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A stochastic realization theory for a discrete-time stationary process with an exogenous input is
developed by extending the classical CCA technique. Some stochastic subspace identixcation methods
are derived by adapting the realization procedure to xnite input}output data.

Abstract

This paper solves the stochastic realization problem for a discrete-time stationary process with an exogenous input. The oblique
projection of the future outputs on the space of the past observations along the space of the future inputs is factorized as a product of
the extended observability matrix and the state vector. The state vector is chosen by using the canonical correlation analysis (CCA) of
past and future conditioned on the future inputs. We then derive the state equations of the optimal predictor of the future outputs in
terms of the state vector and the future inputs. These equations lead to a forward innovation model for the output process in the
presence of exogenous inputs. The basic step of the realization procedure is a factorization of the conditional covariance matrix of
future outputs and past data given future inputs. This factorization is based on CCA and can be easily adapted to "nite input}output
data. We derive four stochastic subspace identi"cation algorithms which adapt the realization procedure to "nite input}output data.
Numerical results are also included. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Subspace identi"cation methods involve geometric op-
erations on subspaces spanned by the column or row
vectors of certain block Hankel matrices formed by the
input}output data. These operations are performed nu-
merically in a reliable way based on the singular value
decomposition (SVD) and QR decomposition (Golub
& Van Loan, 1989); a great advantage being that the
problem of local minima and the di$cult model selection
problem inherent in the classical parameter optimization
approaches to MIMO identi"cation (Ljung, 1987) are

qPart of this paper was presented at the 11th IFAC Symposium
on System Identi"cation, Kitakyushu, Japan during July 8}11, 1997.
This paper was recommended for publication in revised form by
Associate Editor P. M. J. Van den Hof, under the direction of Editor
T. SoK derstroK m.

*Corresponding author. Tel.: #81-75-753-5502; fax: #81-75-761-
2437.

E-mail address: katayama@kuamp.kyoto-u.ac.jp (T. Katayama)

completely avoided, except for the estimation of the
state-space dimension.

These methods have attracted much interest in the past
years and there is a growing literature on the subject
(Jansson & Wahlberg, 1996; Larimore, 1990; Moonen
& Vandewalle, 1990; Peternell, Scherrer & Deistler, 1996;
Van Overschee & De Moor, 1993, 1994, 1996; Verhaegen
& Dewilde, 1992; Verhaegen, 1994; Viberg, 1995). Rela-
tions among existing subspace identi"cation methods
have been discussed by Van Overschee and De Moor
(1996) and others. Recently, Lindquist and Picci
(1996a,b) have interpreted subspace identi"cation of
state-space models for time series from the point of view
of realization theory and thereby analyzed some of the
possible pitfalls of the method.

A minimal stochastic realization theory based on the
canonical correlation analysis (CCA) of the future and
the past of a stochastic process has been developed by
Akaike in his pioneering work (Akaike, 1974, 1975, 1976).
In this approach, the state space is de"ned as a linear
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space spanned by the best predictors of the future based
on the past and a basis in this space is naturally provided
by the canonical variates. The computation associated
with the CCA technique is performed by the SVD of
a normalized block Hankel matrix formed by lagged
covariance matrices of the process. Akaike also gave
a stochastic interpretation of the basic Ho-Kalman real-
ization method (Ho & Kalman, 1966) and other related
realization algorithms.

The idea of using the CCA technique for stochastic
state-space modeling and model reduction has been fur-
ther developed by Desai, Pal and Kirkpatrick (1985).
Aoki (1990) has also proposed a stochastic realization
approach to economic time-series identi"cation based on
a similar SVD technique. A general geometric theory for
solving the stochastic realization problem of time series
has been developed by Lindquist and Picci (1985, 1991).

One could say that the relation of stochastic realiz-
ation theory to subspace identi"cation of stationary time
series is now well understood. Instead there is no com-
plete theory available so far for the realization of stochas-
tic systems excited by an exogenous input. Picci and
Katayama (1996) have recently proposed an approach
based on separating the `deterministica and `stochastica
components of the output and shown a possible applica-
tion to subspace identi"cation of state-space systems
with exogenous inputs. But there is still insu$cient nu-
merical experience concerning the e!ectiveness of this
decomposition.

Practically, all subspace identi"cation methods for
systems with inputs reported in the literature use an
instrumental variable approach of one sort or another.
Sometimes the computational details tend to obscure the
main idea. The sound conceptual procedure of "rst build-
ing a state space by projecting the future onto the past
and then picking a well-conditioned basis to compute the
matrices A, C, CM , etc., which is transparent in the seminal
subspace paper of Van Overschee and De Moor (1993)
for time series, is somewhat di$cult to implement when
the identi"cation problem involves exogenous inputs.
The basic realization ideas get lost in the (sometimes
complicated) computations resulting from a variety of
possible choices of instruments to compute the observ-
ability matrix. We may attribute this state of a!airs to the
fact that stochastic realization with inputs is, so far,
poorly understood.

Motivated by the above, in this paper, we consider the
realization problem for linear stationary stochastic sys-
tems with an exogenous input. The approach to stochas-
tic realization used here is based on oblique projections
and conditional CCA which generalize in a natural way
the procedure used in realization of time series (with-
out inputs). We propose some subspace identi"cation
methods based on the realization procedure which are
also meant to shed light on the basic principles underly-
ing some well-known papers on subspace identi"cation

(Larimore, 1990; Van Overschee & De Moor, 1994, 1996;
Verhaegen & Dewilde, 1992; Verhaegen, 1994) and to
allow comparisons.

The construction of a state-space model involves the
linear predictor of the future output based on the future
inputs and the past observations and is solved by using
representation results for two corresponding oblique
projection operators. The latter are a basic ingredient in
this problem since, as observed by Larimore (1990), the
e!ect of the future inputs is to be removed from the future
outputs in order to construct state-space systems with an
exogenous input. In the next section, it will be clear how
oblique projections serve precisely this purpose.

The organization of the paper is as follows. In Section 2,
we present some preliminary mathematical facts about
oblique projection in Hilbert spaces and consider a linear
prediction problem for the future outputs based on the
joint past of input and output variables. We derive two
discrete Wiener}Hopf-type equations satis"ed by the
oblique projection operators. In Section 3, we de"ne the
state vector based on the factorization of a block Hankel
matrix using the CCA technique, and construct a forward
innovation model for the stochastic system with
exogenous inputs. We also develop an idea of stochastic
realization based on "nite data. In Section 4, we present
two methods of solving the Wiener}Hopf equations
based on "nite input}output data. Section 5 derives four
subspace identi"cation algorithms and some numerical
results are shown in Section 6. The conclusion is given in
Section 7. The appendix contains some proofs of tech-
nical character.

2. Construction of the predictor space

2.1. Preliminaries

Consider two discrete-time wide-sense stationary vec-
tor processes Mu(t), y(t), t"0,$1,2N of respective di-
mensions m and p. The "rst component u(t) models the
input signal while the second y(t), the output of some
unknown linear stochastic system which we want to
construct from observed input}output data. Throughout
this paper, we shall assume that the joint process (u, y) is
a stationary purely non-deterministic full rank process
(Rozanov, 1963). It is also assumed that the two processes
are zero-mean and have "nite joint covariance matrices.

A basic step in solving this realization problem, which
is also the core of the subspace identi"cation algorithms
presented later on, is the construction of the state space of
the system at some chosen instant of time t. In Picci and
Katayama (1996) and Picci (1997), a state-space con-
struction was proposed which can be implemented sepa-
rately for the two orthogonal components, called the
`deterministica and the `stochastica components of the
output process. The decomposition makes sense under
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a technical condition of absence of feedback (which we
shall also assume later on).

In this paper, we shall instead construct the minimal
state space of the realization without the preliminary
decomposition of the output process considered in the
two previous references. It will be shown (constructively
in Section 3) that under absence of feedback from y
to u, the minimal state space leading to minimal causal
stationary realizations of the process y involving the
exogenous process u as an input variable, is the so-called
forward predictor space of y, i.e. a subspace of random
variables obtained by projecting the future of the process
y obliquely onto the joint past of y and u. This projection
onto the joint past space we shall now prepare to analyze.

Let t be a `presenta time and let k be a positive integer.
We de"ne the stacked vectors of past and future inputs
and stacked vectors of past and future outputs as

u
~
(t) :"C

u(t!1)

u(t!2)

F D , u
`
(t) :"C

u(t)

u(t#1)

F

u(t#k!1)D
and

y
~
(t) :"C

y(t!1)

y(t!2)

F D , y
`
(t) :"C

y(t)

y(t#1)

F

y(t#k!1)D,
where the present is conventionally included in the fu-
ture. For notational simplicity we shall drop the sub-
scripts and write

p(t) :"C
u
~
(t)

y
~
(t)D [R]1 past observations],

f (t) :"y
`

(t) [kp]1 future outputs].

It should be noted that the dimension of p(t) is in"nite,
whereas those of f (t) and u

`
(t) are "nite.

In the following, s denotes (closed) vector sum of
subspaces. Let P

t~
, Y

t~
and U

t`
be the linear spaces of

second order random variables spanned by the past p(t),
by y

~
(t) and by the future inputs u

`
(t), respectively.

These spaces are assumed to be closed with respect to the
usual root-mean-square norm DDmDD :"[EMm2N]1@2, where
EM ) N denotes mathematical expectation. Thus, P

t~
,

Y
t~

and U
t`

are thought of as Hilbert subspaces of an
ambient Hilbert space H :"UsY containing all linear
functionals of the joint process (u, y).

Suppose that A is a subspace of H. The orthogonal
projection of b3H onto the subspace A is denoted by
EK Mb DAN or by b DA for short. Let AM be the orthogonal
complement of ALH. Then the orthogonal projection
of b onto AM is de"ned by b DAM :"b!(b DA). Suppose

further that A is generated by a random vector a; then
the orthogonal projection of b3H onto A can be ex-
pressed in terms of a by the well-known formula

b DA"EMba@NEMaa@Nsa"&
ab

&s
aa
a :"b D a,

where &
ab

:"EMab@N is the covariance matrix of the two
random vectors a and b, the prime denotes the transpose
and ( ) )s is the pseudo-inverse (Golub & Van Loan, 1989).
The orthogonal projection of b onto AM can also be
expressed in terms of a and is denoted by b D aM.

2.2. Orthogonal and oblique projections

The following is a basic technical result used in this
paper.

Lemma 1. Let y, a and b be random vectors with compo-
nents in H, let A"spanMaN, B"spanMbN and assume
that AWB"M0N. Then the vectors %(y)a, '(y)b in the
orthogonal projection

EK My DAsBN

"[EMya@N EMyb@N]C
EMaa@N EMab@N

EMba@N EMbb@ND
s

C
a

bD
:"%(y)a#'(y)b (1)

are the oblique projections of y onto A along B and of
y onto B along A, respectively. Moreover, dexne the condi-
tional covariance matrices

&
aa@b

:"EM(a D bM)(a D bM)@N, &
ya@b

:"EM(y D bM)(a D bM)@N,

&
yb@a

:"EM(y D aM)(b D aM)@N, &
bb@a

:"EM(b D aM)(b D aM)@N.

Then the matrices %(y) and '(y) satisfy the discrete
Wiener}Hopf-type equations

%(y)&
aa@b

"&
ya@b

, '(y)&
bb@a

"&
yb@a

(2)

in which &
aa@b

, &
bb@a

are nonsingular if so are &
aa
, &

bb
.

Proof. The formulae for % and ' are easily proved by
using1

C
A B

C DD
~1

"C
*~1 !*~1BD~1

!D~1C*~1 D~1#D~1C*~1BD~1D
where * :"A!BD~1C is the Schur complement. Since
A"EMaa@N, B"C@"EMab@N, D"EMbb@N, we have
*"EM(a D bM)(a D bM)@N"&

aa@b
. Thus, expanding the "rst

block row of (1) it can be shown that

%(y)"EMya@N*~1!EMyb@NEMbb@N~1EMba@N*~1

"EM(y D bM)(a D bM)@NEM(a D bM)(a D bM)@N~1

"&
ya@b

&~1
aa@b

1For simplicity, we assume that the indicated inverses exist. Also
recall that, if &

bb
is nonsingular, the conditional covariance matrix

&
ya@b

can be expressed as &
ya@b

"&
ya
!&

yb
&~1
bb

&
ba
.
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Similarly, we have '(y)"&
yb@a

&~1
bb@a

. Since %(y)a"
&
ya@b

&~1
aa@b

a, we see that, for v"a@a, z"b@b, a3Rna, b3Rnb,

%(v)a"a@Ia"v, %(z)a"0.

Thus, %( ) )a is idempotent on A"spanMaN and its nul-
lspace is exactly B"spanMbN. This shows that %(y)a is
the oblique projection of y onto A along B. A dual
argument shows that '(v)b"0 since &

vb@a
is zero, etc. and

'(y)b is the complementary oblique projection. The
statement regarding nonsingularity of &

aa@b
, &

bb@a
follows

readily from AWB"M0N, for if a@&
aa@b

"0 with a a non-
zero vector, then we would have a@a3B which is a con-
tradiction. h

2.3. The optimal predictor

In this section, we shall give a representation of the linear
predictor of the future output vector f (t) based on the
in"nite past observations p(t) and on the future inputs u

`
(t).

We shall need a technical assumption of suzcient richness
of the input process, which we shall write in the form

U
t~

WU
t`

"M0N. (3)

It is shown (Hannan & Poskit, 1988; Lindquist & Picci,
1996a) that this condition implies that the input process
is purely non-deterministic and admits a spectral density
matrix without zeros on the unit circle (i.e. coercive). This
is too restrictive in many practical situations and we
could instead assume just persistently exciting (PE) con-
dition of su$ciently high order and "nite dimensionality
of an underlying `truea system from the outset. The main
reason to choose condition (3) is that it allows a very simple
justi"cation of some crucial representation results which
would otherwise take a longer and more involved proof
and it does not require the assumption of an underlying
"nite-dimensional true system generating the data.

Another crucial assumption in this paper is that the
input u is exogenous, i.e. there is no feedback from the
output y to the input u. This concept is discussed in Caines
and Chan (1976), Gevers and Anderson (1982), Picci and
Katayama (1996). In Appendix A the geometric de"ni-
tion is recalled brie#y.

By a generalization of Lemma 1 we obtain the follow-
ing representation result.

Theorem 1. Assume (3) and suppose there is no feedback
from y to u. Then the optimal predictor fK (t) of the future
output vector f (t) based on P

t~
sU

t`
, the space spanned

by p(t) and u
`

(t), is given by

fK (t)"EK M f (t) DP
t~

sU
t`

N"%p(t)#'u
`
(t), (4)

where %p(t) is the oblique projection of the future f (t) onto
the past P

t~
along the future U

t`
, and 'u

`
(t) is the oblique

projection of the future f (t) onto U
t`

along P
t~

(see Fig. 1).

Fig. 1. Oblique projections.

% and ' satisfy the discrete Wiener}Hopf-type equations

%&
pp@u

"&
fp@u

, '&
uu@p

"&
fu@p

, (5)

where &
pp@u

, &
uu@p

are the conditional covariance operators
of the past vector p(t) given the future u

`
(t) and of the future

input u
`

(t) given the past p(t).

Proof. The proof consists in showing that
P

t~
WU

t`
"M0N so that according to Lemma 1, the

orthogonal projection f (t) DP
t~

sU
t`

splits uniquely
into the sum of the oblique projections de"ned above.
This zero intersection property will be proven in
Appendix A. h

Denoting, as in Picci and Katayama (1996), by
EK
@@B

Mv DAN the oblique projection of the random variable
v onto the subspace A along the subspace B, the oblique
projections in (4) can be written as

%p(t)"EK
@@Ut`

M f (t) DP
t~

N,

'u
`
(t)"EK

@@Pt~
M f (t) DU

t`
N, (6)

where, in matrix representations, % is a matrix with kp
rows and an in"nite number of columns and ' is
a pk]km matrix.

In the next section, we shall show that the "rst oblique
projection in (6) spans the state space of a minimal
state-space model of y which is causal with respect to u.
Causality has to do with the fact that the second oblique
projection in (6) admits, under the stated assumptions,
a causal representation.

Lemma 2. Suppose there is no feedback from y to u. Then,
for all h50,

EK My(t#h) DP
t~

sU
t`

N"EK My(t#h) DP
t~

sU
*t,t`h+

N, (7)

where U
*t,t`h+

"spanMu(t),2, u(t#h)N. Consequently, '
has the lower-triangular block Toeplitz structure

'"C
G

0
G

1
G

0
G

2
G

1
G

0
F F }

G
k~1

G
k~2

2 G
0
D, (8)
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where MG
0
, G

1
,2N can be interpreted as impulse response

matrices of a causal system with input u. In other words, '
is a causal operator.

Proof. The proof is deferred to Appendix B. h

3. Canonical correlation analysis and construction
of the state vector

In this section we shall de"ne the state vector for the
process y by using a generalization of the method of CCA
(Akaike, 1975; Desai et al., 1985; Lindquist & Picci,
1996b) applied to the future outputs and the past obser-
vations, with the e!ect of the future inputs removed.

In the following, we shall make an explicit assumption
of "nite dimensionality. Note that by stationarity &

fp@u
is a semi-in"nite block Hankel matrix whose rank is
a nondecreasing function of k (the future horizon). If
rank&

fp@u
stays constant after appending one block row,

then a standard Hankel-matrix argument shows that it
will stay constant after appending any number of block
rows (i.e. after adjoining any number of future output
variables after time k). In this case we say that &

fp@u
has

xnite rank. This we shall assume from now on.
Let rank&

fp@u
"n, and suppose that k is chosen su$-

ciently large, in particular large enough so that2 k'n.
Consider the Cholesky factorizations &

pp@u
"¸

p
¸@

p
and

&
ff@u

"¸
f
¸@

f
. De"ne

e
`

(t) :"¸~1
f

( f D uM
`
)(t), e

~
(t) :"¸~1

p
(p D uM

`
)(t)

so that

EMe
`
(t)e@

~
(t)N"¸~1

f
&
fp@u

(¸~1
p

)@.

Suppose that the SVD of the normalized block Hankel
matrix ¸~1

f
&
fp@u

(¸~1
p

)@ is given by

¸~1
f

&
fp@u

(¸~1
p

)@";&<@, (9)

where ;@;"I
n
, <@<"I

n
and &"diag(p

1
,2,p

n
) is

a diagonal matrix with nonzero singular values
(15p

1
525p

n
'0).

We now de"ne

a(t) :"<@¸~1
p

(p D uM
`
)(t), b(t) :";@¸~1

f
( f D uM

`
)(t).

Note that the vectors a(t) and b(t) are of dimension n.
Since EMa(t)a(t)@N"EMb(t)b(t)@N"I

n
, and EMb(t)a(t)@N"

diag(p
1
,2,p

n
), we see that a(t), b(t) are canonical vari-

ates and the singular values are canonical correlation
coe$cients between the random vectors ( f D uM

`
)(t) and

(p D uM
`

)(t). In other words, a(t), b(t) are conditional canoni-
cal variates between the past p(t) and the future f (t) given
the future inputs u

`
(t).

Following a standard procedure, see e.g. Desai et al.
(1985), Aoki (1990), Lindquist and Picci (1996b), we

2Of course, with real data where n is normally not known, determin-
ing whether a chosen k satis"es this condition is a very nontrivial
question. We shall not discuss this question in this paper.

de"ne the extended observability and controllability
matrices

O :"¸
f
;&1@2, C :"&1@2<@¸@

p
, (10)

where rankO"rankC"n. Then from the SVD of (9),
the block Hankel matrix &

fp@u
has the classical rank

factorization

&
fp@u

"OC. (11)

If the state vector is now de"ned to be the n-dimensional
vector

x(t)"C&~1
pp@u

p(t)"&1@2<@¸~1
p

p(t) (12)

it is readily seen that x(t) is a basis for the stationary
oblique predictor space

X
t
:"EK

@@Ut`
MY

t`
DP

t~
N

which, on the basis of general geometric principles (Picci
& Katayama, 1996) can be shown to be a minimal state
space for the process y. In order to show that x(t) is
indeed a basis note, from (5), (12), that the oblique
projection of the future outputs onto the past can be
expressed as

EK
@@Ut`

M f (t) DP
t~

N"%p(t)"&
fp@u

&~1
pp@u

p(t) :"Ox(t) (13)

and since rankO"n and the variance matrix of x(t) is
nonsingular, the claim follows.

In terms of x(t), the optimal predictor fK (t) of (4) has the
form

fK (t)"Ox(t)#'u
`

(t) (14)

where ' is a causal operator (see Lemma 2). It is seen that
x(t) is a conditional minimal su$cient statistic carrying
exactly all the information contained inP

t~
that is neces-

sary for the purpose of estimating the future outputs,
given the future inputs after time t.

For later reference the state property of x(t), implicit in
relation (14), will be stated explicitly below.

Proposition. The process x"Mx(t)N is conditionally
Markov given the future of the input; in fact

EK
@@Ut`

Mx(t#h) DP
t~

N"EK
@@Ut`

Mx(t#h) DX
t
N, h50,

and an analogous relation holds with X
t~

(the past space of
x at time t) in place of P

t~
.

Proof. Rewrite formula (14) shifted in time at time t#h,

C
y( (t#h)

y( (t#h#1)

F

y( (t#h#k!1)D"O
k
x(t#h)#'

k
u
`
(t#h), (15)

where h50 is arbitrary. We have introduced the sub-
script k to denote explicitly the number of block rows in
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the matrices (i.e. the number of future outputs considered
in the future horizon). Similarly, assuming f (t) is made by
stacking k#h future output variables, and assuming
a consistent choice of bases,

C
y( (t)

F

y( (t#h!1)

y( (t#h)

F

y( (t#h#k!1)
D"C

O
h

O
h@k
Dx(t)#C

'
h

'
h@k
Du`(t), (16)

where O
h@k

and '
h@k

are matrices made of the last k block
rows of O

h`k
and '

h`k
, respectively. Now, by construc-

tion O
k
has linearly independent columns so that there is

an n]n matrix A
h

such that

O
h@k

"O
k
A

h
,

so that we can write the last k block rows of (16) as

C
y( (t#h)

F

y( (t#h#k!1)D"O
k
A

h
x(t)#'

h@k
u
`

(t). (17)

Now the claim of the proposition is proven by applying
the operator EK

@@Ut`
M ) DP

t~
N on both sides of (15) and (17).

The conditional Markov property follows since
X

t~
LP

t~
. h

Remark 1. Unlike the classical CCA realization proced-
ure, the state vector here is not a vector of canonical
variates. It may seem more natural to de"ne the state
vector as, say, &1@2a(t), namely

x6 (t)"C&~1
pp@u

(p D uM
`
)(t) (18)

but this de"nition does not provide a basis in the state
space of a causal model. In fact, letting

%(p D uM
`

)(t)"OC&~1
pp@u

(p D uM
`
)(t)"Ox6 (t)

we "nd a di!erent representation of the optimal predictor
of the form

fK (t)"Ox6 (t)#Hu
`
(t),

where

Hu
`

(t) :"( f D u
`

)(t)"EM fu@̀ NEMu
`
u@̀ N~1u

`
(t).

The operator H, however, no longer has the causal (lower
triangular) structure of (8) unless u is a white noise. So the
de"nition (18) would lead to non-causal models. If the
input u is a white noise, then (p D uM

`
)(t)"p(t) and in this

case x6 (t) agrees with x(t).

3.1. The stationary innovation model

We now derive the forward innovation state-space
model for y by using the state vector x(t) of (12) and the
optimal predictor fK (t) of (14).

Let U
t
be the subspace spanned by the present input

u(t). Since, from Lemma 2 the "rst p rows of (14) involve
just the one-step predictor of y(t) based on P

t~
sU

t
, we

can write

y( (t) :"y(t) DP
t~

sU
t
"Cx(t)#Du(t),

where C and D are p]n and p]m constant matrices.
De"ne the prediction error by

e(t) :"y(t)!(y(t) DP
t~

sU
t
). (19)

From this de"nition, we get the output equation

y(t)"Cx(t)#Du(t)#e(t).

It should be noted that the prediction error e(t) is station-
ary, since Mu(t), y(t)N are jointly stationary and the projec-
tion y(t) DP

t~
sU

t
is based on observations from the

in"nite past.
The prediction error e(t) is a white noise process uncor-

related with the past outputs My(t!1), y(t!2),2N and
the present and past inputs Mu(t), u(t!1),2N, namely

e(t) o Y
t~

sU
(t`1)~

.

The orthogonality follows from the de"nition (19). That
e(t) is white also follows readily since e(t#1)oY

(t`1)~
s

U
(t`2)~

and the de"nition (19) implies e(t)3
P

(t`1)~
"Y

(t`1)~
sU

(t`1)~
LY

(t`1)~
sU

(t`2)~
. There-

fore e(t#1)oe(t).
We now consider the dynamics of the state vector x(t).

Let

x8 (t#1) :"x(t#1)!(x(t#1) DX
t
sU

t
),

where X
t
is the subspace generated by x(t). The last term

in the right-hand side is a sum of oblique projections
onto "nite-dimensional spaces. Hence, there exist n]n
and n]m constant matrices A and B such that in the
chosen basis we have

x(t#1) DX
t
sU

t
"Ax(t)#Bu(t).

Thus the state equation is given by

x(t#1)"Ax(t)#Bu(t)#x8 (t#1). (20)

Lemma 3. The prediction error x8 (t#1) is a function of
e(t), and hence there exists a matrix K such that

x8 (t#1)"Ke(t). (21)

Proof. The state (conditional Markov) property implies
that x(t#1) DX

t
sU

t
"x(t#1) DP

t~
sU

t
"x(t#1) D

Y
t~

sU
(t`1)~

. Hence, x8 (t#1) is the projection of
x(t#1) onto the orthogonal complement of
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Y
t~

sU
(t`1)~

. Since x(t#1) belongs to

P
(t`1)~

:"span My(t), y(t!1),2; u(t), u(t!1),2N

"span Me(t), y(t!1),2; u(t), u(t!1),2N

"span Me(t)N=Y
t~

sU
(t`1)~

showing that e(t) spans the orthogonal complement of
Y

t~
sU

(t`1)~
in P

(t`1)~
, we see that x8 (t#1)3spanMe(t)N

and must be a function of e(t). h

Theorem 2. Assume that rank&
fp@u

"n and suppose that
there is no feedback from the output y to the input u. Then
the output process y(t) admits a minimal stochastic realiz-
ation of the form

x(t#1)"Ax(t)#Bu(t)#Ke(t), (22)

y(t)"Cx(t)#Du(t)#e(t), (23)

with a state vector x(t) forming a basis in the oblique
predictor space X

t
. This model is called a ( forward) in-

novation realization with exogenous input u(t).

All other minimal stationary models of y can be writ-
ten (up to a basis change in the state space) as

m(t#1)"Am(t)#Bu(t)#Gw(t), (24)

y(t)"Cm(t)#Du(t)#Hw(t), (25)

where w is a normalized white noise process of dimension
greater or equal than p, uncorrelated with the input u,
and the matrices A, B, C, D are the same as in (22) and
(23). The state vector x(t) of the innovations model is the
steady-state Kalman xlter estimate of m(t), i.e. the ortho-
gonal projection

x(t)"EK Mm(t) DP
t~

sU
t`

N"EK Mm(t) DP
t~

N.

The relation between the parameters G, H and
K, " :"EMe(t)e(t)@N is given by the well-known Positive
Real Lemma equations which can be found in many
references. For these matters one may consult e.g. Faurre,
Clerget and Germain (1979) and Lindquist and Picci
(1991, 1996b).

3.2. Realization based on xnite data

In practice, the computations must be based on "nite
input}output data. The construction of the predictor
space and of the relative innovation model should be
based on the predictor of the future outputs f (t), based on
the available xnite past history. Let the past stochastic
vectors u

~
(t) and y

~
(t) be truncated to "nite length,3

3 In Section 4, the initial time t
0

will be "xed equal to zero.

namely

u
~
(t) :"C

u(t!1)

u(t!2)

F

u(t
0
) D, y

~
(t) :"C

y(t!1)

y(t!2)

F

y(t
0
) D,

t
0
4t4¹

and let P
*t0,t)

denote the past data space spanned by the
above (t!t

0
!1)(p#m)]1 stochastic vector. The sym-

bol U
t`

will denote the ("nite) future input history, U
*t,T+

,
after time t.

From these data we can form the xnite-memory
predictor at time t

fK
t0
(t) :"EK M f (t) DP

*t0,t)
sU

t`
N

"EK M fK (t) DP
*t0,t)

sU
t`

N

"EK
@@Ut`

M fK (t) DP
*t0,t)

N#EK
@@P*t0 ,t)

M fK (t) DU
t`

N.

The following result, which we shall state without proof,
explains the role of the transient Kalman "lter in "nite-
data modeling and is in the same spirit of Theorem 6 in
Lindquist and Picci (1996b). It relates also to Theorem 3
of Van Overschee and De Moor (1994).

Theorem 3. Assume that rank&
fp @ u

"n and suppose that
there is no feedback from the output y to the input u. The
process y(t) admits a nonstationary realization (called the
transient innovation representation) of the form

x(
t0
(t#1)"Ax(

t0
(t)#Bu(t)#K(t)e(

t0
(t), (26)

y(t)"Cx(
t0
(t)#Du(t)#e(

t0
(t), (27)

where the state vector x(
t0
(t) is a basis in the xnite-memory

predictor space

XK
t
"EK MX

t
DP

*t0,t)
sU

t`
N

and the process Me(
t0
(t), t5t

0
N is the transient innovation

(i.e. the prediction error) of My(t), t5t
0
N with respect to the

information P
*t0,t)

sU
t`

.

Any basis x(
t0
(t) in XK

t
has a unique representation as

x(
t0
(t)"EK Mx(t) DP

*t0,t)
sU

t`
N, (28)

where x(t) is a basis in the stationary predictor space
X

t
and hence x(

t0
(t) is also the transient Kalman "lter

estimate of m(t), the state of any stationary model (24),
(25), given the data P

*t0,t)
sU

t`
. The initial condition for

(26) is

x(
0
:"x(

t0
(t
0
)"EK Mx(t

0
) DU

t0`
N.

The constant matrices A, B, C, D are the same as in (22),
(23) while K(t) is the transient Kalman gain given by

K(t)"(AP(t)C@#GH@)(CP(t)C@#HH@)~1,
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where P(t) is the solution of the Riccati equation

P(t#1)"AP(t)A@!(AP(t)C@#GH@)(CP(t)C@#HH@)~1

](AP(t)C@#GH@)@#GG@

with initial condition P(t
0
) equal to the covariance matrix

of x(t
0
)!x(

0
. The matrix P(t) can be interpreted as the

error covariance matrix

P(t)"EM[m(t)!x(
t0
(t)][m(t)!x(

t0
(t)]@N.

As t
0
P!R the state of the transient innovation

model (26), (27) converges to x(t), K(t)PK and P(t) to the
unique stabilizing solution of the algebraic Riccati equa-
tion (ARE)

P"APA@!(APC@#GH@)(CPC@#HH@)~1

](APC@#GH@)@#GG@. (29)

Remark 2. The conditional CCA procedure of Section
3 applied to "nite past data provides an approximation of
the state vector x(

t0
(t) di!ering by an additive initial condi-

tion term which tends to zero as t
0
P!R. One has

x(
t0
(t)"EK

@@Ut`
Mx(t) DP

*t0,t)
N#EK

@@P*t0,t)
Mx(t) DU

t`
N

and the "rst component on the right-hand side is an
oblique projection which can be obtained by conditional
CCA of future and "nite past data (this is so because
x(t)"OsEK

@@Ut`
M f (t) DP

t~
N, see (13)). The second compon-

ent tends to zero for t
0
P!R by absence of feedback,

since in this case, x(t)3P
t~

, and the oblique projection of
x(t) along P

*t0,t)
tends to the oblique projection along

P
t~

which is clearly zero.
Note that the second term can be expressed as a func-

tion of the initial condition x(t
0
) as

EK
@@P*t0,t)

Mx(t) DU
t`

N"(A!KC)t~t0EK
@@P*t0,t)

Mx(t
0
) DU

t`
N,

and this quantity tends to zero as t
0
P!R, irrespect-

ive of absence of feedback, if the (true) system has no
zeros on the unit circle (a generic condition).

Hence, by taking a su$ciently large number of lags
t!t

0
, the oblique projection EK

@@Ut`
M f (t) DP

*t0,t)
N (which is

computed by the CCA procedure) provides, generically,
an arbitrarily close approximation of the state of the
transient innovation representation (26) and (27).

4. Identi5cation based on 5nite data: I. Computing oblique
projections

In this section we derive two methods for computing
the oblique projections % and ' based on given "nite

4 In the following, we shall work with the sample values of the
processes (u, y). We shall denote them by the same symbol as the
corresponding random quantities.

input}output data. One is to solve the Wiener}Hopf
equations (5) by using the LQ factorization. Since for the
"nite data case the estimated ' is generally not lower
triangular, we develop another method of estimating
% and ' by using a constrained least-squares (CLS)
technique, where all the elements of the upper right part
of ' are "xed to zero. Once we have estimates of % and
', we can easily derive subspace methods to get the
system parameters A, B, C, D and K. This will be dis-
cussed in the next section.

Suppose that "nite input}output data4 u(t), y(t) for
t"0, 1,2,N#2k!2 are given with k'0 and N
su$ciently large. We assume that the time series Mu(t),
y(t)N is made of sample values of two jointly stationary
processes (u, y) satisfying the assumptions of the previous
sections, in particular the "nite dimensionality and the
feedback-free conditions. In addition, we shall assume
throughout this section that the sample averages con-
verge to the `truea expected values as NPR.

De"ne the km]N and kp]N block Hankel matrices
with N columns

;
0@k~1

:"C
u(0) u(1) 2 u(N!1)

u(1) u(2) 2 u(N)

F F F

u(k!1) u(k) 2 u(N#k!2)D,

>
0@k~1

:"C
y(0) y(1) 2 y(N!1)

y(1) y(2) 2 y(N)

F F F

y(k!1) y(k) 2 y(N#k!2)D,
where the "rst and the second subscripts denote the
indices of the upper-left and the lower-left element of the
block Hankel matrix, respectively. In what follows, we
assume that the integer k is chosen so that k'n, where
n is the dimension of the underlying stochastic system
generating the data.

As we have seen, in "nite-data realization the number
of past lags (t!t

0
) plays a di!erent role than the extent

of the future horizon k. Although it is obviously possible
to consider past data on a time interval of di!erent
length, in this section we shall take the past and the future
intervals of the same length k. This choice conforms with
what is commonly assumed in the literature and is not
really a loss of generality. With this choice the present
time is t"k, the past interval is [0, k!1], the future
interval is [k, 2k!1] and notations simplify consider-
ably. Corresponding to this subdivision, the future input
and the future output data are arranged in the matrices
;

k@2k~1
3RkmCN and >

k@2k~1
3RkpCN, respectively. Also,

the matrix of past input and output data is de"ned
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as

P
0@k~1

"C
;

0@k~1
>

0@k~1
D3Rk(m`p)CN.

The operator % becomes a kp]k(p#m) matrix in the
following.

4.1. Covariance factorization method

In the following sections it is enough to assume that
the input is persistently exciting, so that;

0@2k~1
has row

rank 2km. Consider the following LQ factorization
(Verhaegen & Dewilde, 1992; Van Overschee & De
Moor, 1994):

1

JNC
;

k@2k~1
P

0@k~1
>

k@2k~1
D"C

¸
11

0 0

¸
21

¸
22

0

¸
31

¸
32

¸
33
DC

Q@
1

Q@
2

Q@
3
D :"¸Q@, (30)

where ¸
11

, ¸
22

and ¸
33

are km]km, k(p#m)]k(p#m)
and kp]kp lower triangular matrices, respectively, and
Q

i
's are orthogonal matrices with Q@

i
Q

j
"Id

ij
.

It follows from (30) that the sample covariance
matrix5

&
upf

"

1

N C
;

k@2k~1
P

0@k~1
>

k@2k~1
D C
;

k@2k~1
P

0@k~1
>

k@2k~1
D@

can be computed as

&
upf

:"C
&

uu
&

up
&

uf
&
pu

&
pp

&
pf

&
fu

&
fp

&
ff
D

"C
¸
11

0 0

¸
21

¸
22

0

¸
31

¸
32

¸
33
D C

¸@
11

¸@
21

¸@
31

0 ¸@
22

¸@
32

0 0 ¸@
33
D. (31)

Conversely, the Cholesky factorization of the sample
covariance matrix &

upf
gives ¸ of (30) up to an ortho-

gonal transform. It can be shown from (31) that, since
&
uu

is nonsingular,

&
ff@u

"&
ff
!&

fu
&~1
uu

&
uf
"¸

32
¸@
32
#¸

33
¸@

33
. (32)

Similarly, we have

&
pp@u

"¸
22
¸@
22

, &
fp@u

"¸
32
¸@

22
. (33)

5For simplicity, all sample covariance matrices are written as
&
ff

, &
ff@u

, etc., without using the ( '( ) notation. Also, it should be kept in
mind that these quantities depend on k. For notational reasons this
dependence will not be displayed.

It therefore follows from (5) that

%"&
fp@u

(&
pp@u

)s"¸
32
¸s
22

. (34)

In order to obtain ', we rearrange the covariance
matrices as

&
puf

:"C
&
pp

&
pu

&
pf

&
up

&
uu

&
uf

&
fp

&
fu

&
ff
D

"C
R

11
0 0

R
21

R
22

0

R
31

R
32

R
33
D C

R@
11

R@
21

R@
31

0 R@
22

R@
32

0 0 R@
33
D.

Thus, similar to the above, we have

&
ff@p

"R
32

R@
32
#R

33
R@

33
,

&
uu@p

"R
22

R@
22

, &
fu@p

"R
32

R@
22

.

Therefore, from (5) we get

'"&
fu@p

(&
uu@p

)s"R
32

Rs
22

. (35)

A problem with the above solution is that ' may not
be lower triangular. This is circumvented by using the
CLS method.

4.2. Constrained least-squares method

In this subsection, we develop a method of estimating
% and ' under the constraint that ' of (8) has a lower-
triangular Toeplitz form. The idea is borrowed from
Peternell et al. (1996).

We see that (4) results from a regression equation of
the form

f (t)"[% ']C
p(t)

u
`

(t)D#v(t),

where v(t) (the prediction error) is the residual. For the
"nite-data case, this relation can be written as

>
k@2k~1

"#C
P

0@k~1
;

k@2k~1
D#<k@2k~1

,

where # :"[% ']3RkpCk(p`2m). By using (30), we get

1

JN
>

k@2k~1
"¸

y
Q@,

1

JNC
P
0@k~1
;

k@2k~1
D"¸

pu
Q@

so that the regression equation is reduced to

¸
y
"#¸

pu
#<

Q
, (36)
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where

¸
y
"[¸

31
¸
32

¸
33

]3RkpC2k(p`m),

¸
pu
"C

¸
21

¸
22

0

¸
11

0 0D3Rk(p`2m)C2k(p`m),

<
Q
"

1

JN
<

k@2k~1
Q3RkpC2k(p`m).

Thus vectorizing (36) yields

vec(¸
y
)"Zvec(#)#vec(<

Q
), (37)

where Z"¸@
pu

?I
kp
3R2k2p(p`m)Ck

2
p(p`2m) and where

? denotes the Kronecker product (see Appendix C).
It can be shown that there exists F

22
with entries equal

to zero or one such that

F
22

vec(G
0
,2, G

k~1
)

"vecC
G

0
G

1
G

0
F F }

G
k~1

G
k~2

2 G
0
D"vec(').

De"ning

F"C
I

0 F
22
D,

we get

vec(#)"FC
vec(%)

vec(G
0
,2, G

k~1
)D :"Fh

in terms of the vector parameter h. Hence we see from
(37) that

vec(¸
y
)"ZFh#vec(<

Q
). (38)

Therefore the CLS estimate of # is given by a simple
multiplication by F of the LS solution of (38).

5. Identi5cation based on 5nite data:
II. Stochastic subspace methods

By using the estimates %, ' and the conditional
covariance matrices &

ff@u
, &

pp@u
, etc., we can design sub-

space methods for obtaining estimates of the system
parameters A, B, C, D and K. We describe two classes of
covariance factorization based subspace methods, in
which the "rst two steps are the same.

We assume that the conditional covariance matrices
&
ff@u

, &
pp@u

, &
fp@u

are given by (32) and (33).

Step 1: Compute the SVD of the normalized covariance
matrix [see (9)]

&~1@2
ff@u

&
fp@u

(&~1@2
pp@u

)@";S<@K;K SK <K @

to get

&
fp@u

K&1@2
ff@u
;K SK <K @(&1@2

pp @ u
)@

where SK is obtained by neglecting singular values which
are `nearly zeroa, so that the dimension of the state
vector equals dimSK .6

Step 2: Set the extended observability and controllabil-
ity matrices as [see (10)]

O
k
"&1@2

ff@u
;K SK 1@2, C

k
"SK 1@2<K @(&1@2

pp@u
)@.

Algorithm A: Regression approach using the state vector
Step A3: The estimate of the state vector is given by

[see (12) and (28)]

XK
k
"C

k
&~1
pp@u

P
0@k~1

"SK 1@2<K @&~1@2
pp@u

P
0@k~1

.

Note that this state vector is really an n]N matrix.
Step A4: The matrices (A, B, C, D) are obtained by

applying the least-squares (LS) method to the overdeter-
mined equations

C
XK

k`1
>

k@k
D"C

A B

C DDC
XK

k
;

k@k
D#C

=
k

E
k
D,

where XK
k`1

is the CCA state vector computed at time
k#1. In order to be the time update of the CCA state
selected at time k, this vector should be transformed by
a change of basis so as to keep the same observability
matrix at time k and k#1, see e.g. Van Overschee and
De Moor (1993).

Because of the transient Kalman Filter realization (see
Theorem 3), even if the past is "nite and XK

k
is nonstation-

ary, this LS procedure provides the correct7 estimates of
the parameters (A,B,C, D) of the stationary model (22),
(23). If the integer k is large enough, the state vector is
approximately stationary. Then XK

k`1
may be approxi-

mated by the one-step shifted version of the vector
XK

k
obtained in Step A3.

The matrices=
k
, E

k
are residuals which represent LS

estimates of model and observation noise terms.
Step A5: De"ne the covariance matrices of residuals as

C
&
ww

&
we

&
ew

&
ee
D"

1

NC
=

k
=@

k
=

k
E@
k

E
k
=@

k
E

k
E@

k
D

and solve the ARE (compare (29))

P"APA@!(APC@#&
we

)(CPC@#&
ee
)~1(APC@#&

we
)@

#&
ww

(39)

6This empirical procedure of order estimation is not very satisfactory
and better justi"ed statistical methods are currently under study. On
this point we shall however have to refer the reader to the literature.

7 In fact, consistent for NPR for "xed k, provided k is chosen
suitably large.
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to get the stabilizing solution P50 and the correspond-
ing Kalman gain

K"(APC@#&
we

)(CPC@#&
ee
)~1

making A!KC stable.
This procedure is correct for in"nitely long past data

and NPR. In this case, it follows from Lemma 3 that
the exact relations &

ee
"""EMe(t)e(t)@N, &

ww
"K&

ee
K@,

&
we
"K&

ee
(constant with k) should hold, so that the

unique stabilizing solution of the ARE (39) exists and is
actually zero.

For the "nite data case these exact relations do not
hold and the sample covariance matrices computed in
Step A5 vary with k. However, under the standing as-
sumption that the data are generated by a true system of
order n, if N and k are chosen large enough with NAk
(i.e. so that in particular the order is estimated correctly),
then the procedure provides consistent estimates. Note
that the ARE (39) has a unique stabilizing solution
P50 from which we can estimate K. This is so, since
by construction of the extended observability matrix
O
k
, the pair (C, A) is observable and we have=

k
=@

k
'0

generically.
For further discussion of this point and the related

positivity issue we refer the reader to Section 7 of Lin-
dquist and Picci (1996a).

Algorithm B: Realization approach
Step B3: Compute the estimates of C and A by (Ver-

haegen and Dewilde, 1992)

C"O
k
(1:p, 1:n),

A"O
k
(p#1 : kp, 1 : n)sO

k
(1 : (k!1)p, 1 : n).

Step B4: For given (A,C), and ' of (35), it follows from (8)
that the estimates of B and D are given by solving

I
p

0

0 O
k
(1 : p(k!1), 1 :n)

I
p

0

0 O
k
(1 : p (k!2), 1 : n)

F F

I
p

0

C
D

BD

"

'(1 : pk,1 : m)

'(p#1 : pk, m#1 : 2m)

F

'(p(k!1) : pk, m(k!1) : km)

In the same way, we get another two subspace identi-
"cation methods by combining Algorithms A and
B above and the CLS-based method of solving
Wiener-Hopf equations. Hence, we get four subspace

identi"cation methods based on our realization proced-
ures for stochastic systems with exogenous inputs.

6. Simulation results

Some results of computer simulations are presented to
show the performance of the stochastic subspace identi-
"cation algorithms developed in Section 5. We consider
a "fth-order SISO model shown in Fig. 2, proposed in
Viberg (1995), where u is the input, and w and v are
additive white noises with mean zeros. The transfer func-
tion is given by G(z)"B(z)/A(z), where

B(z)"0.0275z~4#0.0551z~5,

A(z)"1!2.3443z~1#3.081z~2!2.5274z~3

#1.2415z~4!0.3686z~5.

Thus G(z) has a zero at z"!2 and poles at z"0.9,
0.8eBj, 0.8eB1.2j.

The performance of the algorithms is measured by the
norm of the estimation error

I
N
"

1

M

M
+
l/1
A

10
+
j/1

[h
j
!hK

j
(l,N)]2B,

N"200, 500, 1000, 2000,

where h
j
denotes the true parameter and hK

j
(l,N) is the

estimate of h
j
at lth run with the number of data N, and

M denotes the number of simulation runs.
The following algorithms are used for simulations.
COV-a: Compute %, ' by the covariance factorization

and use Algorithm A.
COV-b: Compute %, ' as above and use Algorithm B.
CLS-a: Compute %, ' by the CLS method and use

Algorithm A.
CLS-b: Compute %, ' as above and use Algorithm B.

Example 1 (White noise input). In this case, the input
u is a zero-mean white Gaussian noise with variance
p2
u
"1, where the variances of noises w and v are

p2
w
"(0.05)2, p2

v
"(0.05)2. Fig. 3 shows the performance

of COV-a and COV-b with k"8, M"100, together
with results due to Basic 4SID (Verhaegen and Dewilde,
1992) and PO-MOESP (Verhaegen, 1994), where the
performance of COV-b and PO-MOESP is indistin-
guishable in this experiment. The performance of CLS-a
and CLS-b, not shown here, is pretty close to that of
COV-a and CLS-a, respectively. Figs. 4 and 5 respectively

Fig. 2. The plant model.
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Fig. 3. Performance of four algorithms where the control input is white noise, and p2
w
"p2

v
"(0.05)2.

Fig. 4. Pole estimtes by COV-a where the control input is white noise, and p2
w
"p2

v
"(0.05)2.
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Fig. 5. Pole estimates by PO-MOESP where the control input is white noise, and p2
w
"p2

v
"(0.05)2.

Fig. 6. Performance of "ve algorithms where the control input is a sum of sinusoids, and p2
w
"p2

v
"(0.05)2.
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Fig. 7. Performance in function of number of rows k.

Fig. 8. Pole estimates by COV-a where the control input is a sum of sinusoids, and p2
w
"p2

v
"(0.05)2.
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Fig. 9. Pole estimates by CLS-a where the control input is a sum of sinusoids, and p2
w
"p2

v
"(0.05)2.

depict the pole estimates by COV-a and PO-MOESP for
k"8, M"100, N"1000; they are quite close to the
true pole positions (denoted by #).

Example 2 (Sinusoidal input). To compare the e!ect of
input signals, the input is now chosen as

u(t)";
0

20
+
i/1

sin(u
i
t)

where the frequencies u
i
's are uniformly spaced in the

interval (0.1, 3)(rad) and where ;
0

is adjusted to yield
p2
u
"1. The noise variances are chosen as p2

w
"

p2
v
"(0.05)2. Since the sinusoidal input above is PE of

order 40, the number of rows k must be less than 20.8
Fig. 6 depicts the performance of "ve algorithms
including PO-MOESP, where k"8, M"100. In this
case, COV-a, COV-b and PO-MOESP show similar
performance, but the performance of CLS-a and CLS-b is
rather di!erent from that of others. In order to analyze
this fact, we have simulated CLS-a and CLS-b for several
di!erent k's, where M"50, N"1000. We see from Fig. 7
that both methods give similar performance for k greater

8 It is apparent that this input does not satisfy the condition (3). But it
is enough to consider the input with a PE condition of su$ciently high
order to apply the subspace methods.

than 10, but for the smaller k, CLS-a shows better perfor-
mance. In Figs. 8 and 9, the pole estimates by COV-a and
CLS-a are depicted for k"8, N"1000.

We see from Figs. 3 and 6 that the white noise inputs
give better performance over the sinusoidal inputs in that
even the worst Basic 4SID performance for the white
noise inputs is better than the best CLS-a performance
for sinusoidal inputs. Moreover, the simulation results
for the sinusoidal inputs widely vary with algorithms. In
fact, COV-a gives a rather scattered pole estimates as
shown in Fig. 8, but CLS-a yields better pole estimates
with a smaller variability as shown in Fig. 9. It should be
noted that the simulation results also crucially depend on
the S/N ratio; in fact, although not shown here, if the
noise variances are reduced, then the performance and
pole estimates by COV-a and CLS-a become much better
than the results shown in Figs. 6, 8 and 9.

Table 1 shows the number of #ops of "ve algorithms,
where it includes all the computations for the whole
simulations by each algorithm for k"8, M"50,
N"1000. Also, we see that CLS-a, CLS-b are computa-
tionally more expensive than COV-a, COV-b, respec-
tively. This may be due to the fact that the regression
equation of (38) for CLS method contains matrices F and
Z of large dimensions.
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Table 1
The number of #ops required for 50 simulation runs

COV-a COV-b CLS-a CLS-b PO-MOESP

Flops(]108) 1.56 2.34 10.9 7.18 1.33

7. Conclusions

In this paper we have presented a realization theory for
stochastic system with exogenous inputs under the as-
sumption that there is no feedback from the output to the
control input. A generalized CCA technique is employed
for de"ning the state vector and a forward innovation
representation of a stochastic system with exogenous
input is derived. From this we have developed four
stochastic subspace identi"cation methods based on ap-
proximate solutions of two discrete Wiener}Hopf equa-
tions by covariance factorization and by CLS method. In
simulation studies CLS-a yields the best performance
among the four subspace identi"cation algorithms pre-
sented here.

The present approach is meant to shed some light
on well-known procedures of subspace identi"cation
(Larimore, 1990; Peternell et al., 1996; Van Overschee
& De Moor, 1994, 1996; Verhaegen & Dewilde, 1992;
Verhaegen, 1994) and to allow comparisons. It seems to
us that in the presence of stochastic dynamics, the sub-
space method based on the approximate solutions of the
discrete Wiener}Hopf equations is a more natural ap-
proach than the procedures reported in the literature
which are based on instrumental variable approaches.

Of course, numerical results may be di!erent from
those presented here, under di!erent simulation condi-
tions. In fact, for generic data, there may be cases in
which our subspace methods fail. This is a known com-
mon feature of all subspace methods where the noise
parameters are estimated by realization techniques
(DahleH n, Lindquist & Mari, 1998), and may be regarded
as a symptom that the model is `very fara from the data
being modeled. Often this problem can be "xed by just
choosing k large enough.
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Appendix A. Proof of Theorem 1

Recall that the feedback-free property

EK MU
t`

DP
t~

N"EK MU
t`

DU
t~

N (A.1)

is equivalent to conditional orthogonality of the past of
y and the future of u, given the past of u, which is denoted
by

Y
t~

oU
t`

DU
t~

. (A.2)

It is explained in detail in Section 2 of Picci and
Katayama (1996) that another equivalent way of writing
this condition is

EK MY
t~

DUN"EK MY
t~

DU
t~

N (A.3)

(causality). Now, decomposing the past of y orthogonally
into the past spaces of the `deterministica (y$(t)"y(t) DU)
and `stochastica (y4(t)"y(t) DUM) components of y (Picci
& Katayama, 1996), it follows that Y

t~
LY$

t~
=Y4

t~
,

where Y$
t~
LU

t~
. Therefore, by elementary vector space

geometry

U
t`

WP
t~

"U
t`

W(U
t~

sY
t~

)

LU
t`

W(U
t~

s(Y$
t~

=Y4
t~

))

LU
t`

W(U
t~

=Y4
t~

)

and since Y4
t~

oU
t`

, the last intersection is equal to
U

t`
WU

t~
, which is zero by assumption (3).

Appendix B. Proof of Lemma 2

We recall a known characterization of conditional
orthogonality of two subspaces A,B given a third sub-
space X, see Proposition 1.1 in Picci and Katayama
(1996) and Lindquist and Picci (1985).

AoB DXQAoB DXsA
0
, ∀A

0
LA. (B.1)

The feedback-free condition is equivalent to the condi-
tional orthogonality Y

(t`h`1)~
oU

(t`h`1)`
DU

(t`h`1)~
for h50. Since Y

t~
LY

(t`h`1)~
, we have also

Y
(t`h`1)~

oU
(t`h`1)`

DY
t~

sU
(t`h`1)~

which is equiva-
lent to

EK MY
(t`h`1)~

DY
t~

sUN

"EK MY
(t`h`1)~

DY
t~

sU
(t`h`1)~

N (B.2)

Now y(t#h)3Y
(t`h`1)~

so that (B.2) implies

EK My(t#h) DY
t~

sUN"EK My(t#h) DY
t~

sU
(t`h`1)~

N

"EK My(t#h) DP
t~

sU
*t,t`h+

N

which is (7). The last statement of the lemma follows
readily by decomposing EK My(t#h) DP

t~
sU

*t,t`h+
N for

h"0,1,2, k!1 into oblique projections. Using (7) we
see that

'u
`
(t)"EK

,
P

t~
Mf(t) DU

*t,t`k~1+
N

which is in fact a function only of Mu(t),2, u(t#k!1)N.
That ' is a time-invariant operator follows by joint
stationarity.
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Appendix C. Kronecker products

Let A be an m]n matrix with A"[a
1
,2, a

n
], where

a
i
3Rm, i"1,2, n. Then the mn]1 stacked vector vec(A)

is de"ned by

vec(A)"C
a
1
F

a
n
D.

Moreover, we de"ne Kronecker product of A3RmCn and
B3RqCl as

A?B"C
a
11

B 2 a
1n

B

F } F

a
m1

B 2 a
mn

BD3RmqCnl.

Then, for A3RmCn, B3RnCl, we have

vec(AB)"(I
l
?A)vec(B)"(B@?I

m
)vec(A)3Rml.
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