) on the pathf τ (a), and would incur cost greater than
n(α(a)

α(0) ℓmax + α(a)T ) ≥ n(ℓmax + α(a)T ) on any path ofGτ including an edgee with f̂e = 0.
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We will need a statement slightly stronger than Lemma 3.5 in the sequel. The proofs of Theorem 3.4
and Lemma 3.5 do not use any properties of the optimum flowf̂ of an instance other than that it is acyclic;
we thus have the following extension of Lemma 3.5 for inducing acyclic flows that need not be minimum-
latency.

Corollary A.4 Let (G, ℓ, α) denote an instance satisfying assumptions (A2)-(A4) of Subsection 3.1 and let
f̂ be an acyclic flow. Then there is a setτ of taxes and a Nash flowf τ for (Gτ , ℓ, α) such thatf τ

e = f̂e for
all e ∈ G.

Proof of Lemma 3.6.Let (G, ℓ, α) denote an instance satisfying assumptions (A3)–(A4) of Subsection 3.1,
admitting acyclic optimal floŵf . For a positive integerk and an edgee of G, defineℓk

e(x) = ℓe(x)+ x
k
. We

note thatℓk → ℓ uniformly on [0, 1]E . For eachk, the instance(G, ℓk, α) satisfies assumptions (A2)–(A4)
of Subsection 3.1; thougĥf need not be optimal for(G, ℓk, α), Corollary A.4 applies and there is a setτk

of taxes and a Nash flowfk for (Gτk

, ℓk, α) such thatfk
e = f̂e for all e ∈ G. By Proposition 2.4, there is

no loss of generality in assumingfk to be canonical (see Definition 2.3).
We next show how the sequences{τk} and{fk} can be chosen to lie in compact subspaces of finite-

dimensional Euclidean space. This is straightforward for taxes; inspection of the proofs of Theorem 3.4 and
Lemma 3.5 shows that the maximum-allowable tax can be restricted by some function that depends only on
n = |V (G)|, ℓmax = maxe∈E ℓe(1), andα(0). These three parameters remain uniformly bounded over the
sequence{(G, ℓk, α)} of instances, so the sequence{τk} of taxes can be chosen to lie in the compact subset
[0, T ]E of RE , for sufficiently largeT .

Arguing about the sequence of flows{fk} is more delicate, since each flow is actually a function defined
on the unit interval. However, since each flowfk is canonical, it suffices to deal with more elementary
objects. Toward this end, to each canonical flowfk we associate asummary vectorvk in [−1, 1]P×{1,2}.
The two components ofvk corresponding to pathP ∈ P describe the left and right endpoints of the interval
of agents assigned toP in fk, or by convention are both -1 if no such agents exist. SinceP is a finite
set, summary vectors are finite-dimensional. The canonicalflow fk can be recovered fromvk, up to the
measure-zero set of subinterval endpoints.

The sequences{τk} and{vk} of taxes and summary vectors are sequences in the compact spaces[0, T ]E

and[−1, 1]P×{1,2}. We can thus select a convergent subsequence of{(τk, vk)}. Retaining the original index
scheme for simplicity, this implies the existence of convergent sequencesτk → τ andvk → v, with a
canonical flowfk corresponding tovk at Nash equilibrium for(G, ℓk, α) for eachk. The sum of subinterval
lengths in each vectorvk is one; since these vectors lie in a common finite-dimensional space, this property
is preserved in the limit. It follows that the vectorv defines a canonical flowf in a natural way. As before,
the route assignments off are completely determined up to the measure-zero set of agents that correspond
to endpoints of the subintervals ofv. We will call these agentsendpoints. Since each flowfk induces the
same flow on edges aŝf , so does the flowf . To finish the proof, we need only show thatf is at Nash
equilibrium for(Gτ , ℓ, α). We proceed by contradiction.

If f fails to be at Nash equilibrium for(Gτ , ℓ, α) but only endpoints are unsatisfied, then such endpoints
can be harmlessly reassigned to their preferred routes to produce a Nash flow for(Gτ , ℓ, α) inducing the
same flow on edges aŝf . Otherwise, an agenta ∈ [0, 1] that is not an endpoint is not on aca-minimum path
in f ; put differently, for some pathP ∈ P,

ℓP (f) + α(a)τP < ℓf(a)(f) + α(a)τf(a).

Since(τk, vk) → (τ, v), ℓk → ℓ uniformly on[0, 1], a is not an endpoint ofv, andα(a) < ∞, for sufficiently
largek we havefk(a) = f(a) and

ℓk
P (fk) + α(a)τk

P < ℓk
fk(a)(f

k) + α(a)τk
fk(a).
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This contradicts thatfk is at Nash equilibrium for(G, ℓk, α), completing the proof.

B Proofs from Section 5

Proof of Lemma 5.2.Supposeα is aρ-cheap distribution function. LetG be a two-node two-link network
with links 1 and 2, and withℓ2(x) = 1. For any real numbersq1, q2 ∈ (0, 1) there is a choice for the latency
function ℓ1 such that any optimal floŵf satisfiesf̂1 = q1 andℓ1(f̂1) = q2. The functionℓ1 can be chosen
to be a polynomial (with possibly very large degree), if desired.

Chooseq1, q2 ∈ (0, 1) andℓ1 as above; these choices can be arbitrary so long asα is continuous atq1.
This imposes little restriction onq1 sinceα, as a nondecreasing function, is discontinuous at only countably
many points. Next, letτ be an optimal set of taxes for(G, ℓ, α) andf τ a minimum-latency flow at Nash
equilibrium for (Gτ , ℓ, α) with the properties promised by Definition 5.1. There is no loss of generality in
assuming thatf τ is canonical (see Definition 2.3). Sinceℓ1(f̂1) = q2 < 1 = ℓ2(f̂2) and the Nash flowf τ

must assign agents to both links (sincef̂1 ∈ (0, 1)), τ1 > τ2 must hold. Subtracting a common tax from
the two links leavesf τ at Nash equilibrium and only decreasesC(f τ , τ), so there is no loss of generality
in assuming thatτ2 = 0. Sincef τ is canonical andτ is an optimal tax, agents[0, f̂1) are assigned to link 1
and agents(f̂1, 1] are assigned to link 2; sinceα is continuous at̂f1, agentf̂1 is indifferent between its two
options. This implies that

ℓ1(f̂1) + α(f̂1)τ1 = 1

and henceτ1 = (1 − ℓ1(f̂1))/α(f̂1).
Sinceα is ρ-cheap,

L(f τ ) +

∫ f̂1

0
α(a)τ1 da = C(f τ , τ) ≤ ρ · L(f τ ).

Substituting forτ1 and rearranging, we can derive

∫ f̂1

0
α(a) da ≤ (ρ − 1)α(f̂1)

[

1

1 − ℓ1(f̂1)
− f̂1

]

.

Sinceℓ1(f̂1) can be chosen arbitrarily close to zero for any choice off̂1, we find that
∫ z

0
α(a) da ≤ (ρ − 1)α(z)[1 − z] (3)

at all pointsz ∈ (0, 1) at whichα is continuous.
Taking left limits in (3) along points at whichα is continuous, we find that

∫ z

0
α(a) da ≤ (ρ − 1)α(z−)[1 − z],

for all z ∈ (0, 1). Sinceα was an arbitraryρ-cheap distribution, we have derived the promised necessary
condition.

Proof of Theorem 5.4.Let α denote a distribution function satisfyingα(0) > 0 and
∫ z

0
α(a) da ≤ (ρ − 1) · α(z−)[1 − z] (4)

for all z ∈ (0, 1). We will assume for simplicity thatα is continuous; this assumption can be removed with
minor modifications to the following proof.
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Fix an instance(G, ℓ, α); from Theorem 3.7 we know there is some optimal tax. We next claim some-
thing stronger.

Claim: The instance(G, ℓ, α) admits an optimal taxτ with the property that somes-t path ofG receives
zero tax.

Proof of Claim. Let τ be an optimal tax for(G, ℓ, α), inducing a flowf τ at Nash equilibrium that induces
the same flow on edges as an acyclic minimum-latency flowf̂ . Topologically sort the vertices ofG so that all
flow-carrying edges go forward in the vertex ordering. Beginning with the vertex precedingt and proceeding
backwards in the vertex ordering, perform the following operation for each vertexv 6= s: if τv ≥ 0 is the
minimum tax on any flow-carrying edge with tailv, subtractτv from the tax on each flow-carrying edge with
tail v and addτv to the tax on each edge (flow-carrying or not) with headv. This operation does not affect
the total tax on anys-t path used byf τ and can only increase the tax on others-t paths; hence the flow
f τ remains at Nash equilibrium after these modifications. Whenthe sources is reached, subtractτs from
the tax on all flow-carrying edges with tails. Again,f τ remains at Nash equilibrium. At the conclusion of
these modifications, every vertex with an outgoing flow-carrying edge has at least one such edge with zero
tax. This implies that somes-t path—indeed, ans-t path of flow-carrying edges—possesses zero tax.

Let τ be an optimal tax for(G, ℓ, α) that assigns zero tax to somes-t path, and letf τ be a minimum-
latency flow at Nash equilibrium for(Gτ , ℓ, α). We can takef τ to be a canonical flow. LetP1, P2, . . . , Pp

denote the paths to whichf τ assigns traffic. In what follows, we will abbreviatef τ
Pi

by fi, ℓPi
(f τ ) by ℓi,

andτPi
by τi.

Sincef τ is canonical, we can assume without loss of generality thatℓ1 ≤ ℓ2 ≤ · · · ≤ ℓp, thatτ1 ≥ τ2 ≥
· · · ≥ τp, and that the subinterval of agents assigned to pathPi precedes (in[0, 1]) that of agents assigned
to pathPj if and only if i < j. Thus[0, 1] is split into p subintervals, with theith subinterval the agents
assigned byf τ to pathPi. With our assumptions and notation in place, we can now writethe cost off τ in
a manageable form:

C(f τ ) =

p
∑

i=1

∫ Fi

Fi−1

[ℓi + α(a)τi] da

= L(f τ ) +

p
∑

i=1

τi

∫ Fi

Fi−1

α(a) da (5)

whereFi =
∑i

j=1 fj denotes the amount of flowf τ assigns to the paths with index at mosti. Defining
∆i = τi − τi+1 ≥ 0 for i ∈ {1, 2, . . . , p − 1} and∆p = τp, equation (5) is equivalent to

C(f τ ) = L(f τ ) +

p
∑

i=1

∆i

∫ Fi

0
α(a) da.

Since condition (4) holds,limz↑1 α(z) = +∞ and there are agents with arbitrarily largeα-value. Since
somes-t path is assigned zero tax byτ andf τ is at Nash equilibrium, it follows thatτp = 0. Hence,

C(f τ ) = L(f τ ) +

p−1
∑

i=1

∆i

∫ Fi

0
α(a) da.

By hypothesis (4),

C(f τ ) ≤ L(f τ ) + (ρ − 1)

p−1
∑

i=1

∆iα(Fi)(1 − Fi). (6)
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We next make further use of the assumption thatf τ is at Nash equilibrium. Sinceα is continuous and
f τ is a Nash flow, for eachi < p the agentFi is indifferent between the pathsPi andPi+1. Thus,

ℓi + α(Fi)τi = ℓi+1 + α(Fi)τi+1

implying that
∆iα(Fi) = ℓi+1 − ℓi.

Plugging this equality into (6) we find that

C(f τ ) ≤ L(f τ ) + (ρ − 1)

p−1
∑

i=1

(ℓi+1 − ℓi)(1 − Fi)

= L(f τ ) + (ρ − 1)

p−1
∑

i=1

p
∑

j=i+1

fj(ℓi+1 − ℓi)

= L(f τ ) + (ρ − 1)

p
∑

i=2

fi(ℓi − ℓ1)

≤ L(f τ ) + (ρ − 1)

p
∑

i=1

ℓifi

= ρ · L(f τ ),

which completes the proof.
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