

University of Salerno
DEPARTMENT OF MATHEMATICS

Exact and heuristic approaches for the maximum lifetime
problem in sensor networks with coverage and connectivity

constraints
	

	

Francesco Carrabs
Department of Mathematics, University of Salerno. E-mail: fcarrabs@unisa.it

Raffaele Cerulli

Department of Mathematics, University of Salerno. E-mail: raffaele@unisa.it

Ciriaco D’Ambrosio
Department of Computer Science, University of Salerno. E-mail: cdambrosio@unisa.it

Andrea Raiconi

Department of Mathematics, University of Salerno. E-mail: araiconi@unisa.it
	

Technical Report N° 50811
2/9/2015

	

Noname manuscript No.
(will be inserted by the editor)

Exact and heuristic approaches for the maximum
lifetime problem in sensor networks with coverage and
connectivity constraints

Francesco Carrabs · Raffaele Cerulli ·
Ciriaco D’Ambrosio · Andrea Raiconi

Received: date / Accepted: date

Abstract The aim of the Connected Maximum Lifetime Problem is to define
a schedule for the activation intervals of the sensors deployed inside a region of
interest, such that at all times the activated sensors can monitor a set of interest-
ing target locations and route the collected information to a central base station,
while maximizing the total amount of time over which the sensor network can be
operational. Complete or partial coverage of the targets are taken into account.
To optimally solve the problem, we propose a column generation approach which
makes use of an appropriately designed genetic algorithm to overcome the difficulty
of solving the subproblem to optimality in each iteration. Moreover, we also devise
a heuristic by stopping the column generation procedure as soon as the columns
found by the genetic algorithm do not improve the incumbent solution. Compar-
isons with previous approaches proposed in the literature show our algorithms to
be highly competitive, both in terms of solution quality and computational time.

Keywords Maximum Lifetime ·Wireless Sensor Network · Column Generation ·
Genetic Algorithm · Steiner Tree · Partial Coverage

1 Introduction

Wireless Sensor Networks (WSNs) have been applied to several different real-
world contexts in the last years. Indeed, technology advancements in fields such as

Francesco Carrabs
Department of Mathematics, University of Salerno.
E-mail: fcarrabs@unisa.it

Raffaele Cerulli
Department of Mathematics, University of Salerno.
E-mail: raffaele@unisa.it

Ciriaco D’Ambrosio (B)
Department of Mathematics, University of Salerno.
E-mail: cdambrosio@unisa.it

Andrea Raiconi
Department of Mathematics, University of Salerno.
E-mail: araiconi@unisa.it

2 Francesco Carrabs et al.

micro-electro-mechanical systems (MEMS) and wireless communications allowed
them do be adaptable to diverse scenarios, including environmental monitoring,
healthcare applications, and recent trends such as Internet of Things among others
(refer for instance to [2], [4], [25]). Regardless of the considered application, a WSN
is usually made of a large amount of devices, called sensors, employed to perform
together a monitoring activity. The portion of the space under observation that
can be monitored by a given sensor is defined as its sensing range.

A major issue in WSNs is related to the limited amount of activation time
that is typically guaranteed by batteries to individual sensing devices. Optimizing
the energy consumption of a WSN by appropriately coordinating the use of the
sensors that compose it has therefore become an important research field in the
last years. In particular, a problem that has been widely studied is related to
prolonging for as much as possible the amount of time over which a WSN can
monitor a set of interesting target locations located within a geographical area.
The problem is usually known as Maximum Network Lifetime Problem (MLP),
and several variants of it have been proposed as well, in order to model and take
into account characteristics deriving from different real-world applications.

Usually, the solution approaches proposed in the literature for MLP and its
variants focus on individuating multiple, not necessarily disjoint sets of sensors
(covers) which are individually able to monitor the target points. An appropriate
activation time has also to be chosen for each cover. Then, the covers can be
activated one by one, that is, its sensors can be kept in active state while all
the others are turned off, and the network lifetime is given by the sum of all the
activation times. It follows that in order to achieve a feasible solution, the sum of
the activation times of the covers containing any given sensor has to be bounded by
its battery duration. As proven in [8], considering non-disjoint covers can indeed
allow to achieve a higher network lifetime. The authors also proved MLP to be
NP-Complete, and present an approximation algorithm.

In the last few years, solution approaches based on column generation have
been proposed for MLP and variants. These approaches decompose the prob-
lem in two parts, namely a subproblem aimed at identifying useful covers and
a master problem which assigns activation times to them. Such an approach has
been proposed for the classic version of the problem in [17]. Since the subprob-
lem is NP-Hard, the author proposes both an exact ILP formulation and a simple
constructive heuristic to solve it, leading to an exact and a heuristic algorithm,
respectively. A mixed exact approach combining the two subproblem resolution
methods, which makes use of the ILP formulation whenever the heuristic fails, is
also presented. Proposed variants of the problem include cases in which only a
percentage of targets has to be covered at all times ([11], [20], [28]), heterogeneous
networks ([5], [10]), sensors with adjustable sensing ranges ([9], [14], [15], [18], [26])
or with angular, orientable sensing ranges, such as video cameras ([1], [6], [27]),
among others.

A significant amount of research has been also spent on WSN problems that
consider connectivity issues ([3], [7], [12], [13], [21], [24], [29]). These works take
into account sensor-to-sensor communication, in order to gather the collected in-
formation and transmit it to a data collecting and processing facility (usually
referred to as base station or sink) through single or multi-hop communication.
Therefore an additional range (the communication range) is considered for each

Approaches for the MLP in SN with coverage and connectivity constraints 3

sensor, defining which other sensors are close enough to communicate directly with
it.

In particular, in [24] the authors propose the Connected Maximum Network
Lifetime Problem (CMLP). Consider a communication link existing between each
couple of sensors (or a sensor and the base station) if they are within each other’s
communication range. In CMLP, in addition to the covering request, a path of
communication links involving active sensors must exist between each sensor of the
cover and the base station. The authors propose two heuristics for its resolution.
The first one is a greedy constructive algorithm, while the second one is a GRASP
metaheuristic that iteratively uses a randomized version of the greedy approach
to produce a different starting solution, which is then improved through a local
search step. The GRASP algorithm is also used by the authors to speed up the
convergence of an exact column generation approach; this objective is fulfilled by
using the set of covers corresponding to the best solution to initialize the master
problem.

In [13], the authors extend the problem to consider the case in which only a
subset of the targets may require coverage at all times (α-CMLP), enabling to
decide trade-offs between achievable network lifetime and required quality of ser-
vice. Conceptually similarly to the algorithms presented in [17] for the classical
MLP, the authors propose two metaheuristics to solve the column generation sub-
problem (a GRASP and a VNS) and use them to develop three heuristics (named
CG-GRASP, CG-VNS and CG-MULTI) and an exact approach (CG-EXACT).
While CG-GRASP and CG-VNS use the related metaheuristic to solve the sub-
problem, CG-MULTI combines both of them, invoking in each iteration GRASP
first, and VNS then if GRASP fails. Finally, the CG-EXACT algorithm provides
exact solutions by solving an exact ILP formulation to optimality whenever both
heuristics fail. The authors proved experimentally that their algorithms perform
better than the ones proposed in [24].

In this work we also focus on the α-CMLP problem, presenting a heuristic
and an exact approach based on column generation and called HCG and ECG,
respectively. In our algorithms, new ideas for the resolution of the subproblem are
proposed. In more detail, in order to solve the subproblem heuristically, we pro-
pose a highly efficient, appropriately designed genetic algorithm which embeds a
Steiner Tree heuristic to satisfy the connectivity requirement. Regarding the exact
subproblem resolution, we propose a ILP formulation that reduces the number
of required integer variables with respect to the model proposed in [13]; further-
more, we also propose a modification to the exact scheme that interrupts the ILP
resolution as soon as a feasible profitable cover is found. These new ideas lead
to algorithms that are proven experimentally to outperform the ones proposed in
[13].

The rest of the work has the following structure. A formal definition of the
problem is provided in Section 2. The previously introduced column generation
schemes for CMLP and α-CMLP, as well as our proposed subproblem reformula-
tion, are described in Section 3. Our genetic algorithm and its integration within
the column generation framework are presented in Section 4. Our computational
results are described in Section 5, followed by conclusions and future research
perspectives in Section 6.

4 Francesco Carrabs et al.

Fig. 1 A simple WSN and its connectivity graph

2 Problems Definition and Mathematical Formulation

Let T = {t1, . . . , tn} be the set of the target points of interest, and let S =
{s0, s1, . . . , sm} be the set of the sensors that compose the network, as well as the
base station s0. Each sensor is assumed to have a given sensing range as well as
a communication range, defining which targets can be monitored by the sensor
and which elements of S can directly communicate with it, respectively. Since
the base station does not have covering purposes, it is assumed to only have a
communication range.

Each sensor belonging to S \ {s0} is powered by a battery, which allows it to
be in the operational state only for a limited amount of time. No battery concerns
are assumed with respect to the base station, since it is supposed to be operational
for the whole monitoring process.

For any given target tk ∈ T and sensor si ∈ S \ {s0}, let δki be a binary
parameter which assumes value 1 if tk is located within the sensing range of si, 0
otherwise. By extension, given a subset S′ ⊆ S \ {s0}, let ∆kS′ be equal to 1 if
δki = 1 for at least one sensor si ∈ S′, and 0 otherwise. If δki = 1 or ∆kS′ = 1,
target tk is said to be covered by si or S′, respectively. Furthermore, for any two
elements si, sj of the S set, let us define a binary parameter φij which is equal to
1 if they are close enough to be within each other’s communication range, and 0
otherwise. Note that by definition φij = φji. Now, consider an undirected graph
G = (S,E), such that there exists the communication link (si, sj) ∈ E if and only
if φij = 1; let us call G the connectivity graph of the network.

Figure 1 illustrates the concepts introduced so far, by showing a simple WSN
and its connectivity graph. The network contains the base station s0, a set of
6 sensors, namely {s1, s2, s3, s4, s5, s6} and 5 targets, {t1, t2, t3, t4, t5}. Sensing
and communication ranges are represented with continuous and dashed circles,
respectively. We may note that, for instance, sensor s4 covers t4 and can commu-
nicate with s1, s5 and s6, thus the connectivity graph includes (s4, s1), (s4, s5)
and (s4, s6).

Given a value α ∈ (0, 1], we define C ⊆ S to be a feasible cover (or sim-
ply a cover) for the network if the following three conditions hold: (i) s0 ∈ C;
(ii) the sensors in C can provide coverage for at least Tα = α × n targets,

Approaches for the MLP in SN with coverage and connectivity constraints 5

Fig. 2 A feasible cover and its communication tree

that is,
∑
tk∈T ∆kC ≥ Tα; (iii) given the connectivity graph G, its subgraph

G′ = (C,E(C)) induced by C is connected. It follows that for each sensor si,
in a feasible cover C, there exists a path of communication links from s0 to si
in G′. These paths from s0 to all the sensors in C define a communication tree
rooted at the base station. Each sensor activated in the cover is either used to
sense information, as a relay to transmit it to s0, or for both roles together. Figure
2 shows a feasible cover for the network in Figure 1 and the induced connectivity
subgraph, which also corresponds to its only communication tree. Note that since
all targets are covered, it is a feasible cover for any considered value of α. It can
be observed that if s4 is removed, the remaining elements would not constitute
a feasible cover since Condition (iii) would be violated, meaning that the sensor
is needed in the cover for relay purposes. If Tα ≤ 3, by removing s2 a different
feasible cover would be obtained instead. A cover that does not contain another
cover as a proper subset is defined non-redundant.

The α-Connected Maximum Lifetime Problem (α-CMLP) consists in finding a
collection of pairs (Cp, wp) where each Cp ⊆ S is a feasible cover and each wp ≥ 0 is
an amount of time for which Cp is activated, such that each individual sensor is in
the active state for an amount of time that does not exceed its battery lifetime, and
the sum of the activation times is maximized. With Connected Maximum Lifetime
Problem (CMLP) we refer instead to the special case in which full coverage of the
set of targets is required (that is, α = 1).

Let C1, . . . , CM be a collection of all feasible covers. The following linear model
represents α-CMLP:

[P] max
M∑
p=1

wp (1)

s.t.

M∑
p=1

aipwp ≤ bi ∀si ∈ S \ {s0} (2)

wp ≥ 0 ∀p = 1, . . . ,M (3)

6 Francesco Carrabs et al.

In Constraints (2), for each sensor si ∈ S\{s0} and each cover Cp the parameter
aip is equal to 1 if si is part of Cp, and 0 otherwise, while bi is a value representing
the battery life of the sensor; for instance, assuming that all sensors have the same
characteristics and are equipped with identical batteries, it can be normalized to
1 for all of them. Therefore Constraints (2) enforce the respect of the battery
life limitations, while Objective Function (1) maximizes the sum of the activation
times and thus the network lifetime.

In practice, solving formulation [P] directly is not possible due to the difficulty
of explicitly enumerating all feasible covers, whose number grow exponentially with
the number of sensors. For this reason, better strategies to focus on useful covers,
while implicitly discarding all the others, are required in order to be able to solve
the problem. To this end, the authors in [13] and [24] proposed column generation
approaches; furthermore, they also developed heuristics aimed at speeding up the
convergence of their procedures. As mentioned in the introduction, in our work we
propose some modifications to the ILP subproblem formulation and to how it is
solved, as well as an effective genetic algorithm that we embed within the column
generation framework. These features of our algorithms are presented in Sections
3 and and 4, respectively.

3 Column Generation Approaches for CMLP and α-CMLP

Consider a linear programming formulation with a large number of variables. The
column generation (CG) framework operates by dividing the problem in two steps,
which are iteratively executed until a proven optimal solution is found. In the
first step, the algorithm considers a variant of the original LP formulation (called
restricted master problem) which is limited to only a subset of its original variables
(columns), and solves it. Then, a CG algorithm considers an auxiliary problem (the
separation problem, or subproblem) aimed at building a new attractive column, that
is, a column that may improve the current (incumbent) solution if introduced in the
restricted master problem. If such a column can be found, the algorithm iterates
by adding it to the set and solving the restricted master problem again; otherwise,
the separation problem certifies that the incumbent solution is optimal for the
original problem as well. In the case of [P], it follows that each column represents
a feasible cover.

In the above given description, an attractive column refers to a currently non-
basic variable with a negative reduced cost. It is straightforward to observe that
at least one of such columns is required to exist in order to improve the incumbent
solution. The aim of the subproblem is therefore to build a new column (in our
case, a feasible cover) while minimizing its reduced cost. If such a reduced cost is
positive, it means that all the nonbasic columns which have not been generated so
far can be implicitly discarded, and thus the incumbent solution is certified to be
optimal; otherwise, the new column is introduced in the restricted master problem
and the procedure iterates, as previously described.

Let Gd = (S,Ed) be the directed version of the connectivity graph G = (S,E),
where Ed contains both (si, sj) and (sj , si) for each communication link (si, sj) ∈
E. In [24], the authors propose the following single-commodity flow formulation
for the CMLP subproblem:

Approaches for the MLP in SN with coverage and connectivity constraints 7

[SP] min
∑

si∈S\{s0}

πiyi (4)

s.t.

∑
si∈S\{s0}

δkiyi ≥ 1 ∀tk ∈ T (5)

∑
(s0,si)∈Ed

f0i =
∑
si∈S

yi (6)

∑
(si,sj)∈Ed

fij −
∑

(sj ,si)∈Ed

fji = yi ∀si ∈ S \ {s0} (7)

∑
(si,sj)∈Ed

xij = yj ∀sj ∈ S \ {s0} (8)

xij ≤ fij ≤ |S|xij ∀(si, sj) ∈ Ed (9)

fij ∈ Z+ ∪ {0} ∀(si, sj) ∈ Ed (10)

xij ∈ {0, 1} ∀(si, sj) ∈ Ed (11)

yi ∈ {0, 1} ∀si ∈ S \ {s0} (12)

In the objective function (4), parameters πi ∀si ∈ S \ {s0} correspond to the
dual prices associated to Constraints (2) in the incumbent solution, while each
binary variable yi is equal to 1 if the related sensor is chosen to be part of the new
cover. Since in the objective function of [P] the coefficient of each cover is 1, it
follows that the new cover built by [SP] will be attractive if its objective function
value is less than 1.

Constraints (5)-(12) impose that the chosen sensors constitute a feasible cover
for CMLP, that is, they cover all targets and induce a communication tree rooted at
the base station s0 in the communication graph. Binary variables xij ∀(si, sj) ∈ Ed
are used to represent which edges in the connectivity graph are chosen to be part
of the tree, while variables fij are flow variables used to ensure its connectivity.
Constraints (5) guarantee that each target is covered by at least one active sen-
sor. Constraint (6) imposes the amount of flow produced by the base station to be
equal to the number of activated sensors. Constraints (7) are the flow conservation
constraints, while Constraints (8) make sure that exactly one ingoing communica-
tion link (si, sj) is chosen for any active sensor sj . Finally, by effect of Constraints
(9) there can only be positive flow on the selected communication links.

In [13], the subproblem formulation was extended to α-CMLP as follows:

[SP’] min
∑

si∈S\{s0}

πiyi (13)

s.t.

(6)-(12)

8 Francesco Carrabs et al.∑
si∈S\{s0}

δkiyi ≥ zk ∀tk ∈ T (14)

∑
tk∈T

zk ≥ Tα (15)

zk ∈ {0, 1} ∀tk ∈ T (16)

Since for the α-CMLP problem not all targets are always required to be covered
for each cover to be feasible, the additional binary zk variables are introduced for
each tk ∈ T to represent the decision for the related target. Constraints (14) state
that each zk variable can be equal to 1 only if at least one of the sensors that can
cover it is activated, while Constraints (15) ensure that at least Tα targets are
covered.

In this work, we propose a better formulation for the subproblem that, com-
pared to [SP’], does not use the xij variables. Indeed, it can be noted that Con-
straints (8) and (9) can be substituted with a new set of constraints which imposes
all sensors with ingoing positive flow to be activated in the cover. This leads to
the following formulation:

[SP”] min
∑

si∈S\{s0}

πiyi (17)

s.t.

(6),(7),(10),(12),(14)-(16)

yi ≤
∑

(sj ,si)∈E

fji ≤ (|S| − 1)yi ∀si ∈ S \ {s0} (18)

The main disadvantage of such column generation approaches is that solving
the subproblem is NP-Hard (see [13]). As the size of the problem grows, [SP”]
becomes harder to solve, and the number of iterations required for the column
generation procedure to converge is expected to increase as well. It can be noted,
however, that the exact subproblem solution is only needed to certify optimality
in the final iteration while, in general, any new attractive column could be used
to proceed to the next column generation iteration. For this reason, as will be
discussed in the next section, we designed a genetic algorithm (GA) to quickly
produce attractive columns. Furthermore, even when GA fails and solving the
[SP”] ILP formulation is indeed needed, we check every incumbent feasible solu-
tion found by the solver, and stop the search as soon as a solution with an objective
function value which is less than 1 is found. Thanks to the these modifications,
the performances of the CG scheme are remarkably improved, as will be analyzed
in Section 5.

4 A Genetic Algorithm to Address the [SP”] Subproblem

As previously mentioned, we designed an effective genetic algorithm that we em-
bedded in the column generation framework in order to improve its performances.
In this section, we first give a general overview of the algorithm, and then describe
all of its different features in detail.

Approaches for the MLP in SN with coverage and connectivity constraints 9

Fig. 3 Classical CG scheme (a). HCG scheme (b). ECG scheme (c).

4.1 GA overall structure

Our genetic algorithm (GA) is used in the column generation scheme to solve [SP”]
heuristically. As for the mathematical formulation, it is used to build feasible covers
and uses the dual prices coming from the latest restricted master problem iteration
to weight each sensor.

The GA is used to develop both a heuristic and an exact approach, that we call
HCG and ECG, respectively. In HCG, the genetic is used to entirely substitute
[SP”] in the column generation scheme, and the procedure stops as soon as the
GA fails to find an attractive cover. This kind of approach can not certify that
the global optimal solution has been reached; however, such a procedure can still
prove to be a very effective heuristic, as will be shown in Section 5. Furthermore, we
developed ECG by solving [SP”] every time that the heuristic for the subproblem
fails, in order to either find a new attractive cover which was not found by the GA,
or finally certify optimality for the incumbent solution. However, as mentioned
in Section 2, in this case the subproblem formulation is not necessarily solved
to optimality, since we stop as soon as [SP”] finds a column with an objective
function which is less than 1. In both HCG and ECG, after each GA iteration we
add all the attractive covers contained in its final population, in order to further
accelerate the algorithms convergence. The flowcharts in Figures 3(b) and 3(c)
illustrate how the GA procedure is integrated within our proposed approaches.

Genetic algorithms are population-based metaheuristics that, as other methods
belonging to the class of evolutionary algorithms, use techniques that draw inspira-

10 Francesco Carrabs et al.

Algorithm 1: GA pseudocode

Input: WSN = (S, T), α ∈ (0, 1], G = (S,E), DP ;
Output: Set of feasible covers;

1 P ← initP (WSN,G, α,DP);
2 BestF it← bestF itness(P,DP);
3 criteria← setCriteria(MaxIT,MaxDUP);
4 SPL← evaluateShortestPaths(G,DP);
5 while check(criteria) do
6 (Cp1, Cp2)← tournament(P,DP);
7 C ← crossover(Cp1, Cp2);
8 C ← mutation(C);
9 C ← coverFeasibilityOperator(C,WSN,α);

10 C ← connectFeasibilityOperator(C,G, SPL,DP);
11 C ← redundancyRemovalOperator(C,WSN,G);
12 if C /∈ P then
13 P ← insert(C);
14 if fitness(C,DP) ≥ BestF it then
15 update(criteria);

16 else
17 BestF it← fitness(C,DP);

18 else
19 update(criteria);

20 Chromos← chromosomes with fitness < 1;
21 return Chromos;

tion from biological evolution concepts, including natural selection, reproduction
and mutation. Given a starting population of individuals representing problem
solutions, usually defined chromosomes, a GA typically produces new solutions
by combining information belonging to two or more parent chromosomes, an op-
eration known as the crossover operator. Newly generated chromosomes are also
often randomly perturbed by means of a mutation operator in order to diversify
the population. Chromosomes are evaluated and ranked using a fitness function,
usually connected to the objective function of the considered optimization prob-
lem. The overall aim of GAs is to emulate the process of natural selection by
iteratively producing better fit individuals, that inherit favorable characteristics
from their parents. For an extensive introduction to genetic algorithms, the reader
may refer to [16].

The pseudocode of our GA is reported in Algorithm 1. The input data consist
of the wireless sensor network WSN = (S, T), its connectivity graph G = (S,E),
the α value and the dual prices vector DP obtained from the last iteration of
the restricted master problem. GA starts by building a population P of chromo-
somes, representing feasible covers; each chromosome has the structure described
in Section 4.2, and the first population is built as reported in Section 4.7. It also
initializes the stopping criteria used by the GA, which will be later described. The
final step of the initialization phase involves the evaluation of the shortest paths
between each couple of elements of the set S in the connectivity graph G, using
a weighting function for the edges of E which depends on the dual prices vector
DP . The Floyd-Warshall algorithm (see [23]) is used for this computation. The

Approaches for the MLP in SN with coverage and connectivity constraints 11

shortest paths are used by an operator named connect feasibility ; the details on
this operator, as well as on the considered weighting function, are given in Section
4.5.

After the initialization phase, the procedure builds iteratively new chromo-
somes, one by one. In more detail, in each iteration two parent chromosomes are
chosen and combined through the crossover operator (see Section 4.3); the obtained
child C is then mutated (Section 4.4). Since these operations do not guarantee the
feasibility of C, both in terms of coverage and connectivity, two operators are ap-
plied in order to eventually transform it into a chromosome which represents a
feasible cover (Section 4.5). The final modifications applied to C are made by an
operator that checks if some of its sensors can be switched off while preserving fea-
sibility (Section 4.6). The resulting chromosome is introduced in the population,
unless an identical one already belongs to it. If the chromosome is added to the
population, it replaces an older one which is chosen randomly among the |P |/2
chromosomes with worst fitness function. It follows that the population size never
changes during the algorithm execution.

The GA ends its execution as soon as one of two stopping criteria is reached,
which make use of two parameters, called MaxIT and MaxDUP respectively. The
MaxIT parameter refers to a maximum number of iterations without improve-
ments with respect to the best fitness value in P , while MaxDUP is a maximum
number of consecutive generated chromosomes which have a duplicate in the pop-
ulation.

In the last step, GA returns all the chromosomes in P that correspond to
attractive covers.

4.2 Chromosome Representation and Fitness Function

Each chromosome C in our GA algorithm is internally represented as a binary
vector of length |S|. The element in the i-th position of the vector, with i ∈
{0, 1 . . . ,m}, is called the i-th gene of C and is denoted by C[i]. The gene C[i]
is associated to si ∈ S, and it is equal to 1 if and only if si is activated in C. In
this case, we say that C contains si. By extension, chromosomes corresponding
to feasible covers are defined to be feasible as well. Obviously, since each feasible
cover has to contain the base station s0, C[0] must be equal to 1 in each feasible
chromosome C. It is also easy to see that, ruling out the C[0] gene, a feasible
chromosome is a column of [P]. The operators of our GA make sure that only
feasible chromosomes are introduced in the population.

The fitness function is equivalent to the objective function (17) of the [SP”]
formulation, and is easily computed as the dot product of the chromosome and the
dual prices vector DP (we assume the dual price of s0 to be equal to 0). It follows
that any feasible chromosome with a fitness value lower than 1 is an attractive
column for the restricted master problem.

4.3 Crossover operator

The aim of the crossover operator is to create new individuals from chromosomes in
the current population (their parents), which hopefully inherit their good features,

12 Francesco Carrabs et al.

eventually leading to better solutions. The selection of the parents is carried out
by using a binary tournament strategy. That is, the crossover randomly selects
two chromosomes of P , and the one with the best fitness is designated as first
parent Cp1. The same procedure is used to select the second parent Cp2, making
sure that Cp1 is different from Cp2.

After the parents selection, the crossover operator generates the child C by
performing a bitwise logical AND operation on the parents, that is, for any given
position i ∈ {0, 1, . . . ,m}, C[i] = 1 if and only if Cp1[i] = 1 and Cp2[i] = 1. It
is easy to see that since both parent chromosomes are feasible, the child always
contains the base station, i.e. C[0] = 1. This choice will not be modified by the
subsequently applied operators.

4.4 Mutation operator

Mutation operators are commonly applied after the crossover phase as a mean to
add diversification to the population by applying some random perturbations to
the newly generated chromosomes.

Our mutation operator randomly selects a gene of the child C whose value is
identical in the parents, if it exists, and changes its value (C[0] is excluded from
the random selection). In this way, at least one gene will differ between the child
and its parents. In the unlikely case in which the parents share no common genes
except the one corresponding to s0, the child will contain no sensors, and will be
entirely built by the operators described in Sections 4.5 and 4.6.

4.5 Feasibility Fixing Operators

The child chromosome C derived by the crossover and the mutation procedures is
not guaranteed to be feasible. Indeed, neither the coverage of Tα targets nor the
connectivity of the induced subgraph are guaranteed. For this reason, we introduce
two feasibility fixing operators whose aim is to make C feasible.

The two operators are applied in sequence. The first one, cover feasibility,
starts by checking which targets are covered by the currently activated sensors. If
they are fewer than Tα, it randomly selects a currently uncovered target tk and a
sensor si among the ones that can cover tk. Then, the operator activates si in C
and updates the set of targets covered by the chromosome. The procedure iterates
by selecting and activating new sensors, until at least Tα targets are covered.

The chromosome C returned by the cover feasibility operator may still be
unfeasible, since the activated sensors cover the required number of targets, but
its induced subgraph G′ in G may be disconnected. For this reason, we introduce
a second feasibility fixing operator, named connect feasibility, whose aim is to
activate new sensors in C to connect G′. To this end, we formulate this issue as
a Steiner Tree. Given an undirected and edge weighted graph G = (V,E), and
given a subset of vertices V ′ ⊆ V , the Steiner Tree problem consists in finding
a minimum cost subtree of G which covers all the vertices in V ′. The tree may
include elements of V \ V ′. The vertices in V ′ are named basic, while those in
V \ V ′ are the steiner vertices.

Approaches for the MLP in SN with coverage and connectivity constraints 13

In our case, we mark the base station and the sensors activated in C as basic,
and all other sensors as steiner. Furthermore, with the aim of facilitating the
selection of sensors with low dual price values, we define a function which assigns
to each edge of E a weight equal to the sum of the dual prices of its endpoints
(recall that s0 is assumed to have a dual price equal to 0).

The Steiner Tree problem is well-known to be NP-hard [22] therefore it is not
reasonable to optimally solve it every time that a chromosome is built. Several
heuristics have been proposed in the literature to solve the Steiner Tree problem.
A survey on these heuristics can be found in [19]. In this work, we use a fast and
effective construction heuristic that the authors call CHINS (Cheapest Insertion)
and that works as follows:

CHINS Heuristic
Input: Weighted graph G, basic vertices list;
Output: Steiner Tree T ;

1. Initialize the solution T with a single arbitrary basic vertex i;
2. Repeat:

(a) Find the shortest path P in G between any basic vertex j not in
T and any vertex in T ;

(b) Add all edges and vertices of P to T ;
3. Until T contains all basic vertices.

An improvement of CHINS called CHINS-Q iterates the procedure |V ′| times,
selecting every time a different basic vertex for the starting choice i, and finally
returning the best encountered solution.

Our connect feasibility operator implements CHINS-Q. For each element si
contained in C, an iteration is performed. In each iteration, we first build a vector
C′ with C′[i] = 1 and all other genes equal to 0. Then, among all the shortest
paths between an sj contained in C that is not is C′ and an sp in C′, the proce-
dure individuates the one with lowest weight and activates in C′ all the elements
belonging to this shortest path. This operation is repeated until C′ contains all
the elements of C and thus it is a feasible chromosome.

Finally, the best solution found is returned.

4.6 Redundancy Removal Operator

The C chromosome resulting from the feasibility operators is guaranteed to be
feasible. However, since such operators may have added redundant coverage, we
use a final operator to try to deactivate some of its sensors without compromising
feasibility. In more detail, the operator first considers the tree individuated by
the connect feasibility operator. Then, it builds a list of all the leaves of the tree
whose deactivation would not compromise the coverage of Tα targets (eventually
excluding s0). If the list is not empty, one of its sensors is randomly chosen and
deactivated. The list is then updated, and the procedure iterates until no more
sensors can be deactivated.

14 Francesco Carrabs et al.

4.7 Building the Starting Population and CG initialization

Each individual belonging to the starting population P is built by applying the two
feasibility fixing and the redundancy removal operators on a chromosome which
initially only contains the base station s0. Each chromosome built by applying
these steps is added to the population unless an identical one already belongs to
it. The procedure iterates until either a predefined number SizeP of chromosomes
have been built, or a threshold maxInitDUP , representing a maximum number of
consecutive duplicate chromosomes, is reached. In the latter case, SizeP is updated
to the resulting value of |P |. As previously mentioned, the population size remains
constant throughout the GA execution.

At the beginning of both our heuristic and exact approaches, in order to ini-
tialize the restricted master problem with a set of feasible columns, we use a
preliminary run of our GA, using random values for the dual prices. The whole set
of SizeP chromosomes belonging to the final population is used to produce the
starting set of columns.

5 Computational Results

This section presents the results of our extensive computational test phase, on two
groups of benchmark instances proposed in [24] for the case α = 1 and in [13] for
the general case, respectively. We only perform a comparison with the algorithms
described in [13], since the authors experimentally proved that these algorithms
outperform the ones proposed in [24].

5.1 Instances description

The computational test are carried out on the benchmark instances used in [13].
These instances are divided into two groups. The instances that we call group
1 were introduced for the first time in [13], while group 2 is composed by older
instances originally proposed in [24].

Instances in group 1 have a number of sensors |S \ {s0}| varying in the set
{100, 200, 300, 400, 500} and a number of targets |T | equal to either 15 or 30.
Different coverage levels are considered, represented by the α value which varies in
the set {0.7, 0.85, 1}. The communication range RC is fixed and equal to 125 for all
nodes in S, while the sensing range value RS varies in the set {100, 125}. For each
combination of parameters four different instances were generated, that together
represent a scenario. Therefore, there are in total 240 group 1 test instances, that
compose 60 scenarios. Instances belonging to group 2 have 15 targets and a number
of sensors varying in the set {50, 75, 100, 150, 200}. For each value of |S \ {s0}|, 5
different instances were generated, for a total of 25 instances. The communication
range is assumed to be equal to the sensing range and full coverage for the whole
set of targets is required. In the instances of both groups, sensors, targets and the
base station are randomly disposed over a bidimensional region and all sensors can
be activated for at most 1 time unit. More details on the instances can be found
in [13] and [24].

Approaches for the MLP in SN with coverage and connectivity constraints 15

5.2 Testing environment and parameters settings

Our algorithms have been coded in C++, and the tests were performed using a
machine running under the OSX Lion operating system, with an Intel Core i5 2.5
GHz processor and 4GB of RAM (single thread mode). Our approaches make use
of the IBM ILOG CPLEX 12.6.1 solver and the Concert Technology Library to
solve the mathematical formulations.

The tests in [13] ran on a similar setup, using a machine equipped with an Intel
Core i5 1.6 Ghz processor with 2GB of RAM using the same operating system.
Their algorithms were similarly coded in C++, in conjunction with the Gurobi
optimization engine for the mathematical models.

After a parameter tuning phase, we determined the values of the parameters
used by our GA algorithm for all the tests. The population size SizeP was chosen
to be equal to 100. We recall that this parameter also controls the maximum
number of new columns which is returned to the restricted master problem after
each GA iteration, since each attractive cover found in the final population is used
to produce one of them. The maxInitDUP threshold used during the initialization
(Section 4.7) was chosen to be equal to 100, while the chosen values for the two
parameters MaxIT and MaxDUP , regulating the termination criteria (Section
4.1) are 2000 and 100, respectively. Similarly to [13], a 3600 seconds time limit
is considered for each test, and the best solution found is reported whenever the
time limit is reached. All results are rounded to two decimal places.

5.3 Impact of the premature subproblem interruptions

In this work we introduce two different methods to overcome the difficulty of
solving [SP”] to optimality, namely our GA algorithm and the invocation of a
CPLEX callback function to prematurely stop the subproblem resolution as soon
as it finds an attractive cover. The underlying idea is that the latter method is
used to produce a new cover that can both improve the current incumbent solution
and help GA to escape the local optimum in which it was trapped, hopefully
regaining effectivity in its next invocation, with a computational expense that can
be significantly smaller than solving [SP”] to optimality.

While for the mentioned reasons we believe that these methods are most ef-
fective when used in conjunction, in order to evaluate the impact of the callback
invocations, without being affected by the GA performances, we carried out a first
test phase in which we compared the traditional column generation approach (i.e.
the one represented in Figure 3(a)) with and without the callback invocation dur-
ing the subproblem resolution. In the following the two procedures are referred to
as CG-Call and CG-Std, respectively. For both these algorithms, the GA is used
only once to produce the initial restricted set of columns, as described in Section
4.7. The results of this comparison are presented in Table 1.

We performed these tests on the group 1 instances with at most 200 sensors.
Results for instances with RS = 100 are shown in the top half, while those with
RS = 125 are reported in the bottom half. Each line in the table represents a
scenario composed of four instances with the same characteristics, and the re-
sults reported in each line report the average values on these four instances. The

16 Francesco Carrabs et al.

CG-Std CG-Call % Gap
|S \ {s0}| |T | α LT Time S-Inv #Opt LT Time S-Inv #Opt LT Time

R
S

=
1
0
0

100 15 0.70 6.83 956.03 108.75 3 6.88 65.90 232.25 4 0.73 93.11
0.85 6.19 2704.51 96.00 1 6.64 1067.56 389.75 3 7.27 60.53
1.00 4.00 1.76 26.50 4 4.00 2.18 37.50 4 0.00 -23.86

100 30 0.70 6.99 1954.41 124.25 3 7.00 136.70 298.50 4 0.14 93.01
0.85 6.13 1951.51 126.75 2 6.58 1850.06 598.25 2 7.34 5.20
1.00 3.90 905.36 45.50 3 4.00 15.52 98.75 4 2.56 98.29

200 15 0.70 15.00 1150.73 175.75 3 15.89 934.58 653.25 3 5.93 18.78
0.85 14.43 2729.80 255.50 1 15.21 1145.94 1025.50 3 5.41 58.02
1.00 10.25 141.86 174.75 4 10.25 54.47 216.25 4 0.00 61.60

200 30 0.70 15.44 2054.10 239.75 2 15.83 1000.75 1112.25 3 2.53 51.28
0.85 13.24 2748.47 233.00 1 14.69 2070.51 1857.25 3 10.95 24.67
1.00 8.75 163.89 129.50 4 8.75 39.78 142.00 4 0.00 75.73

R
S

=
1
2
5

100 15 0.70 7.00 88.39 62.25 4 7.00 10.71 95.50 4 0.00 87.88
0.85 6.73 1822.44 98.75 2 6.88 117.09 278.75 4 2.23 93.58
1.00 4.67 926.98 53.25 3 4.75 29.04 102.00 4 1.71 96.87

100 30 0.70 7.00 37.88 65.25 4 7.00 13.76 86.75 4 0.00 63.67
0.85 6.65 1886.03 119.50 2 6.79 227.41 344.75 4 2.11 87.94
1.00 4.37 1804.60 49.75 2 4.75 76.04 143.50 4 8.70 95.79

200 15 0.70 15.55 1034.71 184.75 3 16.25 342.70 415.75 4 4.50 66.88
0.85 15.28 1053.57 208.00 3 15.75 558.08 589.75 4 3.08 47.03
1.00 12.48 1833.12 212.25 2 13.00 480.36 595.00 4 4.17 73.80

200 30 0.70 16.25 477.56 203.50 4 16.25 667.70 694.00 4 0.00 -39.81
0.85 14.92 2219.76 231.00 2 15.50 1198.77 1272.00 3 3.89 46.00
1.00 11.26 989.82 196.25 3 11.75 734.31 590.25 4 4.35 25.81

Table 1 Comparison between the CG-Std and CG-Call approaches.

|S\{s0}|, T and α columns report the instances characteristics. The LT column re-
ports the lifetime values expressed in time units found within the time limit, while
the column Time shows the computational time in seconds. The S-Inv and #Opt
columns report the average number of subproblem invocations and the number of
optimal solutions found in the scenario, respectively. The last two columns, under
the % Gap heading, report the percentage gap of the lifetimes and of the compu-
tational times, respectively. Let LT (Alg) and T ime(Alg) be the average lifetime
value and computational time reported by a given Alg procedure on a considered
scenario. The LT gaps are computed as

100× LT (CG-Call)− LT (CG-Std)

LT (CG-Std)

meaning that if a gap is positive CG-Call found on average better solutions than
CG-Std on the considered scenario. The Time gaps are computed instead as

100× T ime(CG-Std)− T ime(CG-Call)

T ime(CG-Std)

and therefore a positive gap represents a scenario in which CG-Call required on
average less computational time than CG-Std. Whenever a gap is positive, it is
marked in bold to highlight that CG-Call performs better than CG-Std.

The results of Table 1 show that CG-Call is on average faster than CG-Std in
22 out of 24 scenarios, with a time gap that grows up to 98.29%. In many cases,
the computational time of CG-Call is less than half the computational time of
CG-Std, and in 6 cases CG-Call is one order of magnitude faster. Note that in one
of the two scenarios in which CG-Std is faster than CG-Call, the difference is less
than 0.5 seconds. Finally, the time limit is reached by CG-Call for only 8 out of
96 instances, as opposed to 31 time limits reached by CG-Std.

Approaches for the MLP in SN with coverage and connectivity constraints 17

0	

500	

1000	

1500	

2000	

2500	

3000	

0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	

15	
 30	
 15	
 30	

100	
 100	
 200	
 200	

Ti
m
e	

RS=100	

CG-­‐Std	

CG-­‐Call	

(a)

0	

500	

1000	

1500	

2000	

2500	

0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	
 0.7	
 0.85	
 1	

15	
 30	
 15	
 30	

100	
 100	
 200	
 200	

Ti
m
e	

RS=125	

CG-­‐Std	

CG-­‐Call	

(b)

Fig. 4 Computational times comparisons for the CG-Std and CG-Call approaches on group
1 instances with RS = 100 (a) and RS = 125 (b).

Regarding the effectiveness of the two approaches, CG-Call finds better solu-
tions than CG-Std in 18 out of 24 scenarios and, on the remaining 6 scenarios,
the solutions are the same. On the other hand, the number of subproblem invo-
cations for CG-Call is always higher than the one for CG-Std. Indeed, the peak
of the S-Inv value for CG-Call is equal to 1857.25 for RS = 100 and to 1272 for
RS = 125, while for CG-Std it is equal to 255.50 and 231, respectively. While
always solving the subproblem to optimality can predictably reduce the number
of required iterations, the results clearly show that in most cases the low S-Inv
values for CG-Std are due to the high amounts of time spent by the solver to find
and certify the optimal solution at each invocation, which limits the number of
iterations that can be performed within the time limit and significantly affects the
final solution quality.

To further highlight the performance improvements brought by the callback
usage, the computational times of two algorithms are plotted in Figure 4(a) for
RS = 100 and Figure 4(b) for RS = 125, respectively.

In both figures, the x-axis reports the characteristics of the instances, while
the y-axis reports the computational time in seconds. The results for CG-Call
and CG-Std are represented by dashed and a continuous lines, respectively. The

18 Francesco Carrabs et al.

figures show that the performance gap between the two algorithms increases along
with the RS value. Indeed on the scenarios with RS = 100, despite significant
performance gaps, similar trends can be noticed. On the scenarios with RS = 125,
instead, the behavior of the two procedures is completely different. In 7 out of 12
scenarios, CG-Std spends more than 1000 seconds, and in 5 cases more than 1800
seconds. CG-Call, instead, requires about 1200 seconds once, and less than 750
seconds in all other cases.

Given the presented analysis, the method which makes use of the callback
function was considered to be the best trade-off, and was used in all the remaining
experiments.

5.4 Comparisons on group 1 dataset

Tables 2 and 3 contain the comparisons between ECG and CG-EXACT, introduced
in [13], for the cases RS = 100 and RS = 125, respectively. As for the previous
table, each entry is an average over the 4 instances of the related scenario, and all
column headings have the same meaning. Gaps are similarly computed, and the
cases in which ECG performs better than CG-EXACT are highlighted in bold.
The last row (#Opt Found) reports the overall number of optimal solutions found
by each approach.

The results of Table 2 show that ECG is more effective than CG-EXACT, as
well as significantly more efficient. Indeed, for 11 scenarios the average solution
found by ECG is better than the one found by CG-EXACT, with a solution gap
that ranges from 0.30% to 10.46%, while on the remaining scenarios the solution
is the same. Moreover, the values in the #Opt column show that ECG finds the
optimal solution for 102 out of 120 instances, as opposed to the 100 found by CG-
EXACT. Regarding the computational time performances, ECG is always faster
than CG-EXACT and, in the 19 scenarios in which both algorithms find all the
optimal solutions (#Opt=4), the performance gap ranges from 39.44% to 98.87%.
In 6 scenarios, ECG is an order of magnitude faster than CG-EXACT.

The results reported in Table 3 show that similar behaviors can be observed
for the case RS = 125. Indeed, for 11 scenarios the average solution found by ECG
is better than the one found by CG-EXACT, with a solution gap that ranges from
0.99% to 9.12%. Moreover, ECG optimally solves all the scenarios with up to 300
sensors and, in general, it finds 108 out of 120 optimal solutions, as opposed to
the 102 found by CG-EXACT. Again, ECG is always faster than CG-EXACT,
and in the 19 scenarios where both procedures find all the optimal solutions, the
performance gap ranges from 45.81% to 99.38%. In 10 scenarios, ECG is an order
of magnitude faster than CG-EXACT.

Despite the slightly different hardware configuration and the different solver
used in our tests and in those reported in [13], we believe that the previous com-
parisons proved ECG to outperform CG-EXACT, given the consistently better
results and the gap in terms of computational time required, which is often huge.
However, in our opinion, even stronger evidence is provided when the heuristic
approaches are compared. Indeed, in this case the solvers are only used to solve
the restricted master problem, and therefore their impact on the performances of
the two procedures is much lower. Furthermore, it will be shown that with respect
to the best heuristic presented in [13], HCG is able to find better solutions in less

Approaches for the MLP in SN with coverage and connectivity constraints 19

Group 1: RS = 100

ECG CG-EXACT % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 6.88 1.14 4 6.88 8.78 4 0.00 87.02
0.85 6.64 47.03 4 6.64 921.47 4 0.00 94.90
1.00 4.00 1.09 4 4.00 1.80 4 0.00 39.44

100 30 0.70 7.00 1.61 4 7.00 6.54 4 0.00 75.38
0.85 6.59 1805.37 2 6.57 1922.59 2 0.30 6.10
1.00 4.00 1.89 4 4.00 4.06 4 0.00 53.45

200 15 0.70 16.25 4.70 4 16.25 414.98 4 0.00 98.87
0.85 15.52 905.61 3 15.42 941.60 3 0.65 3.82
1.00 10.25 2.95 4 10.25 12.69 4 0.00 76.75

200 30 0.70 16.25 4.85 4 16.25 128.92 4 0.00 96.24
0.85 15.43 911.05 3 15.35 1514.62 3 0.52 39.85
1.00 8.75 3.60 4 8.75 19.80 4 0.00 81.82

300 15 0.70 18.25 6.84 4 18.25 34.72 4 0.00 80.30
0.85 18.25 8.19 4 18.25 91.10 4 0.00 91.01
1.00 15.00 7.48 4 15.00 86.26 4 0.00 91.33

300 30 0.70 18.25 8.86 4 18.25 47.93 4 0.00 81.51
0.85 18.25 11.38 4 18.25 104.34 4 0.00 89.09
1.00 13.25 7.97 4 13.25 48.34 4 0.00 83.51

400 15 0.70 31.97 913.13 3 30.68 999.22 3 4.20 8.62
0.85 29.62 916.11 3 28.66 1151.16 3 3.35 20.42
1.00 18.25 13.07 4 18.25 95.70 4 0.00 86.34

400 30 0.70 30.63 918.90 3 29.55 1007.00 3 3.65 8.75
0.85 28.02 943.67 3 26.90 1907.09 2 4.16 50.52
1.00 18.00 23.57 4 18.00 125.38 4 0.00 81.20

500 15 0.70 48.68 1825.62 2 45.04 2554.30 2 8.08 28.53
0.85 43.30 2713.48 1 39.20 2742.29 1 10.46 1.05
1.00 29.00 31.97 4 29.00 335.83 4 0.00 90.48

500 30 0.70 48.41 1822.66 2 44.83 2748.99 1 7.99 33.70
0.85 41.02 2725.31 1 37.24 2768.34 1 10.15 1.55
1.00 26.25 34.22 4 26.25 308.25 4 0.00 88.90

#Opt Found 102 100

Table 2 Comparison between ECG and CG-EXACT algorithms on group 1 instances with
RS = 100

time and to individuate a significantly higher number of optimal solutions, proving
to be the most effective heuristic known to date for the problem.

In Tables 4 and 5, HCG is compared with the overall best-performing heuristic
approach presented in [13], namely CG-MULTI. In order to determine whether
these algorithms found optimal solutions, we compare their solution values with
the known optimal values found by ECG. The #Opt Found values reported in the
last row of Table 4 clearly show that, with 102 optimal solutions found, HCG is
much more effective than CG-MULTI, which only finds 85 optimal solutions for
RS = 100. Overall, in 21 out of 30 scenarios the solutions found by HCG are better
than the solutions found by CG-MULTI, with a solution gap that ranges from
0.59% to 11.01%. Moreover, CG-MULTI never finds better solutions than HCG.
It is interesting to observe that in the scenarios with up to 300 sensors, only in 3
cases (corresponding lines 5, 8 and 11) HCG does not find all the optimal solutions.
In more detail, on the 72 instances associated to the above mentioned scenarios,
only 4 instances are not solved to optimality by HCG. On the other hand, on the
same 72 instances, CG-MULTI does not find the optimal solution 19 times and, in
particular, it finds all 4 optimal solutions only in scenarios corresponding to α = 1,

20 Francesco Carrabs et al.

Group 1: RS = 125

ECG CG-EXACT % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 7.00 0.97 4 7.00 1.79 4 0.00 45.81
0.85 6.88 1.40 4 6.88 8.37 4 0.00 83.27
1.00 4.75 1.02 4 4.75 3.62 4 0.00 71.82

100 30 0.70 7.00 1.03 4 7.00 3.05 4 0.00 66.23
0.85 6.79 2.03 4 6.79 327.39 4 0.00 99.38
1.00 4.75 1.59 4 4.75 91.41 4 0.00 98.26

200 15 0.70 16.25 3.76 4 16.25 19.56 4 0.00 80.78
0.85 15.75 3.83 4 15.75 31.46 4 0.00 87.83
1.00 13.00 3.58 4 13.00 46.56 4 0.00 92.31

200 30 0.70 16.25 3.96 4 16.25 19.34 4 0.00 79.52
0.85 16.25 68.63 4 16.09 925.98 3 0.99 92.59
1.00 11.75 4.52 4 11.75 96.81 4 0.00 95.33

300 15 0.70 18.25 7.08 4 18.25 27.97 4 0.00 74.69
0.85 18.25 7.49 4 18.25 40.07 4 0.00 81.31
1.00 16.75 7.22 4 16.75 52.10 4 0.00 86.14

300 30 0.70 18.25 7.48 4 18.25 29.23 4 0.00 74.41
0.85 18.25 8.57 4 18.25 50.03 4 0.00 82.87
1.00 16.00 9.16 4 16.00 82.83 4 0.00 88.94

400 15 0.70 34.24 906.84 3 33.36 991.85 3 2.64 8.57
0.85 32.21 917.02 3 31.06 998.19 3 3.70 8.13
1.00 24.88 18.50 4 24.88 298.96 4 0.00 93.81

400 30 0.70 33.57 914.10 3 32.08 956.19 3 4.64 4.40
0.85 30.24 930.29 3 29.08 1021.31 3 3.99 8.91
1.00 22.38 19.19 4 22.38 245.22 4 0.00 92.17

500 15 0.70 54.49 1819.71 2 50.51 1957.14 2 7.88 7.02
0.85 48.97 1822.00 2 45.58 2624.69 2 7.44 30.58
1.00 37.75 54.86 4 36.82 1937.38 2 2.53 97.17

500 30 0.70 54.89 1816.55 2 51.13 1947.69 2 7.35 6.73
0.85 47.00 1835.68 2 43.07 2741.61 1 9.12 33.04
1.00 35.50 86.53 4 34.47 1938.50 2 2.99 95.54

#Opt Found 108 102

Table 3 Comparison between ECG and CG-EXACT algorithms on group 1 instances with
RS = 125

in which a lower number of feasible covers is likely to exist. These results highlight
the higher versatility of our heuristic, which is often able to find optimal solutions
regardless of the considered type of instance. Regarding the computational time
efficiency, CG-MULTI results to be faster than HCG only once (see the scenario
corresponding to line 3), however the time gap is lower than 0.15 seconds and can
be considered negligible. In the other 29 scenarios, HCG is up to 98.05% faster
than CG-MULTI (see line 7), in 22 of them the time gap is greater than 70%, and
12 times HCG is one order of magnitude faster.

The results reported in Table 5 show that both the heuristics are more effective
when RS = 125. Indeed, the number of optimal solutions found grows to 107 for
HCG and to 91 for CG-MULTI. In 18 out of 30 scenarios, the solutions found
by HCG are better than the ones found by CG-MULTI, with a solution gap that
ranges from 0.15% to 8.82%. In the remaining scenarios, the two algorithms report
the same solutions.

Looking at the first 18 scenarios, it can be seen that the optimal solution is not
found only once by HCG and 10 times by CG-MULTI. The results show a lower
influence of the α parameter with respect to the results reported in Table 4. For

Approaches for the MLP in SN with coverage and connectivity constraints 21

Group 1: RS = 100

HCG CG-MULTI % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 6.88 0.95 4 6.63 4.08 3 3.77 76.72
0.85 6.64 1.92 4 6.04 10.16 1 9.93 81.10
1.00 4.00 0.97 4 4.00 0.84 4 0.00 -15.48

100 30 0.70 7.00 1.44 4 6.75 4.75 3 3.70 69.68
0.85 6.54 4.31 2 6.49 44.82 2 0.77 90.38
1.00 4.00 1.72 4 4.00 2.75 4 0.00 37.45

200 15 0.70 16.25 4.13 4 15.96 212.26 2 1.82 98.05
0.85 15.46 7.13 3 15.37 253.00 3 0.59 97.18
1.00 10.25 2.56 4 10.25 8.64 4 0.00 70.37

200 30 0.70 16.25 4.20 4 16.00 100.17 3 1.56 95.81
0.85 15.34 15.21 3 14.69 715.21 1 4.42 97.87
1.00 8.75 3.29 4 8.50 3.29 3 2.94 0.00

300 15 0.70 18.25 6.62 4 18.00 9.00 3 1.39 26.44
0.85 18.25 7.58 4 18.00 28.88 3 1.39 73.75
1.00 15.00 6.80 4 15.00 54.26 4 0.00 87.47

300 30 0.70 18.25 6.95 4 17.00 9.26 3 7.35 24.95
0.85 18.25 10.52 4 16.44 39.28 3 11.01 73.22
1.00 13.25 7.73 4 13.25 29.72 4 0.00 73.99

400 15 0.70 31.79 41.90 3 30.56 693.82 3 4.02 93.96
0.85 29.51 44.19 3 28.63 1077.91 3 3.07 95.90
1.00 18.25 9.48 4 18.25 28.67 4 0.00 66.93

400 30 0.70 30.69 80.98 3 29.55 947.06 3 3.86 91.45
0.85 27.80 67.41 3 26.90 1877.53 2 3.35 96.41
1.00 18.00 14.81 4 18.00 46.64 4 0.00 68.25

500 15 0.70 48.25 158.90 2 45.04 2498.70 2 7.13 93.64
0.85 42.91 267.60 1 39.20 2714.57 1 9.46 90.14
1.00 29.00 25.86 4 29.00 227.92 4 0.00 88.65

500 30 0.70 48.00 187.61 2 44.83 2692.89 1 7.07 93.03
0.85 40.63 323.42 1 37.24 2740.50 1 9.10 88.20
1.00 26.25 32.27 4 26.25 198.10 4 0.00 83.71

#Opt Found 102 85

Table 4 Comparison between HCG and CG-MULTI algorithms on group 1 instances with
RS = 100

these scenarios, HCG results again to be usually faster than CG-MULTI. Indeed,
CG-MULTI is faster in 2 out of 30 scenarios (see lines 1 and 4), however in these
cases the time gap is lower than 0.3 seconds. In the other 28 scenarios, HCG is
up to 97.32% faster than CG-MULTI (see line 27), in 20 of them the time gap is
greater than 70%, and 13 times HCG is one order of magnitude faster.

5.5 Comparisons on group 2 dataset

In the last part of this analysis, we briefly compare ECG and HCG with the CG-
EXACT and CG-MULTI algorithms presented by [13] on the group 2 dataset.
Results for all the procedures are reported in Table 6, where each line refers to
one of the 25 instances in this dataset. We recall that for all of these instances
|T | = 15 and α = 1.

For this group of instances, the optimal solution is always found by each of
the 4 algorithms. The Opt LT column reports the optimal solution vales for each
instance. The requested time in seconds for each algorithm is reported in the

22 Francesco Carrabs et al.

Group 1: RS = 125

HCG CG-MULTI % GAP
|S \ {s0}| |T | α LT Time #Opt LT Time #Opt LT Time

100 15 0.70 7.00 0.89 4 7.00 0.84 4 0.00 -5.95
0.85 6.88 1.04 4 6.88 4.31 4 0.00 75.87
1.00 4.75 0.82 4 4.75 2.07 4 0.00 60.39

100 30 0.70 7.00 0.91 4 6.75 0.68 3 3.70 -33.82
0.85 6.79 1.52 4 6.78 9.56 3 0.15 84.10
1.00 4.75 1.52 4 4.71 4.94 3 0.85 69.23

200 15 0.70 16.25 2.92 4 16.00 8.88 3 1.56 67.12
0.85 15.75 3.46 4 15.00 19.70 2 5.00 82.44
1.00 13.00 3.33 4 12.50 36.06 3 4.00 90.77

200 30 0.70 16.25 3.01 4 16.25 6.61 4 0.00 54.46
0.85 16.25 13.18 3 15.74 210.15 2 3.24 93.73
1.00 11.75 3.85 4 11.75 90.65 4 0.00 95.75

300 15 0.70 18.25 5.89 4 18.25 6.22 4 0.00 5.31
0.85 18.25 5.93 4 18.25 13.22 4 0.00 55.14
1.00 16.75 5.86 4 16.75 23.10 4 0.00 74.63

300 30 0.70 18.25 6.41 4 18.25 6.59 4 0.00 2.73
0.85 18.25 6.83 4 18.25 18.23 4 0.00 62.53
1.00 16.00 7.71 4 15.75 27.25 3 1.59 71.71

400 15 0.70 34.22 32.31 3 32.86 908.98 2 4.14 96.45
0.85 32.20 42.09 3 31.06 939.45 3 3.67 95.52
1.00 24.88 14.09 4 24.88 208.49 4 0.00 93.24

400 30 0.70 33.62 65.79 3 31.76 748.26 2 5.86 91.21
0.85 30.22 67.50 3 29.08 961.71 3 3.92 92.98
1.00 22.38 16.81 4 22.38 149.90 4 0.00 88.79

500 15 0.70 54.35 139.91 2 50.51 1901.83 2 7.60 92.64
0.85 48.89 173.34 2 45.58 2569.32 2 7.26 93.25
1.00 37.75 50.51 4 36.82 1881.92 2 2.53 97.32

500 30 0.70 54.67 197.51 2 50.51 1892.06 2 8.24 89.56
0.85 46.87 225.80 2 43.07 2713.86 1 8.82 91.68
1.00 35.50 86.84 4 34.47 1883.25 2 2.99 95.39

#Opt Found 107 91

Table 5 Comparison between HCG and CG-MULTI algorithms on group 1 instances with
RS = 125

related column. The last row contains the average computational time for each of
the 4 approaches. The results clearly show that the group 2 instances are easier
to solve with respect to those belonging to group 1. It has to be noted that for
one of the instances with 50 sensors, namely the one corresponding to line 5 in
the table, the authors of [13] reported to have found an optimal solution with
value 4.66 instead of 4.67. The same also happened in the work that originally
presented this set of instances, namely [24]. By having access to the original data
collected for the experiments reported in [24], we were able to confirm that for
this work the reported value was indeed wrong, and due to a rounding error or
a typographical mistake. Hence we assumed the same to be also true for [13].
It follows that the comparison on the group 2 instances is essentially focused on
the performance of the algorithms. Regarding the exact algorithms, ECG is faster
than CG-EXACT in 24 out of 25 instances, requiring a computational time that
is always lower than 10 seconds. On the other hand, CG-EXACT requires up to
95 seconds. The average computational time of ECG is equal to 1.58 seconds,
while for CG-EXACT it is equal to 12.7 seconds. The performances of the two
heuristic algorithms appear to be more similar. Indeed, CG-MULTI results faster

Approaches for the MLP in SN with coverage and connectivity constraints 23

Exact Approaches Heuristic Approaches
ECG CG-EXACT HCG CG-MULTI

|S \ {s0}| Opt LT Time Time Time Time

50 2.00 0.25 0.51 0.31 0.04
2.50 0.40 0.73 0.55 0.19
3.00 0.30 0.45 0.27 0.05
4.00 0.28 0.42 0.39 0.03
4.67 1.04 0.71 0.62 0.37

75 7.00 1.17 1.61 0.83 0.64
4.00 0.39 0.88 0.42 0.07
3.00 0.44 1.15 0.39 0.51
7.00 0.58 1.27 0.44 0.70
7.00 0.62 1.37 0.88 1.01

100 10.00 1.21 6.31 1.23 2.59
7.00 0.65 2.13 0.66 0.27
7.00 0.69 1.72 0.45 0.12
9.00 0.81 2.42 0.58 0.31
8.00 0.62 3.45 0.63 0.26

150 17.00 2.95 87.84 3.25 54.83
14.00 1.37 15.12 1.62 8.38
16.00 2.25 14.45 2.23 5.77
13.00 1.40 5.70 1.25 0.57
14.00 1.35 5.84 1.26 0.76

200 25.00 9.02 95.04 7.99 78.00
20.00 3.03 11.54 2.91 10.97
19.00 3.96 17.12 3.28 15.24
18.00 2.62 32.68 2.39 2.08
19.00 2.13 7.00 1.88 2.96

Avg. Time 1.58 12.70 1.47 7.47

Table 6 Comparison of exact and heuristic approaches on the group 2 dataset

than HCG for 14 out of 25 instances. However in the worst case, that occurs for
both heuristics when solving one of the instances with 200 sensors (see line 21),
CG-MULTI requires 78 seconds, while HCG only requires 7.99 seconds. Moreover,
the average computational time over the whole group of instances is equal to 1.47
seconds for HCG and 7.46 seconds for CG-MULTI. Actually, the computational
times for the first 15 instances can be considered negligible, since they are almost
always lower then 1 second for both heuristics. By restricting the comparison to
the largest instances with at least 150 sensors, where the computational times are
mostly higher than 1 second, we can see that HCG is faster than CG-MULTI for
7 out of 10 instances, with computational time gaps between 36.49% and 94.07%.

6 Conclusions

In this work we faced the Connected Maximum Lifetime Problem with either
complete or partial target coverage requirements. We developed an exact and a
heuristic algorithm, both based on column generation. The main contribution of
our work is the proposal of new ideas for the resolution of the subproblem. Namely,

24 Francesco Carrabs et al.

we developed an efficient genetic algorithm embedding a Steiner Tree heuristic, a
novel ILP formulation with a reduced number of integer variables, and a modifica-
tion to the column generation scheme that involves the premature interruption of
the subproblem resolution as soon as a profitable column is found. The algorithms
developed using these ideas were proven experimentally to outperform previous
approaches presented in the literature for the problem.

Future research efforts will focus on adapting our techniques to other problems
in the same research field, such as the Maximum Lifetime Problem in multi-role
sensor networks, in which different energy consumption rates are considered de-
pending on the role adopted by the sensors during the monitoring activity.

References

1. J. Ai and A. A. Abouzeid. Coverage by directional sensors in randomly deployed wireless
sensor networks. Journal of Combinatorial Optimization, 11(1):21–41, 2006.

2. H. Alemdar and C. Ersoy. Wireless sensor networks for healthcare: a survey. Computer
Networks, 54(15):2688–2710, 2010.

3. A. Alfieri, A. Bianco, P. Brandimarte, and C. F. Chiasserini. Maximizing system lifetime
in wireless sensor networks. European Journal of Operational Research, 181(1):390–402,
2007.

4. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787–2805, 2010.

5. W. Awada and M. Cardei. Energy-efficient data gathering in heterogeneous wireless sensor
networks. In Proceedings of the IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications, pages 53–60, 2006.

6. Y. Cai, W. Lou, M. Li, and X.-Y. Li. Energy efficient target-oriented scheduling in direc-
tional sensor networks. IEEE Transactions on Computers, 58(9):1259–1274, 2009.

7. I. Cardei and M. Cardei. Energy-efficient connected-coverage in wireless sensor networks.
International Journal of Sensor Networks, 3(3):201–210, 2008.

8. M. Cardei, M. T. Thai, Y. Li, and W. Wu. Energy-efficient target coverage in wireless
sensor networks. In Proceedings of the 24th conference of the IEEE Communications
Society, volume 3, pages 1976–1984, 2005.

9. M. Cardei, J. Wu, and M. Lu. Improving network lifetime using sensors with adjustable
sensing ranges. International Journal of Sensor Networks, 1(1-2):41–49, 2006.

10. F. Carrabs, R. Cerulli, C. D’Ambrosio, M. Gentili, and A. Raiconi. Maximizing lifetime in
wireless sensor networks with multiple sensor families. Computers & Operations Research,
60:121–137, 2015.

11. F. Carrabs, R. Cerulli, C. D’Ambrosio, and A. Raiconi. A hybrid exact approach for
maximizing lifetime in sensor networks with complete and partial coverage constraints.
To appear in Journal of Network and Computer Applications, 2015.

12. F. Castaño, E. Bourreau, N. Velasco, A. Rossi, and M. Sevaux. Exact approaches for
lifetime maximization in connectivity constrained wireless multi-role sensor networks. Eu-
ropean Journal of Operational Research, 241(1):28–38, 2015.

13. F. Castaño, A. Rossi, M. Sevaux, and N. Velasco. A column generation approach to extend
lifetime in wireless sensor networks with coverage and connectivity constraints. Computers
& Operations Research, 52(B):220–230, 2014.

14. R. Cerulli, R. De Donato, and A. Raiconi. Exact and heuristic methods to maximize
network lifetime in wireless sensor networks with adjustable sensing ranges. European
Journal of Operational Research, 220(1):58–66, 2012.

15. R. Cerulli, M. Gentili, and A. Raiconi. Maximizing lifetime and handling reliability in
wireless sensor networks. Networks, 64(4):321–338, 2014.

16. L. Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

17. K. Deschinkel. A column generation based heuristic for maximum lifetime coverage in
wireless sensor networks. In SENSORCOMM 11, 5th Int. Conf. on Sensor Technologies
and Applications, volume 4, pages 209 – 214, 2011.

Approaches for the MLP in SN with coverage and connectivity constraints 25

18. A. Dhawan, C. T. Vu, A. Zelikovsky, Y. Li, and S. K. Prasad. Maximum lifetime of
sensor networks with adjustable sensing range. In Proceedings of the Seventh ACIS In-
ternational Conference on Software Engineering, Artificial Intelligence, Networking, and
Parallel/Distributed Computing, pages 285 – 289, 2006.

19. C. Duin and S. Voss. Steiner tree heuristics - a survey. In H. Dyckhoff, U. Derigs,
M. Salomon, and H. C. Tijms, editors, Operations Research Proceedings 1993. Papers of
the 22nd Annual Meeting of DGOR in Cooperation with NSOR, pages 485–496. Springer-
Verlag, 1994.

20. M. Gentili and A. Raiconi. α−coverage to extend network lifetime on wireless sensor
networks. Optimization Letters, 7(1):157–172, 2013.

21. Y. Gu, Y. Ji, and B. Zhao. Maximize lifetime of heterogeneous wireless sensor networks
with joint coverage and connectivity requirement. In EmbeddedCom-09, 8th International
Conference on Embedded Computing, pages 226–231, 2009.

22. F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland,
Amsterdam, 1992.

23. C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

24. A. Raiconi and M. Gentili. Exact and metaheuristic approaches to extend lifetime and
maintain connectivity in wireless sensors networks. In J. Pahl, T. Reiners, and S. Voss,
editors, Network Optimization, volume 6701 of Lecture Notes in Computer Science, pages
607–619. Springer, Berlin/Heidelberg, 2011.

25. P. Rawat, K. D. Singh, H. Chaouchi, and J. M. Bonnin. Wireless sensor networks: a
survey on recent developments and potential synergies. The Journal of Supercomputing,
68(1):1–48, 2014.

26. A. Rossi, A. Singh, and M. Sevaux. An exact approach for maximizing the lifetime of sensor
networks with adjustable sensing ranges. Computers & Operations Research, 39(12):3166–
3176, 2012.

27. A. Rossi, A. Singh, and M. Sevaux. Lifetime maximization in wireless directional sensor
network. European Journal of Operational Research, 231(1):229–241, 2013.

28. C. Wang, M. T. Thai, Y. Li, F. Wang, and W. Wu. Minimum coverage breach and
maximum network lifetime in wireless sensor networks. In Proceedings of the IEEE Global
Telecommunications Conference, pages 1118–1123, 2007.

29. Q. Zhao and M. Gurusamy. Lifetime maximization for connected target coverage in wireless
sensor networks. IEEE/ACM Transactions on Networking, 16(6):1378–1391, 2008.

