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Abstract

We present an improved method for technology mapping
using a new approach to the Boolean matching problem.

Signatures computed over OBDDs using a set of speci�c

probability values detemine mateches between library cells
and portions of the netlist. Unlike some previous meth-

ods, which may require creation of up to O(n!) OBDDs for
all possible permutations of module's inputs, our method
requires exactly one OBDD to be created for the portion

of the netlist being matched. Some results obtained on IS-

CAS85 benchmark circuits suggest the viability and validity
of our approach.

I. Introduction

Logic synthesis has been shown to be an e�ective means
of designing logic circuits. The computer-aided synthesis
of a logic circuit involves two major steps: the optimiza-
tion of a technology-independent logic [2], and technology
mapping.

Technology mapping is the process of implementing a
set of Boolean equationsby selecting logic gates from a li-
brary of available gates. Technology mapping is an im-
portant step in the synthesis process because the quality
of the design, in terms of area, performance, and power
dissipation of the circuit, depends heavily on this step.

The two operations intrinsic to technology mapping,
matching and covering, are computationally di�cult. For
this reason, several approaches to technology mapping
have been pursued and implemented in research and
commercial mapping tools. Rule-based technology map-
pers [6, 9] and heuristic-based algorithms [7, 10, 12, 15]
have been proposed.

Keutzer [10] proposed to represent library functions by
trees. Fast tree matching algorithms were used to deter-
mine structural matchings. However, two functions may
be structurally di�erent but functionally equivalent. As a
result, Boolean matching can provide better optimization.

The issue of Boolean matching has been addressed by
several researchers [4, 5, 8, 11, 13, 14, 16]. Technology
mapping tool Ceres [11] uses ordered binary decision dia-
grams (OBDDs) [3] for the matching purpose. It has been

pointed out that in the worst case up to O(n! � 2n) di�er-
ent ordered BDDs may be required for each match. Some
heuristics based on symmetry of logic functions are de-
veloped to reduce the number of OBDDs required for the
matching process.

A generalization of BDDs, for matching purpose during
EPGA technology mapping, has also been used [8]. An-
other approach to Boolean matching [14] e�ciently prunes
the search space by combining shared OBDDs with unique
ordering of variables.

In this paper, we describe a matching algorithm which
requires only one OBDD to be created and allows de-
terministic matching. A set of probability values [1] are
used to compute unique signatures for Boolean functions.
These signatures are then used to �nd matchings between
portions of a netlist and the elements of a given library.
Once the signature of a portion of the subject graph being
mapped is computed, a possible match is determined in
O(1) time. We also suggest some techniques to reduce the
number of subgraphs examined at any node of the subject
graph.

II. Preliminaries

Boolean equivalence of functions represented as free

graphs can be determined exactly by using a speci�c set
of probabilities. In [1], it has been shown that a speci�c
set of probabilities can be associated with the n variables
of a graph G (namely jv1j=

1

22
0
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jvnj= 1
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) so that jG(v1; : : : ; vn)j = x

(22
n
�1)

, where x

is an integer in the interval 0 � x � (22
n

� 1). There is
a unique correspondence between integers x in the given
interval and the 22

n

Boolean functions of n variables. OB-
DDs [3] satisfy the properties of a free graph and can be
used to compute the signature, SG(V ) =jG(v1; :::; vn)j, of
a Boolean function, where V denotes the set of values as-
signed to variables v1 through vn.

2.1 Computing Signatures Over OBDDs

The computation of signature of a Boolean function is
similar to that of function density [3] using the probability



values for the variables in the Boolean function. This com-
putation is recursive in nature and is de�ned as follows:

S1(V ) = 1 (1)

S0(V ) = 0 (2)

SG(V ) = Sx(V )SGx 1
(V ) + (1� Sx(V ))SGx 0

(V ) (3)
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Figure 1: OBDDs for all two-input functions.

Thus, given an OBDD representation of G, we can com-
pute the signature by traversing the graph depth �rst, la-
beling each vertex by the signature of the subgraph rooted
at that vertex. Fig. 1 shows all the functions of two vari-
ables with their OBDDs sorted by increasing values of their
signatures. The signatures range from 0

15
to 15

15
, for the as-

signment a = 1
3
and b = 1

5
. Fig. 2 shows an OBDD of the

function f = a+bc, and its signature using the probability
assignment a = 1

3
, b = 1

5
, and c = 1

17
. It should be noted

that the signature is unique only for a given permutation
of these assignments.
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Figure 2: Computing signature for f = a+ bc

2.2 Outline

Before getting into the details of various steps involved
in the technology mapping process described here, a brief
description of the methodology is outlined here to help
clear up some of the key points regarding this approach.

As the �rst step in the process, all possible signatures
for the cells in a given library will be determined. A hash
table will be created using signature as the key and a li-
brary cell with the particular variable assignment as the
hash value.

During the mapping process, a subgraph of a given sub-
ject graph will be selected to see if it can be implemented
using one of the library cells. If the subgraph has n vari-
ables, then the signature of the subgraph will be computed

by randomly assigning the values to the variables from the
set ( 1
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, : : : , 1
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+1
).

An important result regarding these signatures guaran-
tees states that two Boolean function with identical signa-
tures can always be matched. This result forms a corner-
stone of this methodology. Using this result, a matching,
if any, is established between the subgraph and the library
cells. As a result, once the signature of the subgraph is
computed, the matching itself can be established in O(1)
time.

III. Computing Library Signatures

For optimal results, it is required that all possible sig-
natures be precomputed for each library cell. For a library
cell with n inputs, di�erent permutations of assignment
from the set ( 1

22
0
+1

, 1

22
1
+1

, : : : , 1

22
n�1

+1
) may result in

multiple signatures. Because of the logic symmetry found
in most of the library cells, each cell requires only a few sig-
natures. For example, the MCNC lib2 benchmark library
has only 140 distinct signatures.

Lemma 1 An n-input AND/OR/NAND/NOR gate has
exactly one signature. 2

An interesting comparison can be made with the num-
ber of tree patterns required to represent these gates in
the case of tree-matching based systems such as [2, 10].
The required number of tree-patterns has been studied in
detail in [12]. It is shown that the number grows quickly
with increasing value of n. For example, 8-input AND
gates require 23 tree patterns and 16-input AND gates re-
quire 10905 tree patterns. In comparison, each n-input has
exactly one signature.

Lemma 2 An n-input OAI/AOIk1k2...km gate, n = k1+
k2 + :::+ km, has

n!

(k1!k2!:::kn!)(
Qmax(k1 ;k2 ;:::;km )

i=1
(Si!))

distinct signatures, where Si's are the cardinalities of the

symmetry classes. 2

Typically, number of tree patterns required are smaller
than the number of signatures in the case of OAI/AOI
gates. However, fairly small number of signatures are
needed to represent typical OAI/AOI gates found in the
libraries. Table 2 shows the number of signatures for some
of the common OAI/AOIk1k2 gates.

Table 2: AOI Signatures

(k1; k2) Signatures
(1, 2 ) 3

(1, 3 ) 4
(3, 3) 10
(3, 4) 10



Boolean matching addresses the problem of determining
the equivalence of two Boolean functions regardless of the
structure of their representation and under an arbitrary
permutation of their inputs. Given two Boolean functions
f(x1; x2; :::; xn) and g(y1; y2; :::; yn), if there exists a per-
mutation P (X) : fx1; x2; :::; xng ! fy1; y2; :::; yng such
that f(x1; x2; :::; xn) = g(y1; y2; :::; yn) then f and g are
said to be matching functions.

Earlier we made a claim that Boolean functions with
equal signatures can be matched. This is a key result for
this approach. In the following text, we prove this result.

Theorem 1 There exists a speci�c set V of probabilities

(namely jv1j=
1
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, . . ., jvnj=
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associated with n variables of a Boolean function F , and

V̂ , a permutation of V , associated with n variables of a
Boolean function G such that SF (V ) = SG(V̂ )) F and G

are matching functions.

Proof: Let the n variables that F and G depend on are
(x1; x2; :::; xn). The set of probabilities V is given by:

x1 = jv1j; x2 = jv2j; :::; xi = jvij; :::; xj = jvjj; :::; xn = jvnj

Consider a V̂ in which values of xi and xj are swapped.
The same argument holds for any number of swaps. The
set of probabilities V̂ is given by:

x1 = jv1j; x2 = jv2j; :::; xi = jvjj; :::; xj = jvij; :::; xn = jvnj

Consider a function F�, obtained from F by swapping vari-
ables xi and xj. The signature of F� under the assignment
V̂ will be exactly the same as the signature of F under the
assignment V . We get, SF (V ) = SF� (V̂ ). We are given
that SF (V ) = SG(V̂ ). Hence, SF� (V̂ ) = SG(V̂ ). This im-
plies [1], F� and G are equivalent functions. F� has been
obtained from F using a permutation of variables. There-
fore, F can be obtained from G using a permutation of
variables. Hence, F and G are matching functions. 2

The pin matchings can be determined by the variables
with identical values in F and G. Thus given all possible
signatures of the cells in the library, a matching can be
determined by creating just one OBDD and computing the
signature using a random assignment of these probabilities
to the variables in the OBDD.

In order to consider the di�erent phases for the inputs
of the subgraph under consideration, the subject graph
is modi�ed with the inverter-pair heuristic. Each node
of the subgraph can be implemented in either positive or
negative phase. The subgraph is modi�ed using inverter-

pair heuristic [12].
Redundant inverter pairs are added to all those edges

in the subject graph which connect two two-input gates.
A pair is also added to those primary inputs and outputs
which are available in only one phase. As a result, each
node in the subject graph is available in both phases. The
library is augmented by a cell which implements a pair of
inverters. This cell is assigned a zero area and zero delay
cost. Fig. 3 shows a subject tree modi�ed using inverter
pair heuristic. Three inverter pairs have been added.

Figure 3: Modi�cation using inverter-pair heuristic

3.1 An Example of Technology Mapping Process

Fig. 4 shows a subject graph on which the inverter-pair
heuristic has already been applied. It should be noted that
any two-input gate can be used in the subject tree. Also, it
is not necessary to use two-input gates, however, smaller
gates allow more choices for the mapping process. This
results in better optimized circuits.
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Figure 4: An example circuit for technology mapping

Table 3 contains the signatures for various cells in our
example library. In this example library, only the AOI21
cell has more than one signature.

The mapping process involves selecting a subgraph of
the subject graph and computing its signature. For exam-
ple, for the subtree (z0, y, w) in Fig. 4, if y is assigned
the value 1

3
and w is assigned the value 1

5
, then the com-

puted signature is 14
15
, which has an entry in library table

pointing to NOR2. Pin a is matched with wire y and pin
b is matched with w. Similarly, subgraphs (z0, u, r) and
(z0, u, v, x) are matched with AND2 and AND3 cells,
respectively.

Table 3: Hash Table for Example Library

Sf (V ) Library Cell, Var Assignment
2
3

INV1X, (a = 1
3
)

1
15

AND2, (a = 1
3
, b = 1

5
)

8
15

NAND2, (a = 1
3
, b = 1

5
)

14
15

NOR2, (a = 1
3
, b = 1

5
)

1
245

AND3, (a = 1
3
, b = 1

5
, c = 1

17
)

254
255

NAND3, (a = 1
3
, b = 1

5
, c = 1

17
)

128
255

NOR3, (a = 1
3
, b = 1

5
, c = 1

17
)

87
255

AOI21, (a = 1
5
, b = 1

17
, c = 1

3
)

55
255

AOI21, (a = 1
3
, b = 1

17
, c = 1

5
)

31
255

AOI21, (a = 1
3
, b = 1

5
, c = 1

17
)

AOI21 presents a case where a library element has more
than one signature. If subtree (z0, p, q, w) is selected as
a candidate and p, q, and w are randomly assigned the
values 1

3
, 1
5
, and 1

17
, then the signature computed for this



subtree is 31
255

. This can matched with AOI21 gate with
pin matchings (p a), (q b), and (w, c).

3.2 Pruning Candidate Subgraphs

The number of possible candidates for a matching at
node vf grows with the size of the subject trees. However,
this can signi�cantly reduced using some knowledge about
the library cells. Following heuristics have been used re-
duce the number of candidate subtrees for matching:
(1) Library Cell Size:

Each selected leaf-DAG has a number of leaf variables
associated with it. For a given library, we know the max-
imum number of inputs to any of its cells. Only those
candidate trees at vf , which have less number of leaves
than this maximum number for a library, are considered
for the matching. Typically, most libraries contain cells up
to 8 inputs.
(2) Phase-Based Pruning:

A characteristic of the library cells, in most of the li-
braries available today, is the unateness-of-phase of the
input nodes with respect to the output node. The term
unateness-of-phase has been used to mean the following:
If two leaf nodes contain equal number of inversions, along
every path from these nodes to the root node, then these
nodes are said to be of unate phase with respect to the
root node. Fig. 5 shows some examples of subtrees having
unate and non-unate leaf phases.
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+

+
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Figure 5: Unate and non-unate phases

For example, in the MCNC library (lib2), all gates,
except the XOR and XNOR gates, satisfy the unateness-
of-phase property. Thus, with the knowledge that all func-
tions with more than n inputs satisfy this property, all the
candidate trees with more than n leaves having non-unate
leaf with respect to the node vf can be discarded for the
matching process. The phase calculation needs to be done
only once for a tree. This can be done using a simple
breadth-�rst search procedure starting at the root of the
tree. The root node is assigned a phase and its inputs are
assigned an opposite phase if the gate at this node is in-
verting, otherwise the inputs are assigned the same phase.

IV. Experimental Results

The technology mapping system, called MARS, de-
scribed in this paper has been implemented in Common
LISP, running on a SPARCStation 10. The library used
for experimentation is the library distributed with the
LGSynth91 benchmark suite under the name of lib2. It
is composed of 29 gates.

The signatures for the library cells are computed at the
beginning, only once. For the MCNC library, there are 140
distinct signatures. It takes approximately 2 seconds

to compute these signatures and setup the signature hash
table.

For technology mapping, a simple gate with large num-
ber of inputs provides a good test example. A set of AND
gates, with number of inputs varying from 8 to 128, were
used for this purpose. Table 4 shows an approximately
linear growth in the CPU time with respect to the the size
of the gates.

Table 4: Results on AND gates

gate area CPU
AND8 6032 0.6

AND16 13456 1.8
AND32 27376 4.4
AND64 54288 9.2

AND128 109968 20.8

Table 5 contains the results obtained over the unop-
timized ISCAS85 benchmark circuits. The circuits were
technology mapped using the our system and the SIS [2]
system. For SIS, the results were optimized using the map
command with -m 0 options. This produces the minimum
area circuit with no consideration for load limits.

Columns 3 and 4 contain the area of the mapped circuit
and the CPU times in seconds, obtained using the MARS
system. Columns 5 and 6 contain the area of the mapped
circuits and the CPU times in seconds, for a DECStation
5000/125, obtained using the SIS system. As a results of
using Boolean matching as opposed to structural matching
over trees, MARS produces circuits with smaller areas.
The gains in area range from 0.4% to 17.2% for various
examples, with comparable run-times.

In the method presented here, the equivalence of two
graphs is decided deterministically by assigning by assign-
ing the values 1

3
, 1
5
, 1
17
, . . ., 1

22
n�1

+1
to the variables. The

rapid growth in the denominator is necessary on account
of the large number of Boolean functions.

For a typical library available today, the maximum
value of n is 8 and the maximum cost of computing signa-
ture involves additions and multiplications of integers rep-
resented using 128 bits. This is approximately four times
the cost of computing a signature with 32-bit integer val-
ues. Hence, the cost of computing a signature can be said
to be of the order of the cost of creating the OBDD. Also,
this computation is carried out only once for a candidate
being matched.



Table 5: RESULTS ON ISCAS85 BENCHMARK CIRCUITS

STATISTICS MARS SIS
ckt gates area cpu area cpu

c432 160 230144 20.4 234784 8.2
c499 202 379552 16.6 458432 11.0
c880 383 351248 21.7 369344 10.2

c1355 546 609696 38.9 713632 14.8
c1908 880 607376 46.9 610160 19.0
c2670 1193 854224 70.2 882528 29.2
c3540 1669 1247696 88.5 1276000 38.7

c5315 2307 1944644 108.6 1971072 62.4
c6288 2406 2939904 28.8 3291616 58.1
c7552 3512 2665216 110.0 2800240 88.0

For libraries which may contain 8-to-1 muxes and 16-
input AOIs, the size of encoding will be quite large. How-
ever, in this scenario, an approach of mixed structural and
Boolean matching will be quite useful. All the subject
graph portions with small number of leaves, for example
up to 8, can be subjected to the Boolean process while
matching for larger subject-tree can take the course of
structural matching. The gains, in terms of area, perfor-
mance, and power dissipation of the circuit, to be made
by using e�cient Boolean matching during the technology
mapping process can be signi�cant. The method for de-
terming probabilistic equivalence [1] of Boolean function
will signi�cantly reduce the compuational complexity for
matchings involving large number of inputs.

V. Summary

We have described a new Boolean matching algorithm
based on signature computation using an unique set of
probability values [1]. For the typical libraries available
today, the cost of computing a signature is of the order
of the cost of creating the OBDD. Once the signature of
a portion of subject graph is computed, a possible match
is determined in O(1) time. We have also suggested some
techniques to reduce the number of subgraphs examined
for the purpose of matching. We have demonstrated the
e�ectiveness of this approach through an application to
optimize area of the ISCAS85 benchmark circuits.
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