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Abstract. A Trusted Virtual Domain (TVD) is a coalition of virtual
machines and resources (e.g., network, storage) that are distributed over
multiple physical platforms and share a common security policy. The con-
cept of TVDs and their usage scenarios have been studied extensively.
However, details on certain implementation aspects have not been ex-
plored in depth yet, such as secure policy deployment and integration
of heterogeneous virtualization and trusted computing technologies. In
this paper, we present implementation aspects of the life cycle manage-
ment of TVDs. We describe the components and protocols necessary to
realize the TVD design on a cross-platform architecture and present our
prototype implementation for the Xen and L4 microkernel platforms.
In particular, we discuss the need for and the realization of intra-TVD
access control, a hypervisor abstraction layer for simplified TVD man-
agement, necessary components of a TVD policy and revocation issues.
We believe that these integration details are essential and helpful inputs
for any large-scale real-world deployment of TVD.
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1 Introduction

A Trusted Virtual Domain (TVD) [1–4] is a coalition of virtual machines that
trust each other based on a common security policy. The policy is uniformly
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enforced, independent of physical boundaries. TVDs build up on virtualization
techniques to provide confinement boundaries for a protected execution envi-
ronment that are typically distributed over several physical platforms. Different
instances of several TVDs can co-exist on the same physical platform. Communi-
cation within the TVD (intra-TVD communication) is possible through the use
of shared resources such as network interface and storage. The underlying virtual
machine monitor (VMM) isolates different TVDs and enforces access control to
TVD resources according to the underlying TVD policy.

TVDs are different from traditional access control models in that they are
more abstract and platform independent. This allows consistent enforcement
of a security policy regardless of individual implementations and physical in-
frastructure topology. While conceptually easy, the implementation of TVDs
requires integration and automation of sophisticated security mechanisms like
secure network virtualization [5], secure hypervisors [6], trusted channels [7–
9] and virtualized hardware security modules [10–13]. Further, scalability and
seamless integration of different platforms are essential features of such an in-
frastructure.

The conceptual simplicity of TVDs also suggests that they may succeed where
previous attempts on access control in multi-domain environments have been
ineffective or caused considerable operational overhead. We consider them par-
ticularly well-suited for large distributed environments like enterprise networks,
cloud computing, personal area networks or e-health infrastructures.

As a result, a number of research projects pursue the developments of TVD
frameworks. In particular, we mention the European Multilaterally Secure Com-
puting Base (EMSCB) [14] and the Open Trusted Computing (OpenTC) [15,
16] projects.

Unfortunately, despite large research effort, there are few detailed descrip-
tions of full-featured TVD implementations. We believe this is due to the high
internal complexity of such an infrastructure and because the required effort to
integrate the highly sophisticated subsystems is easily underestimated. Indeed,
in the development of our prototype we discovered a variety of unanticipated is-
sues that are not addressed in existing works, e.g., the issue of different privileges
inside a TVD or the problem of revocation.

Contribution and outline. In this paper we present the design and implementa-
tion details of our TVD architecture. We describe the components and protocols
needed for life-cycle management of TVDs (Section 3). In particular, we show
how to integrate the trusted computing functionality to securely distribute the
TVD policy to local policy enforcement components. We describe our imple-
mentation of a virtual data center use case (Section 4), which includes: (i) the
realization of intra-TVD access control, (ii) a hypervisor abstraction layer for
simplified TVD management, (iii) the definition and usage of a TVD policy,
and (iv) revocation of TVD components. Moreover, we discuss practical aspects
which we encountered as lessons learned (Section 5) during the development of
our implementation. Finally, Section 6 elaborates on related work.



2 Design Goals

In this section we consider the main security objectives of TVDs, define our as-
sumptions and threat model, and discuss the security requirements. Our imple-
mentation of TVD infrastructure address the following main security objectives:

1. Secure TVD membership and revocation: Virtual and/or physical machines
that join or leave the TVD should fulfill the requirements of a well defined
policy. This policy may change during the lifetime of the TVD, for instance,
revoked machines must be excluded from the TVD.

2. Secure TVD communication: All members of a TVD, and shared resources
over the TVD, are connected through a virtual network that can span over
different platforms, and that is strictly isolated. Non-members are not al-
lowed to access such a network.

3. Intra-TVD security : Some members of a TVD may have higher privileges
than other members. Hence, the communication within the TVD needs to
be further restricted by access control enforced by certain TVD members
with specific responsibilities, e.g., for TVD management.

In this paper, we do not address inter-TVD communication, although specific
applications may require some communication between members of different
TVDs according to any inter-TVD information flow policy.

2.1 Assumptions, Threat Model, and Requirements Analysis

For the correct function and security of the TVD, we assume that the TVD
policy is consistent, i.e., it does not contain conflicting statements. Moreover, we
assume that the trusted computing base (TCB), which enforces the TVD policy,
works correctly, i.e., it provides the specified functional and security properties.

Our threat model considers adversaries who can access communication chan-
nels (e.g., by sniffing network traffic) and compromise components of the TVD.
We assume the TCB on each platform cannot be compromised at runtime, but
it can be replaced or altered between two bootstrapping phases (i.e., binaries
can be replaced or modified). However, in this case the modification should be
detected.

On the other hand, facing runtime compromise of the TCB is still an open
problem and leads to significant extensions of this approach that is beyond the
scope of this paper. Research work on runtime aspects can be found, for example,
in [17–20].

Based on the adversary model above, there are threats against each secu-
rity objective of the TVD: First, secure membership can be compromised by
replacing VMs or components of the TCB that enforce the membership, e.g., to
tamper with their file-image on the storage backend. Hence, a primary security
requirement is to verify the integrity of TVD members, including VMs and the
TCB. Additionally, if a TVD member (possibly because of being compromised)
is revoked, the adversary could attack the policy update mechanism that in-
forms other members about the revocation. Possible attacks are impersonating



the TVD component that is responsible for updating and distributing the policy.
The adversary could send a forged policy or replay an old one. Hence, the TVD
infrastructure requires authentication of any policy distribution or update.

Second, by eavesdropping or manipulating on communication channels, the
adversary could gain information that should not be leaked. Hence, secure chan-
nels between TVD members are required to provide authenticity, confidentiality,
and integrity.

Third, if adversaries control a TVD member, they can access other members
and resources of this TVD via the common TVD communication infrastructure.
But if the adversaries control only a member of low privileges, members with
higher privileges should still be protected. Hence, we need to identify TVD mem-
bers and limit access to TVD internal resources according to their privileges.

Finally and related to all threats mentioned above, the TCB of each involved
platform has to provide isolation of execution environments — this is particularly
important when VMs of different TVDs are executed on the same platform.

As mentioned before, our TVD implementation does not feature any mech-
anism to discover VMs that have been tampered at runtime. However, strict
separation of execution environments generally allows confinement of misbehav-
ing VMs, preventing the adversary to attack other VMs running on the same
platform.

3 Design of TVD Infrastructure

In this section we define our general TVD architecture and introduce the most
relevant components.

3.1 General TVD Architecture

Similar to existing approaches [5], our TVD architecture includes two main com-
ponents. A central component TVD Master is complemented by TVD Proxies; one
instance of such a proxy is running on each physical platform hosting a TVD and
represents the local copy of TVD Master. TVD Master stores and enforces the
corresponding policy TVD Policy for admission of physical platforms, whereas
TVD Proxy enforces the policy for admission of VMs. TVD Master is a logical
service and could be implemented either on a single server or in distributed way.

In our design, TVD Policy defines the security policy of the TVD in the
following way. It includes:

1. Configurations of virtualization platforms that are trusted to run the TVD.
We denote such platforms as TVD Platforms. TVD Platforms configuration is
represented by integrity measurements6 of a platform’s trusted computing
base (TCB).

2. Configurations of virtual machines (VMs) which are trusted to be executed
on TVD Platforms and allowed to join the TVD. Such VMs are called TVD
VMs. By VM configuration we mean integrity measurement of VM’s binaries.

6 Here calculated as a cryptographic hash values of the corresponding binaries



3. TVD Resources like network, storage or special devices that have to be avail-
able to individual TVD VMs or their groups.

4. Intra-TVD access rules describing access restrictions within the TVD.
5. Credentials necessary to establish secure communication channels, e.g., cryp-

tographic keys or certificates of the TVD.

Each platform has one TVD Proxy for each TVD. Before a VM running
on TVD Platform can join a TVD, the corresponding TVD Proxy has to be
instantiated on the platform. During this instantiation, TVD Master deploys TVD
Policy to local TVD Proxy. After deployment, TVD Proxy enforces the admission
of VMs to the TVD locally on the respective platform. Figure 1 shows our TVD
architecture (see also [21]).

Fig. 1. General TVD architecture

To securely deploy and locally enforce TVD Policy, TVD Master has to rely
on the TCB on each platform. The fundamental building block of the TCB is a
virtualization layer that is able to run isolated VMs. The other main TCB com-
ponents are TVD Proxy Factory, ResourceMgr, CompartmentMgr and TrustMgr.

TVD Proxy Factory is responsible for spawning new TVD Proxy instances. Re-
sourceMgr provides access to basic virtualized resources TVD Resources like net-
working and storage. In case of TVD VMs, access to these resources is controlled
by TVD Proxy. CompartmentMgr is responsible for managing virtual machines
(compartments) and their attributes. It starts, stops, pauses VMs and attests
their configuration, i.e., performs integrity measurement.

TrustMgr provides an abstraction of the underlying trusted computing func-
tionality in hardware, here the Trusted Platform Module7 (TPM) [22]. Trust-
Mgr is responsible for generation of cryptographic keys (and corresponding cer-
tificates) that are protected by the TPM and are bound to the configuration
(integrity measurements) of the components of the underlying TCB. Integrity
measurements, keys, and certificates allow a remote party to establish a trusted
7 Note that it could be other suitable security modules



channel to the platform, i.e., a secure channel (providing confidentiality, in-
tegrity and authenticity) that is bound to the integrity measurements of the
endpoint(s) [8, 7, 9].

For the management of the TVD we present the following main protocols:
TVDDeploy(), TVDJoin(), TVDLeave() and TVDUndeploy(). We will explain them
in detail and briefly discuss the problem of policy updates and policy revocation.

3.2 TVD Deploy Protocol

The goal of the TVDDeploy() protocol is to deploy TVD Policy to local TVD Plat-
form. The (remote) TVD Master attests to the trustworthiness of TVD Platform
(compliance with the platform configuration defined in TVD Policy) and delivers
the policy file to the trusted virtualization layer of that platform. More pre-
cisely, attestation in this context means validation of platform configuration of
a remote party, e.g., integrity measurements that are stored in the TPM during
the bootstrapping procedure. When receiving TVD Policy, TVD Proxy Factory
creates TVD Proxy instance which is responsible for the local policy enforcement
of that particular TVD.

The complete protocol TVDDeploy() is illustrated in Figure 2. It can be
decomposed into two phases. The first one is the establishment of a trusted
channel between TVD Proxy Factory of TVD Platform and TVD Master, the
second one is creatating and configuring of TVD Proxy. The details of trusted
channel establishment have already been presented in [8], which we adopted and
extended for our purpose. The protocol is always initiated by TVD Proxy Factory
of a local platform TVD Platform.

1. First, TVD Proxy Factory requests TVD Master for deployment where nonceA
and nonceB denote the corresponding nonces for freshness. Moreover, we de-
note the signing and verification key of TVD Master with TVDMasterPKsig-
nand TVDMasterSKsignrepsectively.

2. Next, TVD Master attests the requesting platform by verifying the binding
certificate certBind. In our implementation, certBind8 is issued by Trust-
Mgr using the TPM. In particular, certBind includes the quantities PKbind,
PKsign and TPMdataSig denoting the public part of the binding key
pair (PKbind, SKbind), the public part of the local platform’s signing key
(PKsign, SKsign), and the signature under SKsign on PKbind, the con-
figuration of TVD Proxy Factory m and on nonceB. The key pairs (PKbind,
SKbind) and (PKsign, SKsign) are generated by the TPM and their se-
cret parts can only be used by the TPM. Moreover, the access to SKbind
is restricted to the platform configuration TCBconf . SKbind and SKsign
are stored outside the TPM only in encrypted form.9 We denote the corre-
sponding ciphertexts with ESKbind and ESKsign respectively.

8 Note that certBind is not an X.509 certificate
9 In our implementation they are encrypted under the TPM’s storage root key (SRK)

of the TPM.



Fig. 2. TVD Deploy Protocol

3. After verifying certBind, TVD Master checks whether the platform config-
uration TCBconf complies with its trust policy and if positive, binds TVD
Policy to this certificate. For this, it first signs TVD Policy denoted as P
together with the nonce nonceA. using its signing key (TVDMasterPKsign,
TVDMasterSKsign). Then, TVD Master encrypts the TVD Policy P and the
signature sigP with PKbind. The result Penc is sent to the local platform.

4. TrustMgr can only unbind (decrypt) Penc, if the current platform config-
uration is TCBconf , and the corresponding verifications are successful. In
particular, TrustMgr verifies (i) sigP whether TVD Master is authorized to
define this TVD on this TVD Platform and (ii) whether TVD Proxy Factory is
the owner of the certificate certBind and, hence, it is allowed to use the key
SKbind. This is done by checking the configuration (integrity measurement)
m of TVD Proxy Factory, that should match the value from the certificate
certBind.

5. TVD Proxy Factory then starts local TVD Proxy for this TVD and configures
it according to the received TVD Policy. It also passes the corresponding



parameters to ResourceMgr to configure TVD Resources as defined in TVD
Policy.

6. Finally the newly created TVD Proxy is added to the list of the TVDs already
deployed to the local platform.

3.3 TVD Join Protocol

After TVD Policy is deployed to the local platform, VMs can join this TVD.
To connect a VM to a TVD, the TVDJoin() protocol is executed as shown in
Figure 3.

In our implementation TVD Proxy Factory maintains a list of TVDs deployed
to the local platform. Hence, a VM requests a proxy identifier tvdProxyID of
the required TVD from TVD Proxy Factory. If this TVD has not been deployed
yet to the local platform, TVD Proxy Factory first runs the TVDDeploy() protocol
(see Section 3.2) to create TVD Proxy of the corresponding TVD. On success, VM
gets the required identifier tvdProxyID and is then able to communicate with
TVD Proxy directly. Its join request V MJoin gets accepted by TVD Proxy only if
VM’s integrity measurement m complies to the TVD Policy P . In this case, TVD
Proxy asks ResourceMgr to connect the VM to the TVD and sends a message to
CompartmentMgr to mark it with a label (e.g., red or green) corresponding to
the TVD it was joined to.

Fig. 3. TVD Join Protocol

3.4 TVD Leave and Undeploy Protocols

The TVDLeave() protocol is complementary to TVDJoin() and is depicted at the
top of Figure 4: It involves the same components as TVDJoin() and is similarly
initiated by VMs.

After TVDLeave() is completed, the TVD Proxy checks if there are any other
VMs connected to the TVD. If not, it runs the TVDUndeploy() protocol in order



to remove itself from the local platform. TVDUndeploy() is shown at the bottom
part of Figure 4. It may run after some delay (10 minutes in our case) only if no
VM has initiated the TVDJoin() protocol before the timeout occurs.

3.5 Membership Revocation and Policy Update

The normal operation of a TVD requires mechanisms for membership revocation
and policy updates as part of the general life cycle management. For instance,
changes in resource assignment and access privileges10 require the modification
of the currently active TVD Policy, as well as the revocation of any TVD com-
ponents instantiated based on the old policy.

In these cases, the TVD Master must revoke the old TVD Policy and distribute
the new one to all hosts where the respective TVD is deployed. Care must be
taken that all hosts are notified and hosts which are off-line or otherwise ignore
the update are isolated from the updated TVD. To enforce this isolation, the
low-level labels for access control to TVD Resources must be ephemeral and
hard to guess (more details are given in Section 5.2). For resources like TVD
Storage, which should support offline usage [23], we additionally propose to use
lazy revocation [24, 25].

While a comprehensive revocation and isolation framework is not currently
implemented, we present a simple extension to the TVDDeploy() protocol in
Section 4.6 to show that such a framework can easily be added.

Fig. 4. TVD Leave and TVD Undeploy Protocols

10 e.g., one or more VMs are no longer assigned to the TVD, or a network is no longer
accessible by a certain TVD VM



4 Implementation

4.1 An Application Scenario

Our goal is to show advantages of the TVD concept in a scenario where the
owner of a physical data center offers the operation of independent virtual data
centers (VDCs) to several customers.

Customers can rent resources for a VDC from the data center operator.
Within the resource constraints of their VDC, they can setup one or more TVDs
by defining TVD Policy for each one. Customers can provide their policy defini-
tion and manage the TVD through TVD management consoles, which are also
part of the corresponding TVD and run on either dedicated VDC management
platforms or remotely, e.g., on the customer’s laptop.

4.2 The VDC Demonstrator

Our VDC Demonstrator uses Trusted Computing technology to securely deploy
a customer’s data center as a fully virtualized system inside a physical data
center. The main goal is to give more control to customers.

The demo setup is depicted in Figure 5. It consists of three Computing Plat-
forms and one Management Platform. Two Computing Platforms are located in the
data center and another one is connected to data center remotely. We use two
switches to represent two different physical networks: The local network of the
data center and the Internet. Inside the data center, the Management Platform
(#3) is an accumulation of all servers required for normal operation of the data
center, e.g., providing services for booting over network or assigning network ad-
dresses. Moreover, this platform realizes basic TVD infrastructure services like
the TVD Master. It also provides the uplink to the Internet for the physical VDC
as well as possibly defined TVDs. The Computing Platforms execute the actual
workload, i.e., the TVD VMs. All machines in the data center are Xen based
Linux hosts [26], while the remote Computing Platform (#4) is implemented on
the L4/Fiasco microkernel [27] and represents a standard home PC or laptop.

The VDC Demonstrator runs two TVDs labeled as red.tvd.net and blue.tvd.net,
or red and blue for short. Each TVD is comprised of a set of VMs and logical
networks that are specified in the TVD Policy.

The remote platform (#4) is intended to be the remote administration con-
sole for the TVDs to which it is connected (blue and red in our demo). For each
TVD, there is a dedicated management VM running isolated from other VMs
on this platform. Depending on TVD Policy of each TVD, the management VM
allows the local user of this platform to remotely access other VMs inside the
TVD. We provide a graphical interface and allow the user to manage and ac-
cess only those VMs that belong to the corresponding TVD and that the user
has access to. The underlying network tunneling and policy enforcement is fully
transparent to the user, who just has to define the (virtual) networks of his TVD
and can then start VMs and join them to the TVD.



Fig. 5. The VDC Demonstrator Setup

4.3 Networked Hypervisor Abstraction

For automated remote management of compartments, we use the libvirt virtual-
ization API [28]. Libvirt is a toolkit that features a common interface to use the
virtualization functionalities of several mainstream open source virtual machine
monitors including Xen [29], KVM [30], QEMU [31], and VirtualBox [32].

We implemented a libvirt interface to the L4 microkernel to allow libvirt to
handle L4 in the same way as other supported hypervisors. As a result, we can
integrate the L4 systems transparently into the management interface of the
VDC and TVD administrators. Furthermore, to meet the security requirements
of our project, we extend the libvirt with a Role Based Access Control (RBAC)
module.

The RBAC module enforces the isolation in the TVD management by defin-
ing a distinguished role for the administrator of each TVD and by creating a
separated view of the VDC resources for each role on a per-TVD basis. These
views are defined through a set of rules that filter the access to the different
resources according to their “ownership tag” that is the identifier of the TVD
they belong to. The ownership tag is initially assigned to the administrator (i.e.,
it is associated to the corresponding role), and it is propagated to any VM the
administrator requests to create and to join to the corresponding TVD.

For the integration in the Xen hypervisor, we have implemented a relay
module that operates after the RBAC module. It intercepts requests on resources
that are owned by the TVD, and lets CompartmentMgr on Xen carry out the
associated security tasks, such as attestation and connection of the protected
TVD Resources (e.g., encrypted disk storage).

4.4 Virtual Networking for TVDs

In context of VDCs, one usually assumes that the internal VDC network is
trusted, while the communication channels to and from the VDC can be at-



tacked. Hence, we use virtual LAN (VLAN) [33] inside the VDC and labeled
IPsec [34] in other cases.

VLAN-based virtualization provides easy and highly efficient integration into
existing Ethernet networks, but it does not provide encryption and cannot defend
against eavesdropping. IPsec-based network virtualization on the other hand is
less efficient and more complex in comparison, but does not require a trusted
physical network infrastructure and provides much more flexibility by running
on top of IP, which is supported virtually everywhere.

Fig. 6. Realization of virtual networks in the VDC demonstrator

We achieve an optimal trade-off between isolation of TVD VMs and remote
management access to the TVD by introducing a separate management network
for each TVD (see Figure 6). The main purpose of this network is to provide
limited access to the hypervisor interface on each Computing Platform. This inter-
face allows TVD owners (e.g., VDC customers) to create and manage the virtual
machines (TVD VMs) and associated TVD Resources. To remotely manage the
TVD, the TVD owner downloads a management VM provided by the TVD in-
frastructure provider and executes the TVDDeploy() and TVDJoin() protocols
to join this VM to the TVD. According to TVD Policy, the management VM is
joined to the respective networks, in this case the management network. This
will enable the VM to access the hypervisor interface of all Computing Platforms
that the TVD has expanded to.

Moreover, our virtual networks can also be used to provide access to other
networks or TVDs to realize inter-TVD communication. For general Internet



access, this was implemented using a virtual bridge on the Internet gateway of
the local physical TVD infrastructure. A corresponding virtual TVD network is
provided for each TVD and connected to the individual TVD VMs as specified by
the TVD Policy. While inter-TVD communication is possible this way, the result-
ing exchange point is common to all TVDs and the inter-TVD communication
is not isolated from other TVDs. However, as noted earlier, actual inter-TVD
communication is out of scope of this paper.

4.5 TVD Policy

TVD Policy is the machine-readable security policy of a TVD that specifies all
components that can be admitted to a TVD. It contains a basic form of access
control rules and specifies the configuration of the TVD resources. TVD Policy
used in the VDC Demonstrator is an XML structure composed of two main parts:
tvd_nodes and tvd_layout (see Appendix A for an example). The first one
never leaves the TVD Master and specifies the identity of the systems (Computing
Platforms) that can host TVD VMs. The TCB of such a system is remotely
attested by the TVD Master during the first phase of the TVDDeploy() protocol
(Section 3.2): If it matches one of the systems included in tvd_nodes, then the
trusted channel is established and the second phase of the protocol can take
place.

The systems identities are specified as collections (systems) of references
to reports, each one generated by an agent. In this context, reports are, e.g.,
binary measurements, and agents are TPMs or measuring components of the
TCB, like the L4 CompartmentMgr. The reports therefore represent building
blocks for a whitelist of allowed systems. The identity clause for each agent
defines how these reports shall be authenticated by the remote attestor. For
example, in the case of TPM it could be the fingerprint of the public part of the
attestation identity key, AIK, (or its X.509 certificate) used for the attestation.

The second part of the TVD Policy, tvd_layout, is sent to Computing Plat-
forms via trusted channel during the second phase of the TVDDeploy() protocol.
It is handed out to the TVD Proxy Factory that will spawn and configure the
TVD Proxy with the policy settings. The latter are then used by the ResourceMgr
to set up the TVD networks and will be used by the TVD Proxy later, during
the TVDJoin() protocol, to check whether a VM can be admitted to the TVD
or not. Allowed TVD VMs are expressed as collections (systems) of references
to reports (as for tvd_nodes) to be matched and to resources to be attached
to the VM, like logical networks and storage volumes. The configuration of each
resource is also specified: the usual IP parameters and the encapsulation type
(VLAN tagging, IPsec, etc.) for networks, the volume parameters and security
features to apply (encryption, sealing) for storage. Other virtual resources with
their configuration can be specified: They can also be indirectly attached to
VMs, like virtual switches or VPNs setups.

The defined TVD Policy format allows the complete definition of TVD com-
ponents and resources and can be further extended, e.g., to specify new types
of resources. The structure of collections of reports simplifies the description of



the allowed systems and makes it more compact. However, if the list of systems
is large, evaluating a system against the policy during a remote attestation may
require a considerable amount of time; this aspect requires further tests and
analysis. Finally, parsing XML requires the usage of large libraries unsuitable
for minimalized components implementing, e.g., the trusted channel. In this case
translating the XML format into a text format simpler to parse is required.

4.6 Revocation of TVD Components

Our prototype does not yet include a comprehensive revocation mechanism as
motivated in Section 3.5. However, the previously described protocols and in-
terfaces can be used to implement a rudimentary revocation system which we
briefly describe here.

To revoke the authorization of a TVD Master to deploy a TVD in a TVD
infrastructure, the certificate of the signing key used for authentication of TVD
Policy must be revoked for the respective TVD infrastructure. Since an ordinary
X.509 PKI is used to validate this signature, numerous revocation standards
are available to propagate such information in the TVD infrastructure. Note,
however, that it is up to the administrator of the physical infrastructure to
revoke this authorization and that the TVD infrastructure used by a TVD can
be composed of multiple administrative zones. Imagine for example a TVD with
TVD Master M that should be migrated from data center A to B. After purchase
of resources at B, the client (TVD owner) tells B to authorize M to deploy the
TVD components. The TVD is now hosted by A and B simultaneously and the
TVD owner can cancel the contract with A, so that any deployed resources in
A are migrated to other parties, such as B. Then, A revokes the authorization
of M to deploy new TVD components in A.

To revoke Computing Platforms or components of a TVD means to update
TVD Policy, which lists all allowed Computing Platforms and TVD components
available in a TVD, and to distribute this update to all Computing Platforms
where the TVD is currently deployed to. A simple extension to the TVDDeploy()
protocol (see Section 3.2) can be defined to implement this. It consists of a
single message, update, that must be signed by the TVD Master under inclusion
of the nonceA received in the previous TVDDeploy() protocol execution with the
respective Computing Platform. TVD Proxy Factory, after successful verification
of this message, will re-initiate the trusted channel establishment (which is part
of TVDDeploy() protocol as described in Section 3.2). On success, it informs
TVD Proxy about the updated TVD Policy and TVD Master can mark the host
as updated. Since the policy transmitted by TVD Master is always signed, the
additional signature and nonce are required here only to ensure that the update
message cannot be replayed, which would potentially result in a denial of service
on the Computing Platforms since the TVDDeploy() protocol is quite computation
intensive.

Since such a TVD Policy update implicitly invalidates any previously deployed
policy for that same TVD and host and the TVD Policy specifies all properties



and components of a TVD, this protocol can be used to enforce any required re-
vocation and policy update in the TVD. TVD components that are not included
in the updated TVD Policy anymore must be disconnected from the TVD. Com-
ponents like TVD Storage can be isolated from the running TVD for manual
inspection by the TVD owner, or lazy revocation schemes can be employed as
noted in Section 3.5. Revoked Computing Platforms are also securely isolated:
Since the TVDDeploy() protocol enforces remote attestation of the Computing
Platform and its TCB, the deployment of the updated policy will fail for Com-
puting Platforms that are not listed in TVD Policy anymore. As a result, these
platforms cannot take part when the new low-level labels for TVD Resources are
negotiated and thus get isolated from other TVD components.

A more scalable protocol is possible by leveraging the keys previously estab-
lished in the trusted channel. From the description above it is clear, however,
that our TVD design allows automated and highly flexible revocation and up-
date of components. Naturally, more graceful approaches might be preferred if
the revocation is not due to security compromise.

5 Lessons Learned

During the development of our TVD infrastructure we discovered some subtle is-
sues which led to the experience we describe in this section. Some issues required
changes in the design. As a result, we had to distinguish different network types
within a TVD to separate normal operation and management. Other issues just
complicated the development, but as a consequence raise the need for different
implementation strategies in the future.

In the following, we motivate multiple logical networks within one TVD, dis-
cuss revocation issues, explain the need to negotiate labels by the TVD infras-
tructure, and, at the end, point out the need for a common hypervisor abstraction
layer.

5.1 Multiple Logical Networks for Intra-TVD Networking

It became clear when designing our prototype that a TVD must support multiple
logical networks with different sets of TVD VMs to achieve maximum isolation
and yet allow certain privileged VMs to access management interfaces or exter-
nal networks. Furthermore, customers will expect general Internet connectivity
for some of their VMs as well as the ability to isolate some sets of TVD VMs from
others. For example, a large server infrastructure will typically consist of mul-
tiple components like database backends, application layer proxies and systems
for replication and hot failover. Such infrastructures use access control between
components to enhance security and prevent unintended interactions. In real
data centers, such access control is typically provided through extensive use of
VLAN [33] and packet filtering in the network switches. However, such issues
have not been discussed in context of TVD infrastructures before. Prior work [3]
suggests to employ the TVD concept on multiple layers to control information



flow within a TVD. However, even a multi-layer TVD concept provides much
less fine-grained access control than a simple network packet filter. For cloud
computing services on the other hand, existing implementations like Amazon’s
Compute Cloud already support fine-grained access control and out-of-band se-
curity management of the system [35].

5.2 Revocation Issues

We described how revocation of platforms, TVD components and authorization
of a TVD Master can be automated in a useful manner based on our TVD design.
Although the idea is simple in case of TVDs, details like scalability and integra-
tion of graceful update and migration mechanisms remain to be solved. It also
became apparent that revocation requires secure labeling of resources to enforce
isolation. This appears to prohibit the use of simple label-based approaches such
as VLAN [33], as it has been proposed in various previous works (e.g., [5]). If
simple label-based virtualization is used, a compromised and revoked virtualiza-
tion platform might be able to exhaustively search the only 212 possible VLAN
labels or otherwise derive the current label to produce a collision of resource
labels, with the result that communication between the TVD and a revoked
Computing Platform can be established again and secure isolation is breached.

As pointed out in Section 3.5, automated revocation is an integral part of the
life cycle management in TVDs. We presented a basic implementation, however,
more comprehensive and flexible solutions are necessary for large, automated
infrastructures targeted by the TVD concept.

5.3 Labeling Scheme Needed to Control Access to Resources

Several issues must be considered for labeled shared resources. In Section 3.5 we
argue that low-level labels should be ephemeral to allow effective exclusion of
revoked parties. Another aspect are accidental label collisions between TVDs,
which are well conceivable when a TVD is deployed to several TVD infrastructure
providers at once.

We therefore propose low-level labels, i.e., labels that are negotiated on de-
mand and used by the TVD infrastructure to enforce access control between
TVD Resources and TVD VMs. If we consider labeled IPSec as a mechanism to
implement a TVD Network, this becomes immediately obvious: To secure access
to this resource and assure that revoked hosts are reliably excluded, a negotia-
tion is needed between the corresponding Computing Platforms. In this case, the
TVD Master will issue a new set of authorization tokens on each policy update
to assure that Computing Platforms with outdated or revoked policies cannot
participate in these negotiations. For the implementation of the label negotia-
tion, the reader is referred to publications on group key exchange protocols such
as [36].



5.4 Hypervisor Abstraction Layer Needs More Abstraction

In our work with different hypervisor and microkernel technologies, it became
obvious that hypervisor abstraction is an important issue. In fact, the TVD
concept itself is such an abstraction layer that specifies a set of resources and
services which are provided independent from the underlying technology. We
therefore used the libvirt hypervisor abstraction API because it allows for utiliz-
ing lightweight management tools and provides interfaces based on the Common
Information Model (CIM) [37] for integrating with high level management suites.
However, it turned out that the libvirt abstraction layer alone is not sufficient
to cover some important aspects.

Inter Process Communication Services and VMs need to communicate with
other services on a hypervisor platform, e.g., to execute the join procedure. This
is performed via inter process communication (IPC). However, the libvirt ab-
straction does not cover IPC aspects. But to ease development of services and ap-
plications on a cross-platform level, a common IPC interface becomes necessary.
Recent developments suggest the use of XML Remote Procedure Calls (XML-
RPC [38]). But in our view it is less error prone, more efficient and light weight
to define interfaces in a more abstract language, such as IDL [39], and let spe-
cialized compilers generate optimized code for the target architecture.

Automation of TPM Initialization TPMs were originally designed under
the assumption that a human individual would perform a number of initial con-
figuration actions. Consequently, several commands for currently available TPMs
and corresponding BIOS setups were designed such as to ensure the physical
presence of an operator during these steps. In data center scenarios, physical
presence of an operator is an unreasonable assumption, and instead the support
of remote initiation of TPM commands is required. However, during our inte-
gration efforts we had to conclude that it is not possible to fully automate the
initialization process with the current generation of TPMs used in our setup (In-
fineon TPM v1.2). In the near future, deployment of such platforms will therefore
rely on a certain amount of manual preconfiguraton with regard to enabling the
TPM assuming ownership of it. This problem has since been reflected in the
latest Provisioning Specifications of the TCG, and future generations of trusted
platforms will allow to delegate these steps.

TPM Management The abstraction of different platforms in a TVD demands
suitable management interfaces for remotely querying and configuring TPMs.
This concern was mainly ignored during the TPM specification process by the
TCG because they assumed interactions between human users and the TPM
by means of software that already resides on the physical platform. Moreover,
managing the hardware TPMs on physical platforms is a critical operation that
may affect all TVDs that run instances on the machine. While it is important
to guard the access to the corresponding functionality, our experiments have



shown that existing CIM agents lack support of fine grained access control that is
required here. They often assume an all-powerful super user instead of different
roles for, e.g., infrastructure operator and domain operator. In addition, the
libvirt API is not well suited to host functionality that regards low-level aspects
of the Trusted Computing hardware.

We therefore had to provide a dedicated API, although this was against our
aim of supplying a unified management API. We developed a CIM model and a
corresponding implementation that supports basic functionality such as reading
out the endorsement key and important operational parameters, activating and
deactivating the TPM, and so forth. We modeled the TPM as a CIM security
device and service and covered most of the TPM information and functionality
required for configuring a hosting platform for TVD components. Not included
at this stage are functions of advanced TPM key management since they turned
out to cut across multiple CIM profiles. On the other hand, our current working
model already reflects that TPM related services might not yet be available at
early configuration or boot up stages.

After all, our experiences suggest that an API suitable for managing all
aspects of TVDs and trusted platforms will require at least an additional layer
of abstraction in addition to the libvirt based approach presented above. In
particular, they highlight the need of a comprehensive model covering all aspects
of a TVD life cycle. This goes beyond what could be achieved at the abstraction
level of libvirt. While the abstraction of IPC for services and applications needs
a different mechanism, we believe that integration of TPM management should
be possible by using a CIM based approach, provided that existing tools are
extended with authorization control mechanisms.

5.5 TVD Policy Definition

When defining the language syntax to express the TVD Policy, we realized that
one relevant requirement to meet is the trade-off between expressive richness and
compactness. The need for a rich semantics stems from the number of areas the
language must cover: integrity of TVD elements, basic access control (admitting
a VM to a TVD or not) and configuration of TVD resources. The need for
compactness originates from the nature of the components that must parse and
enforce the policy. Since they are part of the TCB, their size must be as minimal
as possible. In some case we found that specialized languages (like XACML [40]
for access control) are too verbose, thus to reach the trade-off of effectiveness,
we chose to write our own XML-based language.

Another lesson from our work is the degree of abstraction needed to describe
TVD infrastructures: our achievement is that a whole network of systems can
be represented in a single policy and all detailed mechanisms are abstracted
away. The differences among the system architectures are related to: hypervisors,
components implementing the virtual resources for VMs and system integrity
(measurement and reporting). In this respect, our language can represent chains
of trust that can include measurements held within the TPM and those kept in



software TCB components allowing for different levels of aggregation. Multiple
ways to authenticate the integrity reports are supported. Moreover, complete
VMs that are allowed in the TVD are identified in the policy by reference, i.e.,
through the digests of their root file system images, kernel and configuration file.
The latter is expressed using a language independent from the hypervisor type,
i.e., the libvirt XML format.

6 Related Work

Trusted Virtual Domains (TVDs) were first proposed in [1, 2]. Various applica-
tions of TVDs have already been shown and discussed, for instance, applying
the TVD concept for secure information sharing [3], enterprise rights manage-
ment [41], or virtual data centers [4, 42, 43]. In [4] and [42] the authors discuss
the management of TVDs in data centers and present a high-level architecture
for such a TVD infrastructure. Our TVD architecture is inspired by their work,
however, we support different hypervisor architectures in an integrative solution
and discuss new issues such as access control inside TVDs.

To the best of our knowledge, previous works on TVD establishment [3, 2, 4,
42] do not discuss in detail how to integrate trusted computing functionality in
TVD management. In contrast, we present a detailed description of the protocols,
including the integration of trusted computing functionality, needed to realize a
secure life-cycle management of TVDs.

The closest work to ours is probably described in [43]. The authors describe
an implementation which is similar to ours, but using Xen hypervisor only. They
also mention attestation for integrity verification of the loaded software compo-
nents in VMs and TCB components. However, their description of using trusted
computing functionality is rather high level, whereas we describe in detail the
protocols between TVD Master and local TCB components (TVD Proxy Fac-
tory, TVD Proxy, etc.). Moreover, we not only use attestation (embedded in
the trusted channel between TVD Master and the local platform), but also use
TPM-based data binding to deploy the TVD policy to local platforms and pro-
tect the credentials associated with the TVD policy. Finally, our implementation
is cross-platform and works for both Xen and L4 virtualization.

An enhancement of TVD is to incorporate storage protection. The work in
[43] extends the data center approach with controlled access to networked stor-
age. In contrast, the work in [23] considers mobile storage devices, such as USB
memory sticks, to incorporate in the TVD model. In that approach, additional
components are introduced in the TCB of local platforms to feature identification
and transparent encryption of storage devices, whereas existing components are
enhanced to realize a dynamic centralized key management service. These works
are complementary to ours and could be easily integrated into our architecture.

Techniques to isolate and manage the virtual networks of different TVDs are
discussed in [5]. Basically, they propose a trusted virtual switch on each platform
that uses VLAN tagging for local and IPsec for remote connections to implement
strong isolation of networks. In [34], the authors propose security labels for IPsec



Security Associations to implement Multi Level Security (MLS) across networks.
Their work was integrated into the Linux kernel and allows MAC enforcement
between networked applications based on a mutually trusted TCB. Solaris Zones
[44], an OS virtualization technology by Sun, is the first commercial product we
know of that features networking virtualization based on labeled IPsec [45]. Our
implementation is inspired by some of these ideas and is based on labeled IPsec
and VLAN.

7 Conclusion

Trusted Virtual Domain (TVD) is a promising concept for secure management
of virtualization platforms. We have presented the design and implementation of
a TVD infrastructure where we considered the use case of Virtual Data Centers.
Our design imposes only little overhead when compared to virtualized environ-
ments that do not use the TVD management framework. The protocol overhead
for IPsec-based network virtualization is approximately 98 Byte per Ethernet
frame for the additional EtherIP, IPsec and IP encapsulations.

We have described the life cycle management and implementation of a TVD
based on Trusted Computing functionality. We have discussed automated re-
vocation within TVDs as an integral part of the life cycle management of the
TVD components. We motivated the use of separate management facilities for
each TVD as well as basic access control mechanisms for TVD resources. The
use of a hypervisor abstraction layer allows secure remote management of VMs
and TVD resources for customers and data center administrators. Our prototype
uses a simple user interface for such administrative tasks, but more feature-rich
and convenient user frontends have to be developed in future for practical use in
large-scale real-world environments. In particular, we are currently investigat-
ing effective mechanisms for handling revoked platforms or VMs. Moreover, we
are also considering the deployment of TVDs in a broader range of applications
scenarios, such as e-health.
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A TVD Policy Example

The following is an example of a TVD policy defining a Webserver connected to public
Internet and an internal network towards its MySQL DB backend. A management VM
is defined by default and allows to manage the TVD through the special management
network.

<?xml version="1.0" encoding="UTF-8"?>
<tvd_policy id="blue.tvd.opentc.net">
<tvd_nodes>

<attestation>
<agent name="TPM_1.2_default">

<verification type="PrivacyCA">
<identity algo="x509_cert">[base64 x.509 cert]</identity>

</verification>
<verification type="AIK">

<identity algo="sha1_pubkey">[fingerprint of AIK public part]</identity>
</verification>

</agent>
</attestation>
<authentication>

<agent name="VDC_nodes">
<verification type="CA">

<identity algo="x509_cert">[VDC x509 CA certificate]</identity>
</verification>

</agent>
</authentication>
<reports>

<report type="tpm_pcrs" name="HP_Compaq_6710b_HW">
<measurement type="pcr" name="3">FF017D...</measurement>
<measurement type="pcr" name="5">86A000...</measurement>



...
</report>
<report type="tpm_pcrs" name="VDCnode_tGRUB_Xen">

<measurement type="pcr" name="4">2944DD...</measurement>
<measurement type="pcr" name="7">1E3F58...</measurement>
...

</report>
<reports>
<systems>

<system name="vdc_node" type="host_tcb" auth="VDC_nodes">
<component_ref attest="TPM_1.2_default">HP_Compaq_6710b_HW</component_ref>
<component_ref attest="TPM_1.2_default">VDCnode_tGRUB_Xen</component_ref>

</system>
<system name="remoteTVDnode" type="host_tcb" auth="VDC_nodes"> ... </system>

</systems>
</tvd_nodes>
<tvd_layout>

<reports>
<report type="dboot_hvm" name="Webserver">

<measurement type="digest" algo="sha1" name="config">9B659E...</measurement>
<measurement type="digest" algo="sha1" name="kernel">AD3600...</measurement>
<measurement type="digest" algo="sha1" name="initrd">42DD0B...</measurement>
<measurement type="digest" algo="sha1" name="disk" id="0">FC59FF...</measurement>

</report>
<report type="full_hvm" name="MySQLDB"> ... </report>
<report type="full_hvm" name="XenTVDmgmtVM"> ... </report>

</reports>
<resources>

<resource type="network" name="mgmt_network">
<encapsulation type="remote" mode="ipsec_tunnel_esp">

<network_addr>10.0.2.0</network_addr> <multicast_addr>10.0.2.255</multicast_addr>
<cidr_suffix>24</cidr_suffix> <gateway>134.147.101.43</gateway>
<ciphersuite>HMAC_SHA1_96_AES256_CBC</ciphersuite> <key type="psk">5d%f54Gs$82....</key>

</encapsulation>
<encapsulation type="local" mode="vlan"></encapsulation>

</resource>
<resource type="network" name="internal_network"> ... </resource>
<resource type="network" name="InternetUplink"> ... </resource>
<resource type="storage" name="PublicDocumentStorage">

<file>file:///mnt/tvd/blue.tvd.opentc.net/resource_refs/docDB.img</file>
</resource>
<resource type="storage" name="MysqlDB_image">

<encryption type="aes-cbc-essiv:sha256" key="mySecretStorageKey"/>
<file>file:///mnt/tvd/blue.tvd.opentc.net/resource_refs/datarepo.img</file>

</resource>
</resources>
<systems>

<system name="XenTVDmgmtVM" type="vm" description="TVD Mgmt VM (Xen default)">
<component_ref>XenTVDmgmtVM</component_ref>
<resource_ref type="network" attach_id="1">mgmt_network</resource_ref>

</system>
<system name="Webserver" type="vm" description="Simple Xen WebServer">

<component_ref>Webserver</component_ref>
<resource_ref type="network" attach_id="0">InternetUplink</resource_ref>
<resource_ref type="network" attach_id="1">internal_network</resource_ref>
<resource_ref type="storage" attach_id="0">PublicDocumentStorage</resource_ref>

</system>
<system name="DatabaseServer" type="vm" description="MySQL DB Backend">

<component_ref>MySQLDB</component_ref>
<resource_ref type="network" attach_id="0">internal_network</resource_ref>
<resource_ref type="storage" attach_id="1">MysqlDB_image</resource_ref>

</system>
</systems>

</tvd_layout>
</tvd_policy>


