
A Table-Driven (Feedback) Decoder

Donald L. Bitzer and Mladen A.Vouk

North Carolina State University, Department of Computer Science, Box 8206
Raleigh, NC 27695-8206

Abstract
We present a table-driven technique for decoding of the
convolutionally encoded data. The approach can be used in
either the feedback or the direct mode. A data-independent
syndrome vector is generated on the transmitted bits. If it
is dgferent from zero it is used to address pre-computed
tables of corrections for the encoded bits. The decoding is
performed as a separate step. When the feedback mode is
used the error propagation is minimized by appropriate
choice of the codes, the table construction and the decoding
algorithms. The approach allows hardware simplicity
comparable to majority-logic decoding, but has error
correcting capabilities that can be made as close to the
optimal as desired through the adjustment of the syndrome
vector length and the correction table size. This makes the
method very attractive for high speed satellite and network
applications. The performance of the method can be further
enhanced through soft detection.

1. Introduction

Error control techniques are increasingly being applied to
digital communication links to enable significant
performance improvements. These techniques enable, for
fixcd transmit (or receive) power levels and for allowable
crror probabilities, the transfer of more information per
unit time. For example, a major feature of the advanced
satcllite communications technology is the use of dynamic
rain fadc compensation. The current error compensation
specifications often call for a symbol rate reduction, and
half-rate convolutional coding which results in an overall
reduction in the data rate. Since it is envisioned that in the
I-uture satellite data transmission rates should be in excess
of scveral hundred Mbps, the complexity and the speed of
the error correcting hardware will play an important role.
Similarly, fiber-based gigabit networks would normally be
cxpected to operate under very low noise conditions.
However, even very occasional errors may require
rclatively complex protocols and re-transmission of
considcrable amounts of data. While re-transmission
cannot be ruled out completely it may be advantageous to

use forward error recovery to lower the already low error
rates even further and thus greatly simplify the
communication protocols.

The hardware complexity required for the currently used
error control techniques may be a problem in high speed
applications. In this paper we discuss a possible altemative
to the commonly employed Viterbi and sequential
algorithms. We describe a simple and fast table look-up
based feedback decoder1 which allows hardware simplicity
comparable to that of majority-logic decoding, but
provides error correcting capabilities comparable to the
Viterbi and sequential decoding approaches.

Section 2 briefly reviews the related work. Section 3
describes the table-driven approach, and section 4 provides
a summary.

2. Summary of Related Work

Two more widely used encoding techniques are the block
coding and the convolutional coding [e.g. 1 and references
therein]. Convolutional codes are generally conceded to be
operationally better than the block codes, particularly with
respect to ease of implementation, equipment complexity,
power consumption, and flexibility [e.g. 21.

Various algorithms are available for decoding
convolutional codes. The Viterbi algorithm has received
considerable attention [2 - 5, 135 This algorithm is
maximum-likelihood and optimum for the decoding of
convolutional codes. A difficulty with the Viterbi decoding
is the fixed amount of computation always required per
decoder information block for a given code constraint
length, and that this effort grows exponentially with the
code constraint length. Under low noise conditions a more
flexible (adaptive) algorithm may be desirable.

Sequential decoding represents an alternative procedure

U.S. Patent applied for.

385
CH2859-5/91/0000/0385$01.00 0 1991 IEEE

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

[e.g. 1, 6 - 81. The performance of sequential coding is
slightly less than optimal, but the decoding effort is
basically independent of the code constraint length, so
large constraint lengths can be used, and very low error
probabilities can be achieved, Usually, the code constraint
length is 20 bits or more. The number of computations
needed to decode a frame of data is a random variable. A
typical load figure is 1 to 2 computations per decoded bit,
however, noisy blocks may make sequential decoding
impractical by requiring excessive computations to retrieve
transmitted data.

An algebraic approach called majority-logic or threshold
decoding can also be applied to convolutional codes [1,9].
Majority-logic decoding differs from Viterbi and sequential
decoding in the fact that the error detection process is
data-independent, and that the final decision it1 an
information block is based on only one constraint length
of the received blocks rather than on the entire received
sequence. Because of the latter, majority-logic decoding
usually results in inferior performance when compared
with Viterbi or sequential decoding where the correction
decisions are made based on at least five constraint lengths.
On the other hand, the implementation of a threshold
decoder is much simpler, and it typically needs only one
computation (cycle) per bit.

In all three approaches some of the more important design
parameters are the code constraint length which heavily
determines the ability to detect errors, the coding rate, i.e.
the applied information redundancy, and the number of
receiver quantization levels which can provide further
enhancement such as weighting of each bit change by the
signal to noise ratio for that bit, i.e. soft detection reg. 101

An ideal decoder would have performance approaching
maximum-likelihood, but would have hardware complexity
and speed comparable to a majority-logic decoder. We now
discuss an approach which may provide such a
combination.

3. Table-Driven Decoding

We will explain the table-driven decoder using examples
based on half-rate non-systematic codes. However, the
technique can be used with any coding rate and with both
systematic and non-systematic codes, although the
performance is superior when non-systematic codes are
used. For illustration a 2/3 coding example will bc given
without detailed explanations.

3.1 One-to-one Mapping

The table-driven decoding method is based on the

existence of a one-to-one mapping of a set of encoded bits
and a set of data bits. Even though the encoded bits in half-
rate coding are generated at twice the information data rate,
it is possible to find a relationship between the encoded
bits and the data which involves the same number of bits.

Iteration No. of Data Bits No. of Encoded bits
0 L 2
1 L+ 1 4
2 L+2 6

n L+n 2(n+l)
".

Figure 1. On-to-one mapping in half-rate encoding with
constraint length L.

Consider production of the encoded bits during half-rate
encoding with constraint length (or code length) L (Figure
1). The first L data bits produce two encoded bits. Each
additional data bit produces two more encoded bits. A
necessary condition for the one-to-one mapping is that
the number of data bits and encoded bits be the same (i.e.
same number of elements is needed in each set). By
requiring the number of the data and the encoded bits in the
nth iteration to be equal, and solving for n we have

L+n = 2(n+l)

n = L-2.

Therefore, L+L-2 = 2L-2 = 2(L - 1) data and encoded bits
are needed for uniquely resolving a message encoded with
code of length L, and 2(L-1) bits must be taken at a time
for it to be possible to have a one-to-one mapping. Since
each bit can be in one of the two states, the number of
elements in each mapping set is 22(L-1). However, a
reduced set of 2(L-1) independent basis elements can be
used to obtain an element of the complete mapping set by
combining the basis elements (vectors) through the
exclusive-OR operations.

To illustrate the ideas we use as an example code of length
L = 3. Let the two code words for half-rate coding be
C1 = 01 1 and C2 = 11 1. The number of bits necessary for
one-to-one mapping is 2k-1) = 4. Hence, in this simple
example there are 22(L-1) = 16 elements in the complete
mapping table, or four elements in the reduced table. It is
easy to determine the table relationships if one starts with
each of the 4 bit combinations of the data and applies the
two code words to obtain the related 4 encoded bits. The
process is illustrated in Figure 2 where P i and P2 denote
the encoded bits produced by half-rate encoding.

The rssulting full table is shown in Figure 3, and it is

386

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

easy to see that it can be constructed by using the
cxclusive-OR operation to combine one, or more, of the
four basis data vectors (0001,0010,0100, 1000) and their
corresponding encoded bit vectors.

arity Bits First Yair Second Yair

Data In : 101101
C1 mask A N D 0 1 1
XOR 3 bits 001 = 1 = P1

101101 ...
- 01 1
o l l = o = P]

Data In : 101101 101101 ...
Cz mask
XOR 3 bits

Figure 2. The process of half-rate encoding

Full Encoding Table
Encoded Bits Data

0

i

14

4
5
6
7
8
9
10

it

0000

ii$

!Pi4

0100
0101
01 10
0111
1000
1001
1010

Hi?
~~

Reduced Encoding Table
Data Encoded Bits

1 000 1
2 0010
4 0100
8 1000

0011
1111
1101
0100

Figure 3. Full and reduced encoding tables.

For example, the output (data = 1011 ..., encoded bits =
1000) could have been obtained by exclusive-OR (XOR) of
the "data" basis elements of 1000,0010 and 0001, i.e.

Data: 1000 XOR OOlOXOR 0001 = 1011
Encoded Bits: 0100 XOR 1111 XOR 0011 = 1000

Converting the data bits into the encoded bits is relatively
easy, and can be implemented in very simple ways.
However, converting the encoded bits back into the data
bits (with error correction) is normally a more difficult
operation. In our case, this can be easily accomplished
conceptually using a reduced table consisting of the basis
clements of the encoded bits instead of the data bits2.

Rcduccd decoding table - Encoded bits: 0001, 0010, 0100,
1000; corresponding Data: 0111, 0110, 1000, 1011.

The sufficient condition for unique table-based
conversion of encoded bits to data is that the encoded bits
matrix of the reduced encoding table for codes C1 and C2
can be transformed3 to an identity matrix of order 2(L-1).
When the same transformation operations are also applied
to the data matrix of the reduced table we obtain a
complete decoding table. If, in this process, one can obtain
a single digit in each basis encoded bit position the
mapping data-encoded-data is one-to-one. If it is
impossible to get the unique reverse mapping, then there
is no two-way one-to-one mapping, and these code words
should not be used.

In general, mapping for a R=p/q rate code (p uncoded bits
results in q encoded bits, pcq) requires q(L-p)/(q-p) wide
tables. For instance, a 2/3 encoding with 4 bit
non-systematic codes requires 3(L-2) = 6 bit wide tables4.

1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 * 1 0 1 1 0 1 1 1 1 0 0

1 i z q 4
p q 4

p 5 - j 4

piq 4

0
1- 4

Figure 4 Table-driven decoding of uncorrupted encoded
bit stream.

3.2 Error Syndrome Generation

To illustrate the essence of the above decoding procedure
we refer to Figure 4 which shows the table-driven
conversion of a stream of uncorrupted encoded bits into
data. Each set of four encoded bits gives its corresponding
four data bits. By shifting over two encoded bits at a time
we shift the data bits one bit at a time. In this example,
because the encoded bits remain uncorrupted, the
corresponding (overlapping) data bits obtained from
different sets of encoded bits yield the same value (boxed
sets on the righudata side of the figure). Consequently, the
three overlapping data bits obtained each time an encoded
bit is shifted over by two produce a difference of zero. This
difference from successive table look-ups will always be
zero if there are no errors in the encoded bits and, in fact, it
can be shown that the syndrome generating process is data
independent.

For example, by back-substitution based on the
exclusive-OR operations on the matrix rows.

A 213 rate coding example - Codes: 1110, 1001, 1011;
Data: 000001, 000010, 000100, 001000, 001000, 010000,
100000; Encoded bits: 000011, 000101, 011100, 101111,
100000, 1 1 1000;

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

When a single bit error occurs in the encoded stream as
shown in Figure 5 , then the difference between the
successive overlapping bits may not be zero. It can be
shown that it will either be zero, or a constant which
depends only on the two code words chosen. Since the
effect of the multiple errors is to produce a differential
sequence which is, in fact, the exclusive-OR of the
differences obtained for the errors taken independently, the
resulting differences for the multiple errors will also be
zero, or the same constant. It can be also shown that the
patterns of zero, and this constant N, become the sequence
which is the reverse sequence of the opposite code word
used to generate the encoded bit in error. One can represent
these differences of zero or N as either zero or one. We call
this sequence "error syndrome sequence". The syndrome
sequence (s-bits or parity-check sum) can be generated
readily by a shift register (as shown in Figure 6). Note that
this syndrome generation process is essentially the same as
the one that would be used for non-systematic half-rate
code in majority-logic decoding [l]. However, there is a
difference between the way majority-logic decoding treats
this syndrome vector, and the way it is treated in the
table-driven approach.

I Correct I
~ 1 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 I

piziq 4
0

Figure 5 Encoded stream with a corrupted encoded bit P2
and the corresponding corrupted data stream.

C1 = O I l n , C2 = 111, g-mask: 1 a0 1 11 1 Il
2 x code length

s - b i t s t o 4- Stream

g-mask b

\
..............:.:.:...:.:..
........:.: - Encoded Bit

Add Register

masked (0) active (I)

Figure 6. Syndrome bit generation

To understand the difference consider the production of the
syndrome bits for half-rate encoding with constraint length
L (Figure 7). The first 2L encoded bits produce one
syndrome bit. Each additional pair of encoded bits produces
one more syndrome bit. From Figure 5 and Table 3 we see
that a two-bit block with an encoded bit in error can

account for at most three (in general, L for half-rate codes)
differences (s-bits) before it moves out of the width of the
mapping tables. Therefore, setting the number of
syndrome bits in the nth iteration equal to L and solving
for n yields

n = L-1

Thus, 2L+2(L-1) = 4L-2 encoded bits are needed for the
complete generation of a syndrome vector of length L.
This means that for the correct decoding and error
correction based on the syndrome vector, we must consider
4L-2 encoded bits because they all influence a syndrome
vector of length L. The classical majority-logic decoding
theory [e.g. 11, although it generates the syndrome vector
correctly, tends to truncate the extra 2G-1) bits. This can
degrade performance of a typical majority-logic decoder5.

Iteration No. of Encoded Bits No. of Svndrome bits
0 2L 1
1 2L+2 2
2 2L+4 3

n 2L+2n n+ 1
I.

Figure 7. Syndrome bit generation for half-rate coding
with constraint length L.

In addition to being used for error correction, the syndrome
vector is most of the time even a better tool for error
detection. However, it can be shown that there are special
error patterns which can masquerade as correct uncorrupted
encoded representing data and produce a syndrome of zero.
This is a basic property of any convolutionally encoded
data stream and applies to all decoding approaches. For
half-rate coding the basic "zero" is the reverse of the
g-mask (see Figure 6). Other "zero" patterns can be formed
by appropriately shifting this basic pattern, and by
combining it with itself through exclusive-OR operations.
The longer the constraint length L, the less likely it is that
such a "zero" vector will go undetected.

In general , p/q rate encoding results in
ws=[(L-p)/(q-p) + 11 s-bits over the mapping table width,
g-mask is qws long, and [q[2(L-p)/(q-p) + 11) encoded bits are
required to generate these s-bits. For 2/3 coding there are
3(L-2)/3 + 1 = L-1 differences over the table width of 3(L-2)
bits, and therefore 6L-9 encoded bits are responsible for the
L-1 s-bits. In our 2/3 rate coding example L=4, 3(L-2) is 6,
L-1 is 3, and the g-mask is 3(L-1) = 9 bits long and equal to
01 1001 11 1. The corresponding reduced decoding table -
Encoded bits: 000001. 000010, 000100, 001000, 010000,
100000; decoded Data: 110110, 110111, 110100, 101101.
011101. 010000.

388

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

3.3 Correction of Encoded Bits Through Table
LO 0 k - U p

5 000001

7 0001
1 6

The process of correcting the encoded bit errors employs
table look-up. This table is generated by producing the
syndrome pattern that will result from a combination of
crrors over a range of at least (4L-2) encoded bits. The
cncoded bit range is usually centered around the encoded
stream window (encoded bit locations) to which single bit
corrections will be applied. Since the syndrome bits are
data independent, in our combination patterns we only need
include bits which are in error. The syndrome bit patterns
are gcnerated starting with the most likely combination of
crrors. At low error rates this is usually single bit errors
(Figure 8), followed by two bit errors, etc. At higher error
rates the sequence may start with some other error
combination. We then use the syndrome bit sequence as an
address (s-address) into a table. At an s-address the content
of the table is a zero if the pattern does not have an error in
thc bit location for which the table is constructed, and a
one i f it does (PA and PB in the vertical transparent box in
the encoded stream of Figure 8). There are many more
zeros in such a table than ones. If there were no limits on
thc size of the table, i.e. the number of syndrome bits used
could bc as long as one wished, then the error correction
could be made more and more perfect.

-
0000 fofllll 7 c , / E O O O O - L a D ~ ~ O fbfll 10

000000 i O & l l 3

c 1 = 011, c 2 = 111 ,B
0000000000
0000000001

2 00000000 10 1 1 00 0
\-

U .- - 4 00 oo(oo(1o 00 fQIj lO0 4 L

8 00 l O l O O l 0 0 00 [O*ll 3

10

d s-address R

n onnoo 0 0

-
-~~~~

1 00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000
9 01001
10 01010

0 0

0 0
0 0

0

X X

X X
1/0 '1)

Figure 8. Encoded stream with single bit errors, and the
corresponding correction table based on the 3 bit
s-patterns.

The top part of Figure 8 shows the encoded stream (4L-2 =
10 bits wide) with the corresponding s-bits generated on
the basis of these 10 bits, and the resulting 3-bit correction
tablc address, d (unshaded bits). Note the right-to-left

bottom-to-top travel of the s-bit patterns across the
s-stream in synchronization with the diagonal left-to-right
bottom-to-top encoded bit error movement. The lower part
of the figure shows the correction table based on the
content of the two central bits in the encoded stream.
Some of the entries in this table will be empty (x) because
one bit errors do not generate these addresses. Those that
have zero in the sampling window will have a 0 in the
table, and those that have a one will have 1 in the table. In
one case (table address 6) we have a double entry 1/0 for
Pg indicating a conflict. We discuss this below.

In practice, only a finite number of syndrome bits can be
used. Consequently, different sets or different combinations
of errors can produce the same combination of the
syndrome bits over a finite range and thus lead to an
ambiguous determination of the correctness of the received
bit stream. We consider the example table for one-bit
errors. The addresses are three bits wide, and there is
address degeneracy. For example, if two different error
patterns produce the same syndrome address, but the bit in
question in the error pattern is the same, then no error is
created by the table (e.g., thc encoded stream entries #I and
#4 in Figure 8 both produce the same table address, 4, but
neither requires a change in the encoded bit). However, if
the two bits are different at that location in the error
pattern, there is a contradiction (e.g., the PB entries for
encoded streams #3 and #6 in Figure 8 are different but
produce the same correction table address, 6) . This may
lead to an erroneous correction, or result in no correction
of a encoded bit error. If this problem is not resolved in
some way the entry in the table should be set to zero to
reduce the probability of miscorrection.

Once the correction tables have been built, correction of
the encoded bits occurs by forming the syndrome bit based
address, accessing the table, and determining if the
particular encoded bit in the correction window position
should be changed. The correction may be applied
immediately, or with a delay pending confirmation of the
change in one of the future correction cycle. When
feedback is employed, then once the correction has been
applied, the s-vectors are re-computed (or adjusted) to take
the correction into account.

3.4 Decoding With Disambiguation

There are several options in the situation where a conflict
occurs in the correction tables because of the overlap of the
s-addresses from two different encoded bit error patterns.
One option is to extend the syndrome address, which is
normally based on 4L-2 encoded bits, to encompass
encoded bits further out. Consider Figure 8. If the encoded
bits range on which s-addresses are generated is extended by

389

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

4 bits on the right side of the original 10 bits, or
alternatively symmetrically by 2 bits on each side of the
original 4L-2 range, then the generated s-addresses will
have two bits more. These additional two s-bits are shown
in the shaded vertical strip in Figure 8 assuming the 4
bits, the one-sided extension in the encoded stream covers,
are zeros. We see that by using the 5 bit s-addresses instead
of the 3 bit addresses we resolve the conflict between the
#3 and the #6 encoded stream entries since in the correction
table the addresses for these two error patterns would now
become decimal 14 and 6, respectively, instead of 6 and 6.
This table now guarantees correction of all single encoded
bit error patterns within an effective constraint length of
14 encoded bits (4L-2+extension = 14). In general, by
s-address extension we can guarantee complete
disambiguation for any number of error patterns. For
example, using half-rate coding and 8-bit non-symmetric
codes with one-sided 24-bit extension, i.e. a 20-bit address
(1 Mbit by two bit) correction table , we can guarantee
complete disambiguation of all addresses for one, two,
three and four bit errors in the encoded stream. The
problem is that the correction table size grows
exponentially with the size of the s-vector, so direct
s-vector extension may very quickly become too expensive
and other methods have to be used.

Another option (usually combined with the first one) is to
resolve the ambiguity through a second or third look-up in
the same table. For example, the additional look-ups may
involve computation of another syndrome address now
positioned around a specific, and possibly uncorrected,
encoded bit that normally would have been associated with
one of the error patterns that resulted in the address
overlap. For instance, when the 3-bit s-address for the
encoded stream entry #3 is re-computed at the position of
the two encoded bits on the right of the transparent strip it
is 7. For this address the correction table indicates that the
encoded bit PA is wrong (one). On the other hand, the
second look-up generated around the same bits for the
stream image #6 gives address 3 in the correction table
which indicates that there is no error in PA (zero). This
differentiates between the #3 and the #6 patterns. In many
cases it is sufficient to use only one additional look-up to
resolve the overlap problem and guarantee correct decision.
However, since the position of the disambiguation pair can
be different for every conflict, a problem with this
technique is the extra storage needed in the correction
tables to indicate which of the bit pairs should be used.

There are other options such as the use of several different
tables. This allows, for example, tuning of the correction
process to specific noise profiles (e.g. burst errors). In this
paper we will not discuss these options, but it is
important to note that the use of the shifted s-vectors, or

different sets of s-bits and different tables, in effect
increases the s-vector length without exponentially
increasing the table size.

3.5 Decoding and Soft Detection

If all encoded bits are corrected in the above process,
conversion of the encoded bits to the data bits could
proceed in a very simple way as illustrated by one of the
relationships in Figure 9. However, even when some
encoded bits are questionable, it is possible to remove
several of them from the decoding scheme and still recover
the original data.

To illustrate this we refer to the reduced decoding table in
Figure 9. Remembering that shifting two encoded bits
shifts over one data bit at the time, we can see that any
given data bit can be derived from 2(L-1) sets of encoded
bits. Given a set of encoded bits one can go to the table
and obtain a set of p-bits to use in the translation which
have not been marked as potentially problematic. The
marking of these bits can either be obtained from the
knowledge of the uncertainty in the table look-up (e.g.
encoded stream entries #3 and #6 in Figure S), and/or from
the signal to noise detection (soft detection) for any given
bit.

For example, assume that to start with the encoded bits are
P i through P4 as given in the first row below the reduced
table in Figure 9. These four encoded bits can be combined
by exclusive-OR (XOR) operations to produce D1 through
D4 data bits. In particular, from the rightmost column of
the Data side of the reduced table we see that data bit D4
will be influenced only by the state of P i and P4 bits, i.e.
P i XOR P4. Shifting in two new encoded bits, P5 and
P6, and one data bit D5 provides D4 mappings given in
the second row of the M a p p i n g column, etc.
Relationships for other data bits can be obtained in a
similar way.

Reduced Decoding Table

Encoded Bits Data I Mapping

1 0 0 0 1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

Figure 9. Redundancy available for decoding of
individual data bits.

During the analysis of the encoded bits we may suspect the
quality of say Pi due to a confict in the correction table,

390

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

or bccause of the signal-to-noise ratio. Then the decoding
of D4 based on P i would also be suspect. However, if bits
P3, P5 and P6 are not problematic, then one can derive D4
from this second (or some other) relationship without
miscorrection. This process has been successfully used to
limit the error propagation from the corrupted or the
miscorrected encoded bits to the decoded data bits. A
detailed analysis of the process is in progress.

For illustration consider the conflict situation shown in
the Figure 8 correction table. Suppose that to start with
PI corresponds to PA and P2 to Pg in the encoded stream
cntry #6. The correction table shows that there is no
change for P i and therefore it is marked as being correct.
Howcver, there is an s-address conflict for bit P2.
Therefore we mark P2 as problematic. To be on the safe
sidc the correction is not applied, and the (potential) error
in the encoded stream is allowed to remain. Next, we shift
in two more encoded bits, P3 and P4. Now the encoded
stream image is that given by the #4 entry. For both bits
thc correction table address 4 indicates no change (as it
should) and both bits are marked as correct. The next two
bits that are scrutinized are P5 and P6. The appropriate
cncoded stream image is that of the #2 entry which reduces
to the s-address of 0. Again no change is indicated by the
correction table, and both bits are marked as correct. We
now have a sufficient number of correct encoded bits to
correctly decode bit D4 using the second decoding
relationship. The encoded bit error that went uncorrected
bccause of the table conflict was corrected by the
translation process of the encoded bits to data, and the
cncoded bit error did not propagate into the decoded data
strcam.

In some situations (e.g. burst errors, high error rates) it is
possible that all relationships for a decoding of a data bit
contain at least one problematic encoded bit. In that case
an option which gives reasonable results is a table-based
minimization of the number of changes that need to be
applied to (problematic) encoded bits in order to make all
relationships for that data bit agree.

3.6 Performance

For thc errors for which a table entry is unambiguous we
can guarantee correction. For the other errors, its is
possible to compute and measure the probability that the
Correction table entry fails to indicate the appropriate
course of action. This suggests the following approximate
model for the performance of a simple single look-up
table-driven feedback decoder on a binary symmetric
channel given a convolutional code with coding ratio
R=p/q, and constraint length of L. The bit error probability
after correction of the first block of q encoded bits, PPI@)

is
ne

Ppl(E) cLc 4 Bi (n,> pi (1-p)"d
i=t+l

where t is the number of encoded bits in error that are
guaranteed correction through the table look-up,
ne=q[2(1-p)/(q-p)+l]+(extension bits) is the effective
constraint length, Bi is the probability that table fails for
an i-bit error within ne, and p is the channel transition
probability. When feedback is applied each correction
subtracts the error from the encoded stream and also adjusts
the syndrome vector. If the there is no error propagation
then the bit error probability for any block, P p Q , is equal
to Ppl(E). This is the "Process Model 2" in Figure 10. In
practice, however, error propagation will occur, so the
performance of the basic error correction mechanism will
be degraded. The error propagation in the encoded stream
may be limited by choosing the codes with good
resynchronization properties, or by some other mechanism
such as temporary reduction of the feedback once an error
burst is detected. The error propagation into the decoded
information blocks may be limited through selective use
of correct encoded bits (see section 3.5).

100 - cI lo.l . Half-rate Encoding
m 10.2 . 8 bit code

$ 10-4 .
S 10.5 .
5 1 0 6 - imulation

- two sided 12-bit extension

Process Model 1

m 1 0 . ~ -

000001 00001 0001 001 01 1 1

Input Error Rate per Encoded Bit

Figure 10. Illustration of the performance of the
table-driven error correction approach for half-rate encoding
based on a simulation and two probabilistic models.

We have built simulators for the outlined approach. The
preliminary results are very encouraging. Example of a
half-rate coding simulation is shown in Figure 10. The
obtained output error rate per encoded bit is plotted against
the channel error rate per encoded bit. Also shown are two
process models. The Process Model 1 is a pessimistic
model based on an unstructured (random) table, while the

391

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

Process Model 2 was described in the preceding paragraph.
We used 8 bit codes with two-sided 12 bit extension (20
bit s-addresses). Results show that a simple look-up can
guarantee correction of all 1, 2, and 3 bit errors (t=3)
within an effective constraint length window of ne=54
encoded bits. The corresponding probability of not
correcting 4 bit errors within the same window is about
0.000003 (Bq), for the codes and the variants of the
technique we have examined so far. The probability of not
correcting 5 and 6 bit errors is about 0.0007 (B5=B6), and
the probability of not correcting 7,8,9 and 10 bit errors is
0.33. One-sided extensions provides far better performance
but requires more sophisticated error propagation control.

4. Summary

We have described a novel data-independent error correction
and decoding approach for convolutionally encoded bit
streams. The codes have to satisfy certain criteria for the
approach to work. One criterion is that they must provide
an orthogonal set of transformation vectors which allows a
two-way one-to-one mapping between the uncoded data and
the encoded stream. The error correction and decoding
process can be reduced to a set look-ups in pre-computed
tables.

A systematic mapping of single-bit, two-bit, three-bit,
ctc., encoded stream errors into error syndrome bit patterns
gives correction tables which can then be used at run-time
to map observed syndrome patterns into the information
on which of the encoded bits is likely to be corrupted. To
take full advantage of the error correcting capabilities of
the syndrome vectors, decoding has to be augmented with
disambiguation indicator bits and error propagation
limiting process. The tables have to be built for the most
likely error patterns. The table size depends on the number
of bits in error that we wish to correct at run-time.
Theoretical models and simulations show that the method
is fast, and can provide decoding that competes with the
commonly employed Viterbi decoding. The speed is the
result of the intrinsically low complexity of the table
look-up process, and of the fact that the existence of an
error can be very quickly determined from the syndrome
bits while the actual look-up and error correction needs to
be done only on the average. The performance stems from
the fact that the table-driven approach bases correction
decisions on at least three to five code constraint lengths.
Soft-detection enhancements are possible.

A number of research issues related to the tablc-driven
approach remain open. For example, improvement of the
correction and the decoding table efficiency and reduction of
its size. We plan on building prototype decoding units to
demonstrate the approach. Two routes will be taken. In

one we will use standard ECL logic chips to provide XOR
operations and look-ups. In the other approach we will
attempt to utilize the BLITZEN6 chip [12] to exploit
parallelism inherent in the proposed decoding method.

Acknowledgments

We are grateful to Mr. Christopher Alix (U. of Illinois,
Urbana-Champaign) for his invaluable help and many
contributions in the first stages of the project. Our thanks
also go to Mr. Wang LiFeng and Ms. Elena Gonzalez of
NCSU for their continued involvement in the project.

Bibliography

S . Lin and D.J. Costello, Jr., Error Control Coding
- Fundamentals and Applications, Prentice-Hall,
Englewood Cliffs, N.J. 07632, 1983.
G.D. Forney, Jr., R, G, Gallager, G.R. Lang, F.M.
Longstaff, and S.U. Qureshi, "Efficient Modulation
for Band-Limited Channels," IEEE J. on Selected
Areas in Communications, Vol. SAC-2, No. 5, pp.
632-647, September 1984.
A.J. Viterbi, "Error Bounds for Convolutional Codes
and an Asymptotically Optimum Decoding
Algorithm," IEEE Trans. Inf. Theory, IT-13, pp 260-
269, April 1967.
G.D. Forney, Jr., "Maximum Likelihood Sequence
Estimation of Digital Sequences in the Presence of
Intersymbol Interference," IEEE Trans. Inf. Theory,
IT-18, pp 363-378, May 1972.
G.D. Forney, Jr., "The Viterbi Algorithms," Proc

J.M. Wozencraft and B. Reiffen, Sequential
Decoding, MIT Press, Cambridge, Mass., 1961.
R.M. Fano, "A Heuristic Discussion of Probabilistic
Decoding," IEEE Trans. Inf. Theory, IT-9, pp. 64-
74, April 1963.
F. Jelinek, "A Fast Sequential Decoding Algorithm
Using a Stack,: IBM J. Res. and Dev., 13, pp. 675-
685, November 1969.
J.L. Massey, Threshold Decoding, MIT Press,
Cambridge, Mass., 1963.
G. Ungerboeck, "Trellis-Coded Modulation with
Redundant Signal Sets Parts I & 11:" IEEE
Communications Magazine, Vol. 25, No. 2, pp. 5-
21, February 1987.
D.W. Blevins, E.W. Davis, R.A. Heaton, and J.H.
Reif, "BLITZEN: A Highly Integrated Massively
Parallel Machine," J. of Parallel and Distributed
Computing, 8 , pp. 150-160, 1990.
G.D. Forney, Jr., "Convolutional Codes 11:
Maximum Likelihood Decoding," Inf. Control, 25,

IEEE, 61, pp. 268-278, March 1973.

pp. 222-266, July 1974.

The BLITZEN project was in part sponsored by NASA
GSFC. Production of BLITZEN chips for use in spaceborn
equipment is under consideration.

392

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on June 25, 2009 at 13:07 from IEEE Xplore. Restrictions apply.

