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ABSTRACT

Data dissemination from sources to sinks is one of the main
functions in sensor networks. In this paper, we propose
SEAD, a Scalable Energy-efficient Asynchronous Dissemi-
nation protocol, to minimize energy consumption in both
building the dissemination tree and disseminating data to
mobile sinks. SEAD considers the distance and the packet
traffic rate among nodes to create near-optimal dissemina-
tion trees. The sinks can move without reporting their lo-
cation to the tree while receiving data updates successfully.
Our evaluation results illustrate that SEAD consumes less
energy on building and maintaining a dissemination tree to
multiple mobile sinks compared to other approaches such as
directed diffusion, TTDD, and mobile ad hoc multicast.

Categories and Subject Descriptors

C.2.1 [Computer-communication Networks]: Network
Architecture and Design—uwireless communication, distributed
networks; D.2.8 [Software Engineering]: Metrics—per-
formance measures

General Terms
Design

Keywords

Sensor network, asynchronous dissemination, minimum en-
ergy, mobility

INTRODUCTION

A sensor network is a multi-hop ad hoc wireless network
of hundreds or thousands of unattended sensors. The sen-
sor nodes collect useful information such as acoustic, light,
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and seismic measurements, and play a dual role as both
data generators and routers. These sensor nodes communi-
cate through wireless channels and are powered by limited
disposable batteries. Data sources in sensor networks are
usually locations where environmental activities of interest
take place [6, 12, 8]. The monitoring terminals, called sinks,
gathering the sensor readings, may be mobile PDAs carried
by users or may be static access points. The sinks monitor-
ing the sensor nodes may have different service requirements
such as the desired data refresh rate and the end-to-end de-
lay between the source and the sink. An example of a sensor
network application is a group of mobile decontaminating
robots or soldiers with wireless computing devices that use
the sensor network for monitoring the chemical or radioac-
tive contamination level of some region.

Energy is identified as the most crucial resource in sen-
sor networks due to the difficulty of recharging batteries of
thousands of devices in remote or hostile environments. The
energy consumption of each sensor node is dominated by the
cost of transmitting and receiving messages [22]. The im-
portance of optimizing communication energy is supported
by measurements from prototypes of sensor network devices
such as MICA2 [7] and their predecessors [13]. When sinks
are mobile in sensor networks, communication consists of
three main parts: building the dissemination tree (d-tree),
disseminating data, and maintaining linkage to mobile sinks.
Our algorithm addresses energy savings at each of these
three levels.

We propose a Scalable Energy-efficient Asynchronous Dis-
semination protocol (SEAD), a distributed self-organizing
protocol that saves communication energy. It extends prior
work [2] in that sinks are mobile and high network density is
not assumed. Unlike overlay multicast [5, 10] in mobile ad
hoc networks, SEAD does not use mobile sinks as intermedi-
ate members of the tree. This precludes frequent changes of
the dissemination path due to sink mobility. When mobile
sinks join the tree, SEAD does not use flooding to find an
entry to the tree, which is in contrast to approaches such
as [15] and [25]. A disadvantage of flooding is that it costs
much energy and incurs unnecessary collisions. In SEAD,
a stationary sensor node takes the mobile sink’s place for
building an optimal dissemination tree. Data dissemination
paths to these stationary terminals are selected to minimize
energy cost. As sinks move away from their terminals, the
forwarding delay to the sink increases. A trade-off exists
between minimizing that delay and saving energy spent on



reconfiguring the tree. In this paper, we show that it is pos-
sible to achieve considerable savings in power consumption
expended on communication to mobile sinks at the expense
of a moderate increase in path delay. Exploration of this
trade-off is the main principle that underlies the design of
our protocol.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the assumptions and basic service model.
Sections 3 and 4 describe the SEAD protocols to construct
and maintain the d-tree for mobile sinks and minimize en-
ergy consumption. A comparative performance evaluation
using simulation is presented in Section 5. Section 6 reviews
related work. The paper concludes with Section 7.

2. ASSUMPTIONSAND BASIC MODEL

This section presents the basic model of the sensor net-
work which SEAD targets, where multiple mobile sinks re-
ceive sensor readings from the source at varying rates. The
network model for SEAD makes the following basic assump-
tions:

e Each sensor node is assumed to be aware of its own ge-
ographic location. The network can use location services
such as [4] and [1] to estimate the locations of the individ-
ual nodes. The location estimation does not require GPS at
every node.

e After having been deployed, sensor nodes remain station-
ary at their initial locations.

e The sensor nodes are homogeneous and wireless chan-
nels are bidirectional. Each sensor node has a constrained
battery energy.

e Sensor nodes communicate with sinks by delivering data
across multiple hops. That is to say, sources and sinks are
typically much further apart than a single radio radius.

2.1 Overview of the Algorithm

One source generates the sensory update traffic possibly
on behalf of a group of local sensors. The update traffic
is time-varying, depending on the volatility of the environ-
ment and the type of sensors involved. An environment
that changes frequently will generate more update traffic
than a quiescent environment. The average update rate of
the source is denoted by U. The data updates are dissem-
inated along a tree to the mobile sinks in an asynchronous
manner. Each branch of the tree may have its own update
rate depending on the desired refresh rate of the downstream
observers. To detect failures or packet loss in the sensor net-
work, a minimum update rate U,, is enforced. If a source
has no new sensor readings, it disseminates idle messages
along the tree at rate U,,. If a node in the tree receives
no messages including idle messages from the source for a
period longer than 1/Up,, the node contacts its parent. If
its parent has failed and gives no response, the node asks
for a new parent by sending an error message to the source
of the d-tree.

When a mobile sink wants to join the d-tree, it selects
one of its neighboring sensor nodes to send a join query to
the source of the tree. The selected sensor node is called
the sink’s access node. The access node is used to represent
the moving sink when the optimal d-tree is built. Static
access nodes amortize the overhead in the presence of mo-
bility. Access nodes keep track of the current position of
the corresponding mobile nodes. The tree delivers data to
the fixed access node. In turn, the access node delivers the
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Figure 1: An example of the SEAD tree model in
the sensor network.

data to the sink without exporting the sink’s location in-
formation to the rest of the tree. The tree is updated only
when the access node changes (as opposed to every time
some node moves). As the sink moves, no new access node
is chosen until the hop count between the access node and
the sink exceeds a threshold. The value of this threshold
allows trade-offs to be made between path delay and energy
spent on reconstructing the tree.

The sensor network model consists of a set V' of sensor
nodes and a set B of sinks indexed by n = 1,2,..., N and
m=1,2,..., M, respectively. Let A = {41, As,..., A} CV
be the set of M access nodes for mobile sinks B = {B1, Ba,
s BM} which request data from the source at refresh rates
R = {R1,Ra, ..., Rm}. Source data is replicated at selected
nodes between the source and sinks. We define a replica as
a sensor node that stores a copy of the source data. The
replica temporarily stores the latest data incoming from the
source and asynchronously disseminates it to others along
the tree. The replica needs only a very small amount of
memory enough for a single data record. Replicas are mem-
bers of the d-tree. The set of sources, the set of access nodes,
and the set of replicas are included in the set V. An example
of a d-tree using SEAD is shown in Figure 1.

The SEAD algorithm constructs and updates the d-tree
dynamically. It is essentially composed of two main func-
tions; one to add a node to the tree and one to remove
a node from the tree. SEAD focuses on dissemination in
which a source sends its data to multiple sinks. Dissemi-
nation has the source as the root of the d-tree as in mul-
ticast trees. If multiple sources are present in the sensor
network, multiple dissemination trees will be constructed
separately. There is limited room for optimization because
data coming from different sources to the same receiver are
in general different and cannot be aggregated without mak-
ing the scheme application specific. A limited amount of
application-independent data aggregation is possible and is
addressed in a separate publication [11]. In this paper, we
therefore do not consider such cross-tree optimizations fur-
ther. In [11] the authors quantify the power savings achiev-
able due to aggregation.

Suppose that sensor nodes a,b € V communicate with
each other by delivering data across multiple hops. Let



d(a,b) denote the distance between nodes a and b, and let
h(a,b) be the hop count between them. Nodes do not have
global knowledge of the number of intermediate hops and
hop lengths. However, when sensor nodes are uniformly dis-
tributed in the field, the hop count is closely related to the
geographic distance. Our tree construction algorithm there-
fore uses geographic distance to estimate the hop count. We
also use the geographic distance d(a,b) for defining the en-
ergy cost, as the energy is proportional to the number of
single hop broadcasts needed to propagate a message along
the path. The energy consumed for communication between
nodes a and b is also proportional to the packet length and
packet sending rate between these two nodes. The packet
length in our underlying platform is fixed. Therefore, the
energy cost for multi-hop data transfer from a to b is pro-
portional to the distance d(a, b) between the two nodes mul-
tiplied by the packet sending rate Py :

Energy-cost(a,b) « d(a,b)Pyp. (1)

3. D-TREE CONSTRUCTION

When constructing the d-tree, SEAD attempts to con-
struct a minimum-cost weighted Steiner tree. This is distin-
guished from the more commonly used minimum spanning
tree problem in that it is permitted to construct or select
replicas at intermediate points (other than the source and
sinks) to reduce the cost of the tree. Members of the tree in-
teract with each other to deliver content to the sinks. Each
node on the d-tree rooted at the source maintains a pointer
to its parent as well as to each of its children. SEAD is
an overlay network that sits on top of location-based rout-
ing protocols such as simple geographical forwarding (GF).
Communication between nodes follows the underlying rout-
ing protocol. SEAD locates intermediate destinations for
the packets, or replicas.

The SEAD protocol consists of four phases: subscription
query, gate replica search, replica placement, and d-tree man-
agement. At the subscription query phase, a sink directs a
join query to the source via its access node. At the gate
replica search phase, a gate replica is determined, which
serves as the grafting point (on the existing tree) from which
a branch to the new access point is extended. The replica
placement phase locally readjusts the tree in the neighbor-
hood of the gate replica to further reduce communication
energy. The constructed tree is managed to accommodate
mobile sinks or defective regions such as a group of congested
or failed nodes. The following sections describe details of
each of the first three phases. The d-tree management is
presented in Section 4.

3.1 Subscription Query

After being deployed, each static sensor node finds out its
neighbors. Two nodes are said to be neighbors if they can
communicate directly (i.e., within a single hop). If a node
receives no response from a previously recorded neighbor,
the node removes it from its neighbor table. Mobile sinks
beacon periodically to determine their neighbors.

A mobile sink B; selects the nearest of its adjacent nodes
as the access node A; right before the sink B; sends a join
query to a source via the access node. The access node
directly sends the join query to the source via the underlying
routing protocol. The access node is a stationary sensor
node, which represents the mobile sink when constructing
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the d-tree. The join query message contains the location of
the access node A; and the sink’s desired update rate R;.

3.2 GateReplica Search

When extending a d-tree, the resulting performance de-
pends mostly upon the replica chosen to feed the new access
node in the current d-tree (i.e., upon the choice of the gate
replica). Most multicast models [6, 5] in wireless ad hoc net-
works exploit flooding in order to find a current tree mem-
ber close to the sink. Those models are not cost-efficient
because flooding consumes much energy and causes unnec-
essary collisions. Also, when the desired refresh rates of the
sinks are varied, the geographically closest node is not al-
ways the best choice for feeding the sink. Both proximity
and desired sink refresh rate must be considered in connect-
ing the new access node to the d-tree. A gate replica should
be chosen which offers the least cost increase after it is con-
nected to the access node. We propose a search algorithm
to find the gate replica effectively.

In our algorithm, each node n in the tree has a set C'(n) of
children. It maintains a downstream rate Q7 for each child
¢ € C(n). The node n should send data to each child ¢ at
rate Q¢ , which is the maximum among the refresh rates re-
quested by the sinks served from the downstream branches.
The algorithm starts when a source receives a query indi-
cating a sink’s desired refresh rate, R;.

Each level of replica r, including the source receiving that
message, runs a recursive search as follows. If the node has a
parent and the downstream rate Qf(r) of the node r’s parent
p(r) is lower than the desired update rate R;, it is changed to
R;. Let E, denote the set of r’s ancestors. When a replica
r is connected to the access node A;, the additional cost,
K(r), of connecting the access point to r is calculated as

K(r) = Rid(r, Ai) + Y |Ri = Q0™ ld(p(m),m)  (2)

mekE,
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I ={ &

and p(m) is the replica m’s parent. This cost can be cal-
culated recursively. Consider the incremental cost, K(r) —
K (c) where r is ¢’s parent, i.e., 7 = p(c). This cost is calcu-
lated as follows:

where
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Rid(r, Ai) — Rid(c, Ai) — ||Ri — Q¥ |ld(p(c), c)
Rid(r, A;) — Rid(c, A) — || Ri — Q%||d(r, c)

which relates the cost at node r to that at its child c¢. If
the request rate R; is not larger than the downstream rate
Q7 of the child, the second term in (4) is zero. The node
r calculates K(r) — K(c) for each of its children c. If all
the results for K (r) are less than zero, that is, K(r) is less
than K (c) for all the children C(r), this recursive forwarding
terminates and the replica r becomes the gate replica. If not,
it forwards the message to a child with the least overhead
K(c), in other words, the child that maximizes K (r) — K (c).



If the message approaches a leaf node (another access node),
the access node’s parent is set to the gate replica. Because
locations of the mobile sink and its access node are changed
as time goes on, they cannot be used as the gate replica.
The gate replica search algorithm is formalized as follows:

procedure GateReplicaSearch(R;, A;)

Compute (4) for each child with R; and Aj;.
if results of (4) < 0 for all

children or all children are leaf nodes then

This node becomes the gate replica.
else

Forward search to the child with larger

(4).
end

Observe that SEAD does not use hop count in the com-
putation of path cost. Instead, it estimates cost based on
physical distance. This approximation is used because costs
of alternate paths are compared before messages are trans-
mitted when searching for a gate replica. At that point in
time, information regarding exact hop counts is not avail-
able.

3.3 Replica Placement

The objective of the replica placement algorithm is to lo-
cally adjust the tree around the gate replica to produce an
optimal d-tree from the source to the access node.

gatereplica

gate replica

(a) gate replica computing U (b) non-replicamode

Figure 2: Connection in the non-replica mode.
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Figure 3: Searching a new replica in the junction
replica mode.

The gate replica always has at least one child. There are
two ways to connect the access node to the gate replica.
One is to connect it as a child of the gate replica. This
option adds no replicas to the tree, and is called non-replica
mode. The other is to create a child for the gate replica to
feed the access node and some of the gate replica’s original
children. Let us call the new child replica a junction replica
and this connection option the junction mode. Which of
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the two options is better depends upon node locations and
rate limitations. The replica placement phase compares the
non-replica mode cost Unon_replica t0 @ junction replica mode
cost Ujreptica and selects the better option so that the access
node joins the tree in a way that minimizes the energy cost.
If a junction replica that minimizes the cost exists, the gate
replica connects one of its children and the access node to it.
Otherwise, the gate replica makes the access node its child
without a junction replica.

When the source has at least one child, the gate replica
g calculates the cost of the non-replica mode Uson_replica(€)
for each child ¢ € C(g) as

Unon_r'eplica (C) - d(g: Az)Rz + d(g: C)QZ (5)

which represents the energy cost when the gate replica g is
parent of the access node A; as shown in Figure 2. The en-
ergy cost equation (5) follows from the energy cost equation
(1). The gate replica g finds the neighbor node n among its
adjacent nodes within a singe hop range. Then it calculates
the energy cost Ujrepiica(c) for each child c as

Ujreptica(€) = (6)
min {d(g, n) max(R:, Q2) + d(n, Ai) R + d(n, 0)Q¢}-

where W is a set of neighbors. After getting both Uponrepiica (€)

and Ujreplica(c), the gate replica finds one of its children
¢ € C(g) to maximize

U = Unon_'replica(c) - (7)

If the maximum value of U is not positive, a junction replica
is not created and the gate replica is connected directly to
the access node. This mode is shown in Figure 2. Otherwise,
the gate replica finds child ¢ and neighbor n that maximizes
U. The child ¢ becomes the sibling of the access node A;.
A jreplica_search message indicating node c is forwarded to
the neighbor n. Upon receiving the message, node n re-
peats the aforementioned process relative to its neighbors
and forwards the message recursively.

During the recursive forwarding, if no neighbor is found
to make Ujrepiica smaller, the current node becomes the new
junction replica J. If dead ends are met, a control message is
sent upstream to make the previous node become a junction
replica. The replica J stores the downstream rate Q7 and
the desired update rate R; of the sink 7. It registers the gate
replica g as its parent and the access node A; as its child.
The gate replica g replaces the propagation rate QY% with
the result of max{R;, Q7}. This junction replica mode is
shown in Figure 3. The denser the sensor network is, the
more chances there are that a better replica can be found.
The replica placement algorithm is formalized as follows:

Uj'replica (C)

procedure ReplicaPlacement(c, R;, A;)
if this node is a gate replica then
Compute Upon_repiica from (5) for each
child.
Compute Ujrepiica and n from (6) for each
child.
Find a child ¢ to maximize U from (7).
else
Compute n, U from (6) and (7) with
given c.
if U < 0 then



This node becomes a junction replica or non-replica mode.
else

Forward jreplica_search message indicating c to the neigh-
bor

n.
end

Observe that while asynchronous multicast for sensor net-
works has also been addressed in [2], the latter does not
support mobility. Moreover, it solves a weighted Steiner
tree problem in a continuous Euclidean space then attempts
to map the resulting Steiner points onto locations of sen-
sor nodes. It is implicitly assumed that a sensor can be
found sufficiently close at any arbitrary point in the Eu-
clidean space. This assumption becomes increasingly inac-
curate when the network density is decreased. In contrast,
the algorithm presented in this paper considers only exist-
ing sensors for possible replica locations. Hence, the proto-
col does not make inherent assumptions on network density
and will work in the presence of voids or large gaps between
sensor nodes.

4. D-TREE MANAGEMENT
4.1 Sink Mobility

The second part of the protocol lies in maintaining connec-
tivity between mobile sinks and their access nodes. Figure
4 demonstrates this algorithm. As mentioned earlier, the
sink selects one neighbor as its access node as shown in Fig-
ure 4(a). The sink renews the nearest node to communicate
with its AR periodically. The access node is informed of the
identity of the new nearest node using a PathSetup message
as shown in Figure 4(a-c).

Two further cases are expected to occur during the sink’s
movement. The first case is collapsing the forwarding path
as shown in Figure 4(d). When the sink migrates towards
node D, where D is closer to an earlier node on the stored
forwarding path (e.g., node A), the sink commands node D
to set up the path with node A. Node D receives data from
node C for a while to avoid losing data that has already
been sent via the old path. If multiple nodes (e.g., node B
and node C) are within a hop length from node D, the sink
selects the one that appears earlier on the forwarding path
(i.e., node B) for connection to node D.

The second case is to replace the existing access node with
a new access node when the sink moves far enough away.
End-to-end delay and hop count are considered for the new
access node. The end-to-end delay D, is defined as the delay
it takes for data from the source S to arrive at the sink B;.
Delay D; is calculated as

D; =

h(S, Bi)ptP + h(S, B;)(AQD)
+ Z(each hop distance)pp

(8)

where P is the data packet length and AQD is the aver-
age queuing delay per hop. The first term of (8) is trans-
mission delay and p:(sec/bytes) is a constant. The second
term is round-trip propagation delay and p,(sec/km) is a
constant. The propagation delay is negligible because the
sensor field size will typically not be more than tens of kilo-
meters and the transmission speed of the sensor network is
low compared to the speed of light. Therefore, the delay D;
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is proportional to the hop count between nodes in the tree.

D; ~ h(S, B;)Pp: + h(S, B:)(AQD) o h(S, B;). (9)

The hop count between the source and the access node
is fixed unless a sensor node fails, but the hop count be-
tween the sink and its access node increases or decreases
as the mobile sink moves. The algorithm decides whether
or not to change the access node based on total hop count.
Equivalently, if the hop count between the sink and its ac-
cess node goes beyond a threshold H;, it replaces its access
node A,;q with new one Ayeqy. The sink selects Ay among
its neighbors as shown in Figure 4(e). Before changing the
access node, the sink executes a simple hello protocol and
selects the new access node. The new access node joins the
d-tree. Then, the sink sends disconnect to the old access
node. When the old access node leaves the tree, it notifies
its parent of the fact.

H; offers a configurable trade-off between maximum delay
and power consumption. In general, the cost of changing the
access node is higher than the cost of forwarding the data
a few additional hops. Hence, increasing H; saves on tree
reconstruction energy at the expense of increasing end-to-
end delay. Eventually, changing the access node provides a
shorter path to the sink thereby minimizing long-term en-
ergy consumption. The amount of savings depends on the
motion pattern. If the motion of the sink is radially away
from the source, changing the access node may not curtail
the path significantly. On the other hand, if the motion is
circular around the source, changing the access node can
save a lot.

When the access node location is changed, the replica
placement phase runs again in order to try to reconstruct
the dissemination tree. As an optimization, if distance be-
tween the new access node and the old gate replica increases
by less than a threshold T,,, the new access node Ayecqy is
connected to the old gate replica with no further modifica-
tions to the tree. If threshold T, is exceeded, the sink sends
its new position to the source to find the new gate replica as
described in Section 3. The optimization prevents the gate
replica search from occurring too frequently.

4.2 LeavingD-Tree

A sink B; leaves the d-tree by sending a leave message
to its access node. The access node A; requests its parent
to delete A; from its list of children and stop forwarding
data to it as shown in Figure 5(a). If a single child is left,
the parent replica is removed and its parent takes over the
child. This is shown in Figure 5(b). If more than one child
are left, the location of the replica is adjusted using the
replica placement protocol described earlier.

4.3 System Lifetime

When sinks are stationary, sensor nodes report data to
sinks along the same path repeatedly. Therefore, members
in the tree consume more energy than non-members, which
may eventually cause network partitioning. To increase the
system lifetime, energy consumption should not concentrate
on some nodes to the exclusion of others. The SEAD model
has mobile sinks. Thus the d-tree structure keeps altering
gradually. If the mobility pattern is well-balanced in the
field, the system lifetime may not be a critical problem. For
a longer system lifetime, fanout of junction nodes can be
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Figure 4: Construction of path from access node to mobile sink in the sensor network.

restricted. A replica has to transmit data to each child.
Thus the replica that has more children may consume more
energy. Suppose that the fanout of the node is restricted to
three and a new sink’s gate replica has three children. The
gate replica will not select the non-replica mode. Instead, it
will choose the junction replica mode for connection to the
new sink, thereby not increasing its fanout. Failure of the
source is another factor to consider in system lifetime. We
assume that the source location generally contains multiple
sensors. Thus, if the sending node at the source fails, it will
be replaced by a nearby sensor node.

gatereplica

gate replica
(@) jucton replica adjustment (b) gate replica hand-off

Figure 5: Readjusting replica considering sink mo-
bility.

4.4 Avoiding Defective Pointsor Areas

Because SEAD builds an application-layer overlay net-
work, sensor node failures are resolved by the underlying

routing protocols. Advanced greedy forwarding such as GPSR,

GEAR [26], SLURP, and LAR are available for the routing
layer. When a single or a few nodes fail for some reason, the
routing layer can make packets go around the void. How-
ever, some greedy routing protocols forward packets by ge-
ographic location, without consideration to possible voids.
SEAD can overcome this problem by changing the topology
of the tree. For example, if one replica cannot send data
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to a current child, the replica assigns a reachable node to
take over the communication thereby avoiding failed nodes
or network voids.

45 Complexity and Resource Requirements

The description of the SEAD protocol may at first ap-
pear to be too complex to implement on low-power motes.
Sensor nodes usually have scanty resources. For example,
MICAZ2 motes [7] are equipped with a 4 MHz microproces-
sor, 4 kB of data memory, and 128 kB of code space. In
this subsection we argue that at its core, our algorithm does
not impose severe resource requirements. First, since sinks
are laptops or PDAs with much more resources (e.g., mem-
ory, energy, speed), the algorithm exploits them to maintain
forwarding chains from gate replicas to sinks. To maintain
the dissemination tree itself, each replica needs to store only
its children, a single parent, and the downstream rates for
children. The number of children is usually no more than
three or four (a junction replica mode will be selected for
more children creating new junction replicas as opposed to
new branches). Therefore, no burden is incurred on memory
space. The replica placement algorithm finds a path by for-
warding one message recursively from parent to best child.
This approach has a lower complexity compared to involving
all children in the computation. Greedy forwarding makes
each node maintain a neighbor list. If the network is so
dense that the number of neighbors is too large, dominant
neighbors for each direction can be selected to save memory
space. Hence, during normal tree operation, the memory
and processing overheads on individual motes are minimal,
making this algorithm a viable candidate for practical im-
plementation.

5. EVALUATION

We evaluated SEAD using extensive simulation on NS-
2. We use the specification of MICA2 [7], a popular sensor
node prototype, to make the simulation adhere to the real



hardware parameters of sensor networks. A MICA2 mote
is a wireless device that runs TinyOS; a small, open source,
operating system developed by UC Berkeley for sensor net-
works. Its current sensor options include light, temperature,
magnetic, acoustic, and barometric pressure. Power is sup-
plied via disposable AA batteries. Our simulation follows
the power consumption model of the MICA2 motes that
requires about 0.080W for transmitting and about 0.025W
for receiving. The transceiver in the simulation has a 250m
radio range at 433 MHz, which is the case with the radio
transceiver of a MICA2 mote.

The SEAD algorithm and several pre-existing protocols
are simulated using the NS-2.26 simulator (http: //www.isi.
edu/nsnam). Our goal in simulating SEAD is to test how
well it actually conserves energy. The sensor network in
our simulation consists of (300 < N < 500) sensor nodes
in a 2000m x 2000m grid or 3-5 nodes per 200m x 200m.
We use the two-ray ground model as the radio propagation
model and an omni-directional antenna having unity gain in
the simulation. Each query packet is 36 bytes long and the
data packet has 64 bytes to facilitate comparisons with other
protocols. The default number of sinks is 8. Three different
sources generate different data at an average interval of 6
seconds. The sinks send queries to the sources one after
another to join their trees. The desired update rates are
generated at random. The energy consumption is measured
in terms of Joules per node. The default mobile sink speed
is set to 10 m/sec (i.e., the fastest human speed).

Estimating positions of nodes occurs at initialization. It
is not uncommon to assume in sensor networks that nodes
know their location because such knowledge is needed for
common sensor network applications such as tracking. Hence,
the overhead of acquiring location knowledge would be in-
curred anyway (for application-related reasons) and is not
introduced by our protocol. Once location estimates are
acquired, no further cost is incurred. The simulation uses
greedy forwarding as a routing protocol, based on the esti-
mated positions of nodes. It is appropriate for the sensor
network and has been used in other work [21, 25]. It makes
a greedy decision to forward a packet to a neighbor if it has
the shortest geographic distance to the destination among
all neighbors and is closer to the destination than the for-
warding node. If a node cannot find such a neighbor, it
uses local flooding to find a next hop with a route to the
destination.

To evaluate the performance of SEAD, we compare it to
Directed Diffusion (DD) [15]. We also compare SEAD to
TTDD [25] for sensor networks, as well as a multicast pro-
tocol, ADMR [16], for mobile ad hoc networks. DD code
can be obtained from the NS-2 package and others are taken
from a related web site (http://irl.cs.ucla.edu /GRAB), and
the Monarch project (http://www.monarch. cs.rice.edu/
multicast_extensions.html), respectively. Section 6 related
work describes these protocols.

We use two main metrics to evaluate the performance
of SEAD; namely, energy consumption per node, and av-
erage end-to-end delay. Energy consumption includes that
of tree construction, data dissemination, and the sink mo-
bility management. Our main concern is how well the dis-
semination tree is built for energy saving by considering the
length of paths and data-disseminating rates. We therefore
mainly focus on energy consumption for data dissemination
and sink mobility management. Delivering a query to the
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Figure 6: Energy dissipated for data packets versus
the source rate normalized by the desired update
rate.
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Figure 7: Energy consumed for control packets ver-
sus the source rate normalized by the desired update
rate.

source and the tree construction are conducted for the initial
short period.

The average end-to-end delay is measured by averaging
delay from the source to all sinks. Residual energy distribu-
tion and delivery success ratio are also investigated. Resid-
ual energy distribution indicates the percentage of nodes
with the same residual energy levels, and is a measure of
fairness in energy consumption and system lifetime. The
success ratio is the ratio of the number of successfully de-
livered data messages to the number of the data messages
that should have been delivered according the sinks’ refresh
rates. Sink mobility follows a random waypoint model [9].

5.1 Asynchronous Dissemination

First, we evaluate the performance of asynchronous dis-
semination. The sensor field is set to 400 sensor nodes in
a 2000m x 2000m area, and the number of sinks is set to
10. In this experiment, sinks do not move to exclude the
effect of sink mobility thereby picking out the performance
of asynchronous dissemination. We vary the source update
rate normalized by the desired average refresh rate of sinks.
The desired average refresh rate is set to 6. The source
update rate is varied from 3 to 12.

Figure 6 shows the graph of the energy consumption for
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Figure 8: Average delay versus the source rate nor-
malized by the desired update rate.

data packets. It is observed that SEAD consumes less energy
per node than DD, TTDD, and ADMR. When the source
rate exceeds the requested refresh rate, the energy consump-
tion of SEAD stops increasing because asynchronous dis-
semination caps the propagated update rate by the desired
refresh rate of the receivers. Choosing the appropriate gate
replica and placing the junction replica at the optimal posi-
tion make the data-disseminating paths shortest in SEAD.
We pick out energy consumption for control packets such
as query or flooding. This also makes us discern energy
consumed for data packets. Protocols other than SEAD
consume more energy when sinks join the tree because of
flooding or grid construction. DD uses query (control pack-
ets) flooding over the whole network and sends data packets
through multiple paths until it finds the best path. SEAD
finds the gate replica without searching the whole network
or the whole tree thereby reducing the energy overhead of
control packets. Figure 7 illustrates the fraction of total en-
ergy consumed by the control packets. When compared to
data packets, the energy consumption for control packets is
so small that it occupies little fraction of the total energy
consumption in this simulation.

Figure 8 shows the average end-to-end delay at different
source rates normalized by desired update rates. DD has
the shortest delay because it finds unicast paths between a
source and each sink without considering multicast. TTDD
uses a grid structure, so its dissemination path tends to be
longer than other protocols. SEAD makes junction repli-
cas to save energy and does not use sinks as gate replicas.
Thus its delay is comparable to that of TTDD. Compar-
ing Figure 6 and Figure 8, we can appreciate the trade-off
between energy and delay offered by SEAD. Our protocol
is mainly concerned with saving energy to increase lifetime.
We therefore deem the slight increase in message communi-
cation delay acceptable. The above energy-delay trade-off is
more clearly manifested in the case of mobile sinks presented
next.

52 Sink Mobility

SEAD is designed for mobile sinks. In this section, we
evaluate the impact of sink mobility on the performance of
SEAD. The sensor field has 400 sensor nodes as before. Both
the average refresh rate and the average source update rate
are set to 6. The hop count threshold, H;, is set to two
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hops. If a sink is more than two hops away from its access
node, it replaces its access node with a new one. That pre-
vents sink mobility from increasing the delay beyond a given
value. Figure 9 shows energy consumption as the number
of sinks is varied, when all sinks move at an average speed
of 10 m/sec. In this figure, SEAD demonstrates better en-
ergy consumption than the other protocols because of better
energy efficiency at each stage. The dissemination path is
based on a Steiner tree to minimize the energy cost. Mobil-
ity is handled efficiently without excessive tree restructuring.
In contrast, in DD, the new location of the mobile sink is
propagated throughout the sensor field in order for all sen-
sor nodes to get the sink’s location. TTDD rebuilds a new
multi-hop path between the sink and the grid. SEAD merely
appends a new hop to the existing path thus minimizing per-
turbations and increasing energy savings as shown in Figure
9.

In order to examine the impact of sink speed, average
energy consumption and success ratio are measured for dif-
ferent sink speeds (5 to 30 m/sec) in a sensor network con-
sisting of 8 mobile sinks and 400 sensor nodes. Figure 10
plots the energy consumption as the sinks’ speed changes.
Observe that SEAD has the best performance at both low
and high speeds of sinks.

Figure 11 is a graph showing the distribution of remain-
ing energy for each protocol. Eight sinks are moving at a
speed of 10m/sec. The d-tree is dynamically rebuilt when-
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ever necessary. Because sinks move within the simulated
field, energy consumption does not concentrate on several
nodes. DD, which uses flooding to reconnect mobile sinks
to the tree spends more energy, but the distribution of re-
maining energy has a very small variance indicating that en-
ergy consumption is fair over the whole network. As shown
in Figure 11, the remaining energy with DD is distributed
within a narrow band between 17%-21%. In the presence
of mobility, TTDD and SEAD have advantages over DD.
TTDD intrinsically has longer dissemination paths but hot
areas are possible, unlike DD, due to local flooding. Al-
though SEAD is saving more energy per node, it does not
distribute energy consumption fairly. The distribution of
remaining energy with SEAD is a little broader than with
DD. However, the graph implies that SEAD’s energy savings
have a good influence on the lifetime of the sensor network.
Figure 12 shows the success ratio in packet delivery as
the sinks’ speed changes. The success ratio always remains
beyond 0.9, up to a speed of 30 m/sec. This indicates that
SEAD disseminates most of the data successfully even to
high-speed sinks. This is because a new path is made on
the basis of the current path and because the sinks do not
participate in the tree as intermediate members.

5.3 Impact of the Node Density

We evaluate the impact of node density on the SEAD
protocol. It is an explicit goal that the protocol perform
equally well regardless of the node density. The node density
may vary according to the application and cost. In this
experiment, the number of sensor nodes is varied from 300
to 500. Eight sinks move at 10 m/sec. Both the average
sink refresh rate and the average source update rate are set
to 6. Figure 13 shows the energy consumption per node at
different sensor node densities. Figure 14 shows the end-
to-end delay. The node density has little influence on the
energy per node in SEAD although more neighbors overhear
data from a sender at high density. This is because there are
more chances that better energy cost paths can be found in a
higher density network. SEAD shows the best performance
in energy consumption for all density values.

As shown in Figure 14, DD has a shorter delay. TTDD
has a slightly longer delay and more energy consumption
due to the restriction that paths be aligned with a grid.
ADMR exhibits poor performance in the mobile sink case
compared to the stationary sink case because it uses sinks
as intermediate members in the tree. In SEAD, the delay
decreases as density grows due to greedy forwarding which
then finds better routes to the destination.

5.4 End-to-end Delay of SEAD

In the following experiment, we investigate the average
end-to-end delay as a function of the number of mobile sinks
and their speed. The number of sensor nodes is 400. Both
the average refresh rate and the average source update rate
are set to 6. The first experiment is to measure the end-to-
end delay for the different number of sinks when the sinks
move at a speed of 10 m/sec. Figure 15 shows that the
end-to-end delay increases as the number of sinks increases.
This effect is the result of increasing the depth of the d-tree.
The slope of the curve decreases with the number of sinks
since there are more chances that a new sink can exploit an
existing path.

The second experiment is to measure the end-to-end de-
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lay at different sink speeds. The number of sinks is set to
8. Figure 16 shows that the end-to-end delay increases as
the sink speed increases. The slope of the curve decreases
with sink speed because a new lower delay path is built
more often at higher speeds. The delay experiments show
that SEAD performs competitively with existing protocols
such as TTDD, but does not outperform all others as it
does with energy consumption. SEAD is a protocol to min-
imize energy. Hence, its delay is longer than that of other
approaches that focus more on delay minimization. SEAD
is most useful for applications with less strict delay require-
ments, compared to their energy needs. We believe that this
is the case with most sensor network applications, since a
primary concern of sensor networks is to prolong lifetime. A
few tens of milliseconds increase in average delay seems like
an acceptable price to pay for such lifetime savings.

6. RELATED WORK

Wireless sensor networks have unique characteristics that
generic wireless networks do not have. The number of sensor
nodes may be orders of magnitude higher than the number
of nodes in generic wireless networks. The node density is
also much higher. Global identification-based addressing re-
quires a large amount of overhead. Hence, stationary sensor
node addresses are based on geographic location rather than
a global identification number. Sensor nodes are unattended
and thus limited resources cannot be replenished. For these
reasons, traditional networking paradigms are not directly
applicable to this scenario. There has been a lot of work in
recent years to develop new paradigms and services for sen-
sor networks, including several efforts on data dissemination
taking into account the unique features of sensor networks.

The data placement heuristic in [2] presents an asynchronous
multicast scheme for stationary sinks. It assumes that the
number of stationary sensor nodes is ideally infinite so that
an arbitrary location in the network always has a sensor
node. It builds the tree by connecting specific locations ob-
tained from a heuristic equation. If there is no node in the
computed location, performance degradation occurs. SEAD
finds actual sensor nodes for the optimal d-tree without de-
ciding on a location beforehand. Thus SEAD performs well
regardless of its node density as shown in Section 5. An-
other main difference is that the data placement heuristic of
[2] does not deal with mobile sinks. It uses the stationary
sinks as intermediate members of the tree and would cause
too frequent reconfiguration of the tree if sinks were mobile.

Directed diffusion is a data-centric communication paradigm
specifically designed for sensor networks [15]. Subscribers
use flooding to spread interests to the sensor network. Sen-
sors matching the interest send their data to the sinks along
multiple paths initially, and then gradually reinforce bet-
ter paths. Another dissemination protocol, SAFE [17] uses
flooding that is geographically limited to forward the query
to nodes along the direction of the source. SAFE uses geo-
graphically limited flooding to find the gate connecting itself
to the tree. Directed diffusion and SAFE are most effective
in small-to-medium size sensor networks. However, in a very
large network, the initial sensor flooding may consume too
much energy. The d-tree would be frequently reconstructed
due to mobile sinks.



In order to reduce energy consumption, TTDD has been
proposed. TTDD [25] exploits local flooding within a local
cell of a grid which sources build proactively. Each source
disseminates data along the nodes on the grid line to the
sinks. It does not optimize the path from the source to
the sinks. When a sensor communicates with a sink, the
restriction of grid structure may multiply the length of a
straight-line path by /2. This approach therefore incurs
more energy and longer delays. In TTDD, the mobile sink
renews its entire path to the dissemination point whenever
it moves out of range in the local cell. Frequent renewal of
the entire path to the sink may increase energy consumption
and the connection loss ratio. Besides, TTDD’s performance
depends mainly upon its cell size. If the cell size is large, the
local flooding increases energy consumption and the path
between the source and the sink is longer. On the other
hand, if the cell size is small, it costs much energy to build
the grid and causes mobile sinks to frequently change cells.

SEAD differs from the aforementioned efforts in four fun-
damental ways. First, SEAD exploits a recursive algorithm
that explicitly searches for the minimum energy dissemina-
tion path. Second, SEAD saves energy in managing mobile
sinks. The sinks do not report their current locations to the
tree. The entire path to the tree is not renewed when sinks
move out of range. Third, SEAD takes into account end-to-
end (source-to-sink) delay. It strikes an adjustable balance
between minimum-energy dissemination and bounding the
delay from the source to the mobile sinks. Another difference
is that the performance of SEAD is not swayed by the node
density of the sensor network. SEAD uses neither flooding
nor limited flooding to construct the d-tree.

To conserve communication energy in sensor networks,
some papers have discussed data aggregation of multiple
sources or energy-aware routing between a sensor and a
single sink. Data aggregation [22, 19] helps to reduce the
amount of data transmitted from multiple sensor nodes to a
sink. A leading sensor node combines one or more data pack-
ets from different sensor readings and sends the result to the
sink. These in-network aggregation schemes can be used at
the source in SEAD, and hence nicely complement our work.
Bonfils [3] proposed a data gathering algorithm where a sink
efficiently gathers data from many sources. This work places
operators in the optimal positions for in-network query pro-
cessing. It is different from ours in that we focus on dis-
semination from one source to many sinks, but it focused on
gathering from many sources to a single sink. It does not
take into account mobility.

In wireless ad hoc networks, the ShopParent algorithm
[14] is the latest work of publish/subscribe tree construc-
tion. This greedy algorithm builds the tree in a distributed
fashion and uses a spanning tree. Its model assumes that
the tree includes every node in the network so that the near-
est node becomes easier to search. However, like other ad
hoc network studies, its model is not suitable for sensor net-
works with a large number of nodes in a vast field. Shop-
Parent is different from SEAD in that it does not consider
sink mobility. As a location-aware multicast algorithm in
ad hoc networks, LGS [5] constructs the Steiner tree under
the Takahashi-Matsuyama heuristics [24] using link costs as
distances between nodes. When building an LGS tree, the
connected sink selects the nearest sink, using location infor-
mation received from every other sink. SEAD differs from
LGS in that the location of sinks and junction nodes in the
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tree are not known a priori. SEAD searches for an optimal
junction node among sensor nodes. Besides, SEAD does not
connect a sink to another sink because the sink is mobile and
tends to fail under hostile environments in sensor networks.
Geocasting [18], another location-aware multicast, delivers
data to a set of nodes within a specified geographical area.
It is different from general multicast in that all receivers are
geographically close.

SEAD is different from Internet content distribution net-
works [20, 23] in that SEAD is designed for wireless sensor
networks with mobile sinks and makes use of geographic
information to minimize energy that is the most crucial re-
source of the network. The d-tree is determined by both the
update rate and the geographic distance to minimize the
energy consumed for communication while meeting approx-
imate end-to-end delay constraints.

7. CONCLUSIONS

In this paper, we described SEAD, a scalable energy-
efficient asynchronous dissemination protocol for sending
data to mobile sinks in sensor networks. It saves energy
consumption in both building the d-tree and maintaining
linkage to mobile sinks. SEAD strikes a balance between
end-to-end delay and power consumption that favors power
savings over delay minimization. The argument in favor of
this approach is that energy consumption directly affects
system lifetime, which has tangible economic implications.
The algorithm exploits several energy-minimizing tactics.
For example, it uses a stationary sensor node on behalf of the
mobile sink as an end-point in the d-tree. Mobile nodes are
never used to forward data to other nodes to minimize tree
reconfiguration. When the sink joins the tree, the Steiner
tree is built recursively so that the length of the additional
branch and the data-delivering rate are minimized. Instead
of flooding for joining the tree, SEAD finds the minimal cost
entry to the tree for the sink using unicast. Simulations
results have shown that SEAD consequently conserves the
battery energy of the sensor node efficiently while delivering
data without interruption to mobile sinks. The performance
of SEAD is found insensitive to changes in node density. Fu-
ture work of the authors will include implementing SEAD on
a current sensor network prototype and exploring the design
trade-offs that arise in a practical setting.
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