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Abstract. This paper is concerned with the language inclusion prob-
lem for timed automata: given timed automata A and B, is every word
accepted by B also accepted by A? Alur and Dill [5] showed that the lan-
guage inclusion problem is decidable if A has no clocks and undecidable
if A has two clocks (with no restriction on B). However, the status of the
problem when A has one clock is not determined by [5]. In this paper we
close this gap for timed automata over infinite words by showing that
the one-clock language inclusion problem is undecidable. For timed au-
tomata over finite words, building on our earlier paper [19], we show that
the one-clock language inclusion problem is decidable with nonprimitive
recursive complexity. This reveals a surprising divergence between the
theory of timed automata over finite words and over infinite words. Fi-
nally, we show that if ε-transitions or non-singular postconditions are
allowed, then the one-clock language inclusion problem is undecidable
over both finite and infinite words.

1 Introduction

An execution of a real-time system can be modelled as a timed word consist-
ing of a sequence of events and their associated timestamps, and properties of
such systems can be expressed as languages of timed words. Timed automata
were introduced by Alur and Dill [5] to specify languages of timed words, and
have since been extensively studied by many researchers. In particular, timed
automata have been used as the foundation for several verification algorithms
and tools (see [6] for a survey).

One of the most fundamental results about timed automata is the undecid-
ability of the language inclusion problem: ‘Given timed automata A and B, is
every word accepted by B also accepted by A?’ This problem is undecidable
irrespective of whether one considers automata over finite words or automata
over infinite words with a Büchi acceptance condition. In this context it is nat-
ural to seek subclasses of timed automata, with reduced expressive power, for
which the language inclusion problem is decidable [3, 4, 6, 7, 13, 18, 19]. In this



paper we consider subclasses defined by the number of clocks an automaton has.
In particular, we consider the n-clock language inclusion problem in which A is
allowed n clocks but where no restriction is placed on B.

A close analysis of the proof of the undecidability of language inclusion in
[5] reveals that the tightest possible formulation of their result is that the two-
clock language inclusion problem is undecidable. On the other hand, from the
decidability of language emptiness for timed automata, also proved in [5], it
follows that the zero-clock language inclusion problem is (PSPACE-complete)
decidable. This leaves an interesting open question about the status of the one-
clock language inclusion problem. In fact, many interesting specifications can
be expressed by automata with a single clock, or parallel combinations thereof.
This is particularly so for alternating timed automata [16, 20]. For instance, every
formula of Metric Temporal Logic [8, 7] can be translated into an alternating
timed automaton with a single clock [20]. The model checking problem then
corresponds to language inclusion.

Recently, using techniques from the theory of well-quasi-ordered transition
systems [11], we showed that over finite words the one-clock language inclusion
problem is decidable [19]. However, while finite words are sufficient to capture
safety properties, to capture liveness or fairness properties it is most natural to
consider automata over infinite words. The main result of this paper is that,
for timed automata over infinite words (with Büchi acceptance condition) the
one-clock language inclusion problem is undecidable. This reveals a surprising
divergence between the theory of timed automata over finite words and over infi-
nite words. We also show that over finite words the one-clock language inclusion
problem has nonprimitive recursive complexity. Finally, language inclusion be-
comes undecidable over both finite and infinite words if ε-transitions are allowed
or if reset clocks have nonsingular postconditions (as in [9, 12]).

We use channel machines [10] as a convenient middleware between Turing
machines and timed automata. This allows us to develop a schematic approach
to proving undecidability and complexity results for various classes of timed
automata. In each case we show how to encode a certain class of channel com-
putations as a timed language, whose complement can be recognized by a timed
automaton of a certain type.

Related Work. The nonprimitive recursive complexity of language inclu-
sion over finite words and the undecidability of language inclusion over finite
words with ε-transitions have recently and independently been proved by La-
sota and Walukiewicz [16]. They also make use of channel machines in their
work, although via a different encoding of channel histories as timed words.

Alur, La Torre and Madhusudan [4] consider automata with perturbed clocks
whose rates may vary; they show that for every automaton with a single per-
turbed clock there is an equivalent deterministic timed automaton. It follows
that the language inclusion problem is decidable for this class of automata.
Laroussinie, Markey and Schnoebelen [15] classify the complexity of deciding
language emptiness for timed automata with one, two and three clocks respec-
tively.



2 Timed Automata and Timed Words

Let Σ be a finite alphabet and write Σε for Σ∪{ε}, where ε 6∈ Σ. Let R+ be the
set of non-negative reals. A timed event is a pair (t, a), where t ∈ R+ is called the
timestamp of the event a ∈ Σ. A timed word is a finite or infinite sequence u =
(t0, a0)(t1, a1)(t2, a2) . . . of timed events whose sequence of timestamps t0t1t2 . . .
is non-decreasing and is either finite or diverges to infinity. (This last assumption
rules out so-called Zeno words.) We say that a timed word is strictly monotonic
if its sequence of timestamps is strictly monotonic increasing. We write TΣ∗ for
the set of finite timed words over alphabet Σ and TΣω for the set of infinite
timed words over alphabet Σ.

Let X be a finite set of clocks, denoted x, y, z, etc. We define the set Φ(X) of
clock constraints over X via the following grammar (here k ∈ N is a non-negative
integer).

φ ::= x < k | x 6 k | φ ∧ φ | ¬φ .

Definition 1. A timed automaton is a tuple A = (Σ,S, S0, F,X,E), where

– Σ is a finite alphabet of events,
– S is a finite set of control states,
– S0 ⊆ S is a set of initial control states,
– F ⊆ S is a set of accepting control states,
– X is a finite set of clocks, and
– E ⊆ S × S × Φ(X) × Σε × 2X × Φ(X) is a finite set of edges. An edge

(s, s′, φ, α,R, φ′) allows α-labelled transition from s to s′, provided the pre-
condition φ on clocks is met. Afterwards, the clocks in R are nondetermin-
istically reset to values satisfying the postcondition φ′, and all other clocks
remain unchanged.

A clock valuation of A is a function ν : X → R+. If δ ∈ R+, we let ν + δ be
the clock valuation such that (ν + δ)(x) = ν(x) + δ for all x ∈ X. A global state
of A is a pair (s, ν), where s ∈ S is a control state and ν is a clock valuation.
Write Q = S × (R+)X for the set of global states.

Automaton A induces an (R+×Σε)-labelled transition relation on the set of

global states as follows. Write (s, ν)
δ, α
−→ (t, ν′) iff there is an edge (s, t, φ, α,R, φ′) ∈

E such that ν + δ satisfies φ, ν ′ satisfies φ′ and (ν + δ)(x) = ν ′(x) for all x 6∈ R.
A run of A is a finite or infinite sequence of transitions

(s0, ν0)
δ0, α0
−→ (s1, ν1)

δ1, α1
−→ (s2, ν2)

δ2, α2
−→ · · · (1)

where s0 ∈ S0 is an initial control state and ν0(x) = 0 for all x ∈ X. We require
that an infinite run contain infinitely many transitions labelled from Σ and that
∑∞

i=0 δi be infinite.
A finite run is accepting if the last control state in the run is accepting. An

infinite run is accepting if infinitely many control states in the run are accepting.
Let αi0αi1αi2 . . . be the sequence of non-ε-labels occurring in an accepting run

and write tj =
∑j

i=0 δi. Then we say that the timed word (ti0 , αi0)(ti1 , αi1)(ti2 , αi2) . . .



is accepted by A. We write Lf (A) for the set of finite timed words accepted by
A and Lω(A) for the set of infinite timed words accepted by A.

Remark 1. Definition 1 represents quite a general model of timed automata.
We will adopt the convention that, unless otherwise specified, a given timed
automaton has no ε-transitions, and has singular postconditions, i.e., for each
edge (s, t, φ, α,R, φ′), if clock valuations ν and ν ′ both satisfy φ′, then ν(x) =
ν′(x) for all x ∈ R.

3 Hardness Results over Finite Words

In [19] we showed that it is decidable whether Lf (B) ⊆ Lf (A) for an arbitrary
timed automaton B and a one-clock automaton A. In this section we show that
this problem has nonprimitive recursive complexity and is undecidable if A is
allowed ε-transitions or non-singular postconditions. We prove these results by
reduction from the reachability problem for channel machines.

A channel machine [1, 10, 21] consists of a finite-state automaton acting on
an unbounded fifo channel (or buffer). More precisely, a channel machine is a
tuple C = (S, s0,M,∆), where S is a finite set of control states, s0 ∈ S is the
initial control state, M is a finite set of messages, and ∆ ⊆ S × L × S is the
transition relation over label set L = {m!,m? : m ∈ M}.

A global state of C is a pair (s, x), where s ∈ S is the control state and
x ∈ M∗ is the contents of the channel. The rules in ∆ induce an L-labelled
transition relation on the set of global states as follows: (s,m!, t) ∈ ∆ yields a

transition (s, x) m!−→ (t, x·m) that writes m ∈ M to the tail of the channel, and

(s,m?, t) ∈ ∆ yields a transition (s,m·x) m?−→ (t, x) that reads m ∈ M from the
head of the channel. If we only allow the transitions indicated above, then we
call C an error-free channel machine.

We also consider channel machines that operate with insertion errors. Given
x, y ∈ M∗, write x v y if x can be obtained from y by deleting any number
of letters, e.g. sub v stubborn, as indicated by the underlining. Following [21]
we introduce insertion errors by extending the transition relation on global
states with the following clause: if (s, x) α−→ (t, y), x′ v x and y v y′, then
(s, x′) α−→ (t, y′). Dually, we define lossy channel machines by adding by a
clause: if (s, x) α−→ (t, y), x v x′ and y′ v y, then (s, x′) α−→ (t, y′).

A computation of C is a finite or infinite sequence of transitions between
global states (s0, x0)

α0−→ (s1, x1)
α1−→ (s2, x2)

α2−→ · · · .
The control-state reachability problem asks, given a channel machine C =

(S, s0,M,∆) and a control state t ∈ S, whether there is a computation of C
starting in global state (s0, ε) and ending in global state (t, ε). It is well-known
that the control-state reachability problem for error-free channel machines is
undecidable1. Next we show how to reduce the control-state reachability problem

1 The usual formulation of the problem asks whether there is a computation from
(s0, ε) to (t, x) for some x ∈ M∗. It is straightforward to reduce this problem to the
formulation above.



for error-free channel machines to the universality problem (which is a special
case of language inclusion) for various classes of timed automata.

Let C = (S, s0,M,∆) and t ∈ S be an instance of the control-state reacha-
bility problem. Given this data, let Σ = {m!,m? : m ∈ M} ∪ {X} be a finite
alphabet. We encode the finite control of C as an untimed automaton (i.e., a
timed automaton with no clocks) Acont over alphabet Σ. Acont is just the un-
derlying control automaton of C with a X-labelled self-transition added to every
control state, with s0 as the initial control state and t ∈ S as the only accepting
control state. Let Lcont denote the timed language Lf (Acont ).

Definition 2. Let Lchan ⊆ TΣ∗ consist of those timed words u such that:

1. u is strictly monotonic.
2. u contains a X-event at time zero, and thereafter consecutive X-events are

separated by one time unit.
3. Every m!-event in u is followed one time unit later by an m?-event.
4. Every m?-event is preceded one time unit earlier by an m!-event.

Clauses 3 and 4 capture the channel discipline: every message written to the
channel is read from the channel one time unit later, and every message that is
read from the channel was written to the channel one time unit earlier. The one-
to-one unit-time-delayed correspondence between read and write events ensures
that messages are read from the channel in the order that they were written
to the channel. The requirement that every message written to the channel is
eventually read corresponds to the fact that we consider computations that end
with an empty channel. The X-events in Lchan have no particular significance
other than to aid the encoding below.

Proposition 1. C has an error-free computation from (s0, ε) to (t, ε) iff Lcont ∩
Lchan 6= ∅.

Let Acont denote the complement of Acont as an untimed automaton. It is
clear that Acont is also the complement of Acont with respect to timed lan-
guages, i.e., Lf (Acont ) = TΣ∗ − Lcont . Now suppose that Achan is a timed au-
tomaton such that Lf (Achan) = TΣ∗ −Lchan . From Proposition 1 it holds that
Acont ∪Achan is universal (i.e. accepts every timed word) iff C has no error-free
computation from (s0, ε) to (t, ε). Since the control-state reachability problem
is undecidable for error-free channel machines, it follows that the universality
problem is undecidable for any class of timed automata that is closed under
unions and can capture the complement of Lchan .

3.1 Two clocks

We show how to define a timed automaton Achan with two clocks such that
Lf (Achan) = TΣ∗ − Lchan . We define Achan as the disjunction of several au-
tomata, each of which accepts the set of words that fail to satisfy a particular
clause in the definition of Lchan . The interesting clauses here are 3 and 4.



Automaton A1, below, accepts those timed words in which some m!-event is
not followed one time unit later by an m?-event, i.e., those words that fail to
satisfy Clause 3 in Definition 2. Automaton A2 (both left-hand and right-hand
components) accepts those timed words in which some m?-event is not preceded
one time unit earlier by any event. Note that a strictly monotonic timed word
fails to satisfy Clause 4 in Definition 2 if and only if it is either accepted by
A2 or contains an α-event followed one time unit later by an m?-event, with
α 6= m!. It is straightforward to capture this last condition with a one-clock
timed automaton. In fact A2 is the only component of Achan that uses two
clocks.

A1
//ONMLHIJK
@GF ECD

Σ

��
m!

x:=0
//ONMLHIJKGFED@ABC
@GF ECD
Σ x6=1

��

BCD@GA
Σ\{m?}

??

A2
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@GF ECD
Σ x:=0

��
Σ

y:=0
//ONMLHIJK
@GF ECD

Σ

��
m?

x>1∧y<1
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@GF ECD

Σ

��

//ONMLHIJK
@GF ECD

Σ

��
m?

x<1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Thus we obtain a new proof of Alur and Dill’s classical result [5].

Theorem 1. The universality problem for timed automata with two clocks is
undecidable.

3.2 ε-transitions

By allowing ε-transitions, we can replace the left-hand component of automaton
A2, above, with the following automaton which uses only one clock. The ε-
transition and the m?-transition in A3 are separated by exactly one time unit;
this prevents any visible event from preceding this occurrence of m? by one time
unit.

A3
//ONMLHIJK
@GF ECD
Σ x:=0

��
ε x>0

x:=0
//ONMLHIJK
@GF ECD
Σ x>0

��
m?

x=1
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Theorem 2. The universality problem for the class of timed automata with one
clock and ε-transitions is undecidable.

3.3 Non-singular postconditions

Instead of ε-transitions we can consider non-singular postconditions for clock
resets. In this case we can replace automaton A3 with the following one-clock



timed automaton, where the X-labelled edge non-deterministically resets x to a
value strictly less than 1.

A4
//ONMLHIJK
@GF ECD

Σ

��
X

x:<1
//ONMLHIJK
@GF ECD
Σ x6=1

��
m?

x=2
//ONMLHIJKGFED@ABC
@GF ECD

Σ

��

Theorem 3. The universality problem for the class of timed automata with one
clock and with non-singular postconditions is undecidable.

3.4 Complexity

The control-state reachability problem for lossy channel machines was shown
to be decidable, in contrast to the error-free case, by Abdulla and Jonsson [2].
Later Schnoebelen [21] proved that it has nonprimitive recursive complexity.

Proposition 2. The control-state reachability problem for channel machines
with insertion errors has nonprimitive recursive complexity.

Proof. Given a channel machine C = (S, s0,M,∆), define a new transition rela-
tion ∆op ⊆ S × {m!,m? : m ∈ M} × S by

∆op = {(s,m!, t) : (t,m?, s) ∈ ∆} ∪ {(s,m?, t) : (t,m!, s) ∈ ∆} .

Notice that there is a transition from global state (s, x) to global state (t, y)
under ∆ iff there is a transition from (t, rev(y)) to (s, rev(x)) under ∆op, where
rev : M∗ → M∗ reverses the order of a finite string. Thus there is computation
with lossiness errors from (s, ε) to (t, ε) under ∆ iff there is a computation
with insertion errors from (t, ε) to (s, ε) under ∆op. This observation allows
us to reduce the control-state reachability problem for channel machines with
lossiness errors to the control-state reachability problem for channel machines
with insertion errors. ut

Define the timed language Lins ⊆ TΣ∗ to consist of those timed words
satisfying Clauses 1-3 in Definition 2. Thus for a word in Lins , every m!-event
is followed one time unit later by an m?-event, but every m?-event need not be
preceded one time unit earlier by an m!-event. This corresponds to a channel
with insertion errors.

Proposition 3. C has a computation with insertion errors starting in state
(s0, ε) and ending in state (t, ε) iff Lcont ∩ Lins 6= ∅.

Note that we can express TΣ∗ − Lins as the language of a one-clock timed
automaton. This automaton incorporates A1 in Section 3.1, but not A2. Thus
we obtain

Theorem 4. The universality problem for the class of timed automata with a
single clock has nonprimitive recursive complexity.



4 Universality for One-clock Büchi Automata

In this section we prove the undecidability of the following universality problem:
‘Given a one-clock timed automaton A (without ε-transitions and with singular
postconditions) does Lω(A) = TΣω?’

As in Section 3 the idea behind the proof is to encode the computations of
a certain type of channel machine as a timed language. To this end, say that
a non-terminating computation of a channel machine is space-bounded if there
exists N ∈ N such that the number of messages stored on the channel during
the computation never exceeds N . We define a timed language Lbound ⊆ TΣω

encoding space-bounded computations of a channel with insertion errors. We
capture the space bound by requiring an upper bound on the number of events
per time unit for each word u ∈ Lbound . Besides space-boundedness the other
key ingredient in our proof is the notion of alternation, defined below.

Define a channel machine C to be alternating if we can partition the set of
control states into two classes, called read states and write states respectively,
such that each edge is of the form (s,m?, t) with s a read state and t a write
state, or of the form (s,m!, t) with s a write state and t a read state. Then
any computation of C consists of an alternating sequence of read transitions and
write transitions.

The recurrent-state problem for alternating channel machines is as follows.
Given an alternating channel machine C = (S, s0,M,∆), does there exist x ∈ M∗

such that C has a non-terminating computation starting in global state (s0, x)
and visiting s0 infinitely often? The following proposition is proved in Appendix
A.

Proposition 4. The recurrent-state problem for error-free alternating channel
machines is undecidable.

The space-bounded recurrent-state problem for alternating channel machines
with insertion errors asks if a given alternating channel machine has a space-
bounded computation, possibly with insertion errors, passing infinitely often
through the initial control state. The following proposition, which is reminiscent
of a result of Mayr [17] on lossy counter machines, asserts that this problem is
undecidable.

Proposition 5. The space-bounded recurrent-state problem for alternating chan-
nel machines with insertion errors is undecidable.

Proof. Given an alternating channel machine C, we claim that C has an error-
free recurrent computation iff it has a space-bounded recurrent computation with
insertion errors. Then Proposition 5 follows from Proposition 4. Indeed, since C
is alternating, at any point in a computation the total number of insertion errors
up to that point is within one of the current size of the channel minus the size
of the channel at the start of the computation. Thus any error-free computation
of C is space-bounded, and any space-bounded computation of C with insertion
errors is eventually error-free (the space-bound gives an upper bound on the
total number of insertion errors). ut



Definition 3. Given a strictly monotonic timed word u = (t0, a0)(t1, a1) . . .,
define density(u) = sup{j − i : tj − ti 6 1}. The density of a timed word
measures the maximum number of events in any time unit along the word.

Theorem 5. The universality problem for one-clock Büchi timed automata is
undecidable.

The proof is by reduction from the space-bounded recurrent-state problem for
alternating machines with insertion errors. Given an alternating channel machine
C = (S, s0,M,∆), we define a one-clock Büchi timed automaton A such that C
has a space-bounded recurrent computation with insertion errors iff A is non-
universal.

Let Σ = {m!,m? : m ∈ M} ∪ {X} be a finite alphabet. We encode the finite
control of C as a Büchi timed automaton Acont with no clocks over alphabet
Σ. Acont is just the underlying control automaton of C with a X-labelled self-
transition added to every control state and with s0 as the initial control state and
only accepting control state. Let Lcont denote the timed language Lω(Acont ).

Next we capture the behaviour of a space-bounded channel with insertion
errors using a timed language Lbound over alphabet Σ.

Definition 4. Lbound consists of those timed words u satisfying:

1. u is strictly monotonic and contains infinitely many non-X-events.
2. There is a X-event at time zero, and thereafter consecutive X-events are

separated by one time unit.
3. For every m!-event in u there is an m?-event one time unit later.
4. For every m?-event in u there is a n!-event one time unit later, for some

n ∈ M .
5. density(u) < ∞.

As with the corresponding clause in Definition 2, Clause 3 captures the chan-
nel discipline: every message sent is received. The channel has insertion errors
because not every m?-event is preceded one time unit earlier by an m!-event. On
the other hand, Clause 4 has nothing to do with the channel discipline. How-
ever its presence, together with Clauses 2 and 3, ensures that for every event of
u ∈ Lbound there is an event exactly one time unit later. (This fact will play a
significant role later.) Since we are dealing with alternating channel machines,
the imposition of Clause 4 will prove to be no restriction when we seek to match
words in Lbound with channel computations. Finally, Clause 5 corresponds to the
space-boundedness of the channel.

Proposition 6. C has a space-bounded recurrent computation with insertion
errors iff Lcont ∩ Lbound 6= ∅.

Proof. (⇐) Let u ∈ Lcont ∩ Lbound . We show how to recover a space-bounded
recurrent computation of C from u. Since u ∈ Lcont , the automaton Acont , which
represents the finite control of C, has a run

(s0, ν0)
δ0, α0
−→ (s1, ν1)

δ1, α1
−→ (s2, ν2)

δ2, α2
−→ · · · (2)



on u. Let αi0αi1αi2 . . . be the sequence of non-X-events in u. Then we obtain a
recurrent computation of C

(si0 , x0)
αi0−→ (si1 , x1)

αi1−→ (si2 , x2)
αi2−→ · · ·

where xj ∈ M∗ is the sequence of messages that occur as read events in the unit
time interval

(

tij−1
, tij−1

+ 1
]

, where, by convention, i−1 = 0. Since u ∈ Lbound ,
Clause 3 in Definition 4 ensures that this is a legitimate computation of C,
albeit with insertion errors. Since u has finite density this computation is space-
bounded.

(⇒) We have already observed that if C has a space-bounded recurrent com-
putation with insertion errors, then it has a space-bounded recurrent error-free
computation. The trace of channel events along such an error-free computation
can easily be encoded as a word in Lbound as we now explain. Since C is al-
ternating, there is a number N ∈ N such that the size of the channel is either
N or N − 1 at any point in the computation. When any message is written to
the channel, the machine performs exactly 2N − 1 (read- and write-) operations
before that message is read off the channel. We transform the sequence of read
and write events along a computation into a timed word u by putting exactly
1/(2N−1) time units between consecutive events. This automatically guarantees
that Clauses 3-5 in Definition 4 hold. Finally, adding X-events at integer times
yields a timed word in Lbound . ut

Similar to the development in Section 3, the undecidability of the universality
problem will follow from Proposition 6 provided that we can define a one-clock
timed automaton Abound such that Lω(Abound ) = TΣω − Lbound . We define
Abound to be the disjunction of several automata, corresponding to the different
clauses in the definition of Lbound . It is straightforward, for each clause 1–4, to
define an automaton that accepts precisely the timed words that fail to satisfy
that clause. Below we define two automata Ainc and Adec such that, if a timed
word u already satisfies 1–4, then it is accepted by Ainc or Adec precisely if it
fails Clause 5, i.e., it has infinite density.

First we recall the following simple proposition about real numbers.

Proposition 7. If x = 〈xn : n ∈ N〉 is a sequence of real numbers in the open
interval (0, 1) that takes on infinitely many values, then x has either a strictly
increasing subsequence or a strictly decreasing subsequence.

Let u = (t0, a0)(t1, a1)(t2, a2) . . . be a timed word satisfying Clauses 1–4 in
Definition 4. Then for every event of u there is an event exactly one time unit
later. Thus u has infinite density iff {frac(ti) : i ∈ N} is infinite. By Proposition
7, this holds iff the sequence 〈frac(ti) : i ∈ N 〉 has either a strictly increasing
subsequence or a strictly decreasing subsequence. We define an automaton Ainc

that accepts u iff 〈frac(ti) : i ∈ N〉 has a strictly increasing subsequence, and
an automaton Adec that accepts u iff 〈frac(ti) : i ∈ N〉 has a strictly decreasing
subsequence.

Consider a run of Ainc (depicted below) on u = (t0, a0)(t1, a1)(t2, a2) . . .. Let
tij

be the timestamp of the transition that resets clock x for the j-th time. Notice



that either tij+1
= tij

+ 1 or frac(tij+1
) > frac(tij

). The Büchi condition ensures
that the second eventuality holds infinitely often in the run, and so the sequence
frac(tij

) has a strictly increasing subsequence. Thus, among those timed words
u satisfying Clauses 1–4 in Definition 4, Ainc accepts precisely those for which
〈frac(ti) : i ∈ N〉 has a strictly increasing subsequence. (Notice the importance
in the operation Ainc of the fact that for each event in u there is an event one
time unit later.)

Ainc
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Adec (depicted below) operates in a similar manner to Ainc except that it
accepts those words u = (t0, a0)(t1, a1)(t2, a2) . . . for which 〈frac(ti) : i ∈ N〉 has
a strictly decreasing subsequence.

Adec
//ONMLHIJK
@GF ECD

Σ

��
¬X

x:=0
//ONMLHIJK
@GF ECD
Σ x<1

��

@GA BCD
Σ x=1 x:=0

__

X
,,ONMLHIJKGFED@ABC
@GF ECD
Σ x<1

��

Σ x<1 x:=0

ll

5 Remarks and Future Work

The main result of this paper is that the universality problem for one-clock
Büchi timed automata is undecidable. A closely related problem concerns the
decidability of the satisfiability and model checking problems for Metric Tempo-
ral Logic (MTL) [8, 7]. This logic is known to be undecidable under an interval
semantics. However, under a point-based semantics—i.e., interpreting the logic
over timed words—the satisfiability problem is open, cf. [20].

In [20] we show how to translate an MTL formula into an alternating timed
automaton with a single clock. In terms of alternating automata, the present pa-
per shows that the emptiness problem for one-clock alternating automata with
co-Büchi acceptance condition is undecidable. However one can express MTL
formulas using a particularly simple acceptance condition—the so-called weak
parity acceptance condition—which specializes both the Büchi and co-Büchi ac-
ceptance conditions2. It does not seem possible to capture the timed language
Lbound by an MTL formula, or, more generally, a one-clock alternating automata

2 In the untimed case an alternating automaton with a Büchi or co-Büchi acceptance
condition can be translated into an alternating automaton with a weak parity ac-
ceptance condition, however this translation does not apply in the timed case.



with weak parity acceptance condition. So it remains possible that the satisfi-
ability problem for MTL is decidable, and we are currently investigating this
question.
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A Some Proofs

Recall the notion of an input-bounded Turing machine M (also called a Linear
Bounded Automaton [14]). The tape alphabet of M includes two special symbols

�
and � , respectively called the left and right endmarkers. We assume that any

computation of M starts with tape contents of the form
�

x1 . . . xn � . Moreover
we require that the instruction set of M does not include any instructions that
try to write over or go beyond the left and right endmarkers.

The recurrent-state problem (RSP) for input-bounded Turing machines is as
follows. Given an input-bounded Turing machine M with initial state s0, does
there exist a tape contents γ such that M has a non-terminating computation,
starting in configuration (s0, γ) and visiting state s0 infinitely often?

Proposition 8. The recurrent-state problem for input-bounded Turing machines
is undecidable.

Proof. Given an ordinary Turing machine N , we construct an input-bounded
Turing machine M such that M has a recurrent computation iff N halts on the
empty word (i.e., when given a blank tape as input).

Starting in its initial control state s0 with tape contents
�

x1 . . . xn � , M
replaces each tape symbol xi with a blank, ending up in control state s1. From
state s1, M then simulates the behaviour of N by using the tape cells between
the left and right endmarkers to simulate N ’s tape. This simulation carries on
until either M runs outs of space, in which case M just terminates, or N enters
its halting state, in which case M returns to s0. If N halts on the empty word,
then M has a recurrent computation obtained by repeatedly simulating N ’s
halting computation. Conversely, if M has a recurrent computation then clearly
N halts on the empty word. ut

Proposition 4. The recurrent-state problem for error-free alternating channel
machines is undecidable.

Proof. We reduce the RSP for input-bounded Turing machines to the RSP for
error-free alternating channel machines. Given an input-bounded Turing machine
M, we define a channel machine C that simulates M in such a way that C is a
positive instance of the RSP for channel machines iff M is a positive instance of
the RSP for Turing machines.

In the simulation, C stores the tape and the head position of M on its channel.
For each symbol α in the alphabet of M (including

�
and � ), the channel

machine C maintains two symbols α and α∗. Here, α∗ indicates that the head is
pointing to the current square of the tape. For instance, the string

�
abc∗a � in

the channel of C encodes a tape
�

abca � with the head pointing to the square
where c resides.

A single step of M is simulated by a sequence of steps in which C cycles
through its channel by alternately performing read and write operations, up-
dating each tape cell in turn. The set of control states in C contains both the
control states of M and a number of “intermediate” states which are used to



implement changes in the head position. We distinguish between two kinds of
cycles, namely cycles corresponding to steps where the head is moved to the
right and those where the head is moved to the left.

First, we consider cycles corresponding to right moves of the head. An in-
struction3 (s1, a/b,R, s2) is simulated by the transitions depicted in Figure 1.
Here we use letters α . . . ω to denote the channel alphabet of M. The symbols in
the channel are copied one by one until we reach the symbol a∗ which is replaced
by b. Then the next symbol is converted to its ∗-version, simulating a right move
of the head.

α?

α!

a*?

b!

α? ω?

ω∗!α∗!

s1

s2

ω!

ω?

Fig. 1. Simulating a right move (s1, a/b, R, s2)

Simulating left moves of the head is slightly more complicated since we have
to decide the next position of the head before we have figured out its current
position. To solve this problem, we guess nondeterministically during the simu-
lation that the next position is the one with the head. If the guess turns out to be
wrong, the computation is suspended (C deadlocks). Otherwise the simulation
is continued in a similar manner to above—see Figure 2. ut

3 Such an instruction has its standard interpretation in Turing machines, i.e., the
control state is changed from s1 to s2, the current cell is changed from a to b, and
the head is moved one step to the right.



α?

α!

α∗!

a*?

b!

α? ω?

s1

s2

ω?
ω!

ω∗!

Fig. 2. Simulating a left move (s1, a/b, L, s2)


