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ABSTRACT

We are currently witnessing the emergence of two paradigms
in parallel computing: streaming processing and multi-core
CPUs. Represented by solid commercial products widely
available in commodity PCs, GPUs and multi-core CPUs
bring together an unprecedented combination of high per-
formance at low cost. The scientific computing community
needs to keep pace with application models and middleware
which scale efficiently to hundreds of internal processing
units. The purpose of the work we present here is twofold:
first, a cooperative environment is designed so that both par-
allel models can coexist and complement one another. Sec-
ond, beyond the parallelism of multiple internal cores, fur-
ther parallelism is introduced when multiple CPU sockets,
multiple GPUs, and multiple nodes are combined within a
unique multi-processor platform which exceeds 10 TFLOPS
when using 16 nodes. We illustrate our cooperative paral-
lelization approach by implementing a large-scale, biomed-
ical image analysis application which contains a number of
assorted kernels including typical streaming operators, co-
occurrence matrices, convolutions, and histograms. Exper-
imental results are compared among different implementa-
tion strategies and almost linear speed-up is achieved when
all coexisting methods in CPUs and GPUs are combined.
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Categories and Subject Descriptors

C.1 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—Parallel Processors ; 1.3
[Computer Graphics]: Hardware Architecture— Graphics
Processors ; 1.4 [Image Processing and Computer Vi-
sion]: Applications

General Terms

Algorithms, Languages, Performance

1. INTRODUCTION

Biomedical applications are becoming a major focus due
to the large possible benefit to the public welfare as well as
to the scientific community. In particular, imaging applica-
tions are emerging as a new opportunity for innovation at
the meeting point between medicine and computer science.
These applications are challenging for several reasons. From
the practical concerns of fitting into a clinician’s standard
workflow to the performance-centric difficulties in using dis-
ruptive architectures for the maximum application through-
put, biomedical image analysis applications provide many
opportunities for novelty.

Computer technology has made a tremendous impact on
medical imaging technology. The recent availability of whole
slide digital scanners has made research on pathological im-
age analysis more attractive, by enabling quantitative anal-
ysis tools to decrease the evaluation time pathologists spend
for each slide. This also reduces the variation in decision-
making processes among different pathologists or institu-
tions and introduces reproducibility.

The analysis of pathology images is particularly challeng-
ing due to the large size of the data. Since uncompressed
image sizes can be 30 gigabytes for one slice of tissue, typ-
ical datasets for case studies can easily stretch to terabyte
scale. Further, the computation required to analyze these
images can be extensive; analysis can often take hours on
a single CPU. Several research studies on different cancer
types have been conducted to develop computational meth-
ods within this field [7, 12, 14, 15, 19, 24, 26]. Most of these
approaches only tested randomly selected image tiles, while
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Figure 1: Flow chart for the stroma classification algorithm.

some [18] have recently extended their methods to process-
ing whole-slide images, but without discussing the compu-
tational burden. One of the most recent results [3] involves
a parallelization technique, but the focus of the study was
not strictly one of execution time performance, and process-
ing a relatively small image took almost half an hour on a
16-node configuration, which is still impractical for clinical
application.

With respect to improving the processing time of scientific
applications, the newest versions of programmable Graph-
ics Processing Units (GPU) provide an ideal platform, since
they allow extremely high floating point arithmetic through-
put for applications which fit their architectural idiosyn-
crasies [16]. This fact has attracted many researchers and
encouraged the use of GPUs in many fields [10] including
data mining [11], image segmentation and clustering [13],
numerical methods for finite element computations used in
3D interactive simulations [30], and nuclear, gas dispersion
and heat shimmering simulations [31]. In an earlier work [22,
23], we have also leveraged GPU processing power and in-
troduced techniques based on shaders and Cg to accelerate
the feature extraction by a factor of 321x versus a Matlab
version and 45x versus an equivalent C++ version running
on a single CPU.

GPU manufacturers have responded to the wide accep-
tance and use of GPUs in general-purpose computing with
the introduction of CUDA (Compute Unified Device Ar-
chitecture) [5], a more general programming interface, and
Tesla [28], a new computational node with multiple GPUs,
reaching near supercomputer performance levels starting at
$1500. Recent announcements from Nvidia (GeForce 9 Se-
ries) and ATI (FireStream) [9] have also responded to the
scientific computing community’s widespread call for double-
precision, floating-point arithmetic which does not incur a
large performance penalty compared to single-precision.

In this work, our goal is the efficient execution of large-
scale biomedical image analysis applications on a coopera-
tive cluster of GPUs and multi-core CPUs. The advent of
multi-core CPUs means that more computation can occur
on a single computer than ever before. Traditional SMPs
are now becoming hybridized, such that multiple multi-core
CPUs are resident in a single compute node. Furthermore,
new architectures can support more than one GPU card per
node. Hence, our target hardware architecture is a cluster
of compute nodes with multiple multi-core CPUs and multi-
ple GPUs, and this work presents methods to make full use
of all of the computational power such a hardware system
offers.

On the software side, our cooperative approach is enabled
by software libraries and middleware which ease both the

GPU programming and the parallelization computation at
many granularities. Nvidia’s CUDA provides easier access
to the high computational performance available in mod-
ern era GPUs. Additionally, it provides capabilities beyond
that of other programming methods with respect to appli-
cations which do not entirely fit into the more traditional
graphics processing paradigm. DataCutter [2] is a powerful
middleware tool for data-parallel application decomposition,
transparent task replication, and task graph execution. Its
use here allows us to leverage all of the parallelism inherent
in the hardware architecture. By analyzing the application
bottlenecks appropriately, we are able to hide much of the
latency incurred by the hardware when analyzing very large
data sets. Additionally, DataCutter enables the overlap of
computation and communication, which are still fundamen-
tal issues in the GPU and multi-core era.

The rest of the paper is organized as follows. Section 2
presents the neuroblastoma image analysis application which
provides the testbed for this new paradigm of cooperation
between multi-core CPUs and GPUs. The specifications
and properties of an example state-of-the-art, multi-socket,
multi-core, multi-GPU cluster are presented in Section 3.
Section 4 focuses on the specifics of the GPU programming
with CUDA and that of the parallelization strategies. The
experimental results are presented in section 5, and section 6
concludes.

2. PATHOLOGICAL IMAGE ANALYSIS

Neuroblastoma is a cancer of the sympathetic nervous sys-
tem which mostly affects children. The prognosis of the
disease is currently based on visual examination under a mi-
croscope of tissue slides by expert pathologists. These tissue
slides are classified into different prognostic groups depend-
ing on the differentiation grade of the neuroblasts among
other issues [25]. Manual examination by pathologists is
an error-prone and very time consuming process which also
may lead to inter- and intra-reader variations. Therefore,
together with our collaborators, we are developing a com-
puterized pathological image analysis system [3, 12, 22, 23,
24] to assist in the determination of the prognosis of the neu-
roblastoma by automatically characterizing stroma regions.

2.1 The algorithm

Figure 1 shows the flowchart of the image analysis algo-
rithm for the classification of stromal development in neu-
roblastoma images [22, 23]. The image analysis occurs in
four stages:

Phase 1: Color conversion. The RGB input image is
converted into the LA*B* color space, which provides color
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Figure 3: The LBP operator on a 3x3 grid.

perceptual uniformity and enables the use of Euclidean dis-
tance in feature calculation [17].

Phase 2: Statistical features. Four second order statisti-
cal features are extracted from each color channel: contrast,
correlation, homogeneity and energy [29]. An intermediate
data structure used during the calculation of those twelve
features is the co-occurrence matrix [6], which represents
how often a pixel with the intensity value ¢ occurs in a spe-
cific spatial relationship to a pixel with the intensity value
j (see Figure 2). The size of the co-occurrence matrix has
a major impact on the workload, but only a marginal influ-
ence on the algorithm’s classification accuracy [23]. There-
fore we have selected a 4x4 co-occurrence matrix for our
experiments, which yields the fastest execution times.
Phase 3: LBP operator. The local binary pattern fea-
ture (LBP) is extracted from the L (luminance) channel to
become the thirteenth feature for texture analysis. Widely
used in many applications such as facial expression recogni-
tion and content based image retrieval [27], LBP is a rota-
tionally invariant operator defined within a 3 x 3 neighbor-
hood of each pixel, where the eight neighbors are examined
to see if their intensity is greater than that of center pixel
p. The results form a binary number b1b2b3babsbsbrbs where
b; = 0 if the intensity of the ith neighbor is less than or
equal to p and 1 otherwise (see Figure 3).

Phase 4: Histogram. Since LBP feature values are in
the range 0 — 255, a histogram is constructed with 256
bins for the entire image, with each bin accumulating the
number of pixels which have that LBP feature value. These
bins are then reduced into ten canonical classes and nor-
malized between 0 and 1 to become the components of a
ten-dimensional vector. The Bhattacharyya distance [21]
is then measured between the LBP feature vector and a
(1,1,1,1,1,1,1,1,1,1) vector to constitute the uniform LBP
feature value used for the stroma classification. The subse-
quent classifier is a computationally inexpensive process, so
we will not mention it further.

2.2 Major challenges

Input tissue samples are digitized at 40x magnification
and stored in TIFF files using JPEG compression and the
RGB color format. Each whole-slide image has a resolu-

tion of 110K x80K pixels in the worst case, which poses two
major challenges:

e A single uncompressed image’s size is well over the
memory capacity of a single GPU. Additionally, pro-
viding balanced parallelization and effective use of clus-
ter resources like disk I/O requires a smaller data gran-
ularity. In order to relieve memory usage and allow for
an efficient parallelization of the computation across
nodes, we decompose the image into 1K x 1K tiles.

e The algorithm takes several hours to run on a single
CPU (see Table 5). This motivates us to study alterna-
tive platforms for its parallel execution. Our selection
of multi-socket and multi-core CPUs combined with
high-end GPUs will give us the opportunity for assess-
ing scalability on both sides.

Tiling and parallelism are in fact tightly coupled, since the
first strategy favors the latter. On a multi-processor system,
each processor may independently perform the image anal-
ysis task on a subset of tiles and return a label indicating
whether the particular image tile is stroma rich or stroma
poor. Finally, labels are gathered on a central host and the
classification map for the whole-slide image is constructed.

Apart from its implementation on a multi-processor sys-
tem, our particular image analysis application is of great
interest for evaluating the memory hierarchy and computa-
tional power of graphics architectures, because it meets a
diverse number of features. For example, color conversion
is a typical streaming operation with no data reuse. The
LBP operator, on the other hand, exhibits a large degree of
data reuse and locality, which typically favors more tradi-
tional, cache-based systems. Statistical features (through a
co-occurrence matrix) and histogram construction both use
extensive indirect array accesses such as those characterizing
irregular computing and reduction operations often found
in linear algebra. These two phases present undesirable fea-
tures for both the CPU and the GPU. In our earlier work,
we have investigated these in the context of Cg program-
ming [23], while here we look at the trade-offs in the context
of CUDA and a parallel implementation using cooperative
cluster of multi-core, multi-socket CPUs and multiple GPUs.

3. GPU CLUSTER TESTBED

In this section we will present the specifications and prop-
erties of a typical, state-of-the-art, multi-socket, multi-core,
multi-GPU cluster. For this purpose we picked the Ohio Su-
percomputer Center’s BALE cluster [1]. The BALE cluster
is comprised of a total of 71 Linux nodes, but our main focus
is the newly added 16 visualization nodes, equipped with two
dual-core AMD Opteron 2218 CPUs and two Nvidia Quadro
FX 5600 GPUs each. The interconnection network for the
BALE cluster is Infiniband. Figure 4 illustrates the archi-
tecture of the visualization nodes, and Table 1 shows the
specifications of the CPU and GPU processors. Below we
will go over some important specifications and features of
the CPUs and GPUs used in our system.

On the CPU side, each node consists of two Opteron
X2 2218 chips, which are dual-core processors running at
2.6 GHz. Each core in the system has a pair of 64 KB 2-way
set associative L1 caches for holding data and instructions,
and a 1 MB 4-way set associative L2 cache which is not
shared among cores but are cache coherent. Each socket



Core 1 Core 2

g g GPU 1.5 GB. Q
5 2 || ALU| FPU| ALU| FPU %adro PRELLVEEN A
22 5600
&3 I I 76 GB/s.| &
’ Text. caﬁhe 1.6 GHz &)
S| IMB.L2 | 1MB.L2 i
8 8 cache cache 4 GB/s| Graphics card T
= v
=E K D | 5
S |l PCl-express o
i e 1 GHz | _\_controller @]ﬁ 4
z |l Al DDR2  HyperTransp. £ 2 .+ 4N 2
S controller _ controller |4 GB/s| 558 ] ) QL |E
g £ | nForced | &2 & &} FpO O &
E 8 GB. Y Gt | S E| e | TE| B | 2|22
5 | DDR2  HyperTransp. 20 23 3| =
|| «=>| Controller  Controller |4 GB/s|Z . » 5| o2
2 |la é‘ To Southbridge s Eﬁ E
—_— A=
=k B
- 2|l 1MB.L2 | 1MB.L2 =
= cache cache
v
— L1 L1
= idg
Sz To Northbridge Local
82|l ALU| FPU| ALU| FPU . . Dis
8‘42 %E nForce430 Tg SATA-IL
Core 1 Core 2 58 g g —>
1 £ | Southbridge [ = 3 GB/s
o8 %8
PCI-express x8 | 1GHz |* GigE 750 GB.
Infiniband [¢ controller
HCA card 2GBfs.
(dual port) I To )
nternet
To other nodes}, 10 GB/s and PESY ! OB/

Infiniband

Figure 4: The BALE supercomputer at a glance.

includes its own dual-channel DDR2-667 memory controller

as well as a single HyperTransport link to access the other

socket’s cache and memory. Each socket can thus deliver

10.6 GB/s for an aggregate memory bandwidth of 21.3 GB/s

to each node’s 8 GB of 667 MHz DDR2. The peak double-

precision performance is 4.4 GFLOPS per core, 8.8 GFLOPS

per socket, 17.6 GFLOPS per node. The peak single-precision
performance per node is 35.2 GFLOPS, providing an aggre-

gate single-precision performance of 563.2 GFLOPS for the

16 visualization nodes.

On the GPU side, each node has two Nvidia Quadro FX
5600 GPUs based on the G80 architecture. From a graphics
viewpoint, the G80 can be seen as a 4-stage graphics pipeline
for shading, texturing, rasterizing and coloring. As a parallel
architecture, however, the G80 becomes a SIMD processor
endowed with 128 cores, and CUDA is the programming
interface to use it for general purpose computing. From
the CUDA perspective, cores are organized into 16 multi-
processors, each having a set of 32-bit registers, constants
and texture caches, and a 16 KB memory shared by the
eight cores inside each multi-processor. In any given cycle,
each core executes the same instruction on different data,
and communication between multi-processors is performed
through global memory (see Figure 6).

4. TOOLS AND GPU IMPLEMENTATION

In order to give an example of the cooperative relationship
between GPUs and multi-core CPUs, this section shows the
details of the CUDA [5] implementation of the image analy-
sis algorithm as well as the multi-node, multi-core and multi-
GPU parallelization using DataCutter middleware [2]. We

Table 1: Hardware features of the CPU and GPU
used on each node of the testbed cluster. The
GLFLOPS listed are for 32-bit, single-precision
floating-point arithmetic.

CPU from AMD GPU from Nvidia
Board ASUS KFN32-D SLI Quadro FX 5600
Processor model Opteron X2 2218 G80
Processor speed 2.6 GHz 600/1350 MHz
Number of sockets 2 2

Hardware feature

Number of cores 2 128

Peak processing 2 x 8.8 GFLOPS 2 x 330 GFLOPS
Memory size 8 GB 2x1.5GB
Memory bus width 2 x 64 bits 2 x 384 bits
Memory speed 667 MHz 1600 MHz
Memory bandwidth 2 x 10.8 GB/s. 2 x 76.8 GB/s

Without using the GPU |

|
1
single CPU socket
single CPU,core

single graphios card
|

Involving the GPU

Single node

Multiprocessor

DataCutter + CUDA (upto 16
DataCutter dual CPU socket / node nodes)
dual CPU socket / node dual CPU core / socket
dual CPU core / socket

no graphics card single graphics card

dual graphics card

|
|
|
|
|
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

increasing performance
and programming effort

Figure 5: The programming approaches and their
effect on performance, both single node and parallel.

have used Matlab [3], C++ and Cg implementations [23] as
a baseline for our performance comparisons. Programming
tools and paradigms are summarized in Figure 5.

4.1 CUDA

The CUDA programming interface consists of a set of C
language library functions, and the CUDA-specific compiler
generates the executable code for the GPU. Since CUDA is
designed for generic computing, it does not suffer from ex-
cessive constraints when accessing memory (as Cg [4] does),
but memory access times do vary for different memory types.

4.1.1 Computation Paradigm

CUDA exposes a model to the developer consisting of a
collection of threads running in parallel. There are several
other elements involved in the execution which bear men-
tioning, since they are unique to graphics processor pro-
gramming with CUDA:

e A program is decomposed into blocks that run logi-
cally in parallel (physically only if there are resources
available). Assembled by the developer, a block is a
group of threads that is mapped to a single multi-
processor, where they can share 16 Kbytes of memory
(see Figure 6). All threads of concurrent blocks on
a single multi-processor divide the resources available
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equally amongst themselves. The data is also divided
amongst all of the threads in a SIMD fashion with a
decomposition explicitly managed by the developer.

e A warp is a collection of threads that can actually
run concurrently (with no time sharing) on all of the
multi-processors. The size of the warp (32 threads on
the G80) is less than the total number of available
cores (128 on the G80) due to memory access limita-
tions. The developer has the freedom to determine the
number of threads to be executed (up to a limit intrin-
sic to CUDA), but if there are more threads than the
warp size, they are time-shared on the actual hardware
resources.

e A kernel is the actual code to be executed by each
thread; the executable is shared among all of the threads
in the system. Conditional execution of different oper-
ations on each multi-processor can be achieved based
on a unique thread ID.

The CUDA documentation states that a single block should
contain 128-256 threads to maximize execution efficiency,
with a CUDA-imposed maximum of 512. Other hardware
and software limitations are listed in Table 2, where we have
ranked them according to their impact on the developer’s
implementation and overall performance based on our own
experience.

4.1.2 Memory and registers

In the CUDA model, all of the threads can access all of the
GPU memory, but, as expected, there is a performance boost
when each thread reads data resident in the shared memory
area, particularly when the data resides in several different
memory banks (each bank can only support one memory
access at a time, and therefore simultaneous accesses are
serialized, hurting parallelism). The use of up to 16 KB of
shared memory is explicit within a thread, which allows the
developer to solve bank conflicts wisely. However, this type
of optimization is often very difficult, but can also be very
rewarding. Execution times may decrease by as much as 10x
for vector operations and latency hiding may increase by up
to 2.5x [8].

Table 2: Major hardware and software limitations
with CUDA. Constraints are listed for the G80 GPU
and categorized according to their difficulty of opti-
mization and impact on the overall performance.

Parameter Limitation | Impact
Multi-Processors per GPU 16 Low
Processors / Multi-Processor 8 Low
Threads / Warp 32 Low
Thread Blocks / Multi-Processor 8 [ Medium
Threads / Block 512 | Medium
Threads / Multi-Processor 768 High
32-bit registers / Multi-Processor 8192 High
Shared Memory / Multi-Processor || 16 Kbytes High

When developing applications for GPUs with CUDA, the
management of registers becomes important as a limiting
factor for the amount of parallelism we can exploit. Each
multi-processor contains 8,192 registers which will be split
evenly among all the threads of the blocks assigned to that
multi-processor. Hence, the number of registers needed in
the computation will affect the number of threads able to
be executed simultaneously, given the constraints outlined
in Table 2. For example, if a kernel (and therefore a thread)
consumes 16 registers, only 512 threads can be assigned to a
single multi-processor, and this can be achieved by using 1
block with 512 threads, 2 blocks of 256 threads, and so on.

4.1.3 Implementation of Image Analysis Code

We have used a typical CUDA development cycle, which
we will describe briefly. First, the code was compiled us-
ing the CUDA compiler and a special flag that outputs the
hardware resources (memory and registers) consumed by the
kernel. Using these values, we were able to analytically de-
termine the number of threads and blocks that were needed
to use a multi-processor with maximum efficiency. If a sat-
isfactory efficiency could not be achieved, the code would
need revision to reduce the memory footprint.

Due to the high floating point computation performance
of the GPU, memory access becomes the bottleneck in many
parts of our application. The input image tile (1IKx1Kx3
bytes) is much larger than the size of the multi-processor
shared memory (16 KB), so we prioritize data structures like
partial co-occurrence matrices (used in phase 2) and partial
histograms (phase 4). However, in phase 1, even though the
tile pixels are swept over without being reused, the execution
time was lower when using shared memory (2.32 ms versus
2.77 ms - see Table 3). Also, in phase 3, the input pixels
were moved to shared memory because the calculation of the
LBP feature shows high data reuse.

In order to illustrate the progression of a typical CUDA
implementation, we discuss the specific optimizations ap-
plied to each phase of the image analysis application below.

Phase 1: Color conversion.

As a departure point, we started using 24-bit float3 data
types for each color channel. However, extra performance
can be obtained by padding the RGB input to match the ex-
pected data width of 32-bits, which simplifies all subsequent
optimizations involving shared memory. This is called data
coalescing, and for this phase it saved 35% of the computa-
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Figure 7: Phase 2: Local co-occurrence matrices in CUDA. Assigning banks in shared memory to each thread
to avoid conflicts when computing co-occurrence matrices.

tion time at the expense of communication time (see code
1.11 in Table 3). Next, it was found that 8-bit uchar data
types were sufficient for the precision of the application. As
expected, this reduces the communication time by nearly a
factor of 4.

We then used the special CUDA compilation flag to find
that the color conversion kernel requires 13 registers and
1064 bytes of shared memory, leading to a maximum proces-
sor occupancy of 75% when allocating between 176 and 192
threads. However, we chose to allocate 256 threads instead,
trading processor occupancy (from 75% down to 67%) for
better load balance, since 256 is a multiple of 32 (maximum
threads per warp) and a divisor of 768 (maximum threads
per multi-processor) and 1024 (maximum pixels per image).
The result was that the execution times improved slightly
(see code 1.30 versus 1.40 in Table 3 - version 1.40 reports
the minimum time obtained for all threads/block cases be-
tween 169 and 192, which turns out to be 169 threads). Un-
fortunately, maximum performance here is limited because
each thread needs more than 10 registers (11 to be precise),
which, as discussed earlier, prevents us from reaching the
maximum occupancy of 768 threads within a multiproces-
sor. The optimal execution time for this phase was 2.98
ms for pixel transfer and 2.32 ms for computing the color
conversion, as reflected in Table 3.

Phase 2: Statistical features.

This kernel requires 9 registers and 4132 bytes of shared
memory, which allowed us to allocate 3 parallel blocks of
256 threads. This perfect usage of all 768 threads filled all
of the G80 hardware resources for a 100% occupancy fac-
tor. Pixels are equally distributed among threads and local
co-occurrence matrices are simultaneously computed within
them. Finally, partial results are accumulated through a
reduction operator.

It was found to be challenging to compute co-occurrence
matrices in shared memory while avoiding conflicts access-
ing its 16 banks. With a grid of 256 threads arranged in
a 16x16 grid, the naive thread deployment would force the
32 threads in a warp to access only 8 shared-memory banks,
which would severely limit parallelism and performance. We
found that by intelligently shuffling the active threads com-
bined into a warp, the local matrix computation and the
subsequent global matrix aggregation operation can pro-
ceed without forcing threads to wait for bank access (see
Figure 7). This complex optimization solves all conflicts
when accessing memory banks, reducing the execution time
to 2.58 ms from 4.48 ms. Without using shared memory, a
straightforward implementation consumes 15.40 ms instead
(see Table 3).



Table 3: Major CUDA optimizations in the image analysis application. Execution times correspond to an
isolated 1Kx1K tile on a single GPU. Phase 1 shows the times for CPU to GPU communication and actual
GPU computation. Phases 2 and 3 show only GPU computation (no communication is required). Phase 4
shows the times for GPU to CPU communication and actual GPU computation. The fifth column in the
table refers to conflicts arising when several threads simultaneously access the same bank of shared memory.

” Analysis ‘ Code tag | Description / Optimizations ‘ In shared Conflicts [[ Execution time (millisecs.) ||
Phase memory solved | Comm. Comput. Total ||
1: 1.10 Baseline version: Using float3 per color channel All in global memory 8.49 3.71 12.20
RGB to 1.11 Coalescing (Alpha channel inserted) on float3 All in global memory 10.79 2.44  13.23
LA*B* 1.12 Replacing float3 by uchar (256 threads/block) All in global memory 2.98 2.77 5.75
color 1.20, 1.30 | Using shared memory (256 threads/block) Pixels Unneeded 2.98 2.32 5.30
conversion | 1.40 Using between 169 and 192 threads/block Pixels Unneeded 2.98 2.43 5.41
2: 2.10 Baseline version: Using global memory All in global memory None 15.40 15.40
Statistical | 2.20 Using shared memory for co-occurrence matrices Co-oc. mat. No None 4.48 4.48
features 2.30 Solving conflicts on shared memory banks Co-oc. mat. Yes None 2.58 2.58
3: 3.10 Baseline version: Special threads on grid borders All in global memory None 2.29 2.29
LBP 3.20, 3.30 | Blocks of 16x16 threads, 14x14 computing Pixels Unneeded None 1.82 1.82
operator 3.40 Blocks of 8x8 threads, 6x6 of them computing Pixels Unneeded None 2.31 2.31
4: 4.10 Baseline version: Using global memory All in global memory 4.02 2.08 6.10
Histogram | 4.20 Using shared memory for local histograms Local hist. No 0.31 0.61 0.92

4.30 Solving inter-warp conflicts in mem. banks Local hist. Inter-warp 0.31 0.59 0.90
Total »(*.10) Baseline version All in global memory 12.51 23.48  35.99
GPU 3(*.20) Involving shared memory Enabled No 3.29 9.23 12.52
time >(*.30) Optimal version Enabled Most 3.29 7.31 10.60

Total CPU time:

(1:) 880.31 ms. + (2:) 43.24 ms. + (3:) 156.28 ms. + (4:) 7.49 ms. — 1087.32
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Figure 8: Phase 3: LBP operator in CUDA. We al-
locate more memory than computing threads and
overlap two rows and columns of the external frame
on neighbor blocks in order to cover the whole com-
putational domain homogeneously.

Phase 3: LBP operator.

The computation of the LBP feature entails a convolution
with a 3x3 mask, followed by a binary to decimal conversion
(see Figure 3). Each thread requires 10 registers and each
block of threads uses 296 bytes of shared memory. Due to
the memory usage characteristics, we were able to allocate
256 threads in a 16 x 16 grid to reach 100% occupancy on
the G80. Each thread reads a pixel from global memory
and stores it in a shared memory data structure. Those

threads located on the border of the grid are unable to com-
pute, since they do not have access to their neighbor data
(see Figure 8); they exit the kernel at this stage. The LBP
for the border regions will be computed by the next block
of threads, since we overlap the thread layout by two rows
and two columns of pixels each time. By using this strat-
egy, we incur 23% idle cycles and the associated redundant
memory accesses, but the computation is more homogeneous
and the threads are more lightweight. As compared to the
heterogeneous version, where there are no idle cycles and no
memory redundancy, the homogeneous version is faster by
1.25x, leading to the lowest execution time of 1.82 ms.
Since the LBP kernel is very regular, we can select dif-
ferent sizes of thread deployments, provided a square grid
is used. Therefore, we investigated the effect of different
thread/block ratios. We gathered values for grids of threads
of sizes 20x20 (2.02 ms), 18x18 (1.90 ms), 16x16 (1.82 ms
- optimal), 14x14 (1.89 ms), 12x12 (2.00 ms), 10x10 (2.16
ms), and 8x8 (2.31 ms - reported in Table 3 as version 3.40).
A grid of 16x16 threads is a popular choice among expert
programmers to maximize performance in CUDA; that said,
our intention was more to quantify the penalty we may incur
by making an inappropriate choice for thread allocation.

Phase 4: Histogram.

The implementation of this phase is based on a histogram
kernel included with the CUDA library [20], where the global
reduction is delegated to the CPU. We deemed this an ap-
propriate solution, since the histogram is only computed
once per tile, and does not incur a large execution time cost.
The execution time for this last phase is 0.9 ms.

Table 3 summarizes all of the major optimizations per-
formed within CUDA on each phase along with their execu-
tion times. Since the CUDA programming model does not
allow the developer to assign different kernels to different
multi-processors, the four phases are sequentially executed
and the whole GPU is used during each phase independently.



TIFF TIFF
Reader Decomp

Tile

Analysis
u il] —

Tile Computation Nodes

1/0 Reader Nodes
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application.

Overall, by using CUDA to implement the image analysis,
we were able to reduce the execution time by a factor of 3-5
over the times obtained by Cg (see Table 5 for times on an
entire image), by an additional factor of 3 when enabling
shared memory, and by an extra 20% when solving memory
conflicts as much as possible for an optimal execution.

4.2 DataCutter

We employed DataCutter middleware for the paralleliza-
tion of the testbed image analysis computation. DataCut-
ter [2] is a component-based middleware framework and pro-
vides a coarse-grained data flow system allowing combined
use of task- and data-parallelism. Applications are decom-
posed into sequential tasks (filters) with data dependencies
between them. Data flows from filter to filter through logi-
cal streams in a buffered, non-blocking manner. This buffer-
ing allows for the easy overlap of data communication and
computation, which allows for the hiding of disk and inter-
node communication latencies. The DataCutter runtime
system supports efficient execution of filters on heteroge-
neous, multi-socket, and multi-core compute clusters. The
runtime system performs all steps necessary to instantiate
filters on the desired hosts, to connect all logical endpoints,
and to call the filter’s interface functions for processing work.
Each filter executes within a separate POSIX thread, allow-
ing for CPU, I/O and communication overlap. Data ex-
change between two filters on the same host is carried out
by memory copy or pointer operations, while TCP sockets or
MPI communications (in order to leverage low latency high
bandwidth interconnects such as Infiniband) are employed
for communication between filters on different hosts.

Our image analysis application is easily divided into three
stages, each of which is implemented as a single filter type.
These are: a TIFF-Reader filter that reads binary TIFF
tiles, a TIFF-Decompressor filter that decompresses TIFF
tiles and produces RGB images, and a Tile-Analysis filter
where the real image analysis computation is carried out.
A layout which includes one each of these three filter types
constitutes a complete image analysis task graph, while mul-
tiple copies of each filter type allows for quick parallelization
and efficient execution. Figure 9 shows the general layout
of the system. One or more reader nodes (with one TIFF-
Reader filter each) read the binary TIFF image tiles from
the disk and write them to the stream leading to the TIFF-
Decompressor. One or more TIFF-Decompresser filters are
able to coexist on the same node and simply take the binary
TIFF file and decompress it into the appropriate RGBA tu-

Table 4: Properties of the three slides used in our
experiments.

Name Resolution in pixels | Number of 1Kx1K tiles
SMALL 32,980 x 66,426 33 x 65 = 2,145
MEDIUM 76,543 x 63,024 75 x 62 = 4,659
LARGE 109,110 x 80,828 107 x 79 = 8,453

Table 5: Execution times for the image analysis ap-
plication for different programming methods and
hardware platforms. These times do not include
disk I/O or decompression overheads. The image
tile size is 1IKx1K pixels. The co-occurrence matrix
size is 4x4. The values in the CUDA column repre-
sent running on one and two GPUs.

On the CPU On the GPU
Image size Matlab C++ Cg CUDA
SMALL 2h 57’ 29” 43’ 40” || 1’ 02” 27, 147
MEDIUM 6h 25’ 45” | 1h 34’ 51”7 || 2’ 08” 58”7, 32”
LARGE 11h 39’ 28” | 2h 51’ 23” || 3’ 54” | 1’ 47", 58”

ples. This decompressed image data is then written to the
input stream to the Image-Analysis filter on the same node.
When the Tile-Analysis filter makes use of the GPU, the
ability for multiple Tiff-Decompressor filters to feed data to
the GPU allows for full utilization of the GPU’s through-
put. Placing both the TIFF-Decompressor and the Image-
Analysis filters on the same node has the benefit of saving
memory bandwidth by leaving the largest representation of
each TIFF tile in place and simply transferring the pointer.
The component-based programming model of DataCut-
ter allows us to easily develop and deploy image analysis
applications that utilize GPUs as co-processors. By simply
replacing the C++ Tile- Analysis filters with filters using the
GPU, we can quickly develop a parallel code that efficiently
executes on a multi-socket, multi-core, multi-GPU cluster.
The layout, the two TIFF-Reader and TIFF-Decompressor
filters, and the entire parallelization system are reusable.

S. EXPERIMENTAL RESULTS

Our experiments were performed on the BALE cluster
(see Section 3) using the 16 visualization nodes and an addi-
tional six compute nodes as reader nodes, in order to provide
enough disk bandwidth to avoid the disk I/O bottleneck.
Further, these reader nodes had their system file caches
preloaded with several discarded experiments to ensure ex-
tremely high I/O from the upstream, TIFF-READER fil-
ters. We feel this is a suitable experimental setup to use;
any production cluster designed to analyze this kind of im-
age data with very high performance with multiple GPUs
and a fast interconnect can reasonably be said to have par-
allel disks providing high I/O bandwidth.

In our experiments, we have used three different digitized
pathology images. Table 4 summarizes their features.

The first set of experiments shows the single node CPU
and GPU performance for the various implementations of
the image analysis algorithm. Figure 10 shows the execu-
tion time and overhead time of each implementation when
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Figure 10: Execution time comparison of all imple-
mentations of the image analysis codes running on
a single node using SMALL image.

Single Node Image Analysis

500
HCg

mDC-Cyg

| ECUDA

400 ODC-CUDA
WCUDA (2 GPU)
WDC-CUDA (2 GPU)

® 300r

Time (s

2001

1001 -

MEDIUM LARGE

Image Size

SMALL
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DataCutter implementations running on a single
node using all three input images.

analyzing the SMALL image. The first four stacked bars rep-
resent CPU-only implementations, while the last six stacked
bars bring one or two GPUs into the fold. Those bars with
labels beginning with ‘DC’ are results from those implemen-
tations using DataCutter and those without the ‘DC’ label
are the basic, serial implementations.

The execution time in Figure 10 (shown by the lower,
darker portion of each bar) is due solely to the actual image
analysis, while the overhead (shown by the upper, lighter
portion of each bar) is caused by disk I/O, TIFF decom-
pression, remote process invocation, and network latencies,
where applicable. In this experiment, the most important
thing to note is the two to three orders of magnitude of
performance speedup when moving from the CPU-based so-
lutions to the GPU-based solutions. While a large amount
of performance is gained by moving away from Matlab, the
C++ implementations are still far slower than those which
are GPU-based. Additionally, the DataCutter versions of
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Figure 12: Parallel execution times of C++4, Cg,
and CUDA based DataCutter implementations us-
ing three input images while varying the number of
nodes from 1 to 16.

the GPU-based image analysis algorithms are able to shorten
the execution time for the entire image versus the non-
DataCutter versions, since the decoupled, multi-threaded
nature of DataCutter allows the image analysis to overlap
with the TIFF tile decompression and the disk I/O. Unfor-
tunately, the CUDA implementation of the image analysis
algorithm is fast enough to cause the TIFF tile decompres-
sion stage to become a bottleneck when 2 GPUs are used.
This stalling, incurred by the GPUs waiting for tiles to an-
alyze, prevents both GPUs from being fully utilized. Since
four C++ threads shows a clear advantage over running a
single thread, all future C++ results will be comprised of
the DataCutter version with four tile analysis threads per
node.

Figure 11 shows the performance comparison of the GPU-
based implementations of the analysis routine for our three
images. The main point to take from this chart is that there
is a linear relationship between the execution time and the
overall size of the image under analysis in all of the im-
plementations. Unfortunately, even when analyzing large
images, making full use of 2 GPUs is hindered by the as-
sociated overheads; this being the case, we will not show 2
GPU results for the remainder of the experiments.

Figure 12 shows the scalability of our solution with respect
to the number of nodes. The numbers of nodes involved in
the image analysis are 1,2,4,8,12,16, and are represented
by the bars in the figure from left to right, six in each color
group. As in Figure 11, the lower, darker-colored portion of
each bar represents the image analysis time, while the up-
per, lighter-colored portion of each bar shows the aggregated
overhead. This type of image analysis computation scales
extremely well, resulting in image analysis execution times
which decrease nearly linearly with the number of nodes.
Further, the total analysis times for the DataCutter/CUDA
implementation are under four seconds for the SMALL image,
under seven seconds for the MEDIUM image, and just over
eleven seconds for the LARGE image, when running on six-
teen nodes. Compared with the single node CPU Matlab
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computation time of nearly three hours for the SMALL image
and almost twelve hours for the LARGE image, this represents
a tangible benefit of increased productivity. In the interest
of increased chart legibility, we have cropped the single node
C++ result. Its values are 629.42 seconds of image analysis
time and 29.7 seconds of overhead. Additionally, since the
main focus of this paper is the GPU results, and since the
C++ result is shown to scale well in the worst-case (because
it incurs the lowest proportional overhead), we have chosen
to remove it from the figures showing results for the MEDIUM
and LARGE images.

Figure 13 shows the parallel speedup of the execution time
versus the number of nodes. As seen in the figures, there is
nearly linear speedup since the tiles are able to be decom-
pressed and processed entirely independently of each other.
However, due to the small execution times in the GPU-
based implementations, the various overheads (comprised
of remote process startup, network, and TIFF decompres-
sion latencies) begin to become comparable in overall time
to the total time spent per node processing the image tiles.
For instance, on sixteen nodes, the CUDA implementation
requires at most 1.80 seconds of computation to compute
2,145 tiles. However, despite concurrently running three
TIFF-Decompressor filters, the decompression time alone for
each node’s allotment of 135 tiles could range from 0.3 sec-
onds to 1.3 seconds.

Nearly linear speedup could be achieved in a production
environment, however, since it is reasonable to assume that
remote process invocation would only occur once for many
images which are to be analyzed. Under these server-like
circumstances, only the I/O system and network latencies
would comprise the system overheads.

6. CONCLUSIONS

In this paper, we have presented design trade-offs and a
performance evaluation of a sample biomedical image anal-
ysis application running on a cooperative cluster of CPUs
and GPUs.

By implementing algorithms on GPUs using CUDA and
using DataCutter to parallelize the computation within and
across nodes, we establish a solid heterogeneous and coop-
erative multi-processor platform where all the granularities
of parallelism inherent in the architecture and in the ap-
plication are fully exploited: multi-node (using DataCutter
for data partitioning across nodes), SMP and thread-level
(using DataCutter to fully utilize the available on-node and
on-chip hardware resources), SIMD (using CUDA to fully
populate the 128 stream processors of the GPU with work),
and finally, ILP (Instruction Level Parallelism, by setting up
blocks of computational threads within the GPU execution).

Our experimental results show great success for our tech-
niques, first by decreasing the execution time on a single
CPU/GPU node by using different intra-node optimizations,
and then extending those performance gains to inter-node
parallelism for a scalable multi-processor execution. When
analyzing the largest test image and including overheads, on
the 16 node cluster configuration, the single GPU DataCutter-
CUDA implementation is 31.3 times faster than the serial
CUDA implementation. By using two GPUs per node, the
single-node time to process the image is under one minute,
if you ignore the overheads associated with disk I/O and tile
decompression, proving that the CUDA method is extremely
powerful. Additionally, the use of DataCutter to overlap the
computation with disk I/O and tile decompression helps the
GPU stay as busy as possible. This results in up to 12.94
speedup on 16 nodes using GPU-based DataCutter imple-
mentations.

GPUs are highly scalable and are evolving towards general-
purpose architectures [10]; we envision biomedical image
processing as one of the most exciting fields able to benefit
from the use of GPUs. Additionally, new tools like CUDA [5]
may assist non-computer scientists with a more friendly in-
terface for adapting biomedical applications to GPUs. This
computational power may then be combined with DataCut-
ter to parallelize the computation across clusters of GPUs
as outlined in this paper to provide real-time response to
clinicians of all types.
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