
Extracting Positive Attributions from Scientific Papers

Son Bao Pham and Achim Hoffmann

School of Computer Science and Engineering
University of New South Wales, Australia
{sonp,achim}@cse.unsw.edu.au

Abstract. The aim of our work is to provide support for reading (or skimming)
scientific papers. In this paper we report on the task to identify concepts or terms
with positive attributions in scientific papers. This task is challenging as it re-
quires the analysis of the relationship between a concept or term and its sentiment
expression. Furthermore, the context of the expression needs to be inspected. We
propose an incremental knowledge acquisition framework to tackle these chal-
lenges. With our framework we could rapidly (within 2 days of an expert’s time)
develop a prototype system to identify positive attributions in scientific papers.
The resulting system achieves high precision (above 74%) and high recall rates
(above 88%) in our initial experiments on corpora of scientific papers. It also
drastically outperforms baseline machine learning algorithms trained on the same
data.

1 Introduction

Knowing the advantages and disadvantages of a particular concept or algorithm is im-
portant for every researcher. It helps researchers in learning a new field or even expe-
rienced researchers in keeping up to date. Unfortunately, such information is usually
scattered across many papers. Survey papers are generally written on an irregular basis,
and hence up-to-date surveys may not be available. Furthermore, in new and emerging
fields, often survey papers do not exist at all. Having a tool that could collect all the
relevant information for a concept of interest would therefore be of tremendous value.

For example, suppose we want to check if a particular algorithm is suitable for
our task at hand, such a tool could go through available papers and extract sentences
together with the contexts that mention the advantages and disadvantages of the algo-
rithm. This would make our task much simpler. We only have to look at those extracted
sentences rather than going through a large number of entire papers.

Another useful scenario is the following: before reading a paper, we could quickly
have a look at what the advantages and disadvantages of the things discussed in the
paper are to make a decision whether the paper is relevant to our interest.

In this paper, we introduce a new framework for acquiring rules to classify text seg-
ments, such as sentences, as well as extracting information relevant to the classification
from the text segments. We apply our framework to extract advantages of concepts or
actions, i.e. positive attributions of the concepts/actions, in technical papers. An advan-
tage is detected when a positive sentiment is expressed towards the concept or action.
For example, given the following sentences:

E. Suzuki and S. Arikawa (Eds.): DS 2004, LNAI 3245, pp. 169–182, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

170 Son Bao Pham and Achim Hoffmann

There is some evidence that Randomizing is better than Bagging in low noise
settings.
It is more efficient to use Knowledge Acquisition to solve the task.

We would like to detect that the algorithm Randomizing and the action to use Knowl-
edge Acquisition to solve the task have been mentioned with a positive sentiment. Anal-
ysis of positive sentiments towards a concept is a challenging task that requires deep
understanding of the textual context, drawing on common sense, domain knowledge
and linguistic knowledge. A concept could be mentioned with a positive sentiment in a
local context but not in a wider context. For example,

We do not think that X is very efficient.
If we just look at the phrase “X is very efficient”, we could say that X is of positive
sentiment, but considering its wider context it is not.

In this paper, we will first describe the underlying methodology of our framework in
section 2- 4. Section 5 illustrates the process by giving examples on how the knowledge
base evolves. In section 6, we present experimental results. Section 7 discusses related
work and our conclusions are found in the last section.

2 Methodology

In this section we present the basic idea behind Ripple-Down Rules upon which our
approach is based.

Knowledge Acquisition with Ripple Down Rules: Ripple Down Rules (RDR) is an
unorthodox approach to knowledge acquisition. RDR does not follow the traditional
approach to knowledge based systems (KBS) where a knowledge engineer together
with a domain expert perform a thorough domain analysis in order to come up with a
knowledge base. Instead a KBS is built with RDR incrementally, while the system is
already in use. No knowledge engineer is required as it is the domain expert who repairs
the KBS as soon as an unsatisfactory system response is encountered. The expert is
merely required to provide an explanation for why in the given case, the classification
should be different from the system’s classification.

This approach resulted in the expert system PEIRS used for interpreting chemical
pathology results [4]. PEIRS appears to have been the most comprehensive medical
expert system yet in routine use, but all the rules were added by a pathology expert
without programming or knowledge engineering support or skill whilst the system was
in routine use. Ripple-Down Rules and some further developments are now successfully
exploited commercially by a number of companies.

Single Classification Ripple Down Rules: A single classification ripple down rule
(SCRDR) tree is a finite binary tree with two distinct types of edges. These edges are
typically called except and if not edges. See Figure 1. Associated with each node in a
tree is a rule. A rule has the form: if α then β where α is called the condition and β the
conclusion.

Cases in SCRDR are evaluated by passing a case to the root of the tree. At any node
in the tree, if the condition of a node N ’s rule is satisfied by the case, the case is passed
on to the exception child of N . Otherwise, the case is passed on the N ’s if-not child.

Extracting Positive Attributions from Scientific Papers 171

The conclusion given by this process is the conclusion from the last node in the RDR
tree which fired. To ensure that a conclusion is always given, the root node typically
contains a trivial condition which is always satisfied. This node is called the default
node.

A new node is added to an SCRDR tree when the evaluation process returns a wrong
conclusion. The new node is attached to the last node evaluated in the tree. If the node
has no exception link, the new node is attached using an exception link, otherwise an
if not link is used. To determine the rule for the new node, the expert formulates a rule
which is satisfied by the case at hand. Importantly, new node is added only when its rule
is consistent with the knowledge base i.e. all cases that have been correctly classified
by existing rules will not be classified differently by the new rule.

If (True)
then negative

except

Node 1

except except

then negative

If (has "not")
 "excellent")
If ("not" is after

then positive

then negative

If("far from" is not
next to "excellent")
then positivethen negative

Node 4

Node 5

Node 6 Node 7

except

false

false

Node 3

If (has "excellent")

then positive

If (has "neither")

If (has "far from")

Node 2
false

Fig. 1. An example SCRDR tree with simple rule language to classify a text into positive or
negative class. Node 1 is the default node. A text that contains excellent is classified as positive
by Node 2 as long as none of its exception rules fires, i.e., the text does neither contain not, neither
nor far from so Node 3,5,6 would not fire. A text that has not excellent is classified as negative by
Node 3 while it is classified as positive by Node 4, if it contains excellent but not. If it contains
far from excellent then it is classified as negative by Node 6.

3 Our Approach

While the process of incrementally developing knowledge bases will eventually lead to
a reasonably accurate knowledge base, provided the domain does not drift and the ex-
perts are making the correct judgements, the time it takes to develop a good knowledge
base depends heavily on the appropriateness of the used language in which conditions
can be expressed by the expert.

Some levels of abstraction in the rule’s condition is desirable to make the rule ex-
pressive enough in generalizing to unseen cases. To realize this, we use the idea of
annotation where phrases that have similar roles are deemed to belong to the same an-
notation type.

3.1 Rule Description

A rule is composed of a condition part and a conclusion part. A condition has an an-
notation pattern and an annotation qualifier. An annotation is an abstraction over string

172 Son Bao Pham and Achim Hoffmann

tokens. Conceptually, string tokens covered by annotations of the same type are con-
sidered to represent the same concept. An annotation contains the character locations
of the beginning and ending positions of the annotated text in the document along with
the type of annotation and a list of feature value pairs.

The annotation pattern is a simplified regular expression over annotations. It can
also post new annotations over matched phrases of the pattern’s sub-components. The
following is an example of a pattern which posts an annotation over the matched phrase:

({Noun} {VG} {Noun}):MATCH

This pattern would match phrases starting with a Noun annotation followed by a VG
followed by another Noun annotation. When applying this pattern on a piece of text,
MATCH annotations would be posted over phrases that match this pattern.

The annotation qualifier is a conjunction of constraints over annotations, including
newly posted ones. An annotation constraint may require that a feature of that annota-
tion must have a particular value as in this example:

VG.voice==active
Token.string=increase

A constraint can also require that the text covered by an annotation must contain (or not
contain) another annotation or a string of text, such as here:

NP.hasAnno == LexGoodAdj
VG.has == outperform
VG.hasnot == not

A rule condition is satisfied by a phrase, if the phrase matches the pattern and satisfies
the annotation qualifier. For example we have the following rule condition:

(({NP}):Noun1 {VG.voice==active}
({NP.hasAnno == LexGoodAdj}):Noun2):MATCH

This pattern would match phrases starting with a NP annotation followed by a VG
annotation (with feature voice having value active) followed by another NP annota-
tion (Noun2), which must also contain a LexGoodAdj annotation for the annotation
qualifier to be satisfied. When a phrase satisfies the above rule condition, a MATCH an-
notation would be posted over the whole phrase and Noun1, Noun2 annotations will
be posted over the first and second NP in the pattern respectively. Note that Noun1 is
not used in the condition part but it could be used later in the conclusion part or in the
exception of the current rule.

A piece of text is said to satisfy the rule condition if it has a substring that satisfies
the condition. The following sentence matches the above rule condition as useful is
annotated by the LexGoodAdj annotation, being a purpose built lexicon containing
terms indicating a positive sentiment:

[NP Parallelism NP][VG is VG][NP a useful way NP] to speed up computation.
This sentence triggers the posting of the following new annotations:

[MATCH Parallelism is a useful way MATCH]
[Noun1 Parallelism Noun1]
[Noun2 a useful way Noun2]

Extracting Positive Attributions from Scientific Papers 173

However, the following sentences do not match:

(1) [NP Parallelism NP] [VG is VG] [NP a method NP] used in our approach.
(2) [NP Parallelism NP] [VG has been shown VG] [VG to be VG] very useful.

Sentence (1) matches the pattern, but it does not satisfy the annotation constraints. Sen-
tence (2) does not match the pattern.

The rule’s conclusion contains the classification of the input text. In our task, it is
true if the text mentions an advantage or a positive aspect of a concept/term and false
otherwise.

Besides classification, our framework also offers an easy way to do information ex-
traction. Since a rule’s pattern can post annotations over components of the matched
phrase, extracting those components is just a matter of selecting appropriate annota-
tions. In this work, we extract the concept/term of interest whenever the case is classi-
fied as containing a positive aspect by specifying the target annotation. A conclusion of
the rule with the condition shown above could be:

Conclusion: true
Concept Annotation: Noun1

The rule’s conclusion contains a classification and an annotation to be extracted. In
regards to whether a new exception rule needs to be added to the KB, a conclusion is
deemed to be incorrect if either part of the conclusion is incorrect.

3.2 Annotations and Features

Built-in Annotations: As our rules use patterns over annotations, the decision on what
annotations and their corresponding features should be are important for the expressive-
ness of rules. We experimentally tested the expressiveness of rules on technical papers
and found that the following annotations and features make patterns expressive enough
to capture all rules we want to specify for our tasks.

We have Token annotations that cover every token with the string feature holding
the actual string, the category feature holding the part-of-speech and the lemma feature
holding the token’s lemma form.

As a result of the Shallow Parser module, we have several forms of noun phrase an-
notations ranging from simple to complex noun phrases, e.g., NP (simple noun phrase),
NPList (list of NPs) etc. All forms of noun phrase annotations are covered by a general
Noun annotation. There is also a VG (verb group) annotation with type, voice features,
several annotations for clauses, e.g., PP (prepositional phrase), SUB (subject), OBJ
(object).

An important annotation that makes rules more general is Pair which annotates
phrases that are bound by commas or brackets. With this annotation, the following
sentences:

The EM algorithm (Dempster, Laird, & Rubin, 1977) is effective.....
...the algorithm, in noisy domains, outperformed

could be covered by the following patterns respectively:

{Noun}({Pair})?{Token.lemma==be}{LexGoodAdj}
{Noun}({Pair})?{Token.lemma==outperform}

174 Son Bao Pham and Achim Hoffmann

Every rule that has a non-empty pattern would post at least one annotation covering the
entire matched phrase. Because rules in our knowledge base are stored in an exception
structure, we want to be able to identify which annotations are posted by which rule.
To facilitate that, we number every rule and enforce that all annotations posted by rule
number x should have the prefix RDRx . Therefore, if a rule is an exception of rule
number x, it could use all annotations with the prefix RDRx in its condition pattern or
annotation qualifier.

Custom Annotations: In our current implementation we manually created a list of
about 50 good adjectives and adverbs as a seed lexicon. We post LexGoodAdj annota-
tions over words in that lexicon. In fact, users could form new named lexicons during
the knowledge acquisition process. The system would then post a corresponding anno-
tation over every word in such a lexicon. Doing this makes the effort of generalizing the
rule quite easy and keeps the rules compact.

4 Implementation

We built our framework using GATE [2]. A set of reusable modules known as AN-
NIE is provided with GATE. These are able to perform basic language processing tasks
such as part-of-speech (POS) tagging and semantic tagging. We use Tokenizer, Sen-
tence Splitter, Part-of-Speech Tagger and Semantic Tagger processing resources from
ANNIE. Semantic Tagger is a JAPE finite state transducer that annotates text based on
JAPE grammars. Our rule’s annotation pattern is implemented as a JAPE grammar with
some additional features.

We also developed additional processing resources for our task:

Lemmatizer: a processing resource that automatically puts a lemma feature into every
Token annotation containing the lemma form of the token’s string [11]. Lem-
matizer uses information from WordNet [5] and the result from the POS Tagger
module.

Shallow Parser: a processing resource using JAPE finite state transducer. The shal-
low parser module consists of cascaded JAPE grammars recognizing noun groups,
verb groups, propositional phrases, different types of clauses, subjects and objects.
These constituents are displayed hierarchically in a tree structure to help experts
formulate patterns, see e.g. Figure 2.

All these processing resources are run on the input text in a pipeline fashion. This is
a pre-processing step which produces all necessary annotations before the knowledge
base is applied on the text.

5 Examples of How to Build a Knowledge Base

The following examples are taken from the actual KB as discussed in section 6. Suppose
we start with an empty knowledge base (KB) for recognizing advantages. I.e. the KB
would only contain a default rule which always produces a ‘false’ conclusion. When
the following sentence is encountered:

Extracting Positive Attributions from Scientific Papers 175

Fig. 2. The interface to enter a new rule where the rule is automatically checked for consistency
with the existing KB before it gets committed. Annotations including those created by the shallow
parser module are shown in the tree in the structure box.

Our study shows that learning classifier systems are a feasible tool to build robust
robot control.
our empty KB would initially use the default rule to suggest it does not belong to the
Advantages class. This can be corrected by adding the following rule to the KB:

Rule:R6
(({Noun}):RDR6 noun1 {VG.type==FVG}
({Noun.hasAnno == LexGoodAdj}):RDR6 noun2):RDR6
Conclusion: true
Target Concept: RDR6 noun1

This rule would match phrases starting with a Noun annotation, followed by a VG an-
notation (with feature type equal to FVG) followed by a Noun annotation. Furthermore,
the second Noun annotation must contain a LexGoodAdj annotation covering its sub-
string. As there is a LexGoodAdj annotation covering the token feasible, the phrase
learning classifier systems are a feasible tool is matched by Rule6 and learning clas-
sifier systems is extracted as the concept of interest. When we encounter this sentence:

Given a data set, it is often not clear beforehand which algorithm will yield
the best performance.

Rule R6 suggests that the sentence mentions algorithm with a positive sentiment (the
matched phrase is highlighted in boldface) which is not correct. The following excep-
tion rule is added to fix that:

Rule:R32 ({Token.lemma==which}{RDR6 }):RDR32
Conclusion: false

176 Son Bao Pham and Achim Hoffmann

This rule says that if the phrase matched by Rule6 follows a which token, then the sen-
tence containing it does not belong to Advantages class. However, when we encounter
the following sentence

The latter approach searches for the subset of attributes over which naive
Bayes has the best performance.

Rule R6 suggests that naive Bayes has been mentioned with a positive sentiment but its
exception rule, R32, overrules the decision because the phrase that matches R6 (anno-
tated by RDR6) follows a token which. Obviously, naive Bayes should be the correct
answer since the token which is used differently here than in the context in which R32
was created. We can add an exception to R32 catering for this case:

Rule:R56 ({Token.string==over} {RDR32 }):RDR56
Conclusion: true
Target Concept: RDR6 noun2

6 Experimental Results

A corpus was collected consisting of 140 machine learning conference and journal pa-
pers downloaded from citeseer, and converted from PDF into text. Even though these
papers are from the same domain, we have to stress that the topics they cover are quite
diverse including most subtopics in machine learning.

We have applied our framework to build a knowledge base (KB) for recognizing
sentences that contain advantages of a concept/term as well as extracting that con-
cept/term. A sentence is considered to mention an advantage of a concept/term if the
author expresses a positive sentiment towards that concept/term. Given a sentence, the
fired rule from the KB would give the true conclusion if the sentence is considered to
be of the Advantages class and false otherwise.

We randomly selected 16 documents from 16 different authors and grouped them
into 2 corpora. The first corpus has 3672 sentences from 9 documents called the training
corpus. The second corpus contains 4713 sentences from 7 documents called the test
corpus.

Using the training corpus, we have built a KB consisting of 61 rules. Applying the
knowledge base on the test corpus, it classified 178 sentences as belonging to Advan-
tages class. Checking the accuracy, 132 cases are correct, resulting in a precision of
74% (132/178). A case is deemed correct, if in fact it mentions a concept/term with an
advantage and that concept/term must be at least partly extracted. This flexibility allows
for the imperfection of our shallow parser. The KB missed 18 cases resulting in a re-
call rate of 88% and an F-measure of 80.4%. Examples of sentences with the extracted
concept in bold face are:

(3) Again, EM improves accuracy significantly.
(4) In this low dimensional problem it was more computationally efficient to
consider a random candidate set.
(5) The topology of a KBANN-net is better suited to learning in a particular
domain than a standard ANN.

Extracting Positive Attributions from Scientific Papers 177

There are now 445 sentences in the corpus that contain at least one word from the
seed lexicon. Our KB returned 178 cases out of which many do not contain any word
from the seed lexicon. For example, sentence (3) above is returned because of the verb
improve. This is to show that naively selecting sentences containing good adjectives or
adverbs is not enough.

6.1 Comparison with Machine Learning Approaches

As a baseline with which to compare our approach, we used decision tree C4.5, Naive
Bayes and Support Vector Machine algorithms using the bag-of-word representation
on the task of classifying a sentence into the true or false class depending on whether
the sentence mentions an advantage of a concept. Notice that this task is simpler than
our task of extracting positive attributions as we do not ask the learner to extract the
concept.

We prepared four different datasets which are variants of the training corpus (3672
sentences) described in the previous section:

– DataSet 1: It contains all full sentences from the training corpus.
– DataSet 2: It contains all sentences from the training corpus but sentences belong-

ing to the Advantages class (i.e. containing an advantage of a concept/term) are
duplicated 15 times. This is to give a balanced number of positive and negative
examples in the training data.

– DataSet 3: Only the relevant phrase within a sentence is used in the bag-of-word
representation for those sentences that are classified into the Advantages class. I.e.
in building the KB, when an expert identifies a sentence as belonging to the Advan-
tages class, s/he has to select a relevant phrase of the sentence and formulates a rule
that would match the phrase. The phrase can be thought of as the most relevant part
in the sentence which indicates that the sentence mentions an advantage. All other
sentences are used as in the previous two datasets. This is done to give the learner
more expert knowledge.

– DataSet 4: It contains all cases in DataSet 3 except that the true class cases are
duplicated 15 times as done in Dataset 2.

Because there are 216 positive examples and 3456 negative examples in the original
training corpus, Dataset 2 and 4 duplicate positive examples to give a balanced training
data set.

We use J48, NaiveBayes and SMO in Weka [14] as implementations for C4.5, Naive
Bayes and Support Vector Machine algorithms respectively. The 3 learners are trained
on 4 datasets and are tested against the same test corpus described in the previous sec-
tion. Their results are shown in table 1.

When the learners were trained on the data containing only the class label of the
entire sentences, as in dataset 1 and 2, they performed very poorly giving the best F-
measure of 27.6%. In dataset 3 and 4, more expert knowledge is provided in the form
of relevant phrases of the sentences boosting the best F-measure to 40.5%, which is still
significantly lower compared to the performance of our manually created KB of 80.4%
based on the same data.

178 Son Bao Pham and Achim Hoffmann

Table 1. Precision, Recall and F-measure of the three algorithms trained on different training
datasets but tested on the same test corpus.

C4.5(J48) Naive Bayes SVM(SMO)
P R F P R F P R F

DataSet 1 37 6.7 11.3 12.1 38 18.3 20 10 13.3
full sentence

DataSet 2 23.9 32.7 27.6 7.6 74 13.8 22.6 16 18.8
full sentence, balanced

DataSet 3 0 0 0 30.6 7.3 11.8 43.8 35.3 39.1
relevant phrase if available

DataSet 4 31.8 42.7 36.5 6.4 82.7 11.8 33.8 50.7 40.5
relevant phrase if available, balanced

It is possible that the bag-of-word approach and the number of training examples
given to those learners are not large enough to achieve a high precision and recall. It
however supports our approach of utilizing more expert knowledge instead of requiring
much more training data given that it takes only about 2 minutes for the expert to for-
mulate and enter a rule into the KB. If the expert has to classify the sentences anyway,
it does not take much more time to also provide some explanations on some of the sen-
tences for why they should be classified differently to how the current knowledge base
classified the sentence. In general, we believe that our approach leads to a significantly
higher accuracy based on a given set of sentences than could be achieved by machine
learning approaches which would only exploit a boolean class label as expert informa-
tion for each sentence. As a consequence, the total number of sentences an expert needs
to read and classify in order to achieve a certain classification accuracy can be expected
to be much less with our approach than a machine learning approach.

6.2 Can the KB’s Performance Be Improved?

We fixed the errors made by the KB on the test corpus by adding exception rules to the
KB. The resulting KB2 had 74 rules. We randomly selected 5 documents (containing
1961 sentences) from 5 different authors which are all different from the authors in the
training and test corpus described in previous sections. When applied to this new test
corpus, the KB2 achieved a precision of 79%(60/78) and recall of 90%(60/67). This is
an indication that as we add more rules to the knowledge base, both precision and recall
are improved.

6.3 Extracting Advantages

To verify the quality of our approach, we looked at an application scenario of finding
advantages for a particular concept/term e.g. decision tree. The literal string decision
tree appears at least 720 times in the corpus. We only considered those sentences, which
were classified as Advantages by the KB and had the string decision tree in the extracted
target annotation to be of interest. Clearly, this simple analysis would miss cases where
the actual string is not in the sentence but is mentioned via an anaphora. Future work
will address this point.

Extracting Positive Attributions from Scientific Papers 179

Our analysis results in 22 cases that have decision tree in the target annotation.
These 22 cases were from 7 documents of 5 different authors. Some examples are:

Decision trees are a particularly useful tool in this context because they per-
form classification by a sequence of simpler, easy-to-understand tests whose
semantics is intuitively clear to domain experts.
Results clearly indicate that decision trees can be used to improve the per-
formance of CBL systems and do so without reliance on potentially expensive
expert knowledge.

Out of the suggested sentences, 12 are correct giving a precision of 55%.

6.4 Analysis of KB’s Errors

Inspecting misclassified sentences of the above experiment reveals that 6 of them are
from the same document (accounting for 60% of the error) and are of the same type:

...what is the probability that [RDR1 [RDR1 noun2 the smaller decision tree
RDR1 noun2] is more accurate RDR1].

which does not say that the decision tree is more accurate if we consider the sentential
context. This misclassification is due to the fact that we have not seen this type of pattern
during training which could easily be overcome by adding a single exception rule.

A number of misclassifications is due to errors in modules we used, such as the POS
tagger or the Shallow Parser, that generate annotations and features used in the rule’s
condition. For example, in

Comparing classificational accuracy alone, assistant performed better than cn
2 in these particular domains.

performed is tagged as VBN (past participle), rather than VBD (past tense), causing our
Shallow Parser not to recognize performed as a proper VG. Consequently, our rule base
did not classify this case correctly. We also noticed that several errors came from noise
in the text we get from pdf2text program.

Overall, errors appear to come from the fact that rules tend to either be overly gen-
eral or too specific and, thus, do not cover exactly what they should cover. While the
particular choice of generality or specificity of an exception rule affects to some degree
the convergence speed of the knowledge base towards complete accuracy, it is not that
crucial in our approach. This is because suboptimal early choices are naturally patched
up by further rules as the knowledge acquisition process progresses. Where a too gen-
eral rule was entered a subsequent exception rule will be entered, while a subsequent
if-not rule patches a too specific rule.

6.5 Structure of Exception Rules

Apart from the default rule, every rule is an exception rule which is created to correct
an error of another rule. An SCRDR KB could be viewed as consisting of layers of
exception rules where every rule in layer n is an exception of a rule in layer n − 1 1.

1 Rules in Figure 1 are presented in layers structure.

180 Son Bao Pham and Achim Hoffmann

The default rule is the only rule in layer 0. A conventional method that stores rules in
a flat list is equivalent to layer 1 in our SCRDR KB. Our latest KB2 (from section 6.2)
had 25, 43 and 5 rules in layers 1, 2 and 3 respectively. Having more than one level
of exceptions indicates the necessity of the exception structure in storing rules. An
example of 3 levels of exception rules is shown in section 5.

7 Related Work

Most of the related work on sentiment analysis has focused on news and review genres
[9, 13, 7, 10]. Our work instead looks at technical papers as it appears more challenging.
However, our framework is domain independent.

A majority of existing approaches only analyze co-occurrences of simple phrases
(unigrams or bigrams) within a short distance [7, 10] or indicative adjectives and ad-
verbs [13]. In contrast to that, we look at more complex patterns in relation to the sub-
ject matter to determine its polarity. One reason for this difference might be that those
applications tend to classify the polarity of the whole article assuming that all sentiment
expressions in the article contribute towards the article’s subject classification. In this
work, we identify sentiment expressions to extract the subject of the expression as well
as its sentiment classification. [9] has a similar goal as ours but they do not consider
the surrounding context of the sentiment expression which could affect the subject’s
polarity. The sentential context containing the sentiment expression is in fact analyzed
in our work for sentiment classification.

Our approach takes a knowledge acquisition approach where experts create rules
manually. This differs from machine learning approaches that automatically learn rule
patterns [12, 6], or learn implicit rules (not expressed as patterns) to classify sentiment
expressions [10, 13]. We strongly believe that our approach is superior to automatic ap-
proaches since experts need to spend their time to classify the sentences even where
machine learning approaches are taken. This has been proved true on the task of classi-
fying sentences into Advantages category described in Section 6.1 where our manually
build KB outperformed several machine learning algorithms trained on the same data.
Similar findings for medical knowledge bases have been obtained in systematic studies
for Ripple Down Rules [1].

Many researchers [9, 7] share the same view by manually creating patterns and lex-
icons in their approaches. We take one step further by helping experts to incrementally
acquire rules and lexicons as well as controlling their interactions in a systematic man-
ner.

Our work could also be considered as a kind of information extraction. Allowing
the pattern to be a regular expression over annotations, the expressiveness of our rule
language is at least as good as existing IE systems (e.g. [6, 12], see [8] for a survey).
Our framework combines the following valuable features of those IE systems:

– it allows syntactic and semantic constraints on all components of the patterns in-
cluding the extracted fields.

– it can accommodate both single-slot and multi-slot rules.
– it can be applied to a wide variety of documents ranging from rigidly formatted text

to free text.

Extracting Positive Attributions from Scientific Papers 181

8 Conclusion and Future Work

In this paper, we have presented a domain independent framework to easily build a
knowledge base for text classification as well as information extraction. We applied the
framework to the task of identifying the mention of advantages of a concept/term in a
scientific paper. The objective being to support scientists in digesting the ever increasing
literature available on a subject.

Initial experiments on this task have shown that the knowledge base built using our
framework achieved precision of at least 74% and recall rates of more than 88% on
unseen corpora.

We compared the performance of our knowledge base on a simpler task, i.e. sen-
tence classification only (without extracting any information), with that of classifiers
constructed using three different machine learning techniques, often used for text min-
ing. Our knowledge base proved to be far superior to those machine learning approaches,
based on the same text. Furthermore, it should be noted that for both approaches, our
knowledge acquisition approach as well as supervised machine learning approaches, a
human is required who classifies the individual sentences. The additional time our hu-
man expert required to enter rules into the knowledge base was only a fraction of the
time it took to classify the sentences in the first place. The reason being that many more
sentences need to be classified than the number of rules that was entered. This suggests
that our approach uses the expert’s time much more economically than supervised ma-
chine learning approaches which only utilize the class label as the indication of what to
do with a sentence.

It should be noted that all documents in those corpora were from different authors
covering different topics. Furthermore, building the KB of the above quality was rea-
sonably quick. This suggests that by using our framework, it is feasible to quickly, i.e.
within a few days, build new knowledge bases for different tasks in new domains.

Although it appears easy for experts to create rules, it would be desirable if the
experts are presented with possible candidate rules to choose from. Even when the sug-
gested rules are not correct to be used as-is, using them as a starting point to create
the final rules should be helpful. We are working towards using machine learning tech-
niques to automatically propose candidate rules to be used in a mixed initiative style
[3].

References

1. P. Compton, P. Preston, and B. Kang. The use of simulated experts in evaluating knowl-
edge acquisition. In Proceedings of the Banff KA workshop on Knowledge Acquisition for
Knowledge-Based Systems. 1995.

2. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: An architecture for de-
velopment of robust hlt applications. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics(ACL), Philadelphia, PA, 2002.

3. D. Day, J. Aberdeen, L. Hirschman, R. Kozierok, P. Robinson, and M. Vilain. Mixed-
initiative development of language processing systems. In Fifth ACL Conference on Applied
Natural Language Processing, Washington, DC, 1997.

182 Son Bao Pham and Achim Hoffmann

4. G. Edwards, P. Compton, R. Malor, A. Srinivasan, and L. Lazarus. PEIRS: a pathologist
maintained expert system for the interpretation of chemical pathology reports. Pathology,
25:27–34, 1993.

5. C. Fellbaum, editor. WordNet - An electronic lexical database. MIT PRESS, Cambridge,
MA, 1998.

6. J. Kim and D. Moldovan. Acquisition of linguistic patterns for knowledge-based information
extraction. IEEE Transactions on Knowledge and Data Engineering, 7(5):713–724, 1995.

7. S. Morinaga, K. Yamanishi, K. Tateishi, and T. Fukushima. Mining product reputations
on the web. In Proceedings of the Eighth ACM International Conference on Knowledge
Discovery and Data Mining(KDD), pages 341–349, 2002.

8. I. Muslea. Extraction patterns for information extraction tasks: A survey. In The AAAI
Workshop on Machine Learning for Information Extraction, 1999.

9. T. Nasukawa and J. Yi. Sentiment analysis: Capturing favorability using natural language
processing. In Proceedings of the 2nd International Conference on Knowledge Capture(K-
Cap), Florida, 2003.

10. B. Pang and L. Lee. Thumbs up? sentiment classification using machine learning tech-
niques. In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing(EMNLP), pages 79–86, 2002.

11. M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
12. S. Soderland. Learning information extraction rules for semi-structured and free text. Ma-

chine Learning, 34(1-3):233–272, 1999.
13. P. Turney. Thumbs up or thumbs down? semantic orientation applied to unsupervised clas-

sification of reviews. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics(ACL), pages 417–424, 2002.

14. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools with Java imple-
mentations. Morgan Kaufmann, 2000.

	1 Introduction
	2 Methodology
	3 Our Approach
	3.1 Rule Description
	3.2 Annotations and Features

	4 Implementation
	5 Examples of How to Build a Knowledge Base
	6 Experimental Results
	6.1 Comparison with Machine Learning Approaches
	6.2 Can the KB’s Performance Be Improved?
	6.3 Extracting Advantages
	6.4 Analysis of KB’s Errors
	6.5 Structure of Exception Rules

	7 RelatedWork
	8 Conclusion and Future Work
	References

