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A New Method for Varying Adaptive Bandwidth Selection

Vladimir Katkovnik

Abstract—A novel approach is developed to solve a problem of varying
bandwidth selection for filtering a signal given with an additive noise.
The approach is based on the intersection of confidence intervals (ICI)
rule and gives the algorithm, which is simple to implement and adaptive
to unknown smoothness of the signal.

Index Terms—Adaptive filtering, adaptive varying bandwidth, adaptive
varying window length, segmentation.

I. INTRODUCTION

In this correspondence, we introduce an adaptive filter that pro-
duces piecewise smooth curves with a small number of discontinuities
in the signal or its derivatives. It allows certain desirable features
such as jumps or instantaneous slope changes to be preserved in the
smooth curves. The algorithm is adaptive to unknown smoothness of
the signal. The local polynomial approximation (LPA) is used as a tool
for filter design as well as for a presentation of the developed general
method of the bandwidth selection. This method can be applied for
a variety of quite different linear and nonlinear problems where the
bandwidth selection involves the bias-variance compromise usual for
nonparametric estimation.
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TABLE I
SQUARE ROOT MEAN SQUARED ERRORS (SRMSE) OF

ESTIMATION USING THE LPA AND VARIOUS WAVELET METHODS

Fig. 1. Adaptive estimates, � � �� � � ���.

Suppose that we are given noisy observations of a signal ����
with a sampling period �, i.e., �� � ��� � � � � � � �� �� � � � � �
�� � ��������, where �� are independent and identically distributed
Gaussian random errors ����� � �� ����

�
� � ��. It is assumed that
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Fig. 2. Adaptive bandwidths, � � �� � � ��� and observations.

���� belongs to a nonparametric class of piecewise �-differentiable
functions �� � ���������� � ���. Our goal is to estimate the
signal ����� and its derivatives ��������, � � � � ���, depending
on the observations �������� with the point-wise mean squared error
(MSE) risks, which are as small as possible.

The following loss function is applied in the standard LPA (e.g.,
[4] and [6])

����� �
�

�

�

���

����� � ����� � 	�
��� � ����


��� � ��� �� ����� � � � � �������� �����

	 ��	�� 	�� � � � � 	����
� (1)

where � is a “center,” and � is the order of the LPA. The window
����� � ����
��
 is a function satisfying conventional proper-
ties of the “kernel” estimates, in particular, ���� � �� ���� �
��	� ����� ����� �, as ��� � 	, and �

��
������ � �� Here, 


is a window “size” or a bandwidth. Minimizing ����� with respect

to 	, 
	��� 
� � ����
���� �� gives 
����� 
�
�
� 
	���� 
� as

an estimate of ���� and 
����� 
�
�
� 
	���� 
�� � � �� � � � � �� ��

as estimates of the derivatives �������.
A crucial step in the nonparametric estimating is choosing the

bandwidth 
 that controls the smoothness of the resultant estimate.
Automatic bandwidth selectors generally fall into two broad classes of
methods: plug-in and quality-of-fit approaches. The plug-in methods
are based on the asymptotic formulas giving the optimal bandwidth as
a function of the bias and variance of estimation. Main philosophical
drawbacks of this approach are caused by using estimates of the
higher order derivatives ������� in calculation of the bias, which
is obviously a more difficult problem than the original estimation
of the signal itself. The algorithms are quite complex and require

Fig. 3. Adaptive estimates, � � �� � � var.

some additional parameters, in particular, determining a localization
of the derivative estimates (e.g., [4], [10]). The second alternative
approach does not have to deal with estimation of the bias. This
group of methods uses the so-called quality-of-fit statistics, such
as the cross-validation (CV), generalized cross-validation (GCV),
		, Akaike criteria, etc. Most of these statistics can be represented
in the form � � ��� 
�� � ��
�, where 
�� � ���

�
��� �


������ 
��
�, and ��
� is a penalty function designed to increase

with decreasing the bandwidth 
� The bandwidth 
 is selected by
minimizing �, and the penalty ��
� preserves against taking too
small values of 
. Thus, minimizing � is not linked directly to
accuracy optimization. Most publications concerning this approach
are related to a data-based global (constant) bandwidth (e.g., [5]
and [6]). The LPA estimates with the varying bandwidth selection
based on modified quality-of-fit statistics have been developed in
[1] and [9]. This correspondence is inspired by the novel approach
developed in [3], where a new bandwidth selection rule, which we
name the intersection of confidence intervals (ICI), is proposed and
substantiated. The ICI approach does not require estimation of the
bias and differs from the quality-of-fit statistics mentioned above by
its targeting to accuracy optimization. It is proved in [3] that the LPA
equipped with the ICI rule for the bandwidth selection possesses
simultaneously many attractive asymptotic properties, namely, 1) it
is nearly optimal within the ������� factor in the pointwise MSE
risk for estimating both the function and its derivatives, and 2) it is
spatially adaptive over a wide range of the classes of ���� in the sense
that its quality is close to that which we could achieve if smoothness
of ���� was known in advance.

This correspondence presents a development of the results obtained
in [3] and further in [8]. Mainly, the modification concerns optimiza-
tion of the threshold of the ICI according to the pointwise MSE risk.
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Fig. 4. Adaptive bandwidths, � � �� � � var.

It is shown that this threshold is an important design parameter of the
algorithm, which influences the accuracy in a crucial way. Further, the
cross-validation proves to be a good criteria for selection of a data-
driven threshold. This data-driven adjustment of the threshold results
in a very valuable accuracy improvement of the adaptive estimation.

II. THE IDEA OF THE ICI AND THE ALOGRITHM

The estimation error of the LPA can be represented in the form

������ ��� � ��������� ������ ��� � ����� �� � ������ ��� (2)

where ����� �� is the estimation bias, and ����� �� is a random error
with the probability density ���� �	
���� ���� Then, ������ ��� �
������ � �	
���� �� holds with the probability 
 � � � �, where
������ is the ��� ����th quantile of the standard Gaussian distri-
bution and with the same probability

������ ��� � ����� �� � �������	
���� ��� (3)

Let �� be the bandwidth corresponding to a desirable proportion
between the bias and the random error given in the form

�� � �	
��� ����� �� � � � �������	
���� ��� (4)

where � � � is a parameter determining the proportion (selection
of � is discussed in [8]). Then, according to the properties of the
bias and standard deviation, ����� �� � � � �������	
���� �� for
� � ��, and the (3) can be weakened for � � �� to

������ ��� � �� ����������	
���� ��� (5)

In what follows, we use (5) corresponding to different bandwidth
values in order to test the hypotheses � � �� and, in this way,
to find � close to ��� Let us introduce a finite set of bandwidth

Fig. 5. Adaptive estimates, � � �� � � ���.

� � ��� � �� � � � � � ��� starting with quite a small �� and,
according to (5), determine a sequence of the confidence intervals
����� of the biased estimates as

����� � ���� ��


�� � ������ ��� � � � �	
���� ���

�� � ������ ���� � � �	
���� ��� (6)

where � � ����������� is a threshold of the confidence interval.
Then, for � � �� , (5) is of the form ������� � �����, and
we can conclude from (3) that while the inequality ����� �� �
� � �������	
���� �� holds for � � �� � � � � � �, all of the
intervals ������ � � � � � have a point in common, namely,
�������.

The following ICI statistic tests the very existence of this common
point and gives the adaptive bandwidth value. Consider the intersec-
tion of the intervals ������ � � � � � with increasing �, and let ��

be the largest of those � for which the intervals ������ � � � � �
have a point in common. This �� defines the adaptive bandwidth and
the adaptive LPA estimate as

���� ��� � ������ �
���� ���� ����� �� � �� � (7)

The following algorithm implements the procedure (7):

���� � �	
���� ����
� � ��� � ����� �� ����


� � �� �� � � � � �� �� � ��� �� � ��� (8)

Then, the optimal window length ��� is the largest � when �� � � � is
still satisfied. We wish to emphasize that this bandwidth ICI selection
procedure requires a knowledge of the estimate and its variance only
and, in general, gives different bandwidths for estimates of the signal
and derivatives.
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Fig. 6. Observations and adaptive bandwidths, � � �� � � ���.

The threshold � in ����� plays a crucial role in the performance
of the adaptive algorithm. It can be shown that the MSE of estimation
has a minimum with respect to �. Larger values of � give �� � ��
and oversmooth the signal while smaller values of � give �� � ��
and undersmooth the signal. The asymptotic analysis given in [3]
provides the convergence orders of the estimates as �� �� However,
it can not be used in order to find the optimal value of the threshold �.
There are great difficulties in obtaining the optimal � from theoretical
analysis. It seems that the data-driven adjustment of � is the only
reasonable way, at least for now. It follows from our simulation
experience that the cross-validation determines a reasonable and
efficient selector for �. For the estimator ������� �

����� ���, which
is written as ������ �� � �

���� ��� ��	�, the cross-validation loss
function can be represented as the sum of the weighted squared
residuals


�� �
�

	� � ������� �
����� ���

�� ����� ��� ������ ���

�

� (9)

Thus, the adaptive estimates are assumed to be calculated for every
� � �� � � ���� ��� � � ��� �, and �� � �	
��
��� 
�� gives
the adjusted threshold value used in the final estimate. Our attempts
to use, instead of the cross-validation, another quality-of-fit statistic,
in particular, the �� , Akaike criteria, and its modifications (e.g., [5]),
have not shown any improvement in the accuracy.

III. SIMULATION

Let 
�� 
�� and 
� be the left, right, and symmetric windows
in (1), i.e., 
���� � � for � � �� 
���� � � for � � ��
and 
���� � 
�����. We consider combined estimates obtained
by combining all three left, right, and symmetric estimates with

Fig. 7. Adaptive estimates, � � �� � � var.

the inverse variances as the weights (see [3] and [8]). We use the
linear LPA, � � �, the observation interval [0, 1], � � ����,
and � � ���� The signal outside of the segment [0, 1] is equal
to 0. The standard deviation � for ������� �� is estimated by
�� � �median��	� � 	����� � � �� � � � � ������� � ��������

1) We compare the adaptive LPA estimates with the results
achieved by the wavelet filters on the test functions Blocks and
HeavySine. These functions, noise, and conditions of the Monte Carlo
statistical modeling are exactly as given in ([2, Tab. II, p. 1218]). It
is assumed that � � ������ � � � �������� � � �� � � � � ���. The
radix 1.45 for �� is used instead of the standard dyadic 2 in order
to get a more accurate fitting for both the optimal bandwidth and the
estimated signal. The root of mean squared errors of estimation

SRMSE �
�

�

	


��

�

�

�

���

������ ��
�
	
� ���� ������ ���

�

(10)
are presented in Table I. The average over � � �� simulation
runs is calculated in SRMSE, where the superscript ��� indicates
the randomness of the estimate for every �th run. The second and
third columns of the table give the SRMSE for the LPA estimator,
respectively, with the adjusted threshold parameter � � var and fixed
� � ���, as it is used in the simulation given in [3]. The fourth column
presents the interval of the SRMSE values obtained in [2] for the
wavelet filters with different adaptive thresholds. It is evident from
the table that the developed algorithm with the adjusted threshold
parameter in all cases achieves a better accuracy than the wavelet
estimators, whereas it is not true for the algorithm with a fixed value
of the threshold parameter � � ���. The algorithm with the adjusted
threshold parameter demonstrates the accuracy improvement around
1.5 to 2 times in comparison with the algorithm with � � ����
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Fig. 8. Adaptive bandwidths, � � �� � � ���.

It is emphasized that in the Monte Carlo simulation, the variance
of the adjusted � � var between different runs is very small and
does not exceed 10% of its mean value. The optimal accuracy is
achieved for the comparatively small values of � from the interval
(0.8, 1.5) that is different for the left, right, and symmetric windows.
As � � �����������, it means that in this optimization, ������,
as well as the probability � � ���, become small. It follows that the
accuracy optimization results in a high probability of the inequalities
(3) to be violated.

Figs. 1–4 for the Blocks are presented in order to illustrate a
qualitative difference between the adaptive estimates and bandwidths
obtained with the fixed and adjusted threshold �. The estimates for the
left, right, and symmetric windows, as well as the combined estimates,
are given in Fig. 1 for the fixed � � ���� The corresponding adaptive
varying bandwidths are shown in Fig. 2. The similar results for the
adjusted � � var are presented in Figs. 3 and 4. The values of
the SRMSE, which are calculated according to (10) with � � �,
make clear how the combined estimator improves the accuracy. The
comparison shows also that the values of SRMSE in Figs. 1 and 3
are always in favor of the estimates with the adjusted threshold �.
The bandwidths of Fig. 2 obtained with � � ��� have a smoother
appearance than those in Fig. 4, corresponding to � � var, but the
SRMSE values definitely show better results for the estimates with
the adjusted � � var.

It is clear from Fig. 2 that the ICI rule is quite sensitive with
respect to the jumps of the signal and, for all left, right, and symmetric
windows, gives the nearly ideal bandwidth selection exactly covering
corresponding pieces of the segment [0, 1], where the signal is
constant. Similar but “noisy” curves are seen in Fig. 4, corresponding
to the smaller values of the adjusted �.

2) Let ���� � ��	�
��� and 	 � �
�� 
��� � 
� � 
� � �
�� 
� � � � � �
�� 
� � 
�� We use this fine uniform bandwidth grid
to demonstrate in a clear form how varying adaptive bandwidths can
be if the signal has a varying curvature. The adaptive estimates, as
well as the corresponding values of SRMSE for the fixed � � 
��
and the adjusted �, are shown, respectively, in Figs. 5 and 7. The
adaptive bandwidths for the fixed and adjusted � are given in Figs. 6
and 8, respectively. It can be seen from these curves that at the peaks
of ����, where the linear polynomial approximation is not able to
be good enough in a large window, the adaptive bandwidths are
decreasing.

Note that the values of SRMSE in Fig. 7 for the left, right, and
symmetric window filters with the adjusted � are always better than
those in Fig. 5 given for the fixed �. Thus, again, the adjustment of
the threshold � improves the accuracy.

IV. CONCLUDING REMARKS

A novel approach to solve a problem of bandwidth selection for
filtering a signal with additive noise is presented. The linear LPA
is used in order to demonstrate the efficiency of the approach,
whereas a development to nonlinear observations and robust � -
estimates is possible. The algorithm is simple to implement and
requires calculation of the estimates and their standard deviations for
a set of the bandwidth values. For the data given on the regular grid,
the fast implementation of the algorithm is done in MATLAB. The
adaptive estimator is built as 
 parallel filters, which differ in the
bandwidth 
� � � � �� 
� � � � � 
 and the selector, which determine
the best 
����� and the corresponding estimate ������� 


����� ���
for every ��. In simulation, the adaptive LPA demonstrates a better
accuracy as compared with the adaptive wavelet estimates. We wish to
note that this advantage of the LPA is not accidental and reflects deep
similarities and links that exist between the LPA and wavelets [7].
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