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ABSTRACT

We present a maximum likelihood method for determining the spatial properties of tidal debris and of the Galactic
spheroid. With this method we characterize Sagittarius debris using stars with the colors of blue F turnoff stars in
SDSS stripe 82. The debris is located at (�; �;R) ¼ (31:37� � 0:26�; 0:0�; 29:22 � 0:20 kpc), with a (spatial) di-
rection given by the unit vector (�0:991 � 0:007 kpc; 0:042 � 0:033 kpc; 0:127 � 0:046 kpc), in galactocentric
Cartesian coordinates, and with FWHM ¼ 6:74 � 0:06 kpc. This 2.5� wide stripe contains 0.9% as many F turnoff
stars as the current Sagittarius dwarf galaxy. Over small spatial extent, the debris is modeled as a cylinder with a den-
sity that falls off as a Gaussian with distance from the axis, while the smooth component of the spheroid is modeled
with a Hernquist profile. We assume that the absolute magnitude of F turnoff stars is distributed as a Gaussian, which
is an improvement over previous methods which fixed the absolute magnitude at M̄g0 ¼ 4:2. The effectiveness and
correctness of the algorithm is demonstrated on a simulated set of F turnoff stars created to mimic SDSS stripe 82 data,
which shows that we have a much greater accuracy than previous studies. Our algorithm can be applied to divide the
stellar data into two catalogs: one which fits the stream density profile and one with the characteristics of the spheroid.
This allows us to effectively separate tidal debris from the spheroid population, both facilitating the study of the tidal
stream dynamics and providing a test of whether a smooth spheroidal population exists.

Subject headinggs: Galaxy: halo — Galaxy: structure — methods: data analysis

1. INTRODUCTION

1.1. The Milky Way’s Spheroid

In the late 1980s, the Milky Way’s spheroid population was
described as slowly rotating, with density distribution given by
� / r�3:5 (Freeman 1987). There was a controversy concerning
the flattening of the spheroid, since kinematic studies of the spher-
oid stars suggested a flatter spheroid (Gilmore et al. 1989) and
star counts often suggested a more spherical spheroid (Bahcall
1986). By early in the 21st century, the spheroid was still thought
of as a smooth power-law distribution, but studies were starting
to show that the shape of the spheroid depended on the type of
star being observed, and it was noted that at least some of the
spheroid, if not all, was composed of debris from hierarchical
structure formation (Freeman & Bland-Hawthorne 2002). The
Sagittarius (Sgr) dwarf galaxy (Ibata et al. 1994) and its asso-
ciated tidal stream (Yanny et al. 2000; Ibata et al. 2001a, 2001b)
was the one known example of merging in the present day. In the
last 10 years, the discovery of substructure has dominated the dis-
cussion of the Galactic spheroid. The discovery of substructure
has been driven primarily by the SloanDigital SkySurvey (SDSS)
and the related Sloan Extension for Galactic Understanding and
Exploration (SEGUE), but other surveys such as theQuasar Equa-
torial Survey Team and the TwoMicronAll Sky Survey (2MASS)
have also been influential. Discoveries include new tidal debris
streams, dwarf galaxies, and globular clusters.

The positions, velocities, and metallicities of Sgr dwarf sphe-
roidal tidal debris stars have been measured all across the sky
(Newberg et al. 2002, 2003; Bellazzini et al. 2003; Majewski

et al. 2003, 2004; Martı́nez-Delgado et al. 2004; Fellhauer et al.
2006; Chou et al. 2007). These measurements have then been
compared with models of tidal disruption (Johnston et al. 1995,
2002; Ibata et al. 1997; Ibata & Lewis 1998; Gómez-Flechoso
et al. 1999; Helmi &White 2001; Law et al. 2004, 2005). Given
that the data spans three spatial dimensions plus radial velocities,
but both the models and data are presented in papers primarily
as two-dimensional plots, it has been difficult to make detailed
comparisons in multidimensional space. In this paper we develop
a technique that would allow us to create a catalog of stars that has
the same spatial distribution as the stars in the Sgr tidal stream.
That catalog could then be made available to the modeling com-
munity, who would be able to transform the coordinates into
whatever system they find most natural to make comparisons.
At least three newly discovered tidal debris streams are thought

to be associated with dwarf galaxies, including the Monoceros
stream in the Galactic plane (Newberg et al. 2002; Yanny et al.
2003), the Virgo stellar stream (Vivas et al. 2001; Duffau et al.
2006;Newberg et al. 2007), and theOrphan stream (Grillmair 2006)
in the Field of Streams (Belokurov et al. 2006b). An additional
piece of tidal debris was found in Triangulum-Andromeda by
Rocha-Pinto et al. (2004) which might be part of the Monoceros
stream (Peñarrubia et al. 2005). Tidal tails spanning many tens of
degrees across the sky have been found aroundPal 5 (Odenkirchen
et al. 2001; Rockosi et al. 2002; Grillmair & Dionatos 2006a) and
NGC 5466 (Grillmair & Johnson 2006; Belokurov et al. 2006a).
Grillmair & Dionatos (2006b) find a similar-looking tidal stream
forwhich there is no known progenitor globular cluster. Eight new
lowYsurface brightness dwarf galaxy satellites of the MilkyWay
have been discovered (Willman et al. 2005; Zucker et al. 2006a,
2006b; Belokurov et al. 2006c, 2007a; Grillmair 2006; Irwin et al.
2007), nearly doubling the number of knownMilkyWay dwarfs.
Belokurov et al. (2007b) suggest that there is a new structural
component of the spheroid called the Hercules-Aquila cloud.
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With all of this substructure detected in the densities of spher-
oid stars, one wonders how much of the spheroid is smooth and
what the shape of the smooth spheroid might be. It is no wonder
that standardGalacticmodels, such as theBesançonmodel (Robin
et al. 2003), which uses a power-law density profile, do not match
the SDSS star counts. The spheroid shape is a current contro-
versy as Helmi (2004) has found prolate models favorable, while
Johnston et al. (2005) has found oblate models best. The large
number of very significant overdensities of stars in the spheroid
show that pencil-beam studies and studies that extrapolate from
the solar neighborhood could be contaminated by local structure
and may not be indicative of the global shape of the Milky Way
spheroid. Recent results from F turnoff stars from the SDSS sug-
gest that the smooth component of the spheroid might be asym-
metric about the Galactic center, so that no axially symmetric
spheroidmodel can be fit (Newberg&Yanny 2005, 2006; Savage
et al. 2006; Xu et al. 2006). However, accurate measurements of
the smooth component require that spatial substructure be iden-
tified and quantified—otherwise, it is difficult to knowwhich stars
to fit to smooth spheroid models.

We need to develop a model that is as complex as the data. In
this paper we start this process by developing a maximum like-
lihood method that can be used to fit a smooth stellar spheroid
containing one debris stream, using one 2.5� stripe of SDSS data,
and show that our algorithm produces the correct results on a
simulated data set. In the future, we will extend the algorithm to
include larger data sets with multiple pieces of debris. The long-
term goal is to develop a model of the spheroid that fits the ob-
served, lumpy density distribution of stars in the spheroid.

1.2. The Sloan Digital Sky Survey

The SDSS is a large, international collaboration that was orig-
inally established to find the largest structures of galaxies in the
universe from an imaging survey of 10,000 deg2 of sky and
spectra of 1,000,000 galaxies selected from the photometry (from
images). The SDSS can simultaneously obtain 640 spectra per
pointing, using two 320-fiber double (blue/red) spectrographs.
The angular position of a galaxy in the sky is easy to measure
from the imaging survey, and for distant galaxies, the distance is
well estimated from a spectroscopic measurement of the Hubble
redshift. By combining the imaging with the spectroscopic sur-
vey, the SDSS has built up a three-dimensional picture of the
distribution of galaxies in the universe using a dedicated 2.5 m
telescope atApache PointObservatory inNewMexico (York et al.
2000).

Images are obtained with an array of 30 2048 ; 2048 pixel
CCD cameras operated in a drift-scan (time delay and integrate)
mode, which produces six ‘‘scan lines’’ of imaging data that are
each 13.60 wide and grow longer at a rate of 15� hr�1 for the length
of that ‘‘run.’’ In each of the six ‘‘scan lines,’’ the sky is imaged
in five optical filters: u, g, r, i, and z; the time at which each
astronomical object is imaged is a few minutes different for each
passband.When a second set of six scan lines is observed that fill
in the gaps between the first set of six scan lines, they produce a
contiguous ‘‘stripe’’ of data of width 2.5� and length that de-
pends on the length of time the sky was observed in the ‘‘runs.’’
Each 2.5� wide stripe follows a defined great circle on the sky
and is built up of two or more ‘‘runs’’ of data, as many runs as are
needed to traverse the SDSS survey area.

The entire sky is divided up into 144 numbered stripes that
start and end at the survey poles, (l; b) ¼ (209:33�;�7�) and
(29:33�; 7�). Stripes 10 and 82 are centered on the celestial equa-
tor, with stripe 10 in the north Galactic cap and stripe 82 in the
south Galactic cap. The other stripes are sequentially numbered

with inclinations 2.5� apart. If the entire length (180�) of every
stripe were imaged, we would have 64,800 deg2 of imaging data
for a sky that is 41,253 deg2. The overlaps between stripes in-
crease toward the survey poles. Since the SDSSgenerally observes
only parts of the sky that are more than 30

�
from the survey poles,

there is about 50% overlap at the ends of the stripes and very little
overlap on the survey equator, which is at R:A: ¼ 185�. With the
release of SDSSData Release 6 (DR6; Adelman-McCarthy et al.
2008), a contiguous 8500 deg2 area of the north Galactic cap
is now publicly available. It is pieced together with 31 adjacent
SDSS stripes. Three stripes of data are available in the south
Galactic cap, including stripe 82 on the celestial equator. Further
information about the SDSS, including survey geometry, can be
found in Stoughton et al. (2002), Abazajian et al. (2003), Fukugita
et al. (1996), Gunn et al. (1998), Hogg et al. (2001), Pier et al.
(2003), and Smith et al. (2002).

Because the imaging survey is large and well calibrated and
because the spectroscopic survey included many Galactic stars,
in some cases by design and in some cases accidentally, the SDSS
has made a significant contribution to our knowledge about the
MilkyWay and, in particular, the discovery of substructure in the
spheroid component, as we discussed above. Because of this,
SDSS has been expanded to include a new project, SEGUE. This
extension will eventually include 3500 deg2 of new imaging data
which is collected in 2.5

�
wide great circles on the sky, but these

great circles do not in general match those laid out on the sky for
the SDSS, and they are not adjacent to each other so they do not fill
contiguous areas of the sky. The positions of these stripes were
chosen to sparsely sample all directions in the sky that are visible
from Apache Point Observatory and include scans at constant
Galactic longitude that pass through the Galactic plane. SEGUE
will also obtain�250,000 spectra of Galactic stars to study stellar
populations and kinematics.

In this paper wewish to use the photometry derived from imag-
ing of Galactic stars to trace the three-dimensional shape of the
Galactic spheroid and the substructure, including tidal streams,
contained within it. In this demonstration of the algorithm and the
results from running it, we focus on only one well-studied stripe
of SDSS data: stripe 82 on the celestial equator. We use only F
turnoff stars in 300 deg2 of this stripe, roughly centered on the
place where the Sgr stream crosses it. Unlike galaxies, the dis-
tances of stars cannot be inferred from their radial velocities. By
selecting only stars with colors consistent with spheroid F turnoff
stars, we select a stellar population that is not a very good standard
candle. But because we observe a large number of F turnoff stars
we can find their underlying density distribution through statis-
ticalmethods.We assume the absolutemagnitudes of the F turnoff
stars in the population have a mean of M̄g0 ¼ 4:2 and a dispersion
of �Mg0

¼ 0:6. These are reasonable estimates for the Sgr dwarf
tidal stream (Newberg & Yanny 2006).

1.3. The Technique of Maximum Likelihood

Given a parameterized model and some data generated ac-
cording to the model for some ‘‘true’’ values of the model pa-
rameters, the task of model estimation is to determine the set of
parameters used in generating the data. Within a Bayesian set-
ting, the model estimation problem can be reformulated as de-
termining the a posteriori most likely parameters given the data
and the model. In our case we have spatial positions for a set of
stars in the spheroid and a proposed model for the spheroid and
a tidal stream which passes through it, and we would like to find
the most likely values of the parameters in that model.

The likelihood of a set of parameters is the probability of
obtaining a particular data set for a given set of parameters. Via
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Bayes’ theorem, one can decompose the a posteriori probability
of a particular set of parameters given the data and themodel into
the product of two terms, the first being the likelihood of the pa-
rameters and the second being the prior probability of the param-
eters.When the prior probability distribution over the parameters
is uniform (as is typically assumed), the a posteriori probability
is proportional to the likelihood, and so the maximum likelihood
technique may be used to find the most likely model parameters
(see Fletcher 1987 for more details).

There are two main tasks to implementing the maximum like-
lihood technique. The first is to develop the likelihood function,
which measures the probability of observing a particular data set
given a parameterized model. The second is to maximize the
likelihood with respect to the parameters.

In developing the likelihood function, one typically assumes
that each data point is independently generated; hence, the like-
lihood of the data set is the product of the likelihoods of each
individual data point. Within our setting, we develop a param-
eterized model for the background Milky Way and Sgr stellar
distributions from which we compute the likelihood. We prefer
to maximize the logarithm of the likelihood rather than the like-
lihood, because the computation of the log-likelihood is numerically
more stable. We then use the standard technique of optimization
via conjugate gradients (Fletcher 1987) tomaximize the likelihood
and, hence, determine the most likely model parameters fitting
the data.

One advantage of the maximum likelihood framework is that
theHessian of the log-likelihood (at themaximum) gives the shape
of the probability distribution over the parameters and, hence,
allows us to determine the statistical error in the estimated model
parameters. When the model parameters are physical quantities
of interest, this statistical error translates to an error bar on the
measured (i.e., estimated) physical quantity.

In the remainder of this paper we present a new automated
technique that can detect tidal debris in a spatial input catalog of
stars from one stripe of SDSS data. Since the first stripe in which
the Sgr dwarf tidal stream was detected in SDSS data was stripe
82 (Newberg et al. 2002), it has therefore been the most well
studied; this is the section of data onwhich we test our maximum
likelihood. Building on this, we describe a technique to extract
a catalog of stars that fits the density profile of the debris; this
catalog can then be used to constrain the dynamical models.

2. ALGORITHM FOR FITTING
SPHEROID SUBSTRUCTURE

2.1. Goals of the Algorithm

Starting with a parameterized density model for the spheroid,
a parameterized density model for the Sgr dwarf tidal stream, the
absolute magnitude distribution for F turnoff stars, and a data set
of observed (l; b) angular coordinates and apparent magnitudes
for color-selected F turnoff stars in a 2.5� stripe through which a
tidal stream passes, we find the parameters for a tidal stream and
stellar spheroid concurrently that give us the highest likelihood
of observing the data. This will allow us to tabulate summary sta-
tistics for the Sgr dwarf tidal stream, including position, width,
and density. It will also allow us to test models for the spheroid
component of the Milky Way, and ultimately, it will allow us to
construct a catalog of stars that fit the density profile of the Sgr
tidal stream by probabilistically separating the stream from the
spheroid.

The parameters in our stellar density model describe the po-
sition, direction, andwidth of the tidal stream, aswell as the shape
of the smooth stellar spheroid. We start with an initial set of

parameters and iterate using a conjugate gradient search tech-
nique until the optimum values for each parameter given the data
set are determined. From the parameters which produce the maxi-
mum likelihood, we estimate the errors in each parameter.
Once we have found the best parameters, we are able to use a

separation algorithm to divide the data into two sets of stars, one
of which has the density profile of the stream and the other of
which has the density profile of the spheroid. While we cannot
determine which of the individual stars in the data set belong to
the stream and which belong to the spheroid, we can separate the
input catalog into two catalogs that will have the density prop-
erties of the stream and the spheroid, respectively. These catalogs
will allow for a close comparison of the stream density profile
with that of simulations of tidal disruption and constrain the dy-
namical models used in simulations of tidal disruption.
Section 2.2 gives a brief overview of the algorithm. Section 2.3

describes the construction of the probability density function.
Section 2.4 discusses the optimizationmethodwe use. Section 2.5
describes the method by which we estimate the errors in the pa-
rameters. Section 2.6 discusses the application of a separation
algorithm to distinguish stream and spheroid stars. Section 2.7
describes the computational time required to run the algorithm
and the application of parallel processing as a way to improve
efficiency. Section 2.8 discusses some limitations and possible
enhancements that could be made in the future. A thorough dis-
cussion of the conjugate gradient and line search optimization
method can be found in Appendix A.

2.2. Overview of the Algorithm

The algorithm starts with initial guesses for the model param-
eters and an input catalog of observed F turnoff star positions as
(l; b; g), which represent the Galactic longitude, in degrees; Ga-
lactic latitude, in degrees; and reddening-corrected g magnitude
for each star. The apparentmagnitudes are corrected for reddening
using the Schlegel et al. (1998) reddening maps, as implemented
in SDSS DR6.
The essence of the maximum likelihood technique is to create

a parameterized probability density function (PDF) and then find
parameters in this function whichmaximize the likelihood of ob-
serving the data.Wefirst select a parameterized stellar density func-
tion for the spheroid and its substructure. Since the parameterized
models describe the density as a function of space (X ; Y ; Z ) and
the observations include only Galactic coordinates (l; b) and ap-
parent magnitude g, we need to relate spatial position to (l; b; g).
The angular position in the sky is very well known for each star,
but it is difficult to determine the distance to each star.We can only
estimate the distance from its apparent magnitude, g. If all of the
stars in the sample have the same absolute magnitude, then the
conversion of apparent magnitude to distance is trivial. Unfor-
tunately, this is not a good approximation for F turnoff stars, whose
luminosity can deviate from the mean by a factor of 5 or more,
even within the same age and metallicity population. Instead, we
approximate the distribution of absolute magnitudes of F turnoff
stars as Gaussian.
The likelihood of observing the data is the product of the like-

lihoods of observing each of the stars within the data set, given
the model,

L(Q) ¼
YN
i¼1

PDF(li; bi; gijQ); ð1Þ

where the index i runs over theN stars,Q is a vector representing
the parameters in the model, and the PDF is a normalized version

COLE ET AL.752 Vol. 683



of the stellar density function that is derived in x 2.3. Because the
individual probabilities are small, we avoid numerical underflow
by maximizing the average logarithm of the likelihood,

1

N
lnL(Q) ¼ 1

N

XN
i¼1

ln PDF(li; bi; gijQ); ð2Þ

which is maximized for the same parameters that the likelihood
is maximized.

We have chosen as input to this first version of the maximum
likelihood algorithm a volume of the Galaxy sampled in a sec-
tion of stripe 82. This volume is a piece of a wedge, 2.5� wide,
with the point at the Sun, limited in the near and far ends by the
apparent magnitude range 16 < g0 < 22:5. For F turnoff stars
with absolute magnitude Mg ¼ 4:2, the approximate distance
range is 2:3 kpc < R < 45:7 kpc from the Sun. The near and far
edges of the volume are fuzzy due to the inexact relationship be-
tween apparent magnitude and distance, and the variable detec-
tion efficiency at the faint end. We chose this volume of a single
stripe as the first application of the algorithm, for we do not have
a global model for a general tidal stream; however, if we choose
to look at a small enough volume of the stream (as is the inter-
section of the stream with stripe 82), we are able to approximate
its shape as a cylindrical density with cross-sectional Gaussian
falloff from its axis. We model the entire tidal stream as a set
of these cylindrical stream segments. This model will not work if
the stream is in the plane of the wedge, but we show below that
this cylindrical approximationworks for this stream in this wedge.

The algorithm begins by calculating the average log-likelihood
for an initial set of parameters. A conjugate gradient with the line
search method is used to find the next set of parameters and the
process iterates. Using this method, each subsequent set of pa-
rameters is guaranteed to produce an equal or higher likelihood in
each iteration of the algorithm. The algorithm continues to gen-
erate new sets of parameters until convergence, which is defined
by one of a number of conditions: either the gradient becomes so
small that it would not provide foreseeable improvement, the line
search returns negligible movement, or a maximum number of
iterations is reached.

2.3. The Probability Density Function

2.3.1. Tidal Stream Model

In general, tidal streams follow a complex path through the sky.
The stars in the structuresmay bunch up at apogalacticon andmay
have a complex cross-sectional density that varies with position
along the stream. However, within a single SDSS stripe through
which the stream passes it is reasonable to approximate the path
of the stream as linear (see x 3.3).

We model the stream in a piecewise linear fashion with a sep-
arate set of parameters for each stripe of data in the SDSS, al-
though in principle we could run this algorithm on any 2.5� wide
great circle or set of 2.5

�
wide great circles on the sky. The length

of the cylinder is limited by the edges of the data in one stripe.
The cross section is circularly symmetric with a density that falls
off as a Gaussian with distance from the stream axis. Figure 1
depicts the data volume and the relationship between the stream

Fig. 1.—Stripe and stream parameter definitions. The segment of a stream which passes through an SDSS stripe is cylindrical within an individual stripe, with density
that falls off as a Gaussian with distance from its axis. The coordinates �, �, and r are used to define SDSS stripes. We adopt these coordinates to define a vector, c(�;R)
(� ¼ 0), which points to the center of the stream from the Galactic center. We then define a stream directional vector â(�; �) of unit length. Finally, we define the stream
width as �, which is the standard deviation of the Gaussian that defines the density falloff of the stream.

TIDAL STREAM FITTING 753No. 2, 2008



parameters and the segment of a cylinder that describes the
stream.

The SDSS great circle coordinate system (�; �) is used tomea-
sure the angular position on the sky. The coordinate � is bounded
by �1:25� < � < 1:25� for all stripes and measures the angular
position across the narrow dimension of the stripe; � is by def-
inition zero along the center of each stripe of data. The coordi-
nate �measures the angular distance along the great circle swept
out by each stripe. The inclination of each stripe is the maxi-
mum angle between that stripe and the celestial equator. Thus, �,
�, and the stripe inclination uniquely specify the angular sky
coordinates.

The vector c points from the Galactic center to the axis of the
cylinder. Normally, a vector requires three parameters, one for
each dimension. However, since we have the freedom to require
that the position along the cylinder axis to which it points be in
the plane that splits the volume in half along the narrow direc-
tion, we reduce that to two parameters. Enforcing the condition
that � ¼ 0, we are thus able to parameterize the stream center with
only a radial distance from the Sun, R (in kpc), and the angular
position along the stripe, � (in degrees). Therefore, c(�;R) fixes
the center point of a piece of tidal debris within an SDSS stripe
and lies along the axis of our cylinder.

The unit vector â describes the orientation of the axis of the
cylinder. Again, we need only two parameters because this vector
is constrained to be of unit length. We parameterize this vector
using two angles � and �, both in radians, where � is the angle
between â and the Galactic Z-axis and Z is perpendicular to
the Galactic plane and points toward the north Galactic cap. The
azimuthal angle � is measured counterclockwise around the
Z-axis, as viewed looking down on the Galaxy from the north
Galactic pole, starting from the X-axis, which points in the di-
rection from the Sun to the Galactic center.

The last stream parameter, � (in kpc), specifies the stream
width and is the standard deviation of the Gaussian distribution
used to describe the density fall off with distance from the cyl-
inder axis. For a star with spatial coordinates given by p, the dis-
tance, d, from the cylinder axis is given by

d ¼j ( p� c)� â � â = ( p� c)½ � j : ð3Þ

In practice, this calculation is performed by first converting each
vector to a galactocentric Cartesian coordinate system.

In summary, we use five parameters to define our cylindrical
stream: �, R, �, �, and �. Figure 1 depicts how these parameters
are defined with respect to the stripe volume. Using these pa-
rameters, the stellar density of the stream at point p is

�str( p) / e� d 2=2� 2ð Þ: ð4Þ

Normalization of the stellar density will be considered once we
have assembled the entire PDF.

2.3.2. Spheroid

We model the stellar spheroid with a standard Hernquist pro-
file (Hernquist 1990),

�sph( p) /
1

r(r þ r0)
3
; where

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ Z2

q2

s
; ð5Þ

andX, Y, and Z are Cartesian coordinates centered on the Galactic
center. The coordinates X and Y are in the Galactic plane, with X
directed from the Sun to the Galactic center and Y in the direction
of the Solar motion. The coordinate Z is perpendicular to the
Galactic plane and points in the direction of the north Galactic
cap. The spheroid is described by two parameters: r0 which is a
core radius, in kpc, and the dimensionless quantity, q, which is
the scaling factor in the Z-coordinate direction. For q < 1 the
spheroid is oblate, for q ¼ 1 the spheroid is spherically sym-
metric, and for q > 1 the spheroid is prolate.
There are many Galactic components (thick disk, bulge, etc.)

other than the spheroid that we could in principle add to our full
model. However, we do not expect many disk stars in our sample
because we are fitting data that is too far from the plane of the
Milky Way and the color-selected F turnoff stars are bluer than
the turnoff of the thick disk stellar population.

2.3.3. Absolute Magnitude Distribution

In this section we address the fact that stars within our selected
color range, which are primarily F turnoff stars, do not all have
the same absolute magnitude. If we assume that all of the color-
selected stars have the same absolute magnitude (equal to the
mean absolute magnitude of the population) when we estimate
their distances from the Sun, any substructure in the spheroid will
appear to be elongated along our line of sight. To account for this,
we calculate an ‘‘observed’’ spheroid spatial density that is elon-
gated along our line of sight by convolution of the density model
with the absolute magnitude distribution function along our line
of sight.
Wemodel the distribution of absolutemagnitudes as aGaussian

with a center of M̄g0 ¼ 4:2 and dispersion �g0 ¼ 0:6, which is a
simplification of the F turnoff star absolute magnitude distribu-
tion found for globular clusters by Newberg & Yanny (2006).
Thus, letting Mg0 be the absolute magnitude,

Mg0 ¼ M̄g0 þ�Mg0 ; ð6Þ

where M̄g0 ¼ 4:2 and�Mg0 has a Gaussian distribution with zero
mean and standard deviation 0.6. To account for this distribution
over the absolute magnitude, we first derive the probability of ob-
serving a star per unit apparent magnitude per unit solid angle,
assuming all stars are of absolute magnitude M̄g0 ¼ 4:2, and then
convolve in apparent magnitude with a Gaussian of dispersion
0.6 centered at zero. The result is the probability of observing a
star per unit apparent magnitude per unit solid angle, with the
absolute magnitude distribution taken into account.
We will need to refer to several density functions in different

spaces, and sowe first lay down some definitions tomake this dis-
cussion clear. We refer to a density as �A(x), where A is the name
of the density which refers to the coordinate space in which it is
defined and x refers to a generic variable in this space. Thus, we
define the six densities,

�X (x); �R(R;�); �g4:2 (g4:2;�);

�g0 (g0;�); �R (R(g0);�); �Xc
(x); ð7Þ

where the first three densities are the model in Cartesian, spher-
ical, and apparent magnitude coordinate systems;

�X (x) ¼
dV

dx dy dz
; �R(R;�) ¼

dV

dR d�
;

�g4:2 (g4:2;�) ¼
dV

dg4:2 d�
: ð8Þ
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The densities which take into account the distribution on the ab-
solute magnitude space are denoted by �g0 (g0;�), �R (R(g0);�),
and �Xc

(x), where the subscript c stands for convolved. All co-
ordinate systems are centered at the Sun, the solar position is
assumed to be 8.5 kpc from the Galactic center, and the direction
from the Sun to the Galactic center is in the positive X-direction.
Here we havemade a distinction betweenR andR;R denotes the
actual distance each star is from the Sun, whileR(g0) denotes the
distance a star of apparent magnitude g0 would be from the Sun if
it had an absolutemagnitude of M̄g0 ¼ 4:2.We have alsomade the
distinction between g0 and g4:2; g0 denotes the actual reddening-
corrected apparent magnitude of a star, while g4:2 denotes the ap-
parent magnitude a star at distance Rwould be calculated to have
if it had an absolute magnitude of M̄g0 ¼ 4:2. We adopt these
definitions for the remainder of this paper.

The galactocentric Cartesian density, �X , is the actual spatial
density of stars as described in equations (4) and (5) for the stream
and spheroid, respectively. We need �Xc

, the observed galacto-
centric Cartesian density that is elongated along our line of sight,
to account for the Gaussian distribution of absolute magnitudes
with dispersion �Mg0 . We obtain �Xc

through the sequence of
transformations

�X (x)! �R(R;�)! �g4:2 (g4:2;�)

! �g0 (g0;�)! �R (R(g0);�)! �Xc
(x): ð9Þ

The relationship between these densities is determined by the
transformations which take one coordinate space to the other.
The X ! R mapping is the well-known spherical coordinate
transform,

�R(R;�) ¼ R2�X (x): ð10Þ

If all of the stars had an absolute magnitude M̄g0 ¼ 4:2, then
one would measure an apparent magnitude

g4:2 ¼ 4:2þ 5 log10
R

10 pc

� �
; therefore

R ¼ R(g4:2) ¼ 100:2( g4:2�4:2�10) (kpc);

dR ¼ ln 10

5
R dg4:2: ð11Þ

Thus, the relationship between �R and �g is given by

�g4:2 (g4:2;�) ¼
dg4:2
dR

�R(R;�) ¼
ln 10

5
R3�X (x)

¼ ln 10

5
R3

(g4:2)�X (x): ð12Þ

The measured g0 is given by

g0 ¼ g4:2 þ�Mg0 : ð13Þ

Since g0 is the sum of independent random variables, its den-
sity is the convolution of the two densities, i.e., we have that
�g0 (g0;�) ¼ �g � ��Mg0

(g0;�), where the convolution is in the
g-dimension. Thus,

�g0 (g0;�) ¼
Z 1

�1
dg �g4:2 (g;�)N (g0 � g; u); ð14Þ

where N is the Gaussian density function given by

N (x; u) ¼ 1

u
ffiffiffiffiffiffi
2	
p e� x 2=2u 2ð Þ; ð15Þ

with u ¼ 0:6. Switching back from apparent magnitude to
spherical coordinates,

�R (R(g0);�) ¼
5

ln 10

�g0 (g0;�)

R(g0)
: ð16Þ

Since the coordinate spaces Xc andR are related by the spherical
coordinate transformation, we may now collect our results and
write the convolved density �Xc

in terms of �X as follows,

�Xc
(x) ¼ 1

R2
(G0)

�R (R(g0);�)

¼ 5

R3
(G0) ln 10

�g0 (g0;�)

¼ 5

R3
(G0) ln 10

Z 1

�1
dg �g(g;�)N (g0 � g; u)

¼ 1

R3
(G0)

Z 1

�1
dgR3

(g)�X (x(R(g);�))N (g0 � g; u); ð17Þ

where (R(g0);�) are the angular coordinates of x.
We have derived the convolved stellar density function �Xc

,
for a generic stellar density �X , which could represent either
the stream or the spheroid densities in our present context. This
convolution is performed separately on the stream and spher-
oid densities, to compute the functions �constr (l; b;R(g0)) and
�
con
sph(l; b;R(g0)). We use the numerical integration technique

of Gaussian quadrature (Heath 2002) to do the convolution
integral.

2.3.4. Combined Probability Density Function

We are now ready to compute the PDF for the combination of
the stream and spheroid densities. To do this we need the stellar
densities of the stream and spheroid as derived in x 2.3.3, the
detection efficiency for finding stars as a function of apparentmag-
nitude, the volume overwhich the density is defined, and onemore
parameter, 
, which describes the fraction of stars in each of the
two components (spheroid and stream).

The detection efficiency function, E , was derived by fitting a
sigmoid curve to the detection efficiency measurement in Fig-
ure 2 of Newberg et al. (2002). The efficiency function accounts
for the decrease in detection efficiency at faint magnitudes,

E(g0) ¼
s0

es1( g0�s2) þ 1
; where

s ¼ (0:9402; 1:6171; 23:5877): ð18Þ

The dimensionless parameter that defines the fraction of the
input stars that are in the stream and the fraction that are in the
spheroid is 
. The parameter 
 is modeled, as with the stream
parameters themselves, separately for each stripe of data that is
analyzed. Thus, the value of 
 for a given stripe of data gives
only the relative number of stars that comprise the stream as
compared to the spheroid for that stripe of data and does not
measure the fraction of stars in the stream as a function of po-
sition within the Galaxy.
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By definition, the fraction of stars in the stream is

Pstr ¼
e


1þ e

: ð19Þ

Similarly for the spheroid,

Psph ¼
1

1þ e

: ð20Þ

We introduce here the concept of constrained and unconstrained
variables. Instead of 
, we could have defined a variable f which
is the fraction in the stream, and then, the fraction in the spheroid
would be 1� f . However, we would then need to maximize the
likelihood subject to the constraint that this parameter must be
between zero and one. To avoid that constraint, we instead in-
troduced 
, which is not constrained. If 
 is 1, then all of the
stars are in the stream; if 
 ¼ 0, the stars are evenly split between
the components; and if 
 ¼ �1, then all of the stars are in the
spheroid component. The other parameters are naturally un-
constrained and do not need a conversion.

In total, then, we fit eight model parameters: five from the
stream fragment in the current stripe (�;R; �; �; �), two from the
spheroid (r0; q), and one that specifies the fraction of stars in
each component (
). Together, we refer to these parameters as the
eight components of the parameter vector Q.

The PDF, then, is given by

PDF(l; b;R(g0)jQ)

¼ e


1þ e

E(R(g0))�

con
str (l; b;R(g0)jQ)R

E(R(g0))�
con
str (l; b;R(g0)jQ)dV

þ 1

1þ e


E(R(g0))�
con
sph(l; b;R(g0)jQ)R

E(R(g0))�
con
sph(l; b;R(g0)jQ)dV

; ð21Þ

where the integral is over the entire volume probed by the input
data.

Calculation of the volume integrals dominates the run time of
the algorithm. Since these integrals cannot be solved analytically
for our functions, we define an integration mesh which divides
the total volume into many volume elements. The edges of the
volume elements are along constant g, �, or �. We then calculate
the spheroid and stream probabilities at the center of each volume
element and multiply this by the volume of that element. The
values for the spheroid and stream probabilities in all volume
elements are then summed and are hereafter referred to as the
stream and spheroid integrals, respectively.

2.4. Optimization

Now that we have defined a PDF and a likelihoodmeasure, we
need to find the parameters that maximize that likelihood. At the
beginning of the first iteration of the program, the likelihood is
calculated for the input parameters. Thereafter, a new set of pa-
rameters and likelihood is calculated using a conjugate gradient
search coupled with a line search technique. For a detailed de-
scription of the conjugate gradient and line search methods em-
ployed, see the Appendices A1 and A2, respectively.

2.5. Errors in the Parameter Estimates

The accuracy of the parameter estimates depends on the shape
of the likelihood surface at its maximum, which is governed by
the number of stars in our input catalog. The lower the number
of stars, the wider the peak at the maximum and the larger the
statistical error. It is also limited by the accuracy with which we

are able to numerically determine the maximum.We address this
latter point when we discuss the test data in x 3. Here, we explain
howwe calculate the accuracywith whichwe expect to be able to
determine each parameter.
We assume that the likelihood surface for the parameters can

be reasonably estimated by a Gaussian near the maximum. Then,
an estimate for the variance of each parameter can be found from
the square matrix of second-order partial derivatives of the log-
likelihood function, evaluated at the maximum. This matrix is
called a Hessian matrix, H. The variance matrix V is the inverse
of the Hessian matrix, normalized by the number of stars in the
data set,

V ¼ 1

N
H�1: ð22Þ

The square roots of the diagonal elements of the matrix provide
us with the statistical error in the measurement of each param-
eter. We compute the Hessian numerically using a finite differ-
ence method (as we did the gradient) as follows,

Hij ¼
H1

ij � H2
ij � H3

ij þ H4
ij

4hihj
; where

H1
ij ¼ L(Qj þ hj;Qi þ hi)

��
all other Qk Bxed

;

H2
ij ¼ L(Qj � hj;Qi þ hi)

��
all other Qk Bxed

;

H3
ij ¼ L(Qj þ hj;Qi � hi)

��
all other Qk Bxed

;

H4
ij ¼ L(Qj � hj;Qi � hi)

��
all other Qk Bxed

: ð23Þ

Here, Qj is the jth component of parameter vector Q, similarly
for Qi; and hj is the perturbation value for Qj, similarly for hi. In
practice we use the same hk to calculate the gradient as the
Hessian. These hk can be seen in Table 1.

2.6. Separation

Once we have found the values of the parameters in our model,
we can use the model to separate the input catalog of stars into
two catalogs, one having the density profile of the stream and the
other having the density profile of the spheroid. It is possible to
determine the probability that a star is in the stream or in the
spheroid; however, it is not possible to determine which stars are
in the stream and which are in the spheroid. For example, sup-
pose a star selected from the data set is computed to be a stream
star with probability 0.6 and that it is a spheroid star with prob-
ability 0.4. We would put that star in the stream catalog with
probability 0.6 and in the spheroid catalog with probability 0.4,
but there is a 48% chance that the star was put in the wrong file.
The separation has proved very useful for evaluating the effec-
tiveness of the model fits to the data and hopefully will be useful

TABLE 1

Perturbation Values Used for the Gradient and Hessian

Parameter h

� (deg) ................................................................. 3 ; 10�5

R ( kpc) ................................................................. 4 ; 10�5

� (rad)................................................................... 6 ; 10�5

� (rad) .................................................................. 4 ; 10�5

� ( kpc) ................................................................. 4 ; 10�6


 ............................................................................ 1 ; 10�6

q............................................................................ 4 ; 10�6

r0 ( kpc) ................................................................ 8 ; 10�4
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for fitting tidal stripping models to the stream density profiles.
However, it may not be the best method for selecting spectro-
scopic follow-up targets to measure the composition and veloci-
ties of stream stars, for example. Spectroscopic follow-up targets
might be better selected based on the probability that it is a stream
star, rather than on the catalog to which it was randomly assigned.

To perform this separation, we calculate for each star the prob-
ability, T, that it was drawn from the stream population given the
parameters, where T is defined by

T (l; b;R(g0) j Q) ¼
S(l; b;R(g0) j Q)

S(l; b;R(g0) j Q)þ B(l; b;R(g0) j Q)
;

ð24Þ

where S(l; b;R(g0) j Q) is the stream portion of equation (21),
and B(l; b;R(g0) j Q) is the spheroid portion of equation (21).

A uniform random number between 0 and 1 is then generated
and tested against this probability. If the probability of being
drawn from the stream population is greater than that of the ran-
dom number, then the star is placed into the stream star catalog;
otherwise, it is placed within the spheroid catalog. We repeat this
process, generating a new random number for each star until all
stars have been placed into their appropriate catalog. Thus, we
get two distinct populations: one that is a smooth spheroid and
one that has all the density properties of the stream.

We use this nondeterministic approach of testing the star prob-
ability against a random number for extracting the stream from
the spheroid stars in order to get an accurate representation of the
density profiles. Since the stream probability definition is based
solely on the star’s distance from the stream axis, assigning all
stars with a probability greater than a set value to the stream
would result in assignment of all stars within a certain distance to
the stream. This would not be an accurate representation of the
stream as we would be carving out a cylinder of stars from the
data rather than a set of stars that fit a specific distribution with
Gaussian cross section in density.

2.7. Run Time and Distribution

In determining the likelihood, a trade-off needs to be made in
the accuracy of the numerical integral calculation in equation (21).
The smaller the step size, �, in each dimension the more accurate
the integral calculation is, which can lead to faster convergence
of the search method being used. However, increasing the pre-
cision of the integral calculation leads to polynomially longer
calculation times (scaling like �3). Thus, the precision to which
the integral is calculated is the dominant factor in the run time
and accuracy of our astronomical model.

Testing has shown that in order to generate a meaningful like-
lihood value in stripe 82, a minimum of 1.4 million points within
the stream and spheroid integrals is required. On a single pro-
cessor, this takes approximately 15minutes, assuming there is no
magnitude distribution and the nonconvolved probabilities are
used. As performing a single conjugate gradient descent can take
thousands (or more) of integral calculations, these long execu-
tion times presented an obstacle to this research.

To generate a meaningful value for the magnitude convolution
integral, each integral point requires the calculation of at least 30
surrounding points. This increases the calculation time of a single
integral to 7.5 hr. Again, assuming a bare minimum of 1000 like-
lihood evaluations for a single conjugate gradient descent (typ-
ically the range is closer to 5000), evaluating one astronomical
model would take almost a year on a single processor.

To alleviate these massive computational requirements, a ge-
neric maximum likelihood evaluator (GMLE3) has been devel-
oped and used (Desell et al. 2008). GMLE allows for a likelihood
calculation to use various distributed computing environments,
such as multiple processors in a cluster, a heterogeneous grid of
clusters, or even a supercomputer.

Using this distributed framework with 88 processors on the
Rensselaer Grid resulted in a 65 times speedup over a single pro-
cessor, and using 512 nodes of an IBM BlueGene/L system re-
sulted in a 148 times speedup. It now takes only a few days to
compute the maximum likelihood parameters for a particular
model and stripe of data. In both the grid and supercomputing
environments used, the overhead of communication was very
small compared to the calculation time. Communication time
consists of approximately 1%Y10% of the time to calculate the
likelihood and does not noticeably increase as more processors
are used. With these observations, the calculation should scale to
at least 1000 processors on a grid and 10,000 processors on the
IBM BlueGene/L. More precise calculations of the integral and
magnitude convolution will allow the distributed calculation to
scale to even larger numbers of processors, due to the increased
calculation time assuming relatively fixed communication times.

GMLE has also been extended to allow maximum likelihood
evaluation over the Berkeley Open Infrastructure for Network
Computing (BOINC) Internet computing framework (Anderson
et al. 2005). This allows users to volunteer computing resources
by downloading aBOINCclient and attaching to theMilkyWay@
home project.4 Currently, over 500 computers from around the
world are being volunteered for the project and performance is
comparable to 512 nodes of the IBM BlueGene/L.

2.8. Limitations and Enhancements

Generically, all enhancements to this algorithm either improve
theGalaxymodel, increase the quantity of data to which themodel
is fit, or improve the speed and accuracy of the convergence. We
plan to improve the algorithm in all of these aspects.

We plan to build up a model of the Milky Way stellar density,
starting with the spheroid component. Over time, we will be able
to include additional streams and additional pieces of the Sgr dwarf
tidal stream, a more sophisticated model of the smooth compo-
nent of the spheroid, and disk components. The spheroid sub-
structure is best fit in a piecewise manner as we have done in this
paper, but the smooth components require that more directions
be fit simultaneously. To be able to fit multiple stripes during a
single optimization it must be possible to fit multiple debris
pieces during a single run as well. To add additional tidal debris,
we need only to add a term for each additional stream to the PDF,

PDF ¼
Xk
i¼1

e
i

(1þ
Pk

j¼1 e

j )

�constr (l; b;R(g0)jQstri
)R

�constr (l; b;R(g0)jQstri
)dV

" #

þ 1

(1þ
Pk

i¼1 
i)

�consph(l; b;R(g0)jQsph)R
�consph(l; b;R(g0)jQsph)dV

; ð25Þ

where i and j denote the ith and jth stream of k total streams,
respectively. We add five new parameters, Qstri

, and a sixth pa-
rameter, 
i, for each new stream segment. This change to the PDF
would allow k pieces of tidal debris to be fit within a single or
multiple stripes. We are considering whether we should enforce
continuity conditions between adjacent sections of the tidal stream.

3 GMLE is available for download along with more information at http://wcl
.cs.rpi.edu /gmle.

4 See http://milkyway.cs.rpi.edu /milkyway/.
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Since it has been suggested that the smooth portion of the spher-
oid may not be symmetric, we would also like to increase the
number of parameters in the smooth spheroid component, follow-
ing Newberg & Yanny (2006).

We are currently fitting only F turnoff stars and assuming that
the absolute magnitude distribution of these stars is a standard
Gaussian for all populations. Ideally, we would use stars in a
wider color range and develop a probability distribution in mag-
nitude and color for each population of stars. This would increase
the number of stars available to the algorithm and would allow us
to use additional information about real structures in the Milky
Way—insisting that each populationwith a turnoff also has amain
sequence and giant branch, for example. Implementing this re-
quires significant development not only in the computation of
the likelihood, but also in characterizing Galactic stellar distri-
butions. Small steps in improving this aspect of the algorithm are
currently underway.

All of the preceding improvements to the algorithm increase
the number of fit parameters and the complexity of calculating
the likelihood function. In parallel with scientific development
of the algorithm, we will be improving the speed of convergence.
We are experimenting with other methods of finding the maxi-
mum and increasing the number of architectures on which our
software can be run in parallel. Future architectures that we will
use include supercomputers and BOINC, which among other
products supports the SETI@home application.

3. SIMULATED DATA

3.1. Generation

To test our algorithmwegenerated a simulated version of SDSS
stripe 82. The ‘‘True Value’’ column of Table 2 shows the pa-
rameter values used for the data generation, while Figure 2 shows
a plot of the simulated data. The data set contained a total of
205,708 simulated stars, 28,498 (13.85%) of which are stream
stars. The stream model parameters and star ratio were chosen to
be the same as the real data for stripe 82. The techniques of
generation are described below.

3.1.1. Stream

We create the simulated stream using an active generation tech-
nique, which means that all points that are generated are valid
stream stars. First, we define a set of stream parameters to gen-
erate over. From these parameters we then calculate the c and
â vectors defining our stream position and direction. We then
generate three random numbers: a uniform random number that
determines where along the stream axis the point is, and two
Gaussian random numbers (with standard deviation � as defined
in the parameters) to define the stream cross-sectional coordinates.

The point is then converted to Galactic longitude, latitude, and
apparent magnitude. Thus far, we have assumed a constant ab-
solute magnitude for each star in the stream. To account for the
fact that there is an absolute magnitude distribution, we add or
subtract a small amount from the apparent magnitudes of each
of the stream stars in the data set. A Gaussian random variable
with standard deviation 0.6 is generated (one for each point); this
value is added to the apparent magnitude of the generated point.
Finally, we keep points with a probability given by the efficiency
function to produce a data set for a simulated stream. Stars near
the magnitude limit of the data are tossed out of the sample with
a probability equal to the efficiency of our object detection as a
function of apparent magnitude in the real data.

3.1.2. Spheroid

The simulated spheroid is generated using a rejection sampling
technique. Here we cannot apply the same active generation
technique we used for the stream because the density distribution
in the smooth component of the spheroid is more complex than a
Gaussian. Instead, we define a rejection technique that allows us

TABLE 2

Results for the Simulated Data Set of 205,708 Stars

Parameter True Value Expected Deviation Numerical Error Optimized Value Actual Deviation Std. Deviation of Optimizations

� (deg) ................................. 31.361 0.233 0.05 31.443 0.082 0.064

R ( kpc) ................................. 29.228 0.167 0.04 29.217 0.011 0.010

� (rad)................................... 1.445 0.032 0.003 1.421 0.024 0.0005

� (rad) .................................. 3.186 0.049 0.001 3.182 0.004 0.002

� ( kpc) ................................. 2.854 0.033 0.015 2.858 0.004 0.009


 ............................................ �1.8281 0.005 0.002 �1.833 0.005 0.005

q............................................ 0.670 0.013 0.000 0.671 0.001 0.0004

r0 ( kpc) ................................ 13.500 0.276 0.15 13.917 0.417 0.016

1 Corresponds to a stream star ratio of 13.85%: 28,498 in stream and 177,210 in spheroid.

Fig. 2.—Simulated data wedge plot. We show a Sun-centered density plot of
the 205,708 stars generated to mimic SDSS stripe 82. The quantity g0 is labeled
along the radial spokes; the circle indicates where g0 ¼ 23. The angle � in
degrees is marked along this circle. For stripe 82� ¼ � and � ¼ �. The simulated
stream is easily discernible at (�; g0) ¼ (33:4; 21:4).
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to generate over a given stripe.We cannot simply generate values
for �, �, and R, however, because the stars are not uniformly
distributed in these variables. The distribution in � varies accord-
ing to cos (�), and the distribution in Rmust take into account the
growing volume at increasing distance. The quantity � may be
generated uniformly over the stripe, as it corresponds to a lon-
gitude, and the volume of space in each longitude bin is the same.
The volume element in a stripe is given by

dV ¼ R2 cos (�)dr d� d�; ð26Þ

and the corresponding stripe volume is

V ¼ R3
max

3
(�þ � ��) sin (�þ)� sin (��)½ �; ð27Þ

where Rmax is the maximum radial distance, and the positive and
negative superscripts refer to the maximum andminimum values
of that coordinate for the stripe. These equations are used to
define the functions which allow us to generate in the other two
coordinates,

� ¼ sin�1 u � sin (�þ)� sin (��)½ � þ sin (��)f g;
R ¼ Rmaxw

1=3; ð28Þ

where u and w are uniform random numbers between zero and
one. The quantity � is generated by a uniform random number
between the stripe limits. Once a point is generated, its proba-
bility is calculated using the likelihood function developed in
x 2.3. The probability is then divided by the total probability
possible for a star. The total probability possible for a star is
simply the maximum value that can be returned by the likelihood
function given the current volume and parameter set. The value
of this ratio is then tested against a uniform random number
between zero and one; the point is put into the data set if the value
is greater than the value of the random number.

3.1.3. Accuracy of Parameter Determination

Using the method described in x 2.5 we calculated the ex-
pected accuracy for each parameter. Since we created the sim-
ulated data with a known set of parameters, we therefore know
the true parameter values of the data set. We can calculate the
Hessian matrix at the optimum values and, subsequently, get a
set of error bars at the optimum values. These error bars therefore
give us the accuracy with which we expect to find the values of
the parameters. The values of these errors can be found in the

Fig. 3.—Simulated stream and spheroid stars after separation. Here we have plotted the same 205,708 star simulated data set similarly to Fig. 2. However, we have
separately plotted the stream (left) and spheroid (right) catalogs returned from running our separation algorithm. The spheroid is recovered as a smooth Hernquist function
after the removal of the stream component.

Fig. 4.—Plot of the disruption of the onemillion particle simulatedSgr dwarfwith
a spherical dark matter halo (q ¼ 1) and a velocity dispersion of vhalo ¼ 114 km s�1

in the SgrX-Yorbital plane. To reduce crowding, the streamwas sampled 1 in 100.
The thin line is the future orbit of the core, while the dotted line is the past orbit.
The past orbit is not closed, but in fact follows the lower trailing stream. The
arrow depicts the center and direction returned by our algorithm optimization.
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column ‘‘Expected Deviation’’ (the statistical error bar) in Table 2
for the 205,708 star simulated data set.

In addition to the statistical errors, there can be numerical errors
driven primarily by the accuracy with which we determine the
integrals. These numerical errors were determined by calculating
the accuracy of the likelihood for a fixed number of points in the
numerical integration and then calculating the ‘‘error’’ in each
parameter by perturbing a single parameter, holding all others
fixed, until a change in the total likelihood is observed that is
greater than the minimum accuracy threshold of the numerical in-
tegration. It should be noted that the values quoted as ‘‘Numerical
Error’’ are heuristic errors, meaning they are estimated and not a
true error bar.

3.2. Testing

We tested our algorithm by letting it optimize to convergence
for eight randomized sets of input parameters. Randomized here
means a random perturbation of the actual values by 75% of the
parameter’s value. Although parameters outside of this range are
in principle allowed, the likelihood surface for parameter values
very far from the correct values is so flat, and the gradient so
small, that numerical errors dominate our measurement of the
gradient. In these eight optimizations, five optimized to the true
values, two optimized to a local maximumwhich has a lower like-

lihood than that of the true values, and one did not converge
because it was far enough from the correct parameter values that
the gradient could not be accurately determined. The local max-
imum appears to be related to the fact that when the stream crosses
the stripe at low inclination, the algorithm sometimes fits the data
with a much higher inclination angle and larger width to com-
pensate. All other parameters are still optimized to their true
values at this local maximum.
The average values of the returned parameters from the five

optimizations to the true values are presented in the ‘‘Optimized
Value’’ column of Table 2, and the ‘‘Actual Deviation’’ is the

Fig. 5.—Cross sections of Sgr N-body simulation stream (left) and simulated stream (right). The simulated stream matches our stream model and was generated from
the parameters fit to the N-body simulation. The top figure in both panels shows the 1 kpc thick cross section of the respective data set. The cross sections are centered
at the best-fit value of the optimization of the center in the N-body simulation from Fig. 4. Here the axes are perpendicular to the stream direction. The X-axis is
0:053X þ 0:055Y þ 0:997Z and the Y-axis is 0:055X þ 0:997Y � 0:058Z, where X ; Y ;Z are galactocentric Cartesian coordinates with the Sun at X ¼ �8:5 kpc and
moving in the direction of positive Y. The bottom figure of both panels is a histogram of those stars within the cross section binned along the X-axis. The thick dashed line
shows a Gaussian distribution with standard deviation given by � from the fit to the N-body simulation. Note that the cross section of the N-body simulation is non-
Gaussian and somewhat asymmetric. Also note the model simulated stream is well fit by a Gaussian. The density distributions in the left and right panels are not the same;
however, the algorithm still fits a reasonable center for the non-Gaussian N-body data set.

TABLE 3

Stream Fitting Results for Tests with Incorrect Spheroid Model

Optimization

Parameter True Value Expected Deviation � ¼ 3:5 � ¼ 2:5 � ¼ 2:0

� (deg) ...... 31.361 0.233 31.449 31.526 31.457

R (kpc) ...... 29.228 0.167 29.094 29.326 29.108

� (rad)........ 1.445 0.032 1.426 1.452 1.437

� (rad) ....... 3.186 0.049 3.172 3.168 3.160

� ( kpc) ...... 2.854 0.033 2.869 2.848 2.865
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difference between the ‘‘True Value’’ and the ‘‘Optimized Value.’’
The returned parameters have very little deviation. The standard
deviation of the five optimizations were calculated to be around
an order of magnitude lower than the statistical error calculated
from the Hessian. These can be seen in the ‘‘Std. Deviations of
Optimizations’’ column of Table 2. Note that if the theoretical
deviation is large for a particular parameter, then near the max-
imum, the likelihood changes little with the variation of that
parameter. This leads to a larger ‘‘Actual Deviation’’ and can also
make it more difficult for the algorithm to numerically find the
maximum, since the gradient will be very small. The errors cal-
culated from theHessian assume that themaximum of the PDF is
found exactly.

As can be seen in Table 2, all of the parameters have ‘‘Actual
Deviations’’ which are smaller than their ‘‘Theoretical Deviations’’
with the exception of r0. It has been discovered that the likeli-
hood changes so little compared to perturbations in these param-
eters when close to the maximum that this parameter is not being
calculated accurately enough to reach the ‘‘True Value’’ seen in
Table 2. The true error bar should be taken as the sum, in quad-
rature, of the ‘‘Expected Deviation’’ and ‘‘Numerical Error’’

columns. Once this is done, the ‘‘Optimized Value’’ of all pa-
rameters are comparable, within the errors, to the ‘‘True Value.’’

Finally, we ran our separation algorithm on the average returned
parameter values to create two catalogs of stars given those pa-
rameters, and we plotted these separately in Figure 3. Clearly
visible is the stream with a Gaussian density fall off in the left
plot, while the right plot depicts a smooth Hernquist profile.

We also tested our algorithm on this same simulated data set of
205,708 stars without using an absolute magnitude correction,
thereby simply assuming that all F turnoff stars have an absolute
magnitude, M̄g0 ¼ 4:2. This was done to see how important this
correction was and to see whether the algorithm could be ef-
fectively used without it. The results showed that the parameters
of � and r0 were the only values not affected by this correction;
the rest of the parameters deviated wildly from their actual values
with the stream parametersR, �, and� being the worst of the eight
parameters reaching upward of 34 � in error.

3.3. Robustness of Models

Section 3.2 showed that the algorithm produces the cor-
rect answer given that the data is drawn from our model. In this
section we test the algorithm on data that was not generated
according to the assumed spatial model. We constructed a re-
production of the Sgr dwarf galaxy tidal disruption produced by
Law et al. (2005) using a semianalytic N-body approach. Using
their parameters for the Galactic potential and kinematic values,
we constructed an orbit for Sgr using theNEMOStellar Dynamics
Toolbox (Teuben 1995). Specifically, we used the case of a spher-
ical darkmatter halo, with a velocity dispersion of 114 km s�1.We
used a Plummer sphere with one million particles as our model
for Sgr. The sphere was evolved along the orbit for 3.18 Gyr until
it reached the present position of the Sgr dwarf spheroidal. The
resulting plot of the disruption of Sgr is shown in Figure 4. It is
consistent with the results obtained by Law et al. (2005).

We then selected the volume corresponding to SDSS stripe 82
from the N-body simulation and fit it using our model Hernquist
profile spheroid and maximum likelihood technique. Using the
output model parameters found by our algorithm, we created a
new simulated streamas described in x 3.1.1. Finally,we compared
the cross sections of this simulated streamwith those of a similar
stream generated with our density model.

A cross section of these two streams 1 kpc thick and centered
at the returned stream center are plotted, along with a histogram
of the stars within the cross section, in Figure 5. Figure 5 (left)
depicts the N-body simulation stream, while Figure 5 (right) is
that of our simulated stream. It can be seen that theN-body simu-
lation is indeed not Gaussian. The drawback to testing with an
N-body model is that there are no correct model parameters with
which to compare; but the center, as shown in Figure 5 (left), and

TABLE 4

Results for the 115,907 F Turnoff Stars in SDSS Stripe 82

Parameter Optimized Value Statistical Error Numerical Error Std. Deviation of Optimizations

� (deg) ................................... 31.373 0.244 0.08 0.008

R ( kpc) ................................... 29.218 0.184 0.07 0.012

� (rad)..................................... 1.444 0.044 0.01 0.001

� (rad) .................................... 3.184 0.034 0.008 0.002

� ( kpc) ................................... 2.862 0.025 0.008 0.009


 .............................................. �1.8271 0.005 0.001 0.000

q.............................................. 0.458 0.023 0.005 0.001

r0 ( kpc) .................................. 19.404 0.581 0.09 0.051

1 Corresponds to a stream star ratio of 13.86% of the 115,907 F turnoff stars, about 16,000 stream stars.

Fig. 6.—F turnoff stars within SDSS stripe 82. Here we plot, as in Fig. 2, F
turnoff starswith color cut 0:1 < (g� r)0 < 0:3 and (u� g)0 > 0:4 that are within
the volume definedby310 < � < 419,�1:25 ¼ �, and 16 < g0 < 22:5 thatwere
detected in SDSS stripe 82. Sgr tidal debris is visible around (�; g0) ¼ (31; 21:5).
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the direction, as shown in Figure 4, are reasonable. In order to
assess the error in the determination of the stream center, one
would have to define what is meant by the center of an asym-
metric distribution, but the algorithm’s choice seems reasonable.

Next, we estimate the curvature of the Sgr tidal stream in
stripe 82. Taking the distance to the center of the stream in stripe
82 to be 29 kpc (Newberg et al. 2003), we calculate that the 2.5�

wide SDSS stripes would be 1.3 kpc thick at this distance. The
length of the stream in stripe 82, taking an inclination of 30�

from the stripe (Freese et al. 2005), is then 2.5 kpc. We estimate
the radius of curvature of the Sgr tidal tail in the orbital plane at
this point to be 18 kpc by fitting a circle to the two southern stripes
with detections in Newberg et al. (2003). The deviation from
linear can then be found to be d ¼ 0:06 kpc at the edge and is
very small when compared to the 6 kpc (Freese et al. 2005) width
of the stream or the 6.74 kpc width found in this paper. The linear
approximation is quite reasonable for the Sgr stream in stripe 82.

Finally, we tested our algorithmwith differing spheroidmodels.
Because it was easier to change the spheroid model we fit than to
regenerate many sets of spheroid stars, we modified the expo-
nential component of the model Hernquist profile the algorithm
fits to the data. Three tests were performed with the exponent of
the Hernquist profile set to 3.5, 2.5, and 2.0 as compared to the
value of 3.0 used to generate the data. The results from these tests
can be found in Table 3. In all cases, the stream parameters and
the epsilon parameter saw little to no change (all optimizations
were within the errors calculated above). As expected, the spher-
oid parameter values were incorrect, but represent the best pa-
rameters for the model profile fit to the simulated data within our
generated volume.

4. RESULTS FROM SDSS STRIPE 82

After validating the algorithm on the simulated data, we then
applied the algorithm to the stripe 82 data as described in x 2.2.
Figure 6 shows a plot of this data where a piece of the Sgr tidal
stream is clearly visible as a dense structure on the left of the
image at (�; g0) � (31; 21:5).

We selected from the SDSSDR6 all of the sources in stripe 82
that hadmagnitudes 16 < g0 < 22:5, colors of 0:1 < (g� r)0 <

0:3 and (u� g)0 > 0:4, were identified as point sources, and
were not EDGE or SATURATED. Since the selected stars are far
from the Galactic plane, the reddening can reasonably be esti-
mated from the total amount of dust in that direction in the sky.
The subscript ‘‘0’’ indicates that we selected reddening-corrected
magnitudes from the SDSS databases. The cut in (u� g) is made
to remove low-redshift quasi-stellar objects. We limited the an-
gular length along stripe 82 to 109

�
, with right ascension in the

range 310� < � < 360�, 0 < � < 59�. Since stripe 82 is cen-
tered on the celestial equator, the edges of the stripe are �1.25�
in declination and the angle along the stripe is given exactly by
right ascension. A small section of data with right ascension
323:2� < � < 323:6� and declination �1:0� < � < �0:7� was
removed in order to avoid a globular cluster. The final data set
includes 115,907 stars.
As was done for the test data, a number of randomized sets of

initial parameters were used (having the same 75% perturbation),
and the average of the parameters of those optimizations that con-
verged to a minima was taken. In this case, 10 total optimizations
were performed, five optimized to a minima, four to a local
minima with lower likelihood than the true minima, and one was
again a poor starting point allowing for no optimization. The
Hessian method was then used to calculate the error bars for
these parameters at the true minima. The errors, as well as the
average parameter values, are tabulated in Table 4. There are
additional, unknown systematic errors for real data that were
not present for the model data. The quoted errors assume that
the model is an accurate representation of the stellar density
function, including our formula for the smooth spheroid, tidal
stream, and absolute magnitude distribution.
The average parameter values were used as input for our sep-

aration algorithm to create stream and spheroid catalogs for
stripe 82. These catalogs were then plotted in Figure 7. As can be
seen, the Sgr tidal stream has been clearly extracted from the
spheroid in the left panel, while the spheroid remains in the right
panel.
We compared the average stream center and direction with

Figure 4 from Newberg et al. (2007) in Figure 8 of this paper. As
can be seen in the figure, the stream direction is roughly tangent to

Fig. 7.—F turnoff stars within SDSS stripe 82 after separation. Here we have plotted the data from Fig. 6 after being separated into two distinct catalogs: one for stream
and one for spheroid. The stream (left) has clearly been extracted from the spheroid (right).

COLE ET AL.762 Vol. 683



the stream of 2MASSMgiants (although at a different distance—
there is a difference in scale between distances measured with the
M giants and distances measured with F turnoff stars and RR
Lyraes). Notice also that the stream direction does not lie exactly
in the plane of the Sgr dwarf, but is tilted slightly with respect to
the XSgr-YSgr plane (3

� � 1�). We also compare our direction to
the directional results of Freese et al. (2005), who estimated the
angle between the observational plane and the Sgr dwarf stream
to be 30� and the angle between the normal to the line of sight
toward a point and the tangent of the stream at that point to be
10�.We calculated the former angle fromour parameters by taking
the angle between the observational plane of stripe 82 and the
directional vector. Doing this, we get a value of 30� � 3�. Our
value agrees perfectly. The second angle was calculated by first
finding the line-of-sight vector to the center of the stream, cal-
culating a normal to that, and then finding the angle between
the stream direction and that normal. We found a value of
22:5� � 0:2�. This difference is explained by the drastically im-
proved accuracy of the maximum likelihood algorithm over the

estimate by eye for this more difficult angle. A tabulation of the
stream center position and the stream direction in various coor-
dinate systems can be found in Table 5. Note that the Cartesian
center and Cartesian direction correspond to the vectors c and â,
respectively, that are used in x 2.3.1.

Our results are in reasonable agreement with those of New-
berg et al. (2003), but with much tighter error bars. The center of
the stream is shifted from � ¼ 33:99� � 1� to 31:37� � 0:25�.
This shift is slightly larger than expected, but not overly so. Note
also that the Newberg et al. (2002) estimate of the center in F
turnoff stars is � ¼ 33�, which is closer to our value. Our detec-
tion of radial distance, however, corresponds exactly to that seen
in the Newberg et al. (2003). Our stream width of � ¼ 2:86 is
equivalent to a FWHM of 6.7 kpc, which is in good agreement
with the value of 6 kpc estimated in Freese et al. (2005).

The stream ratio 
 provides a very good separation as shown in
Figure 7 and corresponds to a detection of approximately 16,000
stream stars out of the total 115,907 F turnoff stars in the stripe.
By performing a calculation paralleling equation (10) of Freese
et al. (2005), we are able to get an estimate of the total stellar
mass in stripe 82 as a fraction of the Sgr dwarf itself. We first
calculate the number of stars in Figure 6 of Newberg et al. (2002)
with 0:1 < (g� r)0 < 0:3 and 16:0 < g0 < 22:5. This was cal-
culated to be 2194 stars. We then use this in place of the value
calculated for F/G-type stars in equation (10) of Freese et al. (2005)
to get the total number of F turnoff stars currently in the Sgr dwarf
itself. This results in a total of 1,798,700 F turnoff stars in the Sgr
dwarf. Dividing this by the 16,050 stars found to be in the stream
in stripe 82 yields that stripe 82 contains 0.9% of the Sgr dwarf ’s
current F turnoff stars.

Our spheroid parameters of q ¼ 0:46 and r0 ¼ 19:4 are slightly
unexpected given the previous work in Bell et al. (2008), which
finds that the flattening parameter for the stellar halo is closer to
q ¼ 0:6. However, this does not discount that the best likelihood
for the stellar halo is obtained from these results, only that they
were not the expected ones. Further results from other data sets
and other stripes will be needed to determine the consistency of
these results among other stripes and confirm such a strong flat-
tening of the stellar halo.

5. CONCLUSIONS

We have measured the position, direction, distribution, width,
and number of F turnoff stars of the Sgr tidal debris in SDSS
stripe 82 as well as the stellar spheroid parameters corresponding
to flattening and core radius. Our work has resulted in the im-
proved measurement of the Sgr stream width (FWHM ¼ 6:74 �
0:06 kpc), position [(�; �;R) ¼ (31:37� � 0:26; 0:0�; 29:22 �
0:20 kpc)], and direction [(X ;Y ; Z )gal ¼ (� 0:991 � 0:007 kpc;
�0:042 � 0:033 kpc; 0:127� 0:046 kpc)]. We measured the

Fig. 8.—Plot of the stream center and direction in the Sgr dwarf plane com-
pared to other Sgr detections. Here we reproduce Fig. 4 of Newberg et al. (2007),
which displays detections of the Sgr stream in A-colored stars in eleven stripes,
where the filled circles and larger squares represent leading debris, the open
circles trailing debris, and the smaller squares Sgr debris on the opposing side of
the Sgr orbital plane. These are plotted along with the positions of 2MASS M
giants from Fig. 11 of Majewski et al. (2003). The arrow shows our improved
measurement of the position and direction in one place on the Sgr tidal stream.
The length of the directional vector is arbitrary, representing only the projection
of an elongated unit vector onto the respective planes. Note that the direction is
tangent to the 2MASS M star data and plausibly on a smooth path from stripe 86
(the open circle just to the right of our detection for stripe 82) to stripe 27 (the open
circle farthest to the left in the bottom panel).

TABLE 5

Stream Center and Direction as Calculated

for Different Coordinate Systems

Physical Quantity Coordinate System Value 1 Value 2 Value 3

Center ........................ Equatorial (�; �;R) 31.37 0.0 29.221

Equatorial (�; �; g0) 31.36 0.0 21.53

Galactic (l; b;R) 159.223 �57.558 29.221

Galactic (l; b; g0) 159.223 �57.558 21.53

Cartesian (X ; Y ;Z ) �23.154 5.560 �24.658
Direction.................... Cartesian (X ; Y ;Z ) �0.991 �0.042 0.127

Note.—All distances are in kpc and angles are in degrees.
1 Assuming an absolute magnitude of M̄g0 ¼ 4:2.
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number of F turnoff stars in the stream in SDSS stripe 82
(13:86% � 0:06% of 115,907). There are 16,050 Sgr F turnoff
stars in stripe 82 compared to 1:8 ; 106 turnoff stars in the Sgr
dwarf itself (0.9%). We also calculated values for the stellar
spheroid parameters: the flattening parameter (q ¼ 0:46 � 0:024)
and the core radius (r0 ¼ 19:40 � 0:59). While these spheroid
parameters are not the expected values, they are intriguing and
deserve further study. Finally, we were able to generate separate
catalogs of stream stars and spheroid stars for the F turnoff stars
in stripe 82. These catalogs, while not a true representation of the
actual stars in the stream or spheroid, provide the correct density
characteristics of these structures and can be compared with the
density profiles of N-body simulations.

The results were calculated using a new method to study tidal
debris that is more robust than previous methods. This method
will prove valuable to the study of tidal disruption and Galactic
structure, as it provides a means to accurately and efficiently study
many variables used to model the spheroid and tidal debris. Also,
we are able to extract a catalog of stream stars which can be used
to better constrain models of the Sgr dwarf disruption by pro-
viding actual stream stellar positions to compare with the data.

The algorithm itself is quite flexible. The stream and spheroid
models can be easily changed should more accurate ones be dis-
covered. The new model definitions would simply replace the
existing probability code with no other changes. Also, with minor
changes to the volume definitions it would be possible to use data
from surveys other than the SDSS as an input catalog.With some
revisions, the code could be adapted to search for multiple debris
and use multiple volumes to provide more accurate results.
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APPENDIX A

OPTIMIZATION TECHNIQUE

A1. CONJUGATE GRADIENT

The conjugate gradient method is similar to the gradient method in that we perturb the current parameter value,Qi, by a small amount,
hi, and get a direction for the change in the parameter space. However, unlike the gradient method, the conjugate gradient method
enforces the condition that each direction is conjugate to the previous direction. This means that as we move along the new search
direction, the component of the gradient parallel to the previous search direction must remain zero. This condition speeds up the
optimization by using search directions that are noninterfering. A further discussion may be found in Fletcher (1987).

The ith component of the gradient vector, G, is calculated numerically by perturbing Qi, holding all other Qj fixed,

Gi ¼
L(Qi þ hi)� L(Qi � hi)

2hi

����
all other Qj Bxed

; ðA1Þ

whereGi is the ith component of the gradient vector,Qi is the ith parameter, hi is the perturbation amount for that parameter, andL is the
likelihood function from x 2.2. This gradient is used to calculate the direction, D, for the first iteration,

D1 ¼ G1: ðA2Þ

We take the positive value of the gradient, for we want to maximize the likelihood. Should we want to perform a simple gradient
ascent we would do this same calculation for every iteration and use solely the direction calculated above; however, we wish to apply
the conjugate gradient technique which always calculates a direction conjugate to the previous directions. This is done by calculating
a multiplier, Bi, based on the current gradient and the previous gradient, as

Bi ¼
Gi = (Gi � Gi�1)

G2
i�1

; ðA3Þ

where Gi denotes the gradient vector for the ith iteration. This value is then used to calculate the new conjugate gradient direction,

Di ¼ Gi þ Bi � Di�1; ðA4Þ
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where Di denotes the direction vector of the ith iteration (the direction to move the current parameters) and Gi is the gradient of the
current parameters, Qi, at the ith iteration.

Because of the large variety of parameters that we utilize, all on different scales, we do not use one value for our perturbation value, h,
for it could potentially produce poor estimates for the gradient if the perturbation is too large or small for a given parameter. If h is too
large, then the computed gradient is not an accurate approximation of the true gradient at the current point; if h is too small, then wemay
encounter computational errors. We therefore choose an appropriate value for each parameter independently. Table 1 shows the per-
turbation values for each parameter. These numbers were chosen in two ways. The values of the gradient were calculated at a number of
differing perturbation values in order to determine howmuch the gradient changed. Also, plots of all parameter spaces were generated in
order to determine the distribution of each parameter. Combining these two techniques, we were able to determine a value for the
perturbation for each parameter that would be small enough to provide a very accurate gradient calculation, but also large enough to
overcome any anomalous behavior within the parameter’s distribution.

A2. LINE SEARCH

The line search technique seeks to determine the value, � , that minimizes the function

�(� ) ¼ L(Qk þ �Dk); ðA5Þ

where Dk is the direction and Qk is the current set of parameters. After finding ��, which minimizes �(� ), we then update

Qkþ1 �Qk þ ��Dk : ðA6Þ

A bracketing method must be employed first to ensure that the minimum of the function is within the range we are searching. This is
done by calculating the likelihood at three points along the current search direction: the current parameter values plus 0, 1, and 2 times
Dk . This corresponds to the current position, the current position plus the full direction, and the current position plus twice the full
direction. If the middle point does not have a likelihood greater than the two endpoints, the endpoint with the highest probability
becomes the new center point, the center point the end, and a new third point is calculated by expanding to 2 times the current factor
times the direction and the new likelihood is calculated. Iteration continues until the midpoint has a greater likelihood than both
endpoints.

These three points are then passed to the line search algorithm which will use them to find the peak of the parabolic function defined
bymoving along the current directional vector and calculating the likelihood at points along this path. The line search iterates as follows.
First, a guess is made for the value of � by fitting a parabola via the calculation

u ¼ a2
1 � (L2 � L3)þ a2

2 � (L3 � L1)þ a2
3 � (L1 � L2);

b ¼ a1 � (L2 � L3)þ a2 � (L3 � L1)þ a3 � (L1 � L2);

� ¼ 0:5 � u=bð Þ; ðA7Þ

where a1, a2, and a3 are the factors multiplied by the current direction that produce the parameters with likelihood L1, L2, and L3,
respectively. For the first iteration, a1, a2, and a3 are the values returned from the bracketing method. The quantity � is then the current
guess for the value to minimize equation (A5). The likelihood L� is then calculated using the parameters generated using � . The new
order of the three points is

if � > a2 and L� > L2; then : 1; 2; �;

if � > a2 and L� < L2; then : 2; �; 1;

if � < a2 and L� > L2; then : �; 2; 3;

if � < a2 and L� < L2; then : 1; �; 2: ðA8Þ

In short, the distance along the search direction is reduced based on the value of � and its corresponding likelihood. These new points
are then used to calculate a new guess for� using equations (A6)Y (A8). Iteration continues for a set number of iterations until returning
the optimum value of � ; we currently use three.

Once we have calculated the change in the parameters, utilizing the conjugate gradient and line search methods, we then update the
value of the probability for the fit using the same method as discussed in x 2.3 and continue to maximize our probability through the use
of the conjugate gradient and line search methods. The algorithm stops iterating and returns the current values when the value of the
largest component of the conjugate gradient drop below a set threshold, the line search returns a value that would cause negligible
movement, or the algorithm has completed a maximum number of iterations.
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