
A Linear Time Algorithm for the Minimum

Weighted Feedback Vertex Set on Diamonds

F.Carrabs, R.Cerulli∗, M.Gentili†

{fcarrabs, raffaele,mgentili}@unisa.it

G.Parlato‡

gparlato@unisa.it

Abstract

Given an undirected and vertex weighted graph G, the Weighted Feedback Vertex Problem (WFVP)

consists in finding a subset F ⊆ V of vertices of minimum weight such that each cycle in G contains

at least one vertex in F . The WFVP on general graphs is known to be NP-hard. In this paper we

introduce a new class of graphs, namely the diamond graphs, and give a linear time algorithm to

solve WFVP on it.

keyword: Graph algorithms, Weighted Feedback Vertex Set, Dynamic Programming, Diamond

1 Introduction

Given an undirected graph G = (V, E), a Feedback Vertex Set (FVS) of G is a subset F ⊆ V of vertices

such that each cycle in G contains at least one vertex in F , i.e. the subgraph G′ induced by the set

V \F of vertices is acyclic. The Feedback Vertex Problem (FVP) consists in finding an FVS of minimum

cardinality. When with each vertex v of G is associated a weight w(v) we have a vertex weighted graph.

The Weighted Feedback Vertex Problem (WFVP) on a weighted graph G consists in finding an FVS of

minimum weight, where the weight of the set is the sum of the weights of its elements. Both FVP and

WFVP have application in several areas of computer science such as circuit testing, deadlock resolution,

placement of converters in optical networks, combinatorial cut design. The FVP on general graph is

known to be NP-hard [5]. For the WFVP the best known approximation algorithm has approximation

ratio 2 (see for example, [2], [1]). This problem becomes polynomial when addressed on interval graphs

[7], co-comparability graphs [3], permutation graphs [6], convex bipartite graphs [3].

∗Corresponding Author: Tel. +39 089 963326, Fax +39 089 963303
†Dipartimento di Matematica ed Informatica, Università di Salerno, 84081 Baronissi (SA), Italy.
‡Dipartimento di Informatica ed Applicazioni, Università di Salerno, 84081 Baronissi (SA), Italy

1

In this paper we introduce a new class of graphs, namely the diamond graphs, and give a linear time

algorithm to solve WFVP on it.

The sequel of the paper is organized as follows. Section 2 describes the class of diamond graphs. Section

3 contains the description of our linear time algorithm based on dynamic programming to optimally solve

WFVP on diamonds. In section 4, we will discuss how this polynomial result can be used to improve an

approximated solution on a general graph, that is the object of our further research.

2 The class of diamond graphs

In this section we describe formally the class of diamond graphs. First we introduce the needed notation

(for any additional definition and notation we refer to [4]).

Let G = (V, E,w) be an undirected and vertex weighted graph, where V is the set of vertices, E is the

set of edges, and, w(v) is a positive weight associated with each vertex v ∈ V . Given a subset X ⊆ V of

vertices, we define its weight W (X) as the sum of the weights of its elements, i.e. W (X) =
∑

v∈X w(v).

If X = ∅ then W (X) = 0. We denote by G \X the subgraph of G induced by the set of vertices V \X.

A tree is an acyclic and connected graph. Given a rooted tree T , we denote by Cu the set of children of

vertex u in T . We define the height h(u) of a vertex u in T , recursively as follows. If u is a leaf then

h(u) = 0, otherwise h(u) = maxx∈Cu{h(x)}+1. We define the height h(T) of the tree to be equal to the

height of its root. Given a vertex u of T , the subtree Tu rooted in u is the subgraph of T induced by the

set of vertices constituted by u and its descendants in T .

Now we introduce the class of Diamond graphs.

Definition 1 A weighted diamond Dr,z = (V, E, w) with apices r and z, (r, z ∈ V), is an undirected

and vertex weighted graph where (i) each v ∈ V is included in at least one simple path between r and z

and (ii) Dr,z \ {z} is a tree.

We refer to the two vertices r and z of a diamond Dr,z as, respectively, the upper and lower apex of

Dr,z, and, to the subgraph Dr,z \{z} as the tree Tr rooted in r associated with Dr,z. Consider Figure 1a

as an example. We have the diamond D1,10 with upper apex r = 1 and lower apex z = 10. Note that by

deleting vertex z we obtain the tree T1 = D1,10 \ {z}.
We denote by Du,z = (Vu, Eu, w) the subdiamond of Dr,z, with apices u and z, induced by the vertices

of Tu and vertex z. We define the height h(Du,z) of the diamond Du,z to be equal to the height of the

associated tree Tu.

Finally, observe that given a diamond Dr,z, we can see it as composed by the upper apex r and the

subdiamonds Dri,z, for each ri ∈ Cr, where all of them have the common lower apex z. Consider again

Figure 1a. The subgraph composed by vertex set {4, 7, 8, 9, 10} is a diamond with apices r = 4 and

2

7 8 9

10

2

1

3

7 8 9

5

10

2

1

6

D

4

7 8 9

5

10

2

1

3

6

(b) (c)(a)

D
4,10

1,10

Figure 1: (a) A diamond with apices r = 1 and z = 10 (in this context the weights of vertices are useless). (b) The

acyclic subgraph D1,10 \ F̂ with a single path between vertices 1 and 10 when F̂ = {4, 5, 6} and (c) the subgraph D1,10 \ F̂ ,

with F̂ = {3, 4} without any path between vertices 1 and 10.

z = 10 (D4,10), whose associated tree is the subtree T4 of T1. The height of T4 is h(T4) = h(4) = 1 that

is also the height of D4,10. Moreover, we can see D1,10 as composed by vertex 1 and the two subdiamonds

D2,10 and D3,10.

3 The Dynamic Programming Algorithm

To simplify notation, in the rest of the section we denote a diamond Dr,z just as Dr, since all diamonds

considered have the same lower apex z.

In this section, we propose a linear time algorithm to solve the WFVP on a diamond based on

dynamic programming. We will introduce two new problems on diamonds (the Path problem and the

NoPath Problem) and show how to obtain a minimum weighted FVS on Dr by the optimum solutions

of these two problems. We then prove they have an optimal substructure property that allows us to

optimally solve them by means of dynamic programming.

In the sequel of the paper we will consider a diamond Dr with upper apex r and lower apex z. To

better clarify the role of the two new problems in our resolution algorithm, we state now the following

observation.

Observation 1 By definition of diamond, the set F = {z} is an FVS of Dr. Hence, an optimum so-

lution F ∗ of WFVP on Dr is such that, either it is composed of the single vertex z (i.e., F ∗ = {z}) or,

it does not contain vertex z and it is such that W (F ∗) ≤ w(z). Therefore, the WFVP on a diamond

can be solved, first by looking for the minimum FVS, say F̂ , that does not contain vertex z, and then, by

choosing the minimum weight set between F̂ and {z}.

3

Let F̂ ⊆ V \ {z} be an FVS on Dr. Note that the subgraph Dr \ F̂ either contains a single sim-

ple path between r and z or it does not contain any of such a path, as it is stated by the following

proposition.

Proposition 1 Given a diamond Dr with apices r and z, if F̂ ⊆ V \ {z} is an FVS of Dr, then there

exists at most one path between r and z in Dr \ F̂ .

Proof. By contraddition let us suppose that there exists two distinct paths p1 and p2 between r and z

in Dr \ F̂ . Let v 6= z be the last vertex of common longest subpath of p1 and p2 starting from r. Then

the subpaths from v to z of p1 and p2, joined together, form a cycle in Dr \ F̂ , but this is a contradiction

since Dr \ F̂ must be acyclic being F̂ an FVS of Dr.

For example, consider again the diamond in Figure 1. The set F̂ = {4, 5, 6} is an FVS that does not

contain vertex z and such that there exists the simple path P = {1, 3, 10} connecting r and z in Dr \ F̂

(see Figure 1b). The set F̂ = {3, 4} is an FVS that does not contain z and such that there is no path

connecting r and z in Dr \ F̂ (see Figure 1c).

Now, we are ready to define two new problems that will be useful to solve WFVP on Dr.

Path Problem: Given a diamond Dr, find a subset F+
r ⊆ V \ {z} of minimum weight such that (i)

Dr \F+
r does not contain cycles, and, (ii) there exists exactly a single path in Dr \F+

r between r and z.

NoPath Problem: Given a diamond Dr, find a subset F−r ⊆ V \ {z} of minimum weight such that (i)

Dr \ F−r does not contain cycles, and, (ii) there does not exist a path in Dr \ F−r between r and z.

From the above observations it follows that the optimum solution F ∗ of WFVP on Dr is such that:

W (F ∗) = min{w(z),W (F+
r),W (F−r)}

and, therefore we have either F ∗ = {z} or F ∗ = F+
r or F ∗ = F−r .

Hence, we are interested now in solving both Path and NoPath problems.

3.1 Optimal Substructure and Recursion Rules

In this section, we conjunctly characterize the structure of an optimal solution for both Path and NoPath

problems. We recall that a problem has the optimal substructure property if any optimal solution to

the problem contains within it optimal solutions to subproblems [4]. We will see that both Path and

NoPath problems, defined on Dr, have an optimal substructure property by considering as subproblems

those of determining the solution to Path and NoPath on the subdiamonds Du, for each u ∈ V \ {z}.
Let us denote by F+

u and F−u the optimal solutions of Path and NoPath problem, respectively, on Du.

Now, we prove that the optimal solution F+
u (F−u) contains, for each ui ∈ Cu, either F+

ui
or F−ui

.

4

Proposition 2 Given the optimum solution F+
u on Du, then each set Fui = F+

u ∩ Vui , ui ∈ Cu, is an

optimum solution to either Path problem or NoPath problem on Dui
.

Proof. By feasibility of F+
u , it follows that z /∈ Fui and Dui \ Fui is acyclic. Then, the set Fui respects

condition (i) for both Path problem and NoPath problem on the subdiamond Dui . Now, two cases,

based on the fact that either there exists a path between ui and z on Dui
\ Fui

or not, may occur. If

there is such a path, then Fui is the optimum solution set for Path problem on Dui , i.e., Fui = F+
ui

.

Indeed, if there were another feasible set F ′ui
for Path problem on Dui

such that W (F ′ui
) < W (Fui

),

we could obtain the set F
′+
u = (F+

u \ Fui) ∪ F ′ui
that is feasible for Path problem on Du and such that

W (F
′+
u) < W (F+

u) obtaining a contradiction. If there does not exits any path between ui and z on

Dui \ Fui , then by applying a similar reasoning it follows that Fui = F−ui
.

The same considerations can be made for the optimum solution F−u of the NoPath problem as stated by

the following proposition.

Proposition 3 Given the optimum solution F−u on Du, then each set Fui = F−u ∩ Vui , ui ∈ Cu, is an

optimum solution to either Path problem or NoPath problem on Dui .

Following Lemmas 1 and 2, we describe how to build the weights of sets F+
u and F−u on Du, by considering

the value of optimum solution of Path and NoPath problems on Dx, for each x ∈ Cu. In the next section

we will use these values to construct the optimum sets F+
r and F−r .

Lemma 1

Case A: h(u) = 0

W (F+
u) = 0

Case B : h(u) > 0 and (u, z) ∈ E

W (F+
u) =

∑
x∈Cu

W (F−x)

Case C : h(u) > 0 and (u, z) /∈ E

W (F+
u) = minx∈Cu{W (F+

x) +
∑

y∈Cu\{x}W (F−y)}

Proof. Case A is easily verified since F+
u = ∅.

Case B: if (u, z) ∈ E, since u /∈ F+
u , then the path connecting u and z in Du \ F+

u is composed by the

single edge (u, z). Thus, to avoid cycles in Du \F+
u , the set F+

u is obtained, by Propositions 1 and 2, by

the union of the optimum sets F−x , x ∈ Cu, and we obtain W (F+
u) =

∑
x∈Cu

W (F−x).

Case C: if (u, z) /∈ E, since u /∈ F+
u , in order to have a path between u and z in Du \F+

u and by applying

Propositions 1 and 2, the optimum set is obtained by the minimum weight union of exactly one set F+
x ,

x ∈ Cu, and, F−y y ∈ Cu \ {x}. Therefore, W (F+
u) = minx∈Cu{W (F+

x) +
∑

y∈Cu\{x}W (F−y)}.

5

Lemma 2

Case A: h(u) = 0

W (F−u) = w(u)

Case B : h(u) > 0 and (u, z) ∈ E

W (F−u) = w(u) +
∑

x∈Cu
min{W (F−x),W (F+

x)}
Case C : h(u) > 0 and (u, z) /∈ E

W (F−u) = min

{
w(u) +

∑

x∈Cu

min
{
W (F−x),W (F+

x)
}

,
∑

x∈Cu

W (F−x)

}

Proof. Case A is easily verified since F−u = {u}.
Case B: if (u, z) ∈ E, then u ∈ F−u otherwise there would be a path between u and z in Du \ F−u .

Therefore, by applying Propositions 1 and 3, we select on each subdiamond Dx, x ∈ Cu, the minimum

weighted set among F+
x and F−x . Then W (F−u) = w(u) +

∑
x∈Cu

min{W (F−x),W (F+
x)}.

Case C: if (u, z) /∈ E, then u can either belong to F−u or not. If u ∈ F−u , there is no path between u and z

in Du\F−u , thus we have the same solution as for Case B. If u /∈ F−u then to avoid paths between the apices

in Du \ F−u , the optimum set is obtained by the union of the optimum solutions of the NoPath Problem

on the subdiamonds Dx for each child x of vertex u, therefore we would have W (F−u) =
∑

x∈Cu
W (F−u)}.

Thus, for this case, W (F−u) = min

{
w(u) +

∑

x∈Cu

min
{
W (F−x), W (F+

x)
}

,
∑

x∈Cu

W (F−x)

}
.

According to lemmas above, the computation of the optimum weighted FVS value can be carried out by

a dynamic programming algorithm. The algorithm scans all the vertices of Tr through a postorder visit

starting from the root node r. At each vertex u, both weight W (F+
u) and W (F−u), to Path and NoPath

problems on Du are computed. Once that the weights of these sets are computed for the upper apex r,

the optimum set among {z}, F+
r and F−r is chosen.

The computational complexity of the algorithm, sketched above, is given by the sum of the com-

putational complexity needed to compute W (F+
u) and W (F−u), for each vertex u of the tree Tr. The

computation involved in both Cases A of Lemmas 1 and 2 takes O(1) time. For Cases B it takes O(|Cu|)
time. Indeed, the computation of W (F+

u) is carried out by computing the sum of |Cu| values, while, to

compute W (F−u), |Cu| minimum operations between two values are carried out and the sum of |Cu|+ 1

values is computed. It follows directly that the evaluation of W (F−u), for the Case C of Lemma 2,

takes O(|Cu|) time. Finally, observe that, to compute W (F+
u) for Case C of Lemma 1, we can evaluate

minx∈Cu{S−W (F−x)+W (F+
x)}, where S =

∑
x∈Cu

W (F−x), which can be accomplished in O(|Cu|) time.

Thus, the computational complexity of the algorithm is given by
∑

u∈V \{z}O(|Cu|) = O(|E|) = O(|V |),
where the last relation follows from the fact that for any diamond |E| ≤ 2|V |. The above observations

prove the following theorem.

6

INPUT: A weighted diamond Dr = (V, E, w) with upper apex r and lower apex z.
OUTPUT: The weight W (F ∗) of an optimum weighted feedback vertex set.

Compute set values(Dr, r);

W (F ∗) = min{w(z), W (F+
r), W (F−r)};

return W (F ∗);

Procedure Compute set values(Dr, u)
/* Case A of Lemmas 1 and 2 */.
If h(u) = 0 then

W (F+
u) = 0; W (F−u) = w(u); return;

foreach x ∈ V such that x is a child of u in Tr do
Compute set values(Dr, x);

/* Case B of Lemmas 1 and 2 */.
If (u, z) ∈ E then

W (F+
u) =

∑
x∈Cu

W (F−x);

W (F−u) = w(u) +
∑

x∈Cu
min{W (F−x), W (F+

x)};
/* Case C of Lemmas 1 and 2 */.
else

W (F+
u) = minx∈Cu{W (F+

x) +
∑

y∈Cu−{x}W (F−y)};

W (F−u) = min



w(u) +

∑

x∈Cu

min
{
W (F−x), W (F+

x)
}

,
∑

x∈Cu

W (F−x)



;

return;

Figure 2: The dynamic programming algorithm.

Theorem 1 The solution value of the weighted feedback vertex set problem on diamonds can be computed

in O(|V |) time.

The detailed dynamic programming algorithm is given in Figure 2.

3.2 Construction of F+
r and F−

r sets

In this section we describe the linear time recursive procedure, Build Solution, to build the feedback

vertex set whose optimum value is found by our dynamic programming algorithm presented in previous

section. By Lemma 1 and Lemma 2, given a vertex u of Tr, an easy way to build the optimal sets F−u and

F+
u is to store the optimal sets F−ui

and F+
ui

for each ui ∈ Cu. However, from an implementation point of

view, this choice would require both the storage of a larger quantity of data and the use of complex data

structures to manage sets. Now, we describe a more efficient strategy to build these optimum sets. In

order to do that, we associate with each vertex u of Tr a boolean variable Iu that holds true if and only

if u ∈ F−u . Moreover, for each vertex u 6= r of Tr , we associate two variables P+
u and P−u with values

from {+,-}. In more detail, given x ∈ Cu, P+
x = + (P−x = +) if F+

x ⊆ F+
u (F+

x ⊆ F−u) and P+
x = −

(P−x = −) if F−x ⊆ F+
u (F−x ⊆ F−u).

These variables are set during the execution of the dynamic programming algorithm and are used

by the procedure Build Solution shown in Figure 3. This procedure takes as input the tree Tr, a vertex

u ∈ Tr and a flag ∈ {+,−}, and returns either the optimum set F+
u or F−u according to the value of

7

Input: Tr, u, flag ∈ {+,−}
Output: Print the vertices of F flag

r

Build Solution(Tr, r, flag);

Procedure Build Solution(Tr, u, flag)

if (flag == − AND Iu == true)
print(u);

if u is not a leaf
for each child x of u do

if flag == + then

Build Solution(Tr, x, P+
x);

else

Build Solution(Tr, x, P−x);

Figure 3: Build Solution procedure

flag.

For example, by calling Build Solution(Tr, u, +) the set F+
u is returned. Note that this set (by

Propositions 2 and 3) contains, for each child x of u, either F+
x or F−x , and this information is described

by the value of P+
x . Therefore, the procedure is recursively called on each child x of u with parameters

Tr, x, P+
x . A similar reasoning is applied when Build Solution is called to build F−u . However, since in

this case u can either belong to F−u or not, the value of the variable Iu has to be considered too.

Consider as an example the diamond in Figure 4. The upper apex is r = 1 and the lower apex is

z = 3, the label on each vertex denotes its weight, for example vertex 1 has weight w(1) = 33. The

optimum weighted FVS is F ∗ = {2} whose optimum weight is W (F ∗) = min{w(z),W (F+
1),W (F−1)},

where F+
1 = {2} and F−1 = {1, 5, 6}. The values of the labels to build the optimum sets F+

u and F−u are

given in Figure 4.

The optimum sets F−u associated with the vertices 4, 5, 6, are respectively, F−4 = {4}, F−5 = {5},
F−6 = {6}, and therefore, I4 = I5 = I6 = true. The set F+

2 = {5, 6} is computed by selecting F+
4 = ∅,

F−5 = {5} and F−6 = {6}, therefore, P+
4 = +, P+

5 = − and P+
6 = −.

It is easy to see that the time complexity of procedure Build Solution is linear. Hence, we have the

remain result of this section.

Theorem 2 The weighted feedback vertex set problem on diamonds can be solved in O(|V |) time.

4 Conclusion and Further Research

In this paper we have presented the family of diamond graphs where it is possible to solve WFVP in

linear time. We described a dynamic programming algorithm to compute both the value and the vertices

8

D
1

2

4 5 6

3

33

5

4 1 2

40

1

Vertex Iu P+
u P−u

1 1 - -

2 1 - +

4 1 + +

5 1 - +

6 1 - +

Figure 4: On the left a diamond whose optimum weighted FVS is F ∗ = {2} is given, and on the right,

the values of the labels associated with each vertex are shown.

that compose the optimal solution in O(n) time. Object of our further research is both (i) the study

of the larger class of multidiamond graphs (diamonds with multi-upper and/or lower apices), and, (ii)

the use of our exact algorithm on diamonds to improve the approximated solution returned by existing

heuristics that solve WFVP on general graphs. To better clarify this idea, let G be a graph and F be an

approximate FVS returned by a given approximation algorithm. We could improve the solution of the

given set F by substituting one or more of its vertices, say F ′ ⊆ F , with a set S ⊆ V \F of less weight

such that the resulting new set is an FVS. Consider for example the acyclic subgraph G \ F = T , and,

assume to add to it the vertex z ∈ F . The resulting graph is, after appropriate reduction operations,

either a diamond or a multidiamond and by applying our algorithm we could improve the initial FVS.

References

[1] V.Bafna,P. Berman ,T.Fujito, Constant ratio approximations of the weighted feedback vertex set problem
for undirected graphs. ISAAC95, Algorithms and Computation, Lecture Notes in Computer Science Vol. 1004
, Springer Verlag (1995) pag 142-151.

[2] A.Becker, D.Geiger, Approximation Algorithms for the Loop Cutset Problem, in: Proceedings of the 10th
Conference on Uncertainty in Articial Intelligence (1994) pag 60-68.

[3] M.S. Chang, Y.D. Liang, Minimum feedback vertex sets in cocomparability graphs and convex bipartite
graphs. Acta Informatica Vol. 34 (1997) pag 337-346.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT Press, Cambridge,
MA, (2001).

[5] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completeness.Freeman, San Francisco, CA, (1979).

[6] Y.D. Liang, On the feedback vertex set problem in permutation graphs. Information Processing Letters, Vol.
52 (1994) pag 123-129.

9

[7] Lu, C.L. and Tang, C.Y., A Linear-Time Algorithm for the Weighted Feedback Vertex Problem on Interval

Graphs. Information Processing Letters Vol. 61 (1997) pag 107-111.

10

