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Abstract

Given a vertex weighted graph G, a minimum Weighted Feedback Vertex Set (MWFVS)
is a subset F ⊆ V of vertices of minimum weight such that each cycle in G contains
at least one vertex in F . The MWFVS on general graph is known to be NP-hard.
In this paper we introduce a new class of graphs, namely the diamond graphs, and
give a linear time algorithm to solve MWFVS on it. We will discuss, moreover, how
this result could be used to effectively improve the approximated solution of any
known heuristic to solve MWFVS on a general graph.
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1 Introduction

Given a vertex weighted graph G, a minimum Weighted Feedback Vertex Set
(MWFVS) is a subset F ⊆ V of vertices of minimum weight such that each
cycle in G contains at least one vertex in F . The MWFVS on general graph
is known to be NP-hard. However, a large literature shows that it becomes
polynomial when addressed on specific classes of graph: interval graph (1),
cocomparability graph (2), AT-free graph, among others. In this paper we in-
troduce a new class of graphs, namely the diamond graphs, and give a linear
time algorithm to solve MWFVS on it. We will discuss, moreover, how this
result could be used to effectively improve an approximated solution on a gen-
eral graph, that is the object of our further research. Section 2 introduces
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the needed notation and the diamond graph class. Section 3 contains the de-
scription of our linear algorithm based on dynamic programming to optimally
solve MWFVS on diamonds. Further research is discussed in Section 4.

2 The class of diamond graphs

In this section we give some basic concepts used in this paper. Let G =
(V, E, w) be a weighted graph, where V is the set of vertices, E ⊆ V ×V is the
set of edges and w : V → <+ is a weight function which associates a positive
real number to each vertex of G. Given a weighted graph G = (V,E, w) and
a subset X of V , we define G − X = (V \ X, ((V \ X) × (V \ X)) ∩ E, w′),
where w′ is the restriction of w on the domain V \X.

A tree is an acyclic, connected and undirected graph. Let T be a tree rooted
in r. Given a vertex u in T , we denote as Cu the set of children of u in T . The
height of a vertex u in T , denoted by h(u), is recursively defined as follows. If
u is a leaf then h(u) = 0, otherwise h(u) = maxv∈Cu{h(v)}+ 1. We define the
height of a tree T as the height of its root (i.e h(T ) = h(r)). Given a vertex
u ∈ T , the subtree of T rooted in u is the subgraph of T induced by the set of
vertices constituted by u and its descendents in T . In the following we denote
by Tu the subtree of T rooted in u.

Now we introduce a new class of graphs, namely the Diamond graphs.

Definition 2.1 A diamond D = (V, E, w) with apices r and z (with r, z ∈
V ), is a weighted graph where (i) each v ∈ V is included in at least a simple
path between r and z and (ii) D − {z} is a tree.

We call the two vertices r and z of D the upper and lower apex of D, respec-
tively. Given a diamond D with apices r and z, we refer to the tree D − {z}
rooted in r as T . Let us denote as Du the subdiamond of D, with apices u
and z, induced by vertices of Tu and z. The height of diamond Du is given by
the height of Tu (see Figure 1(a)).

Given a diamond D with apices r and z, we can see that it is formed by the
subdiamonds Dri

, with ri ∈ Cr, having the common lower apex z and upper
apex ri.
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Fig. 1. (a) A diamond with apices r = 1 and z = 10. The height of this dia-
mond is 3 and the associated tree T is D − {z}. Note that, the subgraph D2 (with
V2 = {2, 4, 7, 8, 9, 10}) is a subdiamond of height 2 with r = 2 and z = 10.(b) A
diamond with apices r = 1 and z = 9. A minimum FVS (that does not contain
vertex z) is F̂ = {3, 5, 6} and since W (F̂ ) = 4 < w(z) = 40 we have that F ∗ = F̂ .
Note that in D − F̂ there is a simple path between r and z. Setting w(2) = 2, the
set F̂ = {2, 3} with W (F̂ ) = 3 is the optimum FVS. In this case D − F̂ does not
contain a path between r and z

3 Our resolution algorithm

In this section, we propose a linear algorithm, based on dynamic programming,
to solve the MWFVS problem on diamonds. In the rest of this section we
consider a diamond D having r and z as its upper and lower apices. Note
that by definition the set F = {z} is an FVS of D. Hence, an optimum
solution F ∗ of MWFVS on D is such that either F ∗ = {z} or, z /∈ F ∗ and
W (F ∗) ≤ w(z). Hence, the MWFVS problem on a diamond can be solved first
finding a minimum FVS F̂ that does not contain vertex z and then comparing
W (F̂ ) with w(z). Let us notice that in D− F̂ either there exists a simple path
between r and z or it does not exist (see Figure 1(b)). We prove the above
observation by the following proposition.

Proposition 3.1 Given a diamond D with apices r and z, if F ⊆ V is a
(minimum) FVS of D, then there exists at most one path between r and z in
D − F .

Let us define now two new problems on a diamond D, related to MWFVS
that will be useful to solve MWFVS on D.

Path Problem : find a subset F+ ⊆ V \{z} of minimum weight such that (i)
D − F does not contain cycles, and, (ii) there exist exactly a path in D − F
between r and z.
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NoPath Problem : find a subset F− ⊆ V \ {z} of minimum weight such
that (i) D − F does not contain cycles, and, (ii) there does not exist a path
in D − F between r and z.

From the above observations the minimum F̂ on D is either F+ or F−. There-
fore, the optimum solution F ∗ on D is such that:

W (F ∗) = min{w(z),W (F+),W (F−)}

and, then we have either F ∗ = {z} or F ∗ = F+ or F ∗ = F−.

3.1 Optimal Substructure and Recursion Rules

In this section, we conjunctly characterize the structure of an optimal solution
for both Path and NoPath problems. We recall that a problem has an optimal
substructure if an optimal solution to the problem contains within it optimal
solutions to subproblems. Both Path and NoPath problems have an optimal
substructure property. We pick as our subproblems the problems of determin-
ing the value of solution to Path and NoPath problems on the subdiamonds
Du with u ∈ V \ {z}. We will denote by F+

u and F−
u the optimal solutions of

the Path and NoPath problem, respectively, on Du. Now, we prove that the
optimal solution F+

u (F−
u ) contains, for each ui ∈ Cu, either F+

ui
or F−

ui
. .

Proposition 3.2 Given the optimum solution F+
u on Du, then each set Fui

=
F+

u ∩ Vui
is an optimal solution to either Path problem or NoPath problem on

Dui
.

Proposition 3.3 Given the optimum solution F−
u on Du, then each set Fui

=
F−

u ∩ Vui
is an optimal solution to either Path problem or NoPath problem on

Dui
.

Now, we describe the recursion rules to obtain the values of the optimum sets
F+

u and F−
u . We define the W (F+

u ) and W (F−
u ) recursively as follows.

Optimum Solution to Path Problem: W (F+
u )

We distinguish two cases according to the height h(u):

• h(u) = 0
Trivially W (F+

u ) = 0.

• h(u) > 0
If (u, z) ∈ Eu, then since u /∈ F+

u , Gu−F+
u has surely a path between u and z

composed by the edge (u, z). Thus, to avoid cycles in Gu−F+
u , the set F+

u is
obtained by the union of F−

x , for each x ∈ Cu and W (F+
u ) =

∑
x∈Cu

W (F−
x ).
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Instead, when (u, z) /∈ Eu, in order to have a path from u to z in Gu − F+
u ,

the optimal set is obtained by the minimum weight union of exactly one
set F+

x , for some x ∈ Cu, and by
⋃

y∈Cu−{x} F−
y . Therefore, we have the

following:
W (F+

u ) = min
x∈Cu

{W (F+
x ) +

∑

y∈Cu−{x}
W (F−

y )}

By applying a similar reasoning we can derive the following recursion rules for
the NoPath problem.

Optimum Solution to NoPath Problem: W (F−
u )

• h(u) = 0
F−

u = {u} and W (F−
u ) = w(u).

• h(u) > 0

W (F−
u ) = min



w(u) +

∑

x∈Cu

min
{
W (F−

x ),W (F+
x )

}
,

∑

x∈Cu

W (F−
x )





4 Conclusion and Further Research

We studied the Weighted Feedback Vertex Set on a special class of graph:
the diamonds graph. We showed a linear time algorithm to solve the problem
on this graph class. Further research is focused on the study of the larger
class of multidiamond graphs (diamonds with multi-upper and lower apices).
In addition, our purpose is to use the linearity of the MWFVS on this class
of graph to try to improve an approximated solution of MWFVS on general
graph.
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