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AbstractÐThis paper describes the use of formal development methods on an industrial safety-critical application. The Z notation was

used for documenting the system specification and part of the design, and the SPARK1 subset of Ada was used for coding. However,

perhaps the most distinctive nature of the project lies in the amount of proof that was carried out: proofs were carried out both at the Z

levelÐapproximately 150 proofs in 500 pagesÐand at the SPARK code levelÐapproximately 9,000 verification conditions generated

and discharged. The project was carried out under UK Interim Defence Standards 00-55 and 00-56, which require the use of formal

methods on safety-critical applications. It is believed to be the first to be completed against the rigorous demands of the 1991 version of

these standards. The paper includes comparisons of proof with the various types of testing employed, in terms of their efficiency at

finding faults. The most striking result is that the Z proof appears to be substantially more efficient at finding faults than the most

efficient testing phase. Given the importance of early fault detection, we believe this helps to show the significant benefit and

practicality of large-scale proof on projects of this kind.

Index TermsÐSafety-critical software, formal specification, SPARK, specification proof, code proof, proof vs. testing,

industrial case study.

æ

1 INTRODUCTION

WHEN early drafts of the UK Defence Standard 00-552

were produced, there was a certain amount of
controversy among software suppliers because of the
perceived emphasis on formal methods: a formal
specification and design were required, as well as formal
arguments to link the specification to the design, and the
design to the code, and even to support the production of
an executable prototype. It was claimed that the level of
formality required was unrealistic given current technol-
ogy. The work reported in this paper shows that developing
software using such formal techniques is indeed possible. It
is now becoming more common for projects to use formal
notations to document specifications and even designs, but
this project is unusual in the scale of the proof work that has
been carried out. The particular notations used were Z [24],
[28] for specification and design, and the SPARK [3], [23]
subset of Ada for code, together with its associated toolset.
The proof work on Z covered about 500 pages, while over
9,000 verification conditions were generated and discharged
in the SPARK proof work.

During the project, many metrics were recorded, and a

selection are reported in this paper. It is interesting to

compare the numbers of faults found at various stages of

the process with the amount of effort spent on the stage.
These figures seem to show the value of the proofs that
were carried out on the Z documents.

The structure of the paper is as follows: after a brief
description of the application, the SPARK programming
language and toolset are described. (It is assumed that the
reader is familiar with the Z notation; if not, there are
several good text books available [28], [16], and a glossary is
provided in the Appendix for a few key Z terms.) We then
describe in some detail how the proof was used in the
development process, and look at both quantitative and
subjective results. These results are analyzed, and some
conclusions are drawn.

2 THE APPLICATION: SHOLIS

The application we describe in this paper is called
SHOLISÐthe Ship Helicopter Operating Limits Information
System. This is a new safety-critical system, which aids the
safe operation of helicopters on naval vessels. It is
essentially an information system, giving advice on the
safety of helicopter flying operations. The SHOLIS program
is ongoing but, after evaluation (if successful), it is intended
that SHOLIS will be used on UK Royal Navy and Royal
Fleet Auxiliary vessels. SHOLIS is developed for the UK
Ministry of Defence (MOD) by PMES3, with Praxis Critical
Systems as the subcontractor responsible for the develop-
ment of all the application software.

2.1 Brief System Description

SHOLIS contains a database of Ship Helicopter Operating
Limits (SHOLs). Each SHOL specifies the allowed limits for
performing a given operation, e.g., takeoff or landing, for a
particular type of helicopter. One of the main safety-critical
functions of SHOLIS is to make continual comparisons of
sensor information against a selected SHOL. Audible and
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visual alarms are given whenever the current environmental
conditions exceed the allowed limits.

The SHOLIS functions are grouped on a number of
pages. These are viewed on plasma displays on the flight
deck and bridge of a ship. Operators at each display can use
buttons to view the pages independently. The buttons are
also used to enter information, although certain functions,
e.g., the selection of a SHOL, are only available to one
display at any given time.

Due to its critical nature, the system is developed to
stringent standards, including the MOD Interim Defence
Standards 00-55 [18], [19] and 00-56 [17], as discussed
above. High availability requirements necessitate the use of
dual redundant hardware.

2.2 Safety Requirements

SHOLIS has a number of catastrophic hazards, which, if
they occurred, could lead to the loss of an aircraft and/or
damage to a ship. Any software with the potential to cause
such a hazard, as identified by the software safety analysis,
is classed as safety-critical and developed to SIL4.4 The
remaining software is classed as nonsafety critical, although
it is still developed to a stringent standard (roughly
equivalent to SIL3).

3 THE PROGRAMMING LANGUAGE: SPARK

SPARK is a high-level programming language, designed for
writing software for high integrity systems. The executable
part of the language is a subset of Ada [20], but there are
additional annotations permitted that make it possible to
carry out data and information flow analysis [4], and to
prove partial code correctness, using the commercial toolset
associated with the language: the SPARK Examiner,
Simplifier, and Proof Checker.5

There were several design drivers behind the choices as
to what parts of Ada should be removed from the SPARK
programming language:

. Logical soundness: there should be no ambiguities in
the language;

. Simplicity of formal description: it should be
possible to describe the whole language in a
relatively simple way;

. Expressive power: notwithstanding the previous
two factors, the language should be rich enough to
describe real systems;

. Security: it should be possible to determine statically
whether a program conforms to the language rules;

. Verifiability: program verification should be not
only theoretically possible, but also tractable for
industrial-sized systems;

. Bounded time and space requirements: in order to
avoid the possibility of run-time errors caused by
exhausting finite resources such as time and space,
the resource requirements of a program should be
determinable statically.

Together, these considerations led to decisions to omit
several features of Ada: gotos, aliasing, default parameters
for subprograms (i.e., procedures and functions), side-
effects in functions, recursion, tasks, user-defined excep-
tions, exception handlers, and generics. In addition, several
other features, such as the type model, are simplified: no
access types (pointers), type aliasing, derived types, or
anonymous types. Apart from these exclusions and restric-
tions, the normal Ada package structure is used for
programming, with its distinction between package inter-
faces (or specifications) and package bodies. Within a
package, further structuring is possible using procedures
and functions, and it is at this level that we can see the first
of the new annotations.

Annotations are user-supplied comments that are
ignored by an Ada compiler, but processed by the SPARK
tools. The first group of annotations is concerned with data
and information flow analysis:6

. ± ± # global

. ± ± # derives

. ± ± # own

. ± ± # inherit

The ± ± # global and ± ± # derives annotations between
them specify the information needed for data and
information flow analysis of individual subprograms. Data
flow analysis involves checking that global variables and
parameters are used in the expected way: imported
variables can only be read from, exported variables can be
written to, and variables that are both imported and
exported can be read from and written to. There are also
checks that variables are not being read before being
initialized with a value, that values are not overwritten
before being read, that all imported variables are actually
used somewhere, and so on.

Data flow analysis does not examine dependencies
between variables. However, information flow analysis
uses the ± ± # derives annotation (which for each exported
variable lists the imported variables on which its final value
is expected to depend) to check that the actual
dependencies in the code match what is intended. Both
data and information flow analyses are decidable, and
entirely automated by the SPARK Examiner.

The own and inherit annotations are used for scoping
and structuring. The own annotation is used to declare the
existence of state variables inside a package: the values of
these variables are preserved between calls of subprograms
in the package. The inherit annotation makes visible the
items from another package scope, e.g., it allows the
annotations in a package to refer to the own variables of
the inherited package.

The second group of annotations is used for code
verification:

. ± ± # pre

. ± ± # post

. ± ± # assert

. ± ± # return
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The pre and post annotations are found in the
specification of a procedure, and are used for the traditional
precondition and postcondition of the procedureÐpre

gives a predicate on the input parameters and initial state
(imported) variables, while post relates input and output
parameters and initial and final state (exported) variables.
On nonlooping programs, the SPARK Examiner produces
proof obligations by ªhoistingº the postcondition through
the procedure body and checking that the supplied
precondition implies this transformed postcondition. For
looping programs, the assert annotation is used to
specify the loop invariant. The verification conditions
(VCs) generated by the Examiner for looping programs
check for partial correctness: separate arguments are
needed to consider loop termination, if total correctness
is required. Finally, the return annotation is used to
define (explicitly or implicitly) the result of a function,
thus allowing checking of functions to be carried out at a
more abstract level.

The SPARK Examiner has a mode of operation where, in
addition to the VCs generated by the flow analysis and
proof annotations, it also generates VCs that, if discharged,
would guarantee that the SPARK program could not raise
any run-time exceptions. The design of the SPARK
language itself ensures that the Ada exceptions
Tasking_Error and Program_Error can never arise in
a SPARK program. In addition, since SPARK is designed so
that the space requirements can be computed statically, it is
possible to guarantee that Storage_Error cannot be
raised. The only remaining possible exception is
Constraint_Error, and the restrictions on the SPARK
language mean that this can only be caused by a division
check, an index check, a range check, or an overflow check.
When invoked with the run-time check (RTC) option, the
SPARK Examiner generates VCs for the first three of these
checks (e.g., that all divisors are not zero) and the VCs for
the overflow check (e.g., that A� B does not overflow in the
expression �A� B�=2) can be generated by the RTC plus
Overflow option.

There are two possible routes for discharging the VCs
produced by the Examiner: the Simplifier and the Proof
Checker. The Simplifier is an automatic tool that carries out
routine simplification using a collection of rules. If a VC
cannot be discharged by the Simplifier, then a developer
can invoke the Proof Checker, which is an interactive
assistant allowing exploration of the problem and (it is
hoped) the construction of a proof.

4 PROOF IN THE SHOLIS DEVELOPMENT PROCESS

4.1 The Development Process

The development process used for SHOLIS was a fairly
standard one, following the requirements of IDS 00-55. In
simplified form, it comprised:

. Requirements, written in English;

. Software Requirement Specification (SRS), written in
Z and English;

. Software Design Specification (SDS), written in
SPARK, Z, and English;

. Code, written in SPARK;

. Testing.

The Requirements documents consisted of over 4,000
statements of system requirements, most of which were
software-related, while the SRS was about 300 pages long,
containing Z, English, and some additional mathematical
definitions (of vector geometry). The purpose of the SDS
was to add implementation details to the SRS: software
architecture, ªrefinementº of one part of the Z specification
(where an intermediate level of design was needed),
scheduling design, resource usage, SPARK package
specifications, and so on. The software itself totalled about
133,000 lines of code, made up of 13,000 lines of Ada
declarations, 14,000 lines of Ada statements, 54,000 lines of
SPARK flow annotations,7 20,000 lines of SPARK proof
annotations, and 32,000 blank or comment lines.8

4.2 Proof Activities

The proof activities on SHOLIS can be divided into two
areas: Z proof and SPARK proof. Proof of various Z
properties took place at both SRS and SDS level. The SRS,
containing the abstract Z specification, has several standard
opportunities for proof: consistency of global variables and
constants, existence of initial states and checking of
preconditions. It is interesting to see how the structure of
the Z specification was exploited in these proofs. The main
structuring of the Z specification was by what were called
ªsubsystemsº, i.e., the state was partitioned into a number
of pieces that were separately specified, together with
ªlocalº operations. Subsystems included such things as
sensors, alarms, faults, and the currently selected SHOL,
etc. Each main display page selectable by the user also had
its own subsystem. In general, the complete SHOLIS state
was simply the conjunction of all the subsystems, with
appropriate additional invariants.

The notable exception to this involved the pages, as
SHOLIS has two displays. So a display state schema was
defined (which included the various pages as schema
types), and a standard functional promotion carried out
to the complete multiple displays state. Thus, an
individual page's state schema is effectively promoted
twice (once to the ªdisplay levelº and again to the
"multiple displays level").

Each of the 14 top-level (system) operations had a
precondition proof. At the top level this consisted of manual
rigorous argument to remove � schemas (on unaffected
subsystems) and associated top-level invariants. The
rigorous arguments9 continued until the precondition proof
had been ªfactored downº to precondition proofs of the
constituent subsystem operations. Sometimes top-level
invariants (which were not obviously preserved) were also
ªfactored down,º so the subsystem precondition proofs
were sometimes stronger than the ªstandardº Z
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Furthermore the need to do code proof, coupled with the current lack of
abstract proof support, meant that the SPARK concept of own variable
refinement could not be exploited to reduce substantially the size of the
annotations (see Section 5.3).

8. There was a little non-SPARK code: some assembler, used only in
booting up SHOLIS, and some non-SPARK Ada, used for interfacing to
hardware devices.

9. These consist of the main steps of a proof, but omit the detailed symbol
manipulation that a proof tool requires.
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precondition proofs (in that there was an additional
ªfactored downº invariant to preserve). In general, schema
expansion was not performed until the subsystem level was
reached. Proofs were only carried out for subsystems that
had been identified as SIL4. This structuring did not apply
to the initial state proof. Here the top-level obligation was
mechanically fully expanded and then simplified.

Each subsystem was a separate chapter in the SRS and
mapped to a different Ada package in the design.

The key safety properties of SHOLIS were also
formalized in Z, and proved. These properties were
expressed in terms of a sequence of operations. Clearly,
for this application, the most important safety properties
involved ensuring that when certain sensor values were
outside the current SHOL, a warning had to be given, and
also that when the values were inside the SHOL, no alarm
would be given.10 Thus, the proofs of safety properties
involved checks of the form

In; Calc; Out gives the correct warning;

where the schema In verified and stored the input values,
Calc performed the comparison with the current SHOL and
updated the alarm state, and Out gave the output
processing. Each of these schemas represents one of the 14
top-level system operations, and thus the safety properties
could not be expressed as part of the main specification, as
they cover sequences of system operations.

At the SDS level further Z proofs were done to
demonstrate the consistency and correctness of the part of
the design written in Z.

All of the proofs at the Z level were carried out by a form
of rigorous argument, with some assistance from
toolsÐparticularly the CADiZ tool [26], for schema
expansion. For the SPARK proof work, on the other hand,
all of the work was carried out with machine assistance: the
Examiner, Simplifier, and Proof Checker were used.

Data and information flow analysis was carried out for all
of the code in SHOLIS. The intention had been to do only
data flow analysis for the main control loop, and parts of the
event scheduler called from this control loop. This is
because, at that level, almost every variable has an effect
on every other variable, so the information flow annotations
would be both lengthy and uninformative. However, the
SHOLIS application software is a single process running on
a single processor (modulo redundant hardware),
containing software of different integrity levels. Hence, full
information flow analysis was needed at the top level to
demonstrate functional separation between the SIL4 and
non-SIL4 code, e.g., to show that the non-SIL4 code did not
incorrectly interfere with critical data on the same processor.

The demonstration of functional separation also justified
constructing partial correctness proofs only on the SIL4
parts of the software. However, the termination of every
loop was justified, as nontermination of non-SIL4 code
would clearly stop SIL4 code from functioning. (See also
Section 4.5.)

For every SIL4 subprogram, SPARK pre and post

annotations were produced from the Z descriptions. The
SPARK names were kept as close as possible to the Z
names, but there were inevitable small differences, for
instance, package names. There were also simple type
translations: Z sequences became arrays with a slightly
different syntax, Z partial functions with enumerated set
domains also became arrays (of records with boolean fields
to indicate which elements were in the domain of the
function and hence defined), and so on. Although this could
be seen as a ªweak linkº in the formal development process,
experience showed that it was actually relatively simple to
produce these SPARK annotations, and very few detected
errors were introduced at this point. The Z state invariants
were incorporated into both pre and post annotations of
procedures, which produced one or two interesting
difficulties: the annotations could only refer to variables
that were visible according to the SPARK rules, but
sometimes the invariants referred to variables that were
not visible. The solution was to write the strongest
condition possible using the visible variables, so that, at
the next level ªup,º this condition, together with the frame
knowledge that other variables were unchanged, would
establish the invariant.

Although the intention had originally been to generate
the proof annotations along with the code, time
pressuresÐcaused by the need to pass the code to the
IV&V team11Ðmeant that many proof annotations were
actually added slightly later. Having produced the
necessary annotations, the SPARK Examiner was then used
to generate the proof obligations to show that the code did
indeed satisfy its specification. These proof obligations were
first submitted to the SPARK Simplifier, which managed to
discharge about 76 percent of them automatically. The
remaining ones were virtually all proved using the SPARK
Proof Checker, the exceptions being:

. Proof obligations that depended on formal
descriptions of hardware devices that were not
available; and

. Proof obligations for a few subprograms, that
involved a lot of effort to prove, but which, by
symmetry, were merely further examples of code
that had already been proved.

The final group of SPARK proof activities concerned the
run-time checks (RTCs). Since it was clear that a run-time
failureÐbe it invalid range or index, division by zero, or
overflowÐwould be a danger to the safety-critical parts of
SHOLIS whether it occurred in SIL4 code or not, the whole
of the software was subjected to the SPARK Examiner's
RTC (plus Overflow) facility. Again, all of the generated
proof obligations were proved, either by the Simplifier or
using the Proof Checker.

4.3 Proof Personnel

The proof activity on the SHOLIS project was carried out by
four engineers. Two were responsible for the Z proofs, and
one of these also worked with the other two engineers on

678 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

10. Otherwise safe recovery of aircraft might not be possible.
11. Independent Verification and Validation team: part of Praxis Critical

Systems, but independent of the development team.

Authorized licensed use limited to: Michigan State University. Downloaded on August 28, 2009 at 23:37 from IEEE Xplore.  Restrictions apply. 



the generation of SPARK proof annotations corresponding
to the Z specifications, and all the SPARK proof activity.
The data and information flow analysis was carried out by
the two coders. All of the proof engineers were experienced
mathematicians and software engineers who had worked
for several years in various formal methods, including Z
and CSP. However, only one had experience with the
SPARK Simplifier and Proof Checker before the project
started.

It is also interesting to consider, with hindsight, the skills

that seem to be necessary for such a project. For the Z proof

work, significant experience (either academic or industrial)

of Z and at least some exposure to proof are necessary to be

productive enough to be commercially cost-effective (e.g.,

familiarity with concepts such as proof by cases and proof

by contradiction). For the formal SPARK proofs, a good

(informal) understanding of the meaning of imperative

programming constructs is essential, together with some

familiarity with relevant proof concepts, such as loop

invariants. However, previous experience with the tools is

not thought necessary. Interestingly, the proofs of absence

of run-time errors are much more accessible, since the tools

can generate the VCs without any additional proof

annotations (although annotations may be needed to enable

the VCs to be proved). Also, a large proportion of these VCs

are typically proved automatically using the Simplifier (84

percent SHOLIS). This enables effort to be quickly focused

on potential problem areas and/or the more complex code,

where it may not be straightforward to prove the code

error-free.

4.4 Proof Validation

The Z proofs were subject to a formal peer-review process,
when the proofs produced by each engineer were formally
reviewed by the other. In addition, the IV&V team reviewed
a sample (selected by them) of the proofs, and found only
typographical errors. The SPARK code proofs were also
reviewed by the IV&V team, and are replayable on the
SPARK toolset. The team also reviewed the additional proof
rules that had been inserted to discharge the VCs.12

However, none of the proofs was inspected or reviewed
by the customer.

4.5 Timing and Resource Usage

As already discussed, the SHOLIS application consists of
both SIL4 and non-SIL4 code. Although the information
flow analysis demonstrated functional separation, nonfunc-
tional interactions (e.g., slow performance of non-SIL4 code
preventing the timely execution of SIL4 code) could still
have had an unacceptable impact on safety. So, in addition
to functional correctness proofs of only SIL4 code, sig-
nificant effort was spent on nonfunctional aspects of the
behavior of both SIL4 and non-SIL4 code.

Timing. An in-house static timing analysis tool was used,
which was based on programmer-supplied annotations
in the source code. This did not read or analyze the object

code at allÐit merely computed a worst-case number of
statements for each subprogram, and used a constant
number of statements per second (determined by hand
analysis and actual timing of a typical portion of the
code) to make a crude estimate of an upper-bound on the
timing of a subprogram.

Memory. Care was taken never to allocate memory
dynamically: SPARK ensures this 99 percent of the time,
but there were a few cases where careful coding was
necessary to take into account the compiler's allocation
policy.13 SPARK is nonrecursive, so a simple static
analysis of object code is sufficient to determine worst-
case stack usage, which was done.

I/O bandwidth. This was a crucial aspect of SHOLIS, since
the available bandwidth to the displays was a limiting
factor. Again, programmer-supplied annotations in the
source (actually PERL expressions!) were used to
indicate the worst-case number of characters that could
be sent to the display by each subprogram. A simple
PERL tool collected and evaluated the results.

The above systematic estimation/calculation was backed
up in all cases with targeted testing, based on known worst-
case application behavior, to measure actual timing and
resource usage (e.g., a dynamic ªhigh water markº test of
stack usage). These tests provided additional confidence in
the accuracy/conservative nature of the systematically
produced figures.

5 RESULTS, EXPERIENCES, AND LESSONS

LEARNED

Having described what was carried out in the way of proof
on the SHOLIS project, we can now look at the results of
this work, both in terms of quantitative results and in terms
of more subjective feelings about the work. More detailed
discussion and analysis of the results appear in Section 6.

5.1 Quantitative Results

In the Z proof work, approximately 150 proofs were carried
out, of which about 130 were at the SRS level and the
remainder at the SDS level. These proofs covered about 500
pages. In the SPARK proof work, approximately 9,000
verification conditions (VCs) were generated, of which
3,100 were proofs of functional and safety properties, and
the remaining 5,900 came from the RTC generator. Of these
9,000 VCs, 6,800 were discharged automatically by the
Simplifier and the remainder were discharged by the
SPARK Proof Checker, or by informal justification (the
exceptions are described towards the end of Section 4.2).
Indeed, subjective feedback from the project team
emphasized the importance of using the most powerful
workstations possible for the computationally intensive
work of the Simplifier: ªA big computer is far cheaper than
the time of the engineers using it!º

The project team kept track of faults found at different

stages during the development process, and the rounded

percentages are shown in Table 1. The definition of a fault

for these purposes is an error in the system development
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(specification, design, or code) that, if undetected, could

have led to a fault in the final delivered system. The figures

therefore exclude faults, such as simple documentation

errors, incorrect test scripts, etc. Table 1 also shows how

much of the total effort on SHOLIS (19 person-years) was

spent on each phase.
Note that Table 1 lists the project phases in approximately

the order in which they occurred. However, there was some
parallelism between phases. In particular, code proof over-
lapped with unit and integration testing, and especially with
system validation testing.

For comparison, [13] contains figures on effort and size
metrics for another safety-related real-time project, but for a
much larger system than SHOLIS. This other project also
used formal methods, although there was only a very small
amount of proof.

Informal feedback from the SHOLIS team indicated a
feeling that the most cost-effective phases for fault-finding
were Z Proof and System Validation Tests. The Z Proof
phase in particular was felt to be effective at finding a
significant number of faults, with relatively little effort,
early in the development process. Fig. 1 gives a graphical

representation of the exact figures, where the dark bars
show the actual number of faults found by each phase.
Fig. 1 also shows the efficiency with which faults were
found (the lighter bars), by dividing the number of detected
faults by the effort (in person days) expended. To ensure a
fair comparison, efficiency is only given for verification
phases, i.e., those phases whose main purpose was the
detection of faults. For example, although the ªDetailed
design, code, and informal testº phase found a large
number of faults, (the majority of which were in the design
and code itself) this was a side effect of the phase's true
purpose of producing the code.

The faults found during System Validation often
originated from the requirements, or from incorrectly
capturing the requirements in Z, rather than being instances
of code not being a correct implementation of the Z
specification. The faults found during the Code Proof phase
were mostly cases of very subtle problems revealed by the
RTCsÐin particular circumstances (usually very unlikely
ones), it might have been possible for a run-time error (such
as overflow) to have occurred. On the other hand, the
traditional Unit and Integration Testing phases did find a
number of faults that could have manifested themselves in
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Fig. 1. Faults found and ªefficiencyº of the phases of development.
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realistic use of the final system. This included faults in two
small, but critical, numerical calculations involving real
(Ada fixed-point) arithmetic, where the SPARK proof
model is not rich enough to allow precise reasoning about
rounding and accuracy errors.14 Even given the ordering of
phases, the Code Proof phase did reveal one significant bug:
the proof of the safety properties involved checking that
certain invariants were maintained at the main control loop
level, but it was found that there was a path through the
system that invalidated one of these invariants. Once this
was understood, it was relatively easy for the developer to
go to the test installation, press a few buttons, and show
that the system was in a clearly invalid state.

5.2 Types of Errors Found by Z Precondition Proofs

Approximately 70 percent of the Z proofs involved
calculating preconditions, and they found approximately
75 percent of the total faults found by Z proof. An initial
analysis of these faults reveals the following major types.
The numbers in parentheses indicate the total number of
faults of each type.

Incorrect functionality specified (6). Although the Z was
well-defined and had the expected precondition, the
actual functionality specified did not meet the
requirements. These instances were found as a side-
effect of the (human) prover having to understand
precisely what the Z meant, in order to construct the
proof, and realizing that this did not correspond with
their informal understanding of the required behavior.

Contradictory operations (11). For a few operations, there
were overlapping cases that specified conflicting
behavior, resulting in a contradiction. Perhaps more
interesting were operations whose explicit postcondition
predicates contradicted (implicitly included) invariants.
In about four cases it turned out that the invariant was
too strong, i.e., when the invariant was originally
formulated, it was not noticed that there were legitimate
situations where the invariant would not hold. Typically,
these situations could be characterised and the invariant
ªweakenedº by the addition of an ªorº case.

Lack of mode/history information modeled (4). As already
described, SHOLIS has a number of different types of
information pages. Certain pages and/or associated
system functions must only be available in particular
circumstances, e.g., after a selection has been made.
Some proofs revealed that the Z model did not
adequately capture these ordering dependencies.15 In
each case, the solution was to add invariants to encode
ªhistoryº information, e.g., if this button (and hence
system function) is available to the user then the
appropriate selection must have been made.

Missing cases (7). There were a number of instances of
missing cases (e.g., not covering all possible combina-
tions of input values). These typically resulted from
either undefined function-applications (i.e., a value not

being in a function's domain), or from the result of a
calculation being outside an allowed range (e.g., trying to
increase a value beyond a fixed upper limit).

Incorrectly loose specifications (4). These were faults
where the prover spotted that the postcondition did
not specify a value for one or more state components.
Since Z has no ªrest unchangedº convention, for any
variables that are to be left unchanged, this must be
explicitly specified. As with the incorrect functionality
case, it was not the precondition itself that showed the
problem, but the thorough consideration of the operation
required to produce the proof.

It may appear that the first and last types above concern
faults that were not found by proof itself, as despite
calculated preconditions being correct, the Z specified the
wrong functionality. We postpone discussion of this until
Section 6.

5.3 Subjective Feedback on the Use of Proof

Since this project was unique, in our experience, in the
amount of Z/SPARK proof carried out, there were many
lessons learned, both about the advantages of doing these
sorts of proofs, and about their drawbacks. One of the most
important ideas to appreciate was the limit of formality.
Fig. 2 gives a representation of the call-tree of the main
program: procedure Main is at the top of the tree, followed
closely by the scheduler and event handler, while the
subprograms and packages at the bottom include device
drivers for the I/O devices.

Although the ªmiddleº part of the system could be
neatly described by Z and SPARK, there were problems
with both the ªtopº and ªbottomº parts of the system.
At the very top level, experience showed that the proof
annotations were often simply too large to be manageable.
For example, in the ªmiddleº part of the system, which
has complete SPARK proof annotations, one procedure
has a postcondition of 315 lines. A complete postcondition
for the scheduler, which effectively combines all the
system functions, would be at least an order of magnitude
larger. The size of annotations was exacerbated by the
lack of abstract proof support in SPARK, unlike the
available abstraction support for data and information
flow analysis.16

Thus, a decision was taken to prove only ªinteresting
propertiesºÐsuch as the safety invariantsÐat the very top
level of the SPARK. On the other hand, at the ªbottomº of the
architecture, there was a need to interface with other
software, such as device drivers, for which there was no
formal specification at all. In this case, the solution adopted
was often to supply a very abstract formal specification but
no more. This usually took the form of a specification such as

o! � f�x�;
where the function f , acting on the state variables x to
produce outputs o!, is left entirely nondeterministic.

KING ET AL.: IS PROOF MORE COST-EFFECTIVE THAN TESTING? 681

14. In these cases, manual numerical analysis was carried out to confirm
the accuracy of the code.

15. Z has no explicit mechanism for specifying dependencies on the
ordering of operations.

16. SPARK includes the concept of an abstract own variable, where a
single own variable (declared in a package specification) may represent a
set of variables used in the implementation. Although the SPARK toolset
fully supports abstract own variables in all types of flow analysis, no
support existed during SHOLIS for reasoning about such variable
ªrefinements.º
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However, by naming f , it is possible to express the proof
annotations, and to show exactly what properties of the
supplied device driver are being relied on.

It was also important to remember that, of course, the
development process did not stop when SPARK source code
was produced: the code had to be compiled into object code.
However good the development process had been in
order to produce the source code, if the compiler had
bugs, then the delivered system might be unacceptable
due to compiler-introduced errors. A commercial,
validated Ada compiler was used since that would bring
some guarantees of quality through its years of service
and the hope that any compiler bugs had been found by
other users. In fact, the only compiler bug found during
the project was in the optimizer, which was then
switched offÐthe necessary performance was achieved
by having the Ada run-time checks turned off in the
compiled code. However, one difficulty with using a
compiler for the full Ada language was that of course it
did not understand the philosophy behind SPARK: on
one occasion, it was realized that the compiler was using
a perfectly valid code-generation strategy involving
dynamic allocation of a large temporary variable,
contrary to all of the SPARK ideas of predictability of
resource usage, no dynamic memory allocation, and so
on. Here the solution involved a member of the project
team using his ability to read the object code to write a
script that checked the generated object code for dynamic
memory allocation calls.

There were also one or two problems in ensuring that the
SPARK code was both provable and obeyed the timing
requirements of the system. For example, a pure-functional
programming style can be useful for proof purposes, but
had to be rejected for SHOLIS since the cost of returning
large data structures from functions was too expensive
(both in terms of execution time and memory usage). The
fact that there was an expert in timing analysis [6] in the
team was invaluable here.

In the Z proofs, it was found that the choice of state
invariants was particularly important for finding errors.
If the invariants were not strong enough, then it was

quite possible to discharge the precondition proof
obligation for an operation that had a postcondition that
did not correspond to the desired outcome. If the
invariants were too strong it led to contradictory
operations (as described in Section 5.2).

There were several lessons learned about coding styles
that made the proof task easier: these are to be recorded in
an internal ªCoding Style Guideº for future SPARK proof
projects. For instance, if it is necessary to perform some
action for every value of a small discrete type, it is
sometimes easier to prove correct a sequence of statements
rather than a loop over all of the possible values.

It is too early for there to be evidence yet about the cost of
future changes to the system, though this is clearly an
important question given the fairly novel and extensive use
of proof on SHOLIS. Although there is limited experience of
using tools to maintain proofs, it should be noted that the
proportion of effort spent producing the proofs was fairly
low (7 percent). One of the SHOLIS developers has
remarked that he believes, as for most developments, that
it is the design structure which is likely to have the most
significant effect on the cost of future changes. There is also
evidence [22], from an independent analysis of the project
described in [13], that the use of a formal specification leads
to simpler code that is easier to understand, and therefore to
maintain.

Finally, at least one of the developers/provers remarked
that it was from the VCs that were not automatically proved
by the Simplifier that most was learnt. This was because
looking at the unproved VCs deepened the provers'
understanding of both the conditions necessary for the
code to be correct and the behavior of the code, even if no
corrections were needed before proving the VCs with the
Proof Checker. Completion of the code proof stage
provided confidence both that the code did actually
implement the Z specification and that the Ada run-time
check options on the compiler could be turned off safely
(because of the RTC proofs).

5.4 SPARK 83 versus SPARK 95

There are two variants of the SPARK language (83 and 95)
based on Ada 83 and Ada 95, respectively. Since the
SHOLIS project started in 1993, it was obviously not
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possible to use SPARK 95 and its updated toolset. However,
several features of SPARK 95 would have made life easier
on the SHOLIS project: use type clauses, the ability to read
out parameters, moded globals and the changes to static
expressions. Some details of a later trial port of SHOLIS to
SPARK 95 can be found in [7].

6 ANALYSIS OF THE RESULTS

The work described in this paper is a commercial software
development and not a scientific experiment. It is there-
fore impossible to determine the absolute effects of
particular activities. However, we are experienced
engineers in the commercial application of formal methods
and the development of industrial high integrity systems.
Our analysis is based on engineering judgment drawn
from this experience.

The numbers given in Fig. 1 appear to show that the Z
Proof was, by a significant margin, the most efficient phase
at finding faults, followed by the System Validation Test
phase. It is perhaps even more surprising that Code Proof
appears more efficient than Unit Testing, despite the fact
that substantial amounts of unit testing were completed
before the bulk of code proof started.

Key questions when considering these numbers are:

1. Are any additional costs incurred to make it possible
to do proof or testing?

2. What are the severities of the faults found by proof
or testing?

3. Is the sample size large enough to be statistically
significant?

6.1 Additional Costs

The first question is important, as an activity that finds
faults efficiently is of little use if it cannot take place without
a large amount of prior effort.

In the case of Z proof, what is needed is the Z itself (for
SHOLIS the SRS and part of the SDS) and statements of all
the properties to prove. On SHOLIS we would have written
the Z, irrespective of whether we were going to do the
proof. (Indeed in the past, the majority of our projects that
used Z did not do any proof.) The time taken to formulate
the properties to be proved is included in the effort for the Z
proof activity.

To be able to do SPARK code proof, data flow analysis
must be performed on the code and appropriate proof
annotations included. However, information flow analysis
is not needed to do the proof.17 Data flow analysis would
have been done on SHOLIS, irrespective of whether code
proof was done. (Indeed data flow analysis enables us to
detect certain Ada language insecurities, e.g. aliasing.) The
effort taken on SHOLIS to produce the 20,000 lines of proof
annotations is included in the code proof number used for
Fig. 1.

The effort numbers for all the testing activities include all
the time taken to write test specifications, test scripts, run

tests, etc. Hence, all the proof and testing effort numbers,
used to produce Fig. 1, include all the relevant prior tasks.

6.2 Fault Severities

The second question arises, as an activity that efficiently

finds only trivial or unimportant faults may be less useful

than an inefficient activity that finds major faults. An

important caveat to note is that it has not yet been possible

to conduct a serious analysis of the severity of the faults

found by different project phases.
However, it is not obvious to us how to compare the

severity of faults found by different phases, e.g.,
specification faults found by Z proof against faults found
by testing. A possible measure of severity might be the
effort taken to fix a fault. The effort taken on the SHOLIS
project to fix faults found by Z proof was quite low, but we
would expect this as, if the proofs are done early enough,
only the specification needs to be corrected. Syntactically
trivial faults (e.g., use of an ªandº instead of an ªorº) can
completely alter the meaning of what is specified. Even if
we could be equally confident that those faults found by
proof would be detected by other means (which is
important on a safety-critical development) the cost of
correction rapidly increases the later the faults are found.

In Section 5.2, we postponed discussion of whether some
of the faults were really found by proof. The Z proof work
took place after the Z specification had already been
formally reviewed by both the development and IV&V
teams. In parallel with the proof work the IV&V team
systematically analysed the same specification to produce
about 300 pages of system test cases. However, whereas the
proof work identified 50 Z specification faults, over the
same period (with similar levels of effort) the test case
generation work identified four. In our judgment, this is
because the provers were forced to understand the Z at a
greater depth than other reviewers and users of the
specification. So we believe that detection of these faults
was a benefit of the Z proof process.

As described in Section 5.1, faults found by code proof

were mainly cases of subtle problems found by RTCs.

Testing also found faults in numerical code that could not

be found by proof. However, by sampling a few of the other

faults found during unit testing, it has been confirmed that

code proof should also have found the faults (since

unprovable VCs are generated from the faulty code) if

proof had occurred before testing.

6.3 Statistical Significance

There is of course a limit to the conclusions that can be
drawn from the experiences of a single project. Further-
more, the total number of faults shown in Fig. 1, 330, is
certainly not large enough to be conclusive! However, even
if not statistically significant, we believe SHOLIS is a large
enough example for proof to be given serious consideration
on other projects.

6.4 Analysis Conclusions

Despite the caveat at the start of Section 6.2, given the
importance of early fault detection, the number and nature
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44,000 lines are information flow specific. The remaining 10,000 lines are
common to data and information flow.
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of faults found by Z proof and the relative effort spent on Z
proof, our judgment is that the efficiency numbers in Fig. 1
are a reasonable statement of the effectiveness of Z proof on
SHOLIS.

The data concerning code proof is favourable in
comparison to unit testing, but less clear cut because of
the lower number of (perhaps less significant) faults
involved. However, proving that the code was free of
run-time exceptions was clearly practical and important for
a safety-critical application. Only the systematic nature of
proof could establish the absence of exceptions.

7 RELATED WORK

While there has been an increasing use of formal methods
for specification in industryÐsee, for example, [11], [12],
[15]Ðthere is less evidence for the use of refinement and
proof. However, [25] offers a recent example of the use of Z
refinement on an industrial scale. This work led to some
improvements in the formulation of the Z refinement rules,
and to a better understanding of the Z/CSP relationship [5].

On the SPARK proof front, [10] reports the use of SPARK
with an extension to SPC's CoRE (Consortium
Requirements Engineering) modeling method [8], which
in turn is based on Parnas tables [1]. The specifications in
these tables were converted to SPARK postconditions.
Parnas tables were used successfully on the Darlington
shutdown system [21], [9], but would not have been as
appropriate as Z for the SHOLIS work, since Z has a much
richer state-modeling capability. This was necessary for
areas like maintaining a history of input sensor values.

8 SUMMARY AND CONCLUSIONS

The SHOLIS project made extensive use of formal methods,
including both Z and SPARK proof, and it is believed to be
the first to be completed under the 1991 version of UK MOD
Interim Defence Standards 00-55 and 00-56.

The overall experience of industrial-scale proof has been
very positive and obtained significantly better results than
were originally expected. In terms of faults found for effort
expended, the Z Proof phase was by far the most efficient
phase of the project. One reason for this may be because the
Z Proof was the first verification phase on the project.
Proofs at the SPARK code level were not as efficient at
finding faults, but this was to be expected since significant
testingÐboth informal and formalÐhad already been
completed before the code proofs took place. However, a
simple comparison suggests that the code proofs were still
more efficient at error detection than unit testing, and they
provided crucial assurance that the code was free of run-
time exceptions.

The results of the different types of testing are also quite
revealing. In particular, system validation testing was
substantially more efficient at finding faults than unit
testing. In our experience, this is consistent with anecdotal
evidence from other high integrity projects. As a result, we
have significantly refined our testing strategy on more
recent projects.

There are some important constraints to remember when
attempting proof on a large-scale. We believe part of the

success of proof on SHOLIS is due to the simple system
architecture (i.e., single software process on a single
processor), and hence the straightforward mapping that is
possible between the specification, design, and code. If
SHOLIS were a heavily distributed system, it is not believed
that as much could have been achieved. (Further discussion
of practical issues concerning the use of formal methods in
large-system design can be found in [13], [14].) The limits of
formality must also be considered. For the foreseeable future,
testing is likely to have an important role in gaining necessary
assurance of compilers, hardware, timing issues, etc.

On the Z side, further support is needed (in terms of both
proof techniques and tools) for reasoning about subsystems
coupled by invariants, other than by brute force expansion.
Some large-scale SPARK reasoning mechanisms are also
needed, including support for abstract proof, before the
technology can be extensively used at the highest levels of
large systems. To help address this, the latest release of the
SPARK toolset now includes some support for abstract
proof. Active research is also underway to further enhance
large-scale proof facilities.

In summary, proof was an important part of the SHOLIS
development process, and an important factor in
contributing to the quality of the delivered product. We
believe our success shows both the significant benefit and
practicality of large-scale proof on projects of this kind.

APPENDIX

Z Glossary

This glossary gives brief definitions for the Z terms used in
the paper. Readers are referred to the many text books on Z
for a more extensive introduction.

Schema expansion. One of the key features of Z is the
schema, a named collection of variable declarations
and invariants linking them. The schema name can be
used as a declaration, and this technique is widely
used to control complexity. Schema expansion involves
replacing schema names with the corresponding
declarations and invariants. This can either be carried
out ªall-in-one,º when expansion continues until there
are no schema names left, or ªone-level-at-a-time,º
when only the immediately-visible schema names are
expandedÐof course, this may introduce further
schema names.

� schema. A � schema is used to describe operations that
do not change the state of a system. It is a shorthand for
the inclusion of a state before, a state after, and an
equality predicate stating that all state components are
unchanged. It is typically used in ªenquiryº operations,
where the purpose of the operation is to give an output
depending on the current state, rather than to change the
state.

Promotion. This is a technique for specifying the behavior
of systems that consist of several copies of a smaller
subsystem. The state of the subsystem is first described,
together with operations on it. This ªlocalº state is then
used in the description of the larger ªglobalº state, and
the ªlocalº operations are combined with a framing

684 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 8, AUGUST 2000

Authorized licensed use limited to: Michigan State University. Downloaded on August 28, 2009 at 23:37 from IEEE Xplore.  Restrictions apply. 



schema to describe the operations on the global state. A

ªfunctional promotionº is one where the local state is

included in the global state by introducing a variable that

is a function from an indexing set to the local state.

Further details may be found in [28], [27], [2].

Precondition proof. In Z, operations are described with a

single predicate, encapsulating both the precondition

and the postcondition. The precondition can be extracted

from this by applying the pre operator, which hides the

after-state and outputs. The ªprecondition proofº is then

a check that the specifier's view of the operation's

preconditionÐobtained by consideration of the

environment in which the operation is executedÐis

strong enough to imply the real precondition, as

expressed with pre.

Initial state proof. This is a proof that a valid initial state for

the system does exist. In this context, ªvalidº means

ªobeying the state invariant.º
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