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Retrieval of objects in video by similarity based on graph matching
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Abstract

In this paper, we tackle the problem of matching of objects in video in the context of the rough indexing paradigm. The approach
developed is based on matching of region adjacency graphs (RAG) of pre-segmented objects. In the context of the rough indexing par-
adigm, the video data are of very low resolution and segmentation is consequently inaccurate. Hence the RAGs vary with the time. The
contribution of this paper is a graph matching method for such RAGs based on an improvement of relaxation labelling techniques. In
this method, adjustments of similarity between regions according to neighborhood consistency compensate for the inaccuracy of segmen-
tation. The approach demonstrates promising performance on real sequences when compared to another region-based technique.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper addresses the problem of object retrieval in
video, and more precisely, matching of a moving object
extracted from prototype video frame with objects
extracted from other frames in a video stream. Typical
applications of our method are the retrieval of objects in
video-shot collections or grouping of shots containing the
same protagonist into video scenes.

In video, the shape, the size and the structure of objects
change mainly due to camera motion, object motion and
occlusion phenomena. Thus, the structure of the same
object at different times in a video may present significant
differences.

Furthermore, our work is placed in the context of the
rough indexing paradigm (Erol and Kossentini, 2000,
2001; Seales et al., 1998). This is a new trend of fast and
approximate multimedia indexing. It implies that the multi-
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media (video in our case) data is available at low res-
olution, e.g. it comes from partially decoded MPEG
compressed streams. The downsampling produces a
smoothing of colorimetric and geometrical data. It brings
supplementary noise into results of segmentation methods
applied to such data. Consequently, our algorithm aims
to retrieve objects that are very similar and reject objects
that differ strongly, but a large uncertainty persists for
objects of intermediate similarity. We note that such kinds
of application are still very poorly addressed in literature,
apart from works of Erol and Kossentini (2000, 2001). In
their case, object shapes are already encoded as a part of
MPEG-4 standard compressed stream. Here, the object
matching is done on the basis of shape descriptors (Erol
and Kossentini, 2000). DC coefficients of color blocks are
used to form the color histograms of compressed data in
order to compare shaped MPEG-4 video objects (Erol
and Kossentini, 2001). These methods are thus based on
global features of objects and do not take into account
their structure.

In this paper, we propose comparison of articulated
objects resulting from region-based and motion-based seg-
mentation of video frames at a low resolution. An overview
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of the method is displayed in Fig. 1. A segmented object is
represented by a RAG (Step 1 in Fig. 1). This classical
model of representation allows us to encode the region
adjacency relations (Conte et al., 2004; Gomila and Meyer,
2003). Therefore, we can express the matching of seg-
mented objects in terms of graph matching. As the parti-
tions of the same object may strongly differ with time in
video due to its motion, occlusions and segmentation noise,
the corresponding RAGs may be strongly different as well.
Consequently, an exact graph matching is not possible
(Conte et al., 2004). Techniques for inexact or error-toler-
ant graph matching are frequently used in content-based
image retrieval (CBIR) and are more adequate for our pur-
pose (Huet and Hancock, 1999; Llados et al., 2001; Shapiro
and Haralick, 1981; Wilson and Hancock, 1997; Wilson,
1996). These methods aim to make a correspondence
between the nodes of the graphs without imposing finding
a graph isomorphism. Techniques based on Ullman’s algo-
rithm start with a single vertex to vertex mapping and then
gradually extend this matching while it fulfills matching
constraints (Ullman et al., 1976). When the matching does
not respect the constraints, the process backtracks.
Although this kind of approach is particularly efficient
for trees, it has high complexity on graphs (Dinitz et al.,
1999; Ullman et al., 1976). Another error-tolerant graph
matching approach for RAG matching would consider a
similarity measure between the regions of objects based
on region features. It would build a complete bipartite
graph with the sets of nodes consisting of all nodes of the
two RAGs to be matched. The edges of the bipartite graph
are weighted by the similarity measures between pairs of
nodes. The maximum cardinality, maximum weighted cou-
pling computed on this graph induces a set of correspon-
dences between regions of the two objects. In this case,
even if we maximize the matching between pairs of regions,
the topology of the objects is not taken into account. Thus,
this approach may produce some matching mistakes
because of the loss of the objects’ structure information.

Recently, many-to-many graph matching has been stud-
ied in application to object recognition problem (Demirci
et al., 2006; Dickinson et al., 2005; Keselman and Dickin-
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Fig. 1. The overall scheme of
son, 2005). In this framework, the restrictive assumption of
one-to-one node correspondence is overcome to compen-
sate segmentation errors, object articulation, scale differ-
ence and within-class deformation. However, in the worst
case, any subset of nodes in one graph can match any sub-
set of nodes in the other and the space of possible many-to-
many correspondences between the graphs is exponentially
growing. Demirci et al. have proposed transforming the
graphs into points in a low-dimensional geometric space
using low-distortion graph embedding techniques (Demirci
et al., 2006). Each point in the embedding space corre-
sponds to a node in the original graphs. The distance in
the embedding space reflects the shortest-path distance in
the original graphs in order to keep topological relations.
Assuming that attributes of a node can be mapped to a vec-
tor of masses, the many-to-many vector correspondences
are mapped back into many-to-many correspondences
between graph nodes. In this way, the many-to-many prob-
lem is tractable (Demirci et al., 2006). This method is very
promising and can be applied with success to our problem.
Nevertheless, we think that classical one-to-one matching
methods such as relaxation labelling technique are still of
much interest, even in case of segmentation errors and nat-
ural variation of regions due to the articulated motion of
objects formed by these regions. To overcome these prob-
lems, we propose a simplification of RAGs to compensate
such segmentation noise. This simplification is depicted in
Fig. 1 by Step 2 block.

Stochastic relaxation techniques introduced a long time
ago (Hummel and Zucker, 1983; Kittler et al., 1985; Rosen-
feld et al., 1976) for pattern recognition have recently
received new interest in several multimedia applications
(Gomila and Meyer, 2003; Wing Hing Kwan et al., 2001).
In the problem of object matching in video, natural objects
are often articulated and even if region characteristics vary
with time, the structure of a region neighborhood would
remain stable. This is why relaxation labelling techniques
are justified. Based on a similarity measure computed
between pairs of regions, relaxation processes aim to intro-
duce evaluation of local neighborhood likenesses to adjust
the similarity measure between pairs of regions. In this
 RAGs

Matrix of
regions similarities

Definite matching
Thresholding

Step 6

(neighbors consistency)
adjustements
Similarities

Step 5

by relative area
Selection of regions

Step 4

Computation of object similarity measure
Step 7

computation
Similarity measure

Step 3

n Progressive relaxation process

object matching method.



Fig. 2. Original two frames from a video stream at low resolution.

Fig. 3. Extracted objects.

Fig. 4. Region adjacency graphs associated with the objects in Fig. 3: (a)
28 vertices; (b) 34 vertices.

1 The RAGs are drawn with a graph visualization tool named Tulip
(Auber, 2003).
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way, the regions of an object are recognizable even if small
local motions of the object or segmentation errors have
deformed them.

The graph matching method we present is inspired by
relaxation methods (Hummel and Zucker, 1983; Rosenfeld
et al., 1976). A similarity measure between the nodes of
RAGs is computed (Step 3 in Fig. 1). Then, this similarity
measure is iteratively updated according to the contribu-
tion of local neighborhoods (Step 5). This measure may
increase or decrease depending on the neighborhood
resemblance. We propose to start the relaxation process
with the most important regions in terms of surface (num-
ber of pixels). Hence it will be ensured that segmentation
noise often expressed by small regions would not affect
matching of significant regions in objects. Thus matching
process starts with larger regions and introduces small ones
at each step as is depicted in Step 4 in Fig. 1. Contrary to
the approach by relaxation techniques proposed by Gomila
for tracking of objects (Gomila and Meyer, 2003), in our
case of matching of objects independently segmented in
video frames, the variation of RAGs can be significant.
Thus, starting matching of RAGs from largest regions will
help us to make the matching process more robust.

The paper is organized as follows. In Section 2, we
briefly introduce segmentation of objects in the rough
indexing paradigm and describe how RAGs are built. In
Section 3, we introduce similarity measures between two
regions. Section 4 describes the preliminary step for the
relaxation process we propose, that is RAG simplification
(Step 2 in Fig. 1). The RAG matching algorithm is
described in Section 5. Results on natural video are pre-
sented in Section 6 and a conclusion is given in Section 7.

2. Segmentation and RAG-modeling of objects from ‘‘rough’’

video

In this paper, we only consider DC-spatial resolution of
video frames (Manjunath et al., 2002). The DC-images are
composed of color pixels which represent the mean values
of 8 · 8 squared blocks in original video frames. In this
way, the colorimetric and geometrical information is
strongly smoothed.

The segmentation process used in this work is based on
a region growing algorithm performed with a modified
watershed (Manerba et al., 2005). It produces a partition
into 4-adjacent regions that represent a segmented object
O. We recall that two regions are called 4-adjacent if, when
modeling pixels as square boxes, they share a border seg-
ment of at least one pixel and not just a pixel vertex. Each
region is homogeneous according to a colorimetric homo-
geneity criterion which expresses the difference of color vec-
tors of pixels in a region and the mean color vector of a
region compared to a region adaptive threshold [Manerba
et al., 2005]. In a classical way, we associate a partition
O ¼ fr1; . . . ; rng to a RAG denoted by GO (see Step 1 in
Fig. 1). Each region ri 2 O is considered as a vertex of GO

and there exists an edge e = (ri, rj) between two vertices if
the corresponding regions ri and rj are 4-adjacent. Then,
we note by NOðriÞ the neighborhood of ri (i.e. the set of
regions rj that are 4-adjacent to ri).

In Fig. 2, two video frames at different times are shown.
The same object (an old man) appears in both frames. The
results of the object segmentation are displayed in Fig. 3.
One can see that many differences exist due to scale
deformation, local motions (e.g. the man’s arm), partial
occlusion and additional background pixels. The corre-
sponding graphs are displayed1 in Fig. 4. Here, each node
of a RAG is represented by a squared box centered at a
region’s center of gravity. The boxes are filled in with the
mean colors of corresponding regions in image plane.
The edges depict regions’ adjacency.

3. Features extraction and region similarity measure

In order to define similarity between graphs, we use a set
of features to describe an object. Most approaches consider
color as the major querying feature. Shape and texture are
other usual features in the CBIR framework.
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We assume that region-based object retrieval implies
that local properties of regions are taken into consider-
ation. This means that objects are represented by a set of
regions characterized by local features and topological
relations instead of a summarized global features vector.

The chosen descriptors have to be adapted according to
the data resolution. In this work, data has low colorimetric
and geometrical resolution. Therefore, the use of sophisti-
cated features (e.g. normalized MPEG-7 color and shape
descriptors (Manjunath et al., 2002)) is inappropriate for
our application. Texture information is not exploitable
because the downsampling attenuates the texture informa-
tion. Then, our choice is to consider basic color and shape
features to characterize regions. These features are the
mean color vector of a region in the RGB color system
and geometrical features defined by the oriented bounding
box of a region in the image plane. Hence, a comparison of
regions becomes a comparison of their feature vectors (see
Step 3 in Fig. 1).

In this paper, we assume that if two regions strongly dif-
fer on one of the features, they are not similar. We call this
property the absorbing property. This means that for the
regions to be similar, they have to be close for both color
and shape features accordingly to a defined similarity mea-
sure. We assume that if two regions are very much similar
in shape but are very distant in color, they are less similar
than two regions that have close values in both shape and
color. Obviously, these values should not be too ‘‘small’’.
3.1. Color similarity

Color is the most frequently used feature for querying
and retrieving multimedia data. Color histograms are com-
mon tools in image and video retrieval (Erol and Kossen-
tini, 2001; Flickner et al., 1995; Qi and Han, 2005; Saykol
et al., 2005). Distance in different color spaces is also a clas-
sical similarity measure in this application domain (Gomila
and Meyer, 2003; Li et al., 2000; Wang et al., 2001). In this
work the segmentation process aggregates DC-blocks
according to an homogeneity criterion. Indeed, the color
histogram of a region is not really relevant as the size of
regions is small. Consequently, we consider the simplest
feature, such as the mean color vector of a region in the
RGB space as the colorimetric feature. We define the color
similarity measure between two regions r and r 0 as qc(r, r 0):

qcðr; r0Þ ¼ 1� jRðrÞ � Rðr0Þj
255

� �

� 1� jGðrÞ � Gðr0Þj
255

� �

� 1� jBðrÞ � Bðr0Þj
255

� �
: ð3:1Þ

Here, ðRðrÞ;GðrÞ;BðrÞÞT is the mean color vector of a
region r in the RGB color system.

The colorimetric criterion verifies the absorbing prop-
erty. This means that a strong difference for one of the
color components induces a strong decrease of the global
color similarity measure. A value close to 1 indicates a high
similarity.
3.2. Shape similarity

Shape characterization of the regions is another feature
that is often considered in CBIR. Shape representations
can be divided into two categories: a region representation
and a boundary representation (Huang and Rui, 1997;
Zhang and Lu, 2004). Region features are used to charac-
terize the inside of a region. Moment invariants, bounding
box features (e.g. compactness, elongatedness, eccentricity)
are examples of descriptors of this type. A second approach
considers boundaries of regions. Fourier descriptors and
MPEG-7 contour shape descriptors are examples of
descriptors belonging to this category (Manjunath et al.,
2002). In DC-images, boundaries are particularly
smoothed because of the block-based summarization of
full resolution images. Thus, boundary descriptors are less
appropriate than region descriptors to describe the regions
in our context.

Our shape descriptor has been chosen to be invariant
with respect to the usual transformations such as rotation,
translation and scaling. Moreover the shape of many arti-
culated objects changes between two different frames
because of local motion of object parts (e.g. the arm of
the old man in Fig. 3). Thus, some regions may be
deformed in a way different from the others. Therefore,
the shape similarity measure must be tolerant to geometri-
cal deformations of regions. In the case of a scale deforma-
tion, the whole object is scaled with the same zoom factor.
Then, we also consider the relative area of regions accord-
ing to the whole surface of the object. We use the region’s
oriented bounding box (OBB) properties to characterize a
region shape. Let r be a region, we consider its eccentricity
e(r) (ratio between the surface of the region and the surface
of its corresponding OBB), its elongatedness l(r) (ratio
between the major and the minor axes of the OBB) and
its relative area a(r) (ratio between the surface of the region
and the whole surface of the object). The shape similarity
measure between two regions r and r 0 is as follows:

qsðr; r0Þ ¼
1

2
� minðeðrÞ; eðr0ÞÞ

maxðeðrÞ; eðr0ÞÞ þ
minðlðrÞ; lðr0ÞÞ
maxðlðrÞ; lðr0ÞÞ

� �

� minðaðrÞ; aðr0ÞÞ
maxðaðrÞ; aðr0ÞÞ : ð3:2Þ

This shape similarity measure benefits from the absorbing
property: regions have to be close from both local (OBB)
and global (relative area) points of view to be considered
as similar.
3.3. Global region similarity measure

Based on the shape and color similarity, we introduce a
global similarity measure of regions. Let r and r 0 be two



Fig. 5. Reduction of the graphs of the Fig. 4. Merged regions are depicted
by red arrows: (a) 27 vertices; (b) 27 vertices.
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regions, we will denote the similarity between two regions
by q(r, r 0) defined as follows:

qðr; r0Þ ¼ qcðr; r0Þ � qsðr; r0Þ: ð3:3Þ
The value q(r, r 0) is in [0,1]. The closer to 1 is the similarity
measure, the more similar are the regions. When two re-
gions differ in one feature, they are not similar. The absorb-
ing property implied by multiplicative scheme (3.3) is then
justified.

4. Simplification of a region adjacency graph

The downsampling introduced by DC-images with
regard to full resolution frames may produce superfluous
regions in a partition. Indeed, a pixel in a DC-image corre-
sponds to an 8 · 8 block of pixels in the full resolution
frame. The value of a DC-pixel is a mean value of this
8 · 8 block. Thus, if a 8 · 8 block in a full resolution frame
contains portions of regions very different in color, then its
corresponding pixel in DC-resolution frame will be a mix
of these colors. Therefore it will strongly differ from sur-
rounding DC-pixels corresponding to homogeneous 8 · 8
blocks inside regions. In this case small regions may appear
around the boundary of the object. In order to avoid these
drawbacks and improve the recognition of objects, we have
introduced a preliminary step to simplify the RAGs (Step 2
in Fig. 1). We merge the regions resulting from over-
segmentation.

When merging, we distinguish three cases: (i) very small
regions that have to be systematically merged with their
neighbors, (ii) large regions that are preserved and (iii)
regions of medium size resulting from over-segmentation
which are merged only if there exists a region in their neigh-
borhood with a close color. Here, the color of a region r 0 is
considered close to color of a region r if the similarity mea-
sure qc(r, r 0) (see Eq. (3.1)) is above a given threshold
d 2 [0, 1].

More formally, let e1 < e2 be relative area thresholds in
[0,1]. Let us now consider each region r according to its rel-
ative area a(r). Let the region r 0 be the closest colorimetric
neighbor of r (i.e. r0 ¼ maxri2NOðrÞqcðri; rÞ). Then the fol-
lowing merging rules are applied:

(1) if a(r) < e1 then the region r is removed by merging r
with r 0;

(2) if a(r) P e2, then r is a relevant region and nothing is
done;

(3) if e1 6 a(r) < e2, if qc(r, r 0) > d we consider r as an
artifact of over-segmentation and r is removed by
merging r with r 0.

In Fig. 5, we present the simplified graphs obtained by
the reduction of the graphs displayed in Fig. 4. The red2

arrows show merged regions.
2 For interpretation of color in Fig. 5, the reader is referred to the web
version of this article.
5. Object matching with RAGs

The matching process is based on an iterative relaxation
process that progressively refines the similarity between the
regions by taking into account the similarity of their neigh-
borhood. In such an approach, the evaluation of the simi-
larity between the regions is obtained by combining initial
similarity (based on features) and successive adjustments
(reinforcement or penalization) according to the local con-
text information (i.e. regions of the neighborhood).
5.1. Overview of the algorithm

The largest regions form the most significant parts of the
objects, their similarity measure is consequently the most
relevant in terms of importance and accuracy. It is neces-
sary to match them as well as possible without being dis-
turbed by small neighboring regions. On the contrary,
small regions may result from segmentation errors. In this
case, they penalize the similarity of the large regions
located in their neighborhood. Therefore, we propose an
ordered matching of regions in RAGs. Starting with two
simplified RAGs (Section 4 and Step 2 in Fig. 1), we first
compute the initial similarity measures of all regions pair-
wise (Step 3 in Fig. 1). Then, the algorithm proceeds
iteratively.

Let li be a threshold inversely proportional to i, the iter-
ation number. At each iteration i, we only consider regions
of objects that have a relative area above the threshold li

(Step 4 in Fig. 1). This means that, from an object O, we
compute the reduced object Oi such that r 2 Oi iff
a(r) > li. In the same manner, we reduce O0 into O0i. Thus,
starting with the largest regions, we introduce smaller
regions at each iteration in the matching process.

At ith iteration, for each pair of regions (r, r 0) of reduced
objects Oi and O0i, we compute the adjusted similarity
ci(r, r 0) between r and r 0. This adjusted similarity depends
on the initial similarity measure and on the similarity of
their neighborhood at i � 1th iteration (Step 5 in Fig. 1).
We fix two similarity thresholds hmin < hmax. If the value
ci(r, r 0) is lower than hmin, we assume that regions will never
match and then we assign ci(r, r 0) to zero. In an opposite
way, if the value ci(r, r 0) is stronger than hmax and presents
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no ambiguity with other regions we decide that the regions
have definitively matched and we assign ci(r, r 0) to one (Step

6 in Fig. 1).
In order to accelerate the convergence of the relaxation

algorithm, we limit the number of iterations to t loops. Our
experience is that increasing t above 10 does not improve
the matching result. The algorithm is the following, the
corresponding steps in Fig. 1 are indicated in italic.

Here, a pair of regions is ‘‘marked’’ when its similarity
measure has been assigned to one or zero. The neighbor-
hood compensation function will be described in Section
5.2.

5.2. Adjustment by neighborhood contribution

The neighborhood contribution (see Step 5 in Fig. 1)
denoted by ui is based on the similarity between the
restricted neighborhood NOiðrÞ of the region r and the
restricted neighborhood NO0i

ðr0Þ of the region r 0. The sim-
ilarity measure ci(r, r 0) is updated depending on ui in the
following way:

ciðr; r0Þ ¼ qðr; r0Þ þ uiðNOiðrÞ;NO0i
ðr0ÞÞ: ð5:1Þ

The adjustment ui is used to increase or decrease the simi-
larity between two regions according to the confidence of
their neighborhoods NOiðrÞ and NO0i

ðr0Þ. We will first
introduce the neighborhood similarity measure denoted
by ji(r,r 0). Its computation is based on the best coupling
that can be found between the neighbors of r and the neigh-
bors of r 0. We build the complete bipartite graph composed
of regions of the neighborhood of r and r 0 respectively and
weighed by the similarity measures ci�1(r, r 0) between re-
gions. Then, we compute the maximum cardinality, maxi-
mum flow F mapping on the complete bipartite graph
(Hopcroft and Karp, 1973; Weber and Mlivoncic, 2003).
This algorithm has been used by Shokoufandeh et al. in
Fig. 6. Global matc
the framework of object recognition (Shokoufandeh
et al., 1999). In their work, objects are defined at a different
level of abstraction. The maximum cardinality, minimum
weight algorithm is iteratively computed on the graphs at
each level of abstraction.

Fig. 7 shows a bipartite neighborhood graph that corre-
sponds to NOiðrÞ ¼ fr0; r1g and NO0i

ðr0Þ ¼ fr00; r01; r02g and
the similarity evaluation ci�1ðrk; r0lÞ Fig. 8.

In the definition between the neighborhood of r and r 0

we propose to take into account their relative cardinality
and their best matching by average max flow F. Hence,
the similarity measure will take into account the similarity
of the structure of neighborhoods and the similarity of the
regions in these neighborhoods in the descriptor space.
Thus, neighborhood similarity ji(r, r 0) is given by the fol-
lowing formula:

jiðr; r0Þ ¼
minðjNOiðrÞj; jNO0i

ðr0ÞjÞ
maxðjNOiðrÞj; jNO0i

ðr0ÞjÞ �F: ð5:2Þ

It decreases if the structure of the neighborhoods strongly
differs or if the regions are different in the feature space.

The neighborhood similarity ji(r, r 0) will now be used to
define the neighborhood compensation function uiðNOiðrÞ;
NO0i
ðr0ÞÞ in Eq. (5.1). The role of uiðNOiðrÞ;NO0i

ðr0ÞÞ (see
Eq. (5.3)) is to adjust the similarity between two regions
according to their neighborhood similarity. In order to
ensure a significant influence of the neighborhood similar-
ity or dissimilarity on the adjustment process, we consider
three cases of adjustment according to the value of ji(r, r 0):
(i) we increase the similarity between the regions if their
neighborhoods strongly correspond, (ii) we decrease it if
the neighborhoods are very different and (iii) the neighbor-
hoods are not similar or dissimilar enough to take a deci-
sion and we do not modify the similarity between
regions. Let a1 and a2 2 [0,1] be the thresholds to differen-
hing algorithm.



Fig. 7. The bipartite graph and the table of similarities.

Fig. 8. Maximal weighted coupling.
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tiate these cases. The value of uiðNOiðrÞ;NO0i
ðr0ÞÞ is

defined as

uiðNOiðrÞ;NO0i
ðr0ÞÞ

¼

1

2a1

jiðr; r0Þ �
1

2
if jiðr; r0Þ 6 a1;

1

2ð1� a2Þ
jiðr; r0Þ �

a2

2ð1� a2Þ
if a1 < jiðr; r0Þ 6 a2;

0; otherwise:

8>>>><
>>>>:

ð5:3Þ

In practice, we split the interval of possible values of j
equally. This means that a1 ¼ 1

3
and a2 ¼ 2

3
.

5.3. Matching of regions

If, during the matching process, due to relaxation (5.3)
or not, the similarity of a pair of regions has became very
strong or very low, we definitively match them. Thus, the
global matching process will be speeded up as we exclude
these regions from matching of RAGs.

Matching of RAGs is speeded up by including two
steps. First, we fix a null similarity value between regions
that will probably never match (thresholding in Step 6 in
the global algorithm). Secondly, we consider that two
regions match each other if the similarity value is high
enough and there is no ambiguity with other regions (i.e.
there are no other potential candidates for matching with
one or other region). This step corresponds to the Step 6
in the overview of the method (Fig. 1).

Let h be the matching threshold, and let e be the ambi-
guity threshold. The conditions for a definite matching
denoted by r � r 0 between two regions r and r 0 are defined
as follows:

r � r0 ()
cðr; r0Þ > h;

cðr; r0Þ � cðr; r0jÞ > e 8r0j 6¼ r0 2 O0;

cðr; r0Þ � cðri; r0Þ > e 8ri 6¼ r 2 O:

8><
>: ð5:4Þ

The first condition in (5.4) stands for a high similarity va-
lue. The second and the third conditions ensure that there
are no any other potential candidates for matching, that is
‘‘no ambiguity’’. In practice, we fix e = 0.08 and h = 0.8.

The limitation of matching by these (5.4) aims to avoid
abundance of bad correspondences. The conditions (5.4)
seem strong for the regions to be in correspondence, but
neighborhood consistency adjustments along iterations
help pairs of corresponding regions to fulfill these con-
straints after they have been in an ambiguous position at
previous iterations.

If a pair of regions (r, r 0) verifies r � r 0 (see property
(5.4)), a definite match can be done. Then, for all j P i

we have

cjðr; r0Þ ¼ 1;

8rk 2 O; rk 6¼ r; cjðrk; r0Þ ¼ 0;

8r0l 2 O0; r0l 6¼ r0; cjðr; r0lÞ ¼ 0:

The matching process described above is computed by the
‘‘matching’’ procedure of the global algorithm in Fig. 6 and
it corresponds to the Step 6 of the overview of the method
displayed in Fig. 1.
5.4. Object similarity

The similarity measure we introduce between the objects
corresponds to the average of the relative areas that have
been matched. Let R and R 0 be the sets of regions of O
and O0 respectively that have been matched. At the end
of the matching process (Step 7 in Fig. 1), the similarity
rðO;O0Þ between O and O0 is computed as follows:

rðO;O0Þ ¼ 1

2

X
r2R

aðrÞ þ
X
r02R0

aðr0Þ
 !

: ð5:5Þ

Here, a(r) is the relative surface of a region r with regard to
the object surface as introduced in Section 3.2.

The similarity measure r evaluates the mean proportion
of object areas that have been matched. This means that we
first compute the whole relative area of matched regions for
each set R and R 0. The object similarity measure corre-
sponds to the mean of these two values.
5.5. Study of the complexity of the global matching

algorithm

The complexity of the matching algorithm can be
assessed as follows. At each iteration of the outer loop,
we consider all pairs (r, r 0) from the reduced objects. Let
V and V 0 be the average cardinals of Oi and O0i over all iter-
ations i = 1, . . . , t. The inner loop is run through V V 0 times.
For each run of the inner loop, we consider the neighbor-
hoods of r and r 0. Let v and v0 be the average number of
neighbors of r and r 0. The computation of the neighbor-
hood compensation uses the maximal weighted matching
algorithm applied on the complete bipartite graph of neigh-
borhoods. This algorithm runs in ðvþ v0Þ

5
2 operations

(Hopcroft and Karp, 1973). Thus, the average complexity
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of the global algorithm is HðtV V 0ðvþ v0Þ
5
2Þ. We recall that t

is a fixed number of iterations of the outer loop.
The best-case complexity will thus be in a constant

time ðXðt25
2ÞÞ, and the worst-case complexity will be

O tnm½ðn� 1Þ þ ðm� 1Þ�
5
2

� �
, with n and m the cardinals of

node sets of GO and G0O respectively. We note that the
worst-case is not realistic as it corresponds to a complete
RAG case. The latter is not possible for planar segmenta-
tion maps with the number of regions higher than 3.

6. Experimental results and discussion

We have tested our method for retrieval of objects in
sequences at DC-resolution taken from CERIMES
�MPEG2-compressed documentaries. The segmented
objects are extracted from DC-frames of size 76 · 92 pixels
and at the temporal resolution of two frames per second.

The sequences are taken from CERIMES �documen-
tary videos Aquaculture en méditerranée, De l’arbre à l’ouv-

rage, Le chancre and Hiragasy. Fig. 9 shows an overview of
the shots used for experiments. The whole video database
contains about 5000 frames from which objects are
extracted. For the experiments, 100 objects corresponding
to people have systematically been chosen randomly from
the video objects database.

We have evaluated the performance of our method in
the context of object retrieval by query by example. Retrie-
val systems often present query by example results in terms
of k best matches (Flickner et al., 1995; Pentland et al.,
1996; Qi and Han, 2005; Wang et al., 2001). A retrieved
object is considered a correct match if it represents the
same object as the query. Two examples of object retrieval
are shown in Fig. 10. The scores under frames correspond
Fig. 9. Sample of shots taken from the video database: (a)

Fig. 10. Our method: global object similarities with the query (left frame with a
to color in this figure legend, the reader is referred to the web version of this
to the object similarity measure r. The example (a) illus-
trates the ability of our method to retrieve the same object
under different conditions: the similarity measures are good
even if the same old man appears in two different shots. In
the example (b), the two first retrievals are relevant with a
similarity measure over 0.7 while other retrievals do not
correspond to the query with a similarity measure ‘‘close
to chance’’ (’0.5).

In order to prove the interest of considering neighbor-
hoods for matching process as in our method, we have
compared our relaxation process with the IRM method
used in the SIMPLIcity system (Li et al., 2000; Wang
et al., 2001). Both algorithms have been implemented using
only our own region similarity measure (3.3) with a color
feature as a vector ðR;G;BÞ (3.1) and shape features e(r),
l(r) and a(r) (3.2). Because of the roughness of data, the tex-
ture is smoothed and the color moments of higher order
than mean are not representative. Thus, IRM which is
based on these sophisticated features becomes less efficient.
In this way, IRM is strongly penalized as shown by the
results in Fig. 11.

The precision figures for different values of the number
of best matches k for both methods are plotted in
Fig. 12. Precision is computed as being the ratio between
the number of correct matches and k. Whereas the slope
is the same for both methods, our method is more precise
by about 20%. The score of IRM is less than ours because
it is penalized by the incompleteness of the region features
set. Our method seems to better compensate the poorness
of the information contained in regions’ features by consid-
ering the topology of objects with regions’ neighborhoods.

In Fig. 13, the precision corresponds to the ratio of cor-
rect matches versus total number of objects whose score r
example shot 1; (b) example shot 2; (c) example shot 3.

red border) for the five best retrievals. (For interpretation of the references
article.)



Fig. 11. IRM: global object similarities with the query (left frame with a red border) for the five best retrievals. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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is over a fixed threshold w. The precision for IRM was not
computed as this method requires richer descriptor space,
otherwise the similarity measure (5.5) is close to 1 even
for a bad matching. The curve we obtain is strongly
increasing as the threshold raises. For a w value fixed
around 0.7, the precision is quite good with a correspond-
ing recall of 0.6.

We have tested the robustness of the method to image
alterations. Figs. 14 and 15 summarize the results. The
graphs in Fig. 14 show the precision on the five best retri-
evals as we increase the significance of image alterations.
The method is extremely robust to contrast variation as
shown in Fig. 14. The method is also stable to intensity var-
iation. The Fig. 15 shows some query examples to images
alterations such as intensity variation, contrast variation,
random noise, zoom and rotation.
7. Conclusion

Thus in this paper we have presented a new approach to
the problem of object matching recognition in video in the
context of the rough indexing paradigm inspired by relax-
ation labelling approaches for graph matching. The
method relies on a similarity-based region matching. It rep-
resents an improvement in relaxation techniques for video
objects at a low resolution modeled by RAGs. Information
is scarce due to the down-sampling. Thus, classical meth-
ods of content-based recognition that frequently use
sophisticated region features such as texture are penalized
due to the inaccuracy of such data.

In this paper, we have proposed a new region similarity
measure adapted to the data, and a graph simplification
technique to eliminate regions resulting from segmentation
noise.

Another contribution was to propose a progressive
matching of regions-nodes of graphs accordingly to their
relative surface. This new approach combined with a thres-



Fig. 15. The robustness of the method to image alteration. Best five matches are shown.

948 F. Chevalier et al. / Pattern Recognition Letters 28 (2007) 939–949
holding process permits the algorithm to better match the
seed regions in the context of the neighborhood adjust-
ment. We thus privileged the most relevant regions in order
to better match less important areas.

As an immediate application of our method we see the
retrieval of shots in a video database. In this scenario, we
search for shots containing the same object as the query.
A video database contains a selection of k representative
frames per shot with associated pre-computed RAGs of
objects. By submitting a query object to the database, we
select all objects such that the similarity measure with the
query is above a threshold w. Thus, the corresponding
shots can be selected as a response to query. Another appli-
cation is a semantic inventory of the shots in a video into
video chapters or scenes. Here, the shots will be grouped
into a scene if they content the same object as a ‘‘query
shot’’.

In the case of a large database, a filtering step based on
global features of objects such as global histogram can be
combined with our matching method in order to reduce
the number of objects to test (Qi and Han, 2005).

As a final conclusion, we can say that this approach
offers good results and a nice challenge for further
improvements.
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Saykol, E., Güdükbay, U., Ulusoy, Ö., 2005. A histogram-based approach
for object-based query-by-shape-and-color in image and video data-
bases. Image Vision Comput. 23 (13), 1170–1180.

Seales, W., Yuan, C., Hu, W., Cutts, M., 1998. Object recognition in
compressed imagery. Image Vision Comput. 16 (5), 337–352.

Shapiro, L., Haralick, R., 1981. Structural descriptions and inexact
matching. IEEE Trans. Pattern Anal. Machine Intell. 3 (5), 504–519.

Shokoufandeh, A., Marsic, I., Dickinson, S., 1999. View-based object
recognition using saliency maps. Image Vision Comput. 17 (5–6), 445–
460.

Ullman, J.R., Sridhar, V., Li, X., 1976. An algorithm for subgraph
isomorphism. J. ACM 23 (1), 31–42.

Wang, J.Z., Li, J., Wiederhold, G., 2001. SIMPLIcity: Semantics-sensitive
integrated matching for picture LIbraries. IEEE Trans. Pattern Anal.
Machine Intell. 23 (9), 947–963.

Weber, R., Mlivoncic, M., 2003. Efficient region-based image retrieval.
Image Vision Comput. 21 (3), 285–294.

Wilson, R.C., 1996. Inexact Graph Matching Using Symbolic Constraints.
PhD thesis, The University of York, November.

Wilson, R., Hancock, E., 1997. Structural matching by discrete relaxation.
IEEE Trans. Pattern Anal. Machine Intell. 19, 634–648.

Wing Hing Kwan, P., Kameyama, K., Toraichi, K., 2001. Trademark
retrieval by relaxation matching on fluency function approximated
image contours. In: IEEE Pacific Rim Conf. on Comm., Comp. and
Sig. Pro., pp. 255–258.

Zhang, D., Lu, G., 2004. Review of shape representation and description
techniques. Pattern Recognition 1, 1–19.


	Retrieval of objects in video by similarity based on graph matching
	Introduction
	Segmentation and RAG-modeling of objects from  " rough "  video
	Features extraction and region similarity measure
	Color similarity
	Shape similarity
	Global region similarity measure

	Simplification of a region adjacency graph
	Object matching with RAGs
	Overview of the algorithm
	Adjustment by neighborhood contribution
	Matching of regions
	Object similarity
	Study of the complexity of the global matching algorithm

	Experimental results and discussion
	Conclusion
	References


