
Monitoring Body Positions and Movements During Sleep
using WISPs

Enamul Hoque
Department of Computer

Science
University of Virginia

eh6p@virginia.edu

Robert F. Dickerson
Department of Computer

Science
University of Virginia

rfdickerson@gmail.com

John A. Stankovic
Department of Computer

Science
University of Virginia

stankovic@cs.virginia.edu

ABSTRACT
Sleep monitoring is very important for elderly people as in-
adequate and irregular sleep are often related to serious dis-
eases such as depression and diabetes. In many cases, it
is necessary to monitor the body positions and movements
made while sleeping because of their relationships to partic-
ular diseases (i.e., sleep apnea and restless legs syndrome).
Analyzing movements during sleep also helps in determin-
ing sleep quality and irregular sleeping patterns. This paper
presents a sleep monitoring system based on the WISP plat-
form - active RFID-based sensors equipped with accelerome-
ters. We show how our system accurately infers fine-grained
body positions from accelerometer data collected from the
WISPs attached to the bed mattress. Movements and their
duration are also detected by the system. We present the
results of our empirical study from 10 subjects on three dif-
ferent mattresses in controlled experiments to show the ac-
curacy of our inference algorithms. Finally, we evaluate the
accuracy of the movement detection and body position infer-
ence for six nights on one subject, and compare these results
with two baseline systems: one that uses bed pressure sen-
sors and the other is an iPhone application.
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1. INTRODUCTION
Sleep plays an important role in quality of life, and is an im-
portant factor in staying healthy, active, and energetic. Hav-
ing inadequate and irregular sleeping patterns has a serious
impact on our health, and can lead to many serious diseases

like cardiovascular disease, diabetes, depression, and obe-
sity ([2]). Besides the amount of sleep, it is also necessary
to have sound sleep. Despite sleeping for a sufficient amount
of time, people can still feel fatigued and cannot concentrate
during the day. This may be caused by interrupted sleep,
such as having frequent periods of restlessness during sleep.
Moreover, in many cases, particular body positions should
be maintained or avoided. For example, patients with ob-
structive sleep apnea should avoid sleeping on their back
([17]).

Sleep monitoring systems are important to recognize sleep-
ing disorders as early as possible for diagnosis and prompt
treatment of disease. They can provide healthcare providers
with quantitative data about irregularity in sleeping peri-
ods and durations. They can also provide detailed sleeping
profiles that depict periods of restlessness and interruptions
such as bed exits and entries due to visiting the bathroom.
This information helps find trends that correlate to certain
diseases. Moreover, it enables monitoring effectiveness of
treatments to sleep-related diseases. Many studies ([17]) are
focused on finding correlations between body positions dur-
ing sleep to various breathing problems (e.g., sleep apnea).
So, if a sleep monitoring system can provide fine grained in-
formation about body positions during sleep, it would help
such studies.

To date, there are very few low-cost, unobtrusive sleep moni-
toring systems. Among the existing ones, the most accurate
and reliable are polysomnography (e.g., electroencephalo-
gram, electrooculogram, electromyogram) devices [8]. There
are drawbacks to using them, since they need to be worn,
and require professional monitoring and thus are expensive
to use. A less obtrusive way of monitoring sleep is an acti-
graph ([20]), a device that can be attached to any of the
limbs (e.g., wrist) to provide data on movement; however,
they still need to be worn. There are systems based on au-
dio and video signals for sleep monitoring, but they raise
privacy concerns for people. Some sleep monitoring sys-
tems have been developed that work by sensing body pres-
sure/vibration; these systems are unobtrusive, but can be
uncomfortable to sleep on.

We propose a sleep monitoring system based on Intel WISPs
([21]) (Wireless Identification and Sensing Platform). Our
system does not require any additional action from the users
outside their daily routines. We attach WISP tags to the bed
mattress and collect accelerometer data reported by them.



We analyze these data and infer body position of the users
and movements they make while on the bed. We can then
record entries and exits from the bed, and movements and
body positions during sleep. Recently WISPs ([7]) have been
used to recognize various daily activities. Our system com-
plements such activity recognition systems. We compare
the performance of our system with two baseline systems.
Firstly, to evaluate the performance of the WISP devices
as close to ground truth as possible, we compare it with
a baseline system that uses pressure pads to measure the
movement levels. We validate the pressure sensor based
baseline system by comparing it with video data recorded
by a camera during sleep. Secondly, as our system uses ac-
celerometer data, we compare its performance with another
sleep monitoring system that uses an accelerometer, choos-
ing the popular iPhone based sleep monitoring application
“Sleep Cycle” ([1]).

The main contributions of this paper are: 1) a novel sleep
monitoring system based on WISPs; 2) an empirical study
with 10 subjects on three different mattresses to evaluate
the accuracy of the body position inference algorithm of our
system; 3) a realistic evaluation of the movement detection
and body position inference algorithm of the system with
one subject for six nights and comparison of our system
with a baseline system using bed pressure sensors 4) perfor-
mance comparison with a popular iPhone based application
“Sleep Cycle” to show that our system can help in detect-
ing transitions between sleep cycles and thus can help in
understanding sleeping patterns.

The rest of the paper is organized as follows. Section 2
summarizes existing sleep monitoring systems and their ad-
vantages/disadvantages with respect to our system. Section
3 presents a brief description of WISPs and how we use them
in our sleep monitoring system. Section 4 describes short-
term controlled experiments and their results, which show
that our system provides fine grained monitoring of body
positions. Section 5 presents the algorithm and experiments
to show how we detect body movements made while lying on
the bed. Section 6 details the realistic overnight experiments
we conducted to verify the algorithms and their results. We
conclude in Section 7.

2. RELATED WORK
Physiological signals are regarded as the most accurate means
to differentiate between sleep and wake phases. Electroen-
cephalogram (EEG), the measurement and frequency anal-
ysis of brain waves, shows the difference between sleep and
wake stages ([8]). Electrooculogram (EOG) and electromyo-
gram (EMG) are also standard technologies for sleep mon-
itoring. Electrocardiogram (ECG) is used to derive heart
rate which is well known to decrease at sleep onset. [22]
studies heart rate variation over different sleep stages. [19]
and [14] use respiratory-derived features together with ECG-
derived features for classifying different sleep stages auto-
matically.

But all these techniques have major limitations. For exam-
ple, they must be performed by trained professionals and
in clinical environments. Many commercial sleep clinics are
available for this purpose. But their expense limits the mon-
itoring to one or two nights. Besides, these techniques re-

quire equipment to be attached to the patients. This limits
the movements of the patients which may be uncomfortable.
Also, these physiological signals do not support monitoring
body positions during sleep.

Temperature regulation in a body can also be used to moni-
tor sleep quality. [15] shows that skin temperature increases
during sleep onset and decreases during wakeup. But these
temperature variations can only be measured under con-
trolled laboratory conditions. [24] uses infrared triangula-
tion distance sensor to detect movements of different body
parts without attaching any device to the body. But it does
not provide any information about body position.

To overcome the limitations of the above techniques, there
are many systems that enable sleep monitoring in home envi-
ronments. Actigraphy ([20]) is a commonly used technique
for sleep monitoring that uses a watch-like accelerometer
based device attached typically to the wrist. The device
monitors activities and later labels periods of low activity
as sleep. There are many commercial products like [4] that
have been designed based on actigraphy. [6] is another com-
mercial product for sleep monitoring in home environments.
It is a headband that users need to wear each night so that
it can detect sleep patterns through the electrical signals
naturally produced by the brain. But all these products are
very expensive and users need to wear the device.

Another method used for sleep monitoring is to instrument
a mattress pad with sensors and passively infer body move-
ments and sleep quality. [3] is such a commercial bed pres-
sure sensing pad that monitors change in body pressure on
the pad to detect movements. In [11], the authors use pres-
sure and temperature sensors laid out in a grid pattern in
the mattress to determine quality of sleep. NAPS ([16]) is
a low-cost physiological sensor-suite that can passively ac-
quire important physiological and environmental character-
istics. The NAPS suite allows subjects to simply lie on a
mattress pad, embedded with vibration sensors, to obtain
multidimensional data (e.g., body temperature, heart rate,
respiration rate, positional mapping and movement). One
might also use tiny sensor motes with accelerometers in place
of vibration sensors. The main advantage of all these solu-
tions is that users do not need to wear any device. But, in
some cases batteries are needed and it may also be uncom-
fortable to sleep on a pad and thus, they can affect sleep
quality.

Audio and video signals can also be used to determine sleep
quality accurately. In [18], a combination of heart rate, au-
dio and video sensors is used to infer a sleep-awake condition.
But such systems raise privacy concerns among the users.

[1] is a popular iPhone based application that uses the ac-
celerometer in the iPhone to monitor body movements and
determine which sleep phase the user is in. The user just
needs to put the iPhone in a suitable place on the bed. But
it does not provide fine-grained body position monitoring.
Also, the iPhone can accedentally fall off the bed and it
needs to be connected to the charger for the whole night.

Recently WISP tags have been used for recognizing daily
activities. In [7], the authors instrument everyday objects



Figure 1: WISP Tag

Figure 2: SpeedWay Reader

(e.g., glass, plate, books) with WISP tags that have ac-
celerometers. Later, daily activities are inferred from the
traces of objects that are moved. In [9], WISPs are used for
sensing and monitoring of exercises involving free weights.
The authors instrument free weights (e.g., dumbbells) and
body parts (e.g., wrists) with WISPs. Then the accelerom-
eter sensor readings from the tags are used to infer the ex-
ercise being done and the association between the user and
the particular weight(s) being used. [25] presents a wireless
neural interface that uses WISPs. It provides the neurosci-
entists a wireless, battery-free method of monitoring neural
signals.

In summary, the advantages of our WISP-based sleep moni-
toring system are that users do not need to wear any device,
they do not need to sleep on any mattress pads instrumented
with sensors, no batteries are needed, the system is wireless,
and it avoids privacy violations of video solutions.

3. WIRELESS IDENTIFICATION AND SENS-
ING PLATFORM

The sensing element in our system are WISP ([5, 21]) ac-
tive RFID tags that combine passive UHF RFID technology
with sensors to balance energy independence with sensing
potential. A WISP tag is shown in Figure 1. The device’s
antenna and power harvesting circuitry enable off the shelf
EPC “Gen 2” RFID readers (shown in Figure 2) to power
and read from it.

To a RFID reader, a WISP appears as a normal RFID tag,
but inside the WISP, the harvested energy is operating a
16-bit fully programmable ultra low-power microcontroller.
The microcontroller can sample a variety of sensing devices
including 3-dimensional accelerometers, lights, and temper-
ature sensors. In our system, we only use 3D accelerometer
readings. The WISP tags report these readings by encoding
them as part of their identifiers that are read by a RFID
reader. While WISPs are currently assembled from discrete
components that have a cost of roughly $25, they are in-
tended to be mass manufactured like RFID tags at price
points closer to $1 [7].

3.1 Hypothesis: WISPs Help in Sleep Moni-
toring
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Figure 3: Accelerometer Reading Variation for
Empty/Lying/Sitting

When a WISP tag remains stationary, its 3D accelerome-
ter measures the acceleration force due to gravity with re-
spect to each axis. The x, y and z axes values are depen-
dent on the device’s alignment with respect to gravity. As
long as the alignment remains the same, the reported val-
ues should remain the same (plus/minus some noise). But,
if the alignment along any of the three axes changes, then
the accelerometer reading along the corresponding axis also
changes. We exploit this property to infer whether the bed
is empty or not. If the bed is not empty then we can infer
body position of the person on the bed using this property.

For example, when we attach one WISP tag along the edge
of the mattress (similar to the position of Tag 1 in Figure
6) then the variation along the y-axis (shown in Figure 3)
can be used to differentiate among the cases when the bed
is empty, someone is lying on it, or someone is just sitting
on the bed watching television or reading. When the bed is
empty, the y-axis accelerometer of the tag is aligned perpen-
dicular with respect to gravity, but when someone lays on
the bed, because of the impact of the body on the mattress,
the orientation changes. Again these two different orien-
tations are different from the one when someone watches
television sitting on the bed. The accelerometer readings
returned by WISP are a scaled version of the actual val-
ues normalized by the full scale 10-bit ADC reading (1024).
When static, an axis perpendicular to gravity reads about
50%.

Using the accelerometer readings, we can also distinguish
the following four positions: lying on the back, stomach,
left, or right sides (shown in Figure 4). In the Figures 3 and
4, we show the accelerometer readings along the y-axis. The
readings along the z-axis(which is parallel to gravity) also
show similar variation. The readings along the x-axis do
not show too much variation, but if we combine them with
the readings along the y and z-axes, together they can dif-
ferentiate among the above four positions. So, by combining
readings along all the axes and by using more tags, we can
increase the accuracy of our prediction, which we show in
the next section.

While on the bed, each time someone moves, the accelerom-
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Figure 5: Heights and Weights of the Subjects

eter readings change rapidly. So, by looking at the change
in readings we can detect each movement. Our system mon-
itors how many times a person tosses and turns during the
course of the night and how many times the person leaves the
bed. If someone is lying on the bed and does not move for a
significant amount of time, then we can assume the person
is asleep. In this way, the frequency of movements can help
in determining whether a person is asleep or not. Frequency
of movements is also different for different sleep stages and
thus can be related to which sleep stage a person is currently
in ([13]). Transitions between different sleep stages also cor-
respond to change in frequency of body movements. Thus,
based on a summary of movements made during each night,
doctors can infer quality of sleep and irregular sleeping pat-
terns.

4. CONTROLLED EXPERIMENTS
In this section, we describe the controlled experiments we
conducted to test whether WISP tags can be used to infer
body position of a subject on the bed. We then present the
results and analyze them.

4.1 Design
For our controlled short-term experiments, 10 graduate stu-
dents volunteered as subjects. The subject population was
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Figure 6: Experimental Setup
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Figure 7: Body Positions while Lying on the Bed

diverse in both height and weight (shown in Figure 5). All
participants were volunteers, and were informed of the ex-
perimental procedures and the study’s goals prior to par-
ticipation. We conducted our experiments in three different
beds to consider how different mattresses affect the measure-
ments. Five subjects were evaluated on a twin-size bed in
our University’s medical testbed ([23]). Five other subjects
participated in each of the other two beds that were in a
graduate student’s apartment. All three of them were twin
mattresses. So, for each bed, five subjects participated in
the experiments. For two of the three beds the participat-
ing subjects were the same.

For each experiment, we attached 3 WISP tags to the mat-
tress of a bed. Figure 6 shows such a bed along with the
positions of the tags. We placed the tags in such a way that
when someone lies on the bed, there is one tag on each side
of his body and one tag near the legs. We used two an-
tennas for reading from the tags. The reader sends 10 read
requests per second. The read rate from each of the tag was
4− 7 reads per second during all our experiments. If we use
one antenna, then read rate of one or more tag falls much
lower. One disadvantage of using the WISP tags is that they
need to be placed within 1− 2 meters of the antenna of the
reader. To meet the read-range requirement and to keep the
equipment away from obstructing a resident’s movement,
we placed the antennas below the bed. The antennas were
wired to the reader which was connected with the laptop.



1 2 3 1 & 2 1 & 3 2 & 3 1 & 2 & 3
0

10

20

30

40

50

60

70

80

Tags Used to Classify

C
la

s
s
if
ic

a
ti
o

n
 E

rr
o

r 
(%

)

 

 

set1
set2
set3

Figure 8: Average Classification Error for five Sub-
jects for One of the Beds

Each subject laid on the bed in the following four positions:
on the back, on the stomach, on the left side and on the right
side. These four positions are shown in Figure 7. Each sub-
ject also sat on the bed with his or her back on the wall and
face towards the camera (Figure 6). This position resembles
the way someone lies when watching television or reading a
book while sitting in bed. For each position, we recorded
data for two minutes. For each WISP tag, we obtained the
acceleration along the x, y and z axes. From the readings
of all three tags, we get a 9-tuple. Note that, all three tags
do not report their acceleration values synchronously. We
combine the readings from the three tags within each second
and construct each possible 9-tuple. We associate all the 9-
tuples collected during these two minutes to that particular
body position. We also recorded the readings from the tags
when the bed was empty. We use the collected data to train
our system.

After the training phase, the subject repeats the tasks again
and we record data for 30 seconds for each position. Our
system then classifies the new data based on previous train-
ing. For training and classification, we use the open source
software “Orange Canvas” [10], which supports a number of
classifiers. We decided to use the Naive Bayesian Classifier.
Note that for each subject, first we train our system based
on the subject’s training data and then classify his or her
remaining data.

4.2 Results
For each subject, we classify the collected data under three
different settings. In the first setting, we test whether it is
possible to differentiate between the bed being empty and
someone lying on it (in any position). So we label all data
collected during a subject lying on the bed in four different
positions as lying. We do not include the data when the
subject was sitting on the bed. In the second setting, we
include the data for sitting and test whether it is possible to
differentiate among the bed being empty, or someone lying
on it (in any position), or someone sitting on it. In the last
setting, we test whether it is possible to differentiate among
all six cases: empty, lying on back, lying on stomach, lying
on back, lying on left side, lying on right side and sitting.
We name the above three cases as “set1”, “set2” and “set3”.
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Figure 9: Average Classification Error for All Mat-
tresses

For each setting, first we train and classify based on the data
collected from one tag only (tag no. 1 or 2 or 3 of Figure 6).
Then we use data from a combination of two of the three
tags. Finally, we use data from all three tags. Our goal is
to test how increasing the number of tags helps in reducing
classification error. The results of our experiments on one
of the three beds is summarized in Figure 8. Five of the 10
subjects participated in the experiments on this bed. For
each case, the y-axis shows the average of percentage classi-
fication errors for all five subjects. The error bars represent
the standard deviations of the errors for each experiment.

As we see from Figure 8, if we increase the number of tags,
the classification error decreases. When we use data from
only one tag, the performance of tag 2 is the worst. This is
expected, because it is placed near the leg, and so it fails to
capture enough of the variation of body impact on the mid-
dle portion of the mattress for different positions. When we
use data from any two of the three tags, we see that the
combination of tags 1 and 3 performs best. This is because
both of them are placed in the middle parts of the two oppo-
site edges of the mattress. When we use data from all three
tags, the error for “set1” becomes almost zero. For “set2”
and “set3”, average percentage errors are 1.06% and 5.64%,
respectively. For the other two mattresses, we also observe
similar trends, i.e., increasing the number of tags increases
classification accuracy.

We also check how classification error varies over different
mattresses. Figure 9 shows average classification error for
all mattresses. Here we calculate the average over the clas-
sification errors for all subjects that participated in the ex-
periments on a particular bed. As we see from the figure,
classification error for “set1” is almost zero for all mattresses.
But for the other two sets, classification error is greater for
mattress 3 than the other two mattresses. This mattress is
the one that is in our university testbed. The testbed quality
is different than the other two. It is hard and inflexible. So,
the impact of the body weight does not change the orienta-
tion of the WISP tags immediately. As mentioned earlier,
we classify the body positions for 30 seconds of data for each
subject. Later we used the data from the last 20 seconds and
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Figure 10: Average Classification Error for Different
Body Positions for All Mattresses

the classification error went down significantly and was ap-
proximately same as the other two mattresses. So for such
mattresses, we need to classify the body position after the
body settles in to a new position.

Now, we analyze what body positions are misclassified most.
Here, we consider misclassifications for “set3” only. For ev-
ery mattress, the case when the bed is empty is classified
correctly. For the other positions, the average of misclassifi-
cations for each mattress is shown in Figure 10. Here, we see
that classification error is most prominent for the two body
positions where a subject lies on back and on stomach. The
reason is that sometimes one of these is classified as the
other. For both these positions, the impact of body weight
on the mattress remains almost same. For the other three
positions, the classification error remains less than 10% for
each mattress.

Note that, for these controlled experiments, the training pe-
riod is only two minutes for each body position. For practical
use, we need to train the system for longer periods. Dur-
ing our realistic overnight experiments, we train our system
for several nights (about seven hours per night) and then
run the system. The results are much better and shown in
Section 6.

5. MOVEMENT DETECTION ALGORITHM
As we see from Figures 3 and 4, when a subject lies on the
bed in a particular position or when the bed remains empty,
the accelerometer values returned by the WISP tags remain
within a noise level of a particular value. This is true for
acceleration values along each of the three axes. To find
the maximum deviation in the readings, we calculate the
derivative of all the readings when a subject remained in a
particular position. The derivatives show that if the subjects
remain in a particular position or if the bed is empty, the
deviation remains in the interval [+a, −b]. The values of a

and b vary for different tags, axes and mattresses, but remain
same for different subjects. We calculate these values from
the data collected during the controlled experiments of the
previous section.

If the subject moves to a new position or makes significant
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Figure 11: Accelerometer Reading along y-axis dur-
ing a Movement

movements while remaining in the same body position, the
derivative of the accelerations of all three tags along both
y-axis and z-axis become higher than the corresponding +a

or lower than the corresponding −b. So during the move-
ments, the derivatives of y and z acceleration values cross the
threshold values (+a and −b) several times. Figure 11 shows
y-axis accelerometer readings during such a move. Here the
values of both a and b are 1.

Our algorithm to extract movement events from derivatives
of y and z-axes accelerations of the three tags is as follows:
For each axis of each tag, we record timestamps when the
reported reading is outside the interval [+a, −b]. We con-
sider each of these moments a possible movement. Note
that the three tags do not report values synchronously. We
calculate the total number of movements reported by the
three tags within each two second time window. If the to-
tal number of movements within a time window is less than
a predefined threshold, we consider those as discrete move-
ments that do not affect sleep quality. We then cluster the
other time windows, when a significant number of move-
ments take place, using the DB-SCAN clustering algorithm
([12]) to compute discrete movement events. The cluster-
ing also ensures that discrete movement events that happen
within a short amount of time are combined as a period of
restlessness. For each cluster, we set the movement level as
the maximum of movement levels of all the time-windows
belonging to that cluster.

Figure 12 shows the number of movements for each 2 second
time window during 70 minutes of a controlled experiment.
During the experiment, the subject got on the bed, laid
there for 70 minutes during which he made several move-
ments and finally got off the bed. Some movements were
from one body position to another and in some cases, the
subject made significant movements while remaining in the
same body position. We normalize the y-axis by dividing the
number of movements for each time window by the maxi-
mum number of movements in any time window to get the
movement level. We use 0.3 as the threshold to filter out
the time windows where movement level is insignificant.

Figure 13 shows the discrete movement events as clustered
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Figure 12: Number of Movements per each Two-
second Time-window during 70 Minutes of Con-
trolled Experiment
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Figure 13: Discrete Movement Events during 70
Minutes of Controlled Experiment

by DB-SCAN. All the discrete movement events during the
controlled experiment were successfully detected by our sys-
tem. As we can see from Figure 13, some movement events
span several minutes. During these movement events, the
subject made a number of movements in quick succession.
We comprehensively validate the performance of our move-
ment detection algorithm by realistic overnight experiments
that we present in the next section.

6. REALISTIC OVERNIGHT EXPERIMENTS
AND RESULTS

In this section, we present the realistic overnight experi-
ments we conducted to evaluate the accuracy of our move-
ment detection and body position inference algorithm.

To evaluate the performance of our movement detection al-
gorithm, we compare it with a baseline system that uses
pressure pads to measure the movement levels. The pressure
sensor we used was a USB-interface Multi-Platform Dance
Dance Revolution (DDR) pad typically used in the popu-
lar DDR video game series. The configuration of the pad is
shown in Figure 14. Two pads were tiled to cover the area
of a twin size bed. Data collected from the DDR pad is a

1 2 3
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6 7 8

9 10 11

12 13

14 15 16

Figure 14: The DDR Pad has 8 binary contact but-
tons around the side, but the middle portion of the
pad does not have a button. We tiled two pads can
cover a twin size bed.

bit-vector of size 16 representing which of the 16 buttons
are activated. Our algorithm examines a time window, and
takes the sum of the number of changes occurring in this
bit-vector in that window. We chose a window size of two
seconds, same as we did for WISP tags. After calculating
the number of movements during each two-second time win-
dow during the night, we clustered them in the same way as
discussed in the previous section.

We also compare the performance of our system with an
iPhone-based sleep monitoring application“Sleep Cycle”([1])
that uses accelerometer data to infer sleep quality. The ap-
plication requires the iPhone to be placed on a suitable po-
sition of the bed (e.g., beside the pillow) all night and it col-
lects data from the accelerometer of the iPhone for the whole
night. Based on the data, it produces sleep quality related
data that includes transitions between different sleep cycles.
Durations of different sleep cycles over the course of the
night are part of a person’s sleeping pattern. So monitoring
the transitions between sleep cycles helps in identifying ir-
regular sleeping patterns. Our hypothesis is that transitions
between the sleep cycles will correspond to higher number of
movements per time window. So from our overnight report
of number of movements during each time window, we can
infer the transitions between sleep cycles and the duration
of each of them. We test our hypothesis in this section.

The study participant slept on the same bed for six nights.
We collected and logged data from the DDR pads and the
WISP devices simultaneously, and also placed an iPhone on
the bed (beside the pillow) during each of these six nights.
The “Sleep Cycle” application recorded sleep quality data
and produced a report for each night. We also videotaped
the sleeping period of the subject for each night after be-
ing given the subject’s consent. We first validated the per-
formance of the DDR pads in detecting movements during
sleeping by comparing it with the video data for the first
three hours of the recorded data for the first night. The
validation result confirmed that the DDR pads can be used
as ground truth to detect movements during sleeping. For
evaluation, we use a cross validation approach. For each
evaluation set, we choose five nights’ data to train our sys-
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Figure 15: Movement determined by Our System
during One Night’s Sleep of Evaluation Set 1
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Figure 16: Movement Determined from the DDR
Pad during One Night’s Sleep of Evaluation Set 1

tem and evaluate the performance for the remaining night’s
data. So, there are six possible sets of training data. Thus,
we have six sets of evaluation.

For each evaluation set, training of the movement detec-
tion algorithm includes calculating the thresholds of rate of
change of acceleration values (i.e., values of a and b) along
each axis for each tag and also the threshold to filter out the
time windows where movement level is insignificant. Dur-
ing training, we consider movements detected by the DDR
pads as ground truth. Training of the body inference al-
gorithm includes training the Bayesian classifier with the
accelerometer readings collected during the five nights with
the corresponding body position. Collecting the actual body
position for each time instant of each these five nights is chal-
lenging. One option was to monitor the recorded video for
each night and assign body positions accordingly. But this
requires significant effort. To reduce effort, for each night,
we watch the initial body position from the video and from
then on we assume that unless there is a movement detected
by the DDR pads, the position remains unchanged. When
the DDR pads detect a movement, we fast forward to that
time instant and see the new body position from the video
and we continue in this way. Thus, we collect the ground
truth for body position.
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Figure 17: Durations of the Movements Detected by
Our System and DDR Pads

6.1 Evaluation of Movement Detection Perfor-
mance

Figures 15 and 16 show the movement events during one
night’s evaluation (from the first evaluation set) of the sub-
ject as detected by the WISP tags and DDR pads, respec-
tively. If we compare these two figures, the first and last
movements on both the figures represent the events when
the subject got on and off the bed, respectively. Our system
reported all movement events detected by the DDR pads.
The timings of the movements are same in both figures.
There was one movement that our system reported, but the
DDR pads did not. It happened just after 7:00 AM in the
morning. To investigate this incident, we fast forwarded to
that specific time of the recorded video and observed that
there was no significant movement during that time. So it
was indeed a false positive.

Another notable difference occurred just before 9:00 AM
in the morning, when our system reported two movement
events and the DDR pads reported one movement event.
However, the two events reported by our system are very
close to each other and can be considered a part of the same
movement. The duration of the nine movements during this
night that both system detected are shown in Figure 17.
From this figure, we see that there are no notable differences
between the duration of movements calculated by both the
systems. We present a summary of results and their impli-
cations for all six evaluation sets at the end of this section.

Figure 18 shows the report produced by the iPhone appli-
cation “Sleep Cycle” to show the sleep quality for the same
night as shown in Figures 15 and 16. The application shows
various sleep stages like ‘awake’, ‘deep sleep’ and ‘dreaming’.
These sleep stages are irrelevant for our comparison. The ap-
plication recorded data up to 8:00 AM in the morning. The
vertical bars show when movement events are reported by
our system. As we know, transitions between different sleep
cycles correspond to movements made by a person. From the
figure we can see that the timings of the movement events
match to those of transitions between sleep cycles. There
are no vertical bars for two transitions: one that happened
between 7:00 and 8:00 AM and the other in between 4:00
AM and 5:00 AM. During the latter one, the subject was in



Figure 18: Sleeping Quality Report Produced by the
iPhone Application
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Figure 19: Body Positions During One Night’s Sleep
of Evaluation Set 1

deep sleep stage before and after the transition. So this is
why there were no major movements. We explain the reason
of lack of movements during this transition at the end of this
section. But this result proves our hypothesis that from the
frequency of movements reported by our system, it is pos-
sible to infer transitions between sleep cycles. In addition,
our system provides fine grained body position monitoring
which the “Sleep Cycle” application does not.

6.2 Evaluation of Body Position Inference
Figure 19 shows the body positions as inferred by our sys-
tem for the same night that was considered in Figures 15, 16
and 18. If we compare these four figures, we see that dur-
ing each transition from one body position to another, there
was a discrete movement event detected by our movement
detection algorithm. Also, for the last three movements, the
body position did not change. To ensure robustness against
discrete erroneous classifications, we consider that the sub-
ject changed his body position if 20 successive instances are
classified as the new body position. Also, if the movement
detection algorithm detects that a movement is taking place,
the body position is considered to be the same as it was be-
fore the movement until the movement is complete.

To evaluate the performance of the body position inference

Evaluation Set 1 2 3 4 5 6
False Negatives 0 0 0 0 0 0
False Positives 1 0 0 1 0 0

Avg. Error

in Movement

Duration 6.9s 6.2s 2.2s 5.2s 4.1s 5.2s
Sleep Cycle

Detection

Accuracy 71.4% 75% 80% 75% 90% 80%
Body Position

Inference

Accuracy 100% 100% 100% 90% 100% 90%

Table 1: Summary of Results for Six Evaluation Sets

algorithm of our system, we generate 10 random instances
of time for each night and check the subject’s body position
during each of those instances. For each night, the time
instances are uniformly distributed over the course of the
night. We define the accuracy of our inference algorithm to
be the percentage of time instances when the body position
inferred by our system match to the actual body position as
seen from the recorded video data. We present the accuracy
for each night as part of the summary of all results next.

6.3 Summary of Results
Table 1 presents a summary of results for our six sets of
evaluation. False negatives refers to the number of move-
ment events that are detected by the DDR pads, but not by
our system. Similarly, false positives refers to the number of
movement events that are detected by our system, but not
by the DDR pads. For each night, we define ‘average error
in movement duration’ as the average of absolute differences
between the movement durations calculated by our system
and the DDR pads. Sleep cycle detection accuracy refers to
the percentage of sleep cycle transitions (as shown by the
iPhone application) that correspond to increased number of
movements detected by our system.

From Table 1, we see that for each set, our system detected
all the movement events detected by the DDR pads. Av-
erage error in calculating movement duration is less than
six seconds for each night. But, for two nights, we observe
one false positive each in our system. This may be due to
the threshold in change of acceleration that we selected to
filter insignificant movements. We believe by training the
system for more nights, we can get rid of such false posi-
tives. Overall, our system shows 100% accuracy in detect-
ing discrete movement events and calculates the durations of
each movement with reasonable accuracy. The accuracy of
the body position inference algorithm is at least 90% for all
sets. Our evaluation was based on 10 randomly selected time
instances that are uniformly spread over one night. More de-
tailed evaluation is necessary to guarantee its performance.
Therefore, we can say that, with proper training, our system
performs as well as a system that uses pressure sensors and
also is more comfortable for the users and completely un-
obtrusive. Moreover, our system provides fine grained body
position monitoring which no existing pressure sensor based
sleep monitoring system provides.

We also compare our system with the popular iPhone based
application “Sleep Cycle”. Comparison results show that by
only looking at the movement reports of our system, it is pos-



Device Comfort Privacy Accuracy Price
WISP tag High Good High Moderate
Pressure Sensor Medium Good High Moderate
Camera High Very Low Excellent High
EEG/ActiWatch Very Low Good Excellent High

Table 2: Qualitative Comparison Across Devices

sible to identify most of the transitions between sleep cycles.
Among the transitions that were not possible to identify,
most of them were during deep sleep stages. The pressure
sensors also did not identify them. So, these types of tran-
sitions do not correspond to significant body movements.
We need to lower the value of the threshold for filtering out
insignificant body movements which was set assuming the
DDR pads’ detected movements as ground truth. Therefore,
we can say that, by training our system with the transitions
detected by the iPhone application, it is possible to detect
all the transitions between sleep cycles by our system.

7. CONCLUSION
In this paper, we have shown how sleeping movement and
position can accurately be monitored using active WISP
tags. We show a summary of various sleep monitoring sen-
sors and their tradeoffs in Table 2. The WISP tags have a
high comfort level as they do not affect the sleeping surface
and no device needs to be worn on the body. The WISP tags
themselves are cheap and even when including the reader,
are only a fraction of the cost of professional monitoring
devices such as EEGs. Moreover, if WISP tags are used
for recognizing other daily activities, the reader cost will be
amortized. The recognition accuracy is similar to pressure
sensors, but at a lower price and intrusiveness. Finally, our
system provides fine grained body position monitoring which
none of the existing systems offer.
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