476 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

Top-Down Induction of Decision Trees
Classifiers—A Survey

Lior Rokach and Oded Maimon

Abstract—Decision trees are considered to be one of the most
popular approaches for representing classifiers. Researchers from
various disciplines such as statistics, machine learning, pattern
recognition, and data mining considered the issue of growing a
decision tree from available data. This paper presents an updated
survey of current methods for constructing decision tree classifiers
in a top-down manner. The paper suggests a unified algorithmic
framework for presenting these algorithms and describes the
various splitting criteria and pruning methodologies.

Index Terms—Classification, decision trees, pruning methods,
splitting criteria.

1. INTRODUCTION

UPERVISED methods are methods that attempt to discover

relationship between the input attributes and the target at-
tribute. The relationship discovered is represented in a structure
referred to as a model. Usually, models can be used for pre-
dicting the value of the target attribute knowing the values of the
input attributes. It is useful to distinguish between two main su-
pervised models: classification models (classifiers) and regres-
sion models.

Regression models map the input space into a real-valued do-
main, whereas classifiers map the input space into predefined
classes. For instance, classifiers can be used to classify mort-
gage consumers to good (fully payback the mortgage on time)
and bad (delayed payback).

There are many alternatives to represent classifiers. The de-
cision tree is probably the most widely used approach for this
purpose. Originally, it has been studied in the fields of decision
theory and statistics. However, it was found to be effective in
other disciplines such as data mining, machine learning, and pat-
tern recognition. Decision trees are also implemented in many
real-world applications.

Given the long history and the intense interest in this ap-
proach, it is not surprising that several surveys on decision trees
are available in the literature, such as [1]-[3]. Nevertheless, this
survey proposes a profound but concise description of issues
related specifically to top-down construction of decision trees,
which is considered the most popular construction approach.
This paper aims to organize all significant methods developed
into a coherent and unified reference.

Manuscript received July 15, 2003; revised Octover 10, 2004. This paper was
recommended by Associate Editor S. Lakshmivarahan.

The authors are with the Department of Industrial Engineering, Tel-Aviv Uni-
versity, Ramat Aviv 69978, Israel (e-mail: liorr@eng.tau.ac.il).

Digital Object Identifier 10.1109/TSMCC.2004.843247

II. PRELIMINARIES

In a typical supervised learning, a training set of labeled ex-
amples is given and the goal is to form a description that can be
used to predict previously unseen examples.

The training set can be described in a variety of languages.
Most frequently, they are described as a bag instance of a certain
bag schema. The bag schema provides the description of the
attributes and their domains. Formally, bag schema is denoted as
R(AUy). Where A denotes the set of input attributes containing
n attributes: A = {ay,...,a;,...,a,} and y represents the
class variable or the target attribute.

Attributes (sometimes called field, variable or feature) are
typically one of two types: nominal (values are members of
an unordered set), or numeric (values are real numbers). When
the attribute a; is nominal it is useful to denote by dom(a;) =
{wi1,vi 2, -+ Vi |dom(a,)| } its domain values, where [dom (a;)|
stands for its finite cardinality. In a similar way, dom(y) =
{c1,- -+, ¢jaom(y)| } represents the domain of the target attribute.
Numeric attributes have infinite cardinalities.

The set of all possible examples is called the instance space.
The instance space is defined as a Cartesian product of all the
input attributes domains: X = dom(a;) x dom(ag) X ... X
dom(a,,). The universal instance space (or the labeled instance
space) U is defined as a Cartesian product of all input attribute
domains and target attribute domain, i.e.: U = X x dom(y).

The training set is a bag instance consisting of a set of m
tuples (also known as records). Each tuple is described by a
vector of attribute values in accordance with the definition of
the bag schema. Formally, the training set is denoted as S(R) =
({z1,91)s- -, (Tm, Ym)) where 2, € X and y, € dom(y).

Usually, it is assumed that the training set tuples are gener-
ated randomly and independently according to some fixed and
unknown joint probability distribution D over U. Note that this
is a generalization of the deterministic case when a supervisor
classifies a tuple using a function y = f(x).

This paper uses the common notation of bag algebra to
present projection (7) and selection (o) of tuples (see for
instance [4]).

Originally, the machine learning community has introduced
the problem of concept learning. To learn a concept is to infer its
general definition from a set of examples. This definition may
be either explicitly formulated or left implicit, but either way
it assigns each possible example to the concept or not. Thus, a
concept can be formally regarded as a function from the set of
all possible examples to the Boolean set {true, false}.

Other communities, such as the data mining community
prefer to deal with a straightforward extension of the concept
learning, know as the classification problem. In this case we

1094-6977/$20.00 © 2005 IEEE

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 477

search for a function that maps the set of all possible examples
into predefined set of class labels and not limited to the Boolean
set.

An inducer, is an entity that obtains a training set and forms a
classifier that represents the generalize relationship between the
input attributes and the target attribute.

The notation I represents an inducer and I(S) represents a
classifier which was induced by performing I on a training set S.

Most frequently, the goal of the classifiers Inducers is for-
mally defined as:

Given a training set S with input attributes set A =
{a1,a9,...,a,} and target attribute y from a unknown fixed
distribution D over the labeled instance space, the goal is
to induce an optimal classifier with minimum generalization
error.

Generalization error is defined as the misclassification rate
over the distribution D. In case of the nominal attributes it can
be expressed as

> D(a,y)- Ly, I1(S)(x)) (1)

(wy)€U
where L(y, I(S)(x) is the loss function defined as

@) = {3 IR

In case of numeric attributes the sum operator is replaced with
the appropriate integral operator.

The classifier generated by the inducer can be used to clas-
sify an unseen tuple either by explicitly assigning it to a certain
class (crisp classifier) or by providing a vector of probabilities
representing the conditional probability of the given instance to
belong to each class (probabilistic classifier).

(@)

III. DECISION TREE REPRESENTATION

A Decision tree is a classifier expressed as a recursive parti-
tion of the instance space. The decision tree consists of nodes
that form a rooted tree, meaning it is a directed tree with a node
called root that has no incoming edges. All other nodes have ex-
actly one incoming edge. A node with outgoing edges is called
an internal or test node. All other nodes are called leaves (also
known as terminal nodes or decision nodes).

In a decision tree, each internal node splits the instance space
into two or more subspaces according to a certain discrete func-
tion of the input attributes values. In the simplest and most fre-
quent case each test considers a single attribute, such that the
instance space is partitioned according to the attribute’s value.
In the case of numeric attributes the condition refers to a range.

Each leaf is assigned to one class representing the most ap-
propriate target value. Alternatively, the leaf may hold a proba-
bility vector indicating the probability of the target value having
a certain value.

Instances are classified by navigating them from the root of
the tree down to a leaf, according to the outcome of the tests
along the path.

Fig. 1 describes a decision tree that reasons whether or not
a potential customer will respond to a direct mailing. Internal
nodes are represented as circles whereas leaves are denoted as

<=30

i Gender |

/ N

Fig. 1. Decision tree presenting response to direct mailing.

triangles. Note that this decision tree incorporates both nominal
and numeric attributes. Given this classifier, the analyst can pre-
dict the response of a potential customer (by sorting it down the
tree), and understand the behavioral characteristics of the en-
tire population of potential customers—with respect to direct
mailing. Each node is labeled with the attribute it tests, and its
branches are labeled with its corresponding values.

In case of numeric attributes, decision trees can be geometri-
cally interpreted as a collection of hyperplanes, each orthogonal
to one of the axes.

Naturally, decision-makers prefer less complex decision
trees, since they may be considered more comprehensive.
Furthermore according to Breiman et al. [5] the tree complexity
has a crucial effect on its accuracy performance. The tree
complexity is explicitly controlled by the stopping criteria used
and the pruning method employed. Usually, the tree complexity
is measured by one of the following metrics:

. the total number of nodes;
. total number of leaves;

o tree depth;

. number of attributes used.

Decision tree induction is closely related to rule induction.
Each path from the root of a decision tree to one of its leaves
can be transformed into a rule simply by conjoining the tests
along the path to form the antecedent part, and taking the leaf’s
class prediction as the class value. For example, one of the paths
in Fig. 1 can be transformed into the rule: “If customer age < 30,
and the gender of the customer is “male,” then the customer will
respond to the mail.” The resulting rule set can then be simplified
to improve its comprehensibility to a human user, and possibly
its accuracy [6].

IV. ALGORITHMIC FRAMEWORK FOR DECISION TREES

Decision Tree inducers are algorithms that automatically con-
struct a decision tree from a given dataset. Typically, the goal is

478 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

to find the optimal decision tree by minimizing the generaliza-
tion error. However, other target functions can be also defined,
for instance: minimizing the number of nodes or minimizing the
average depth.

Induction of an optimal decision tree from a given data is con-
sidered to be a hard task. Hancock er al. [7] have showed that
finding a minimal decision tree consistent with the training set is
NP-Hard. Hyafil and Rivest [8] have showed that constructing
a minimal binary tree with respect to the expected number of
tests required for classifying an unseen instance is NP-complete.
Even finding the minimal equivalent decision tree for a given
decision tree [9] or building the optimal decision tree from de-
cision tables is known to be NP-Hard [10].

The last references indicate that using optimal decision tree
algorithms is feasible only in small problems. Consequently,
heuristics methods are required for solving the problem.
Roughly speaking, these methods can be divided into two
groups: top-down and bottom-up with clear preference in the
literature to the first group.

Fig. 2 presents a typical algorithmic framework for top-down
inducing of a decision tree. Note that these algorithms are
greedy by nature and construct the decision tree in a top-down,
recursive manner (also known as “divide and conquer”). In each
iteration, the algorithm considers the partition of the training
set using the outcome of a discrete function of the input at-
tributes. The selection of the most appropriate function is made
according to some splitting measures. After the selection of
an appropriate split, each node further subdivides the training
set into smaller subsets, until no split gains sufficient splitting
measure or a stopping criteria is satisfied.

There are various top-down decision trees inducers such as
ID3 [11], C4.5 [12], and CART [5]. Some consist of two con-
ceptual phases: Growing and pruning (C4.5 and CART). Other
inducers perform only the growing phase.

V. UNIVARIATE SPLITTING CRITERIA

A. Overview

In most of the cases the discrete splitting functions are uni-
variate. Univariate means that an internal node is split according
to the value of a single attribute. Consequently, the inducer
searches for the best attribute upon which to split. There are
various univariate criteria. These criteria can be characterized in
different ways, such as according to the origin of the measure:
information theory, dependence, and distance, and according
to the measure structure: impurity based criteria, normalized
impurity based criteria and binary criteria.

The following sections describe the most common criteria in
the literature.

B. Impurity Based Criteria

Given a random variable & with k discrete values, distributed
according to P = (p1,pa,...,pk), an impurity measure is a
function ¢ : [0, 1]* — R that satisfies the following conditions:
p(P) > 0;

. ¢(P) is minimum if 37 such that component P; = 1;
. ¢(P) is maximum if Vi, 1 <1i < k, P, = 1/k;

procedure DT Inducer(S, A,y)
1: T = TreeGrowing(S, A, y)
2: Return TreePruning(S,T)
procedure TreeGrowing(S, A,y)
1: Create a tree 7'
2: if One of the Stopping Criteria is fulfilled then
3: Mark the root node in 7" as a leaf with the most common
value of y in S as the class.
4: else
5. Find a discrete function f(A) of the input attributes val-
ues such that splitting .S according to f(A)’s outcomes
(V1,...,Vy) gains the best splitting metric.

6: if best splitting metric > treshold then
7: Label the root node in 7" as f(A)
8: for each outcome v; of f(A) do
9: Subtree; = TreeGrowing(o f(ay=v, S 4,9).
10: Connect the root node of 7' to Subtree; with an
edge that is labelled as v;
11: end for
12. else
13: Mark the root node in 7" as a leaf with the most
common value of y in S as the class.
14: end if
15: end if
16: Return T
procedure TreePruning(S,T,y)
1: repeat

2: Select a node ¢ in 7" such that pruning it maximally
improve some evaluation criteria

3: if ¢t # O then

4: T = pruned(1,t)

50 end if

6: until =0

7: Return 7T’

Fig. 2. Top-down algorithmic framework for decision trees induction. The
inputs are S (training set), A (input feature set) and y (target feature).

. ¢(P) is symmetric with respect to components of P;
. ¢(P) is smooth (differentiable everywhere) in its
range.

Note: if the probability vector has a component of 1 (the vari-
able x gets only one value), then the variable is defined as pure.
On the other hand, if all components are equal the level of im-
purity reach maximum.

Given a training set S. The probability vector of the target
attribute y is defined as

a :cls UZ“domy S
Py(S):<| y|S| |7| Y I|S()\ |> (3)

The goodness-of-split due to discrete attribute a; is defined as
a reduction in impurity of the target attribute after partitioning
S according to the values v; ; € dom(a;)

‘dom(ai)||0'a-—v- S|
A(ai, S)=¢(P(S)= F FHGES

J=1

¢ (Py (0',1,, =v; S)) .
4)

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 479

Information gain [6] is an impurity based criteria that uses the
entropy measure (origin from information theory) as the impu-
rity measure

Information Gain (a;, S) = Entropy (y, S)

Z |Uﬂi=vzﬁ.j5|

S - Entropy (y: Oa;=v; ; S) (5)
v;,j€dom(a;) |

where

Oy=c, S Oy=c, S
Entropy (y, S) = Z - J|S| | log, J|S| |

¢;€dom(y)

C. Gini Index

Gini index is an impurity-based criteria that meausures the
divergence between the probability distributions of the target at-
tribute’s values. The Gini index has been used in various works
(see [5] and [13]). The Gini index is defined as

2
Gini (y,8)=1—- > |oy=c,5] . (6)
¢;€dom(y) 151

Consequently, the evaluation criteria for selecting the at-
tribute a; is defined as

Gini Gain (a;, S) = Gini (y, S)

E |O-a7='”7~.7 S|

S - Gini (y7 Oa;=v; ; S))]
v;,j€dom(a;) |

D. Likelihood Ratio Chi-Squared Statistics
The likelihood ratio is defined as [14]:

G*(a;,S) =2-1n(2) - |S| - Information Gain (a;, S). (8)

This ratio is useful for measuring the statistical significance
of the information gain criteria. The zero hypothesis (Hy) is
that the input attribute and the target attribute are conditionally
independent. If H, holds, the test statistic is distributed as X2
with degrees of freedom equal to: (dom(a;)—1)-(dom(y)—1).

E. Normalized Impurity Based Criteria

The Impurity Based Criterion described above is biased to-
ward attributes with larger domain values. Namely, it prefers
input attributes with many values over attributes with less values
[11]. For instance, an input attribute that represents the national
security number, will probably get the highest information gain.
However, adding this attribute to a decision tree will result with
a poor generalized accuracy.

For that reason, it is useful to “normalize” the impurity-based
measures, as described in the following sections.

F. Gain Ratio

Quinlan [12] proposes the gain ratio measure that “nor-
malize” the information gain follows:

Information Gain (a;, S)

Gain Ratio (a;, S) = Entropy (a;, S)

©))

Note that this ratio is not defined when the denominator is
zero. Also the ratio may tend to favor attributes for which the
denominator is very small. Consequently, it is suggested in two
stages. First the information gain is calculated for all attributes.
Then taking into consideration only attributes that have per-
formed at least as good as the average information gain, the at-
tribute that has obtained the best ratio gain is selected. Quinlan
[15] has showed that the gain ratio tends to outperform simple
information gain criteria both from the accuracy aspect as well
as from classifier complexity aspects.

G. Distance Measure

Lopez de Mantras [16], introduced a distance measure. Like
Gain Ratio this measure also normalizes the impurity measure.
However, it suggests normalizing it in a different way

Ad(a;, S
- > S b-logyb
v;,jE€dom(a;) ¢ Edom(y)
where
Ta,=v;; and y=e, ¥

b=

Bl

H. Binary Criteria

The binary criteria are used for creating binary decision trees.
These measures are based on the division of the input attribute
domain into two subdomains.

Let B(a;,dy,ds, S) denote the binary criterion value for at-
tribute a; over sample S when d; and d are its corresponded
subdomains. The value obtained for the optimal division of the
attribute domain into two mutually exclusive and exhaustive
subdomains, is used for comparing attributes, namely

B*(ai, S) = max ((a;,dy,ds, S)

s.t.
dy U dy = dom(a;)
diNdy = 0. (11)

1. Twoing Criteria

Breiman ez al. [5] point out that the Gini index may encounter
problems when the domain of the target attribute is relatively

480 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

wide. In this case they suggest using binary criterion called
twoing criterion. This criterion is defined as

twoing (a;, dy,ds,.S)
|0—d4€d1 S| |0—d4€d25|

=0.25
|51 |51

2

Z ‘ an- edland y=c; S‘ an- eannd y=c; S

c; €dom(y) |0'a1€d15| |0'a1€d2 S|

12)

When the target attribute is binary the Gini and twoing cri-
teria are equivalent. For multiclass problems, the twoing criteria
prefers attributes with evenly divided splits.

J. Orthogonality Criterion

Fayyad and Irani [17] have presented the orthogonality (ORT)

criterion. This binary criteria is defined as
ORT(ai,dl,dg,S) =1- cosG(Py,l,Py,g) (13)

where §(P, 1, P, 2) is the angle between two distribution vec-
tors P, 1 and P, » of the target attribute y on the bags 04,cq, S
and 0,4, ¢4, S, respectively.

Fayyad and Irani [17] showed that this criterion performs
better than the information gain and the Gini index for specific
problem constellations.

K. Kolmogorov—Smirnov Criteria

Friedman [18] and Rounds [19] have suggested a binary cri-
terion that uses Kolmogorov—Smirnov distance. Assuming a bi-
nary target attribute, namely dom(y) = {c1, ¢}, the criterion
is defined as

Oa;ed; and y=c, S‘

KS(CLi,dl,dg./S) =

|0y=€1 S|

Uai €dy and Yy=ca S‘

(14
|‘7y2025|

Utgoff and Clouse [20] suggest extending this measure to
handle target attribute with multiple classes and missing data
values. Their results indicate that the suggested method outper-
forms the gain ratio criteria.

L. Other Univariate Splitting Criteria

Additional univariate splitting criteria can be found in the lit-
erature, such as permutation statistic [21], mean posterior im-
provement [22], and hypergeometric distribution measure [23].

M. Comparison of Univariate Splitting Criteria

Comparative studies of the splitting criteria described above,
and others, have been conducted by several researchers during
the last thirty years, such as [5], [17], [24]-[28], [71], [73]. Most
of these comparisons are based on empirical results, although
there are some theoretical conclusions.

Most of the researchers point out that in most of the cases the
choice of splitting criteria will not make much difference on the
tree performance. Each criterion is superior in some cases and
inferior in others, as the “no-free-lunch” theorem suggests.

VI. MULTIVARIATE SPLITTING CRITERIA

In multivariate splitting criteria several attributes may par-
ticipate in a single node split test. Obviously, finding the best
multivariate criteria is more complicated than finding the best
univariate split. Furthermore, although this type of criteria may
dramatically improve the tree’s performance, these criteria are
much less popular than the univariate criteria.

Most of the multivariate splitting criteria are based on linear
combination of the input attributes. Finding the best linear com-
bination can be performed using a greedy search [5], [29] linear
programming [30], [31], linear discriminant analysis [18], [30],
[32]-[35] and others [36]-[38].

VII. STOPPING CRITERIA

The growing phase continues until a stopping criteria is trig-
gered. The following conditions are common stopping rules.

All instances in the training set belong to a single value of y.

The maximum tree depth has been reached.

The number of cases in the terminal node is less than the
minimum number of cases for parent nodes.

If the node were split, the number of cases in one or more
child nodes would be less than the minimum number of cases
for child nodes.

The best splitting criteria is not greater than a certain
threshold.

VIII. PRUNING METHODS
A. Overview

Employing tightly stopping criteria tends to create small and
under-fitted decision trees. On the other hand, using loosely
stopping criteria tends to generate large decision trees that are
over-fitted to the training set. Pruning methods originally sug-
gested by Breiman et al. [5] were developed for solving this
dilemma. According to this methodology a loosely stopping cri-
terion is used, letting the decision tree to overfit the training set.
Then the overfitted tree is cut back into smaller tree by removing
sub branches that are not contributing to the generalization ac-
curacy. It has been shown in various studies that employing
pruning methods can improve the generalization performance
of a decision tree especially in noisy domains.

Another key motivation of pruning is “trading accuracy for
simplicity” as presented by Bratko and Bohanec [39]. When
the goal is to produce a sufficiently accurate compact concept
description, pruning is highly useful. Within this process the
initial decision tree is seen as a completely accurate one. Thus,
the accuracy of a pruned decision tree indicates how close it is
to the initial tree.

There are various techniques for pruning decision trees. Most
of them perform top down or bottom up traversal of the nodes.
A node is pruned if this operation improves a certain criteria.
The following sections describe the most popular techniques.

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 481

B. Cost-Complexity Pruning

Breiman er al.’s pruning method [5], cost complexity
pruning (also known as weakest link pruning or error com-
plexity pruning) proceeds in two stages. In the first stage, a
sequence of trees Ty, 11, ...,T}) is built on the training data
where Ty is the original tree before pruning and 77 is the root
tree.

In the second stage, one of these trees is chosen as the pruned
tree, based on its generalization error estimation.

The tree T;1; is obtained by replacing one or more of the
sub-trees in the predecessor tree 7T; with suitable leaves. The
sub-trees that are pruned are those that obtain the lowest increase
in apparent error rate per pruned leaf

e (pruned (T',t),S) — (T, S)
o =
[leaves (T')| — |leaves (pruned (T',t))|

15)

where (7, .S) indicates the error rate of the tree T over the
sample S and |leaves(T")| denote the number of leaves in 7.
pruned (7',t) denote the tree obtained by replacing the node ¢
in T with a suitable leaf.

In the second phase the generalization error of each pruned
tree Ty, 11, . . ., T} is estimated. The best pruned tree is then se-
lected. If the given dataset is large enough the authors suggest
to break it into training set and pruning set. The trees are con-
structed using the training set and evaluated on the pruning set.
On the other hand, if the given dataset is not large enough they
propose to use cross-validation methodology, despite the com-
putational complexity implications.

C. Reduced-Error Pruning

Quinlan [6] has suggested a simple procedure for pruning de-
cision trees known as reduced-error pruning. While traversing
over the internal nodes from the bottom to the top, the proce-
dure checks for each internal node, whether replacing it with
the most frequent class does not reduce the tree’s accuracy. In
this case, the node is pruned. The procedure continues until any
further pruning would decrease the accuracy.

In order to estimate the accuracy Quinlan proposes to use a
pruning set. It can be shown that this procedure ends with the
smallest accurate subtree with respect to a given pruning set.

D. Minimum-Error Pruning (MEP)

The minimum-error pruning has been proposed by Niblett
and Bratko [40]. It performs bottom-up traversal of the internal
nodes. In each node it compares the 1-probability-error rate es-
timation with and without pruning.

The 1-probability-error rate estimation is a correction to the
simple probability estimation using frequencies. If S; denote the
instances that have reached node ¢, then the error rate obtained
if this node was pruned is

|0y=c, St| + l 'papr(y = Ci)
|Se] +1

(16)

where pap:(y = ¢;) is the a priori probability of y getting the
value ¢;, and [denote the weight given to the a priori probability.
A node is pruned if it does not increase the m probability-error
rate.

E. Pessimistic Pruning

Quinlan’s pessimistic pruning [12] avoids the need of pruning
set or cross validation and uses the pessimistic statistical corre-
lation test instead.

The basic idea is that the error ratio estimated using the
training set is not reliable enough. Instead a more realistic mea-
sure known as continuity correction for binomial distribution
should be used

[leaves (7')|

e(T,8)=¢e(T,S)+ 28]

a7)

However, this correction still produces an optimistic-error
rate. Consequently, Quinlan suggests pruning an internal node
t if its error rate is within one standard error from a reference
tree, namely

&(T,5) - (1 —&/(T, S))
5]

¢ (pruned (T,), S) < &/(T,) + \/

(18)

The last condition is based on statistical confidence interval
for proportions. Usually, the last condition is used such that T'
refers to a sub-tree whose root is the internal node ¢ and S denote
the portion of the training set that refer to the node ¢.

The pessimistic pruning procedure performs top-down
traversing over the internal nodes. If an internal node is pruned
then all its descendants are removed from the pruning process,
resulting in a relatively fast pruning.

F. Error-Based Pruning (EBP)

Error-based pruning is an evolution of the pessimistic
pruning. It is implemented in the well-known C4.5 algorithm.

As in pessimistic pruning the error rate is estimated using the
upper bound of the statistical confidence interval for proportions

6(T7 S)) (1 — E(T7 S))
|51

evs(T,S) = e(T,S) + Zq \/ (19)

where (T, S) denote the misclassification rate of the tree T
on the training set S. Z is the inverse of the standard normal
cumulative distribution and « is the desired significance level.

Let subtree (7, ¢) denote the sub tree rooted by the node t¢.
Let maxchild (7,¢) denote the most frequent child node of ¢
(namely, most of the instances in S reach this particular child)
and let S; denote all instances in .S that reach the node ¢.

The procedure performs bottom-up traversal over all nodes
and compares the following values:

evp (subtree (T',t), St) (20)
eup (pruned (subtree (T,t),t),St) (21)
evp (subtree (7', maxchild (7',t)), Smaxchild (7,0)) - (22)

According to the lowest value the procedure either leaves the
tree as is, prune the node ¢, or replaces the node ¢ with the subtree
rooted by maxchild (7',).

G. Optimal Pruning

Bratko and Bohanec [39] and Almuallim [41] address the
issue of finding optimal pruning.

482 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

Bohanec and Bratko [39] introduce an algorithm guaran-
teeing optimality called optimal pruning (OPT). This algorithm
finds the optimal pruning based on dynamic programming, with
complexity of O(|leaves (1')|?) where 7" is the initial decision
tree.

Almuallim [41] introduced an improvement of OPT called
OPT-2, which also performs optimal pruning using dynamic
programming. However, the time and space complexities of
OPT-2 are both ©(|leaves (T'x)| - |internal (T)|), where T is
the target (pruned) decision tree and 7' is the initial decision
tree.

Since the pruned tree is habitually much smaller than the ini-
tial tree and the number of internal nodes is smaller than the
number of leaves, OPT-2 is usually more efficient than OPT in
terms of computational complexity.

H. Minimum Description Length Pruning

Rissanen [42], Quinlan and Rivest [43] and Mehta et al. [44]
used the minimum description length (MDL) for evaluating the
generalized accuracy of a node. This method measures the size
of a decision tree by means of the number of bits required to
encode the tree. The MDL method prefers decision trees that
can be encoded with fewer bits. Mehta et al. [44] indicate that
the cost of a split at a leaf ¢ can be estimated as

S
Cost(T) = > |oy=c,Si|-In " | t'g |
c;edom(y) y=cit
[dom ()]
-1 —
ldom@I =1y 15ef 1y, 7w = 1 (23)
2 2 r (I onzl(y)l)

where |S;| denote the number of instances that have reached to
node ¢.

The splitting cost of an internal node is calculated based on
the cost aggregation of its children.

1. Other Pruning Methods

There are other pruning methods reported in the literature.
Wallace and Patrick [45] proposed a minimum message length
(MML) pruning method. Kearns and Mansour [46] provide a
theoretically-justified pruning algorithm.

Mingers [26] proposed the critical value pruning (CVP). This
method prunes an internal node if its splitting criterion is not
greater than a certain threshold. By that it is similar to a stopping
criterion. However, contrary to a stopping criterion a node is not
pruned if at least one of its children does not fulfill the pruning
criterion.

J. Comparison of Pruning Methods

Several studies aim to compare the performance of different
pruning techniques [6], [26], [47].

The results indicate that some methods (such as cost-com-
plexity pruning, reduced-error pruning) tend to over-pruning,
i.e., creating smaller but less accurate decision trees. Other
methods (like error-based pruning, pessimistic-error pruning
and minimum-error pruning) bias toward under-pruning.

Most of the comparisons concluded that the “no-free-lunch”
theorem applies in this case also, namely, there is no pruning
method that in any case outperforms other pruning methods.

IX. OTHER ISSUES
A. Weighting Instances

Some decision trees inducers may give different treatments to
different instances. This is performed by weighting the contri-
bution of each instance in the analysis according to a provided
weight (between O to 1).

B. Misclassification Costs

Several decision trees inducers can be provided with numeric
penalties for classifying an item into one class when it really
belongs in another.

C. Handling Missing Values

Missing values are a common experience in real world data
sets. This situation can complicate both induction (a training set
that some of its values are missing) as well as classification (new
instance that miss certain values).

This problem has been addressed by several researchers such
as Friedman [18], Breiman et al. [S] and Quinlan [48]. Friedman
[18] suggests handling missing values in the training set in the
following way. Let 0,,—»S indicate the subset of instances in
S whose a; values are missing. When calculating the splitting
criteria using attribute a;, simply ignore all instances that their
values in attribute a; are unknown, namely instead of using the
splitting criteria A®(a;, S) it uses AP (a;, S — 04,-25).

On the other hand, Quinlan [48] argues that in case of missing
values the splitting criteria should be reduced proportionally as
nothing has been learned from these instances. In other words
instead of using the splitting criteria A®(a;, S) it uses the fol-
lowing correction

|S — an-:?S|
|S

In a case where the criterion value is normalized (like in the
case of gain ratio), the denominator should be calculated as if
the missing values represent an additional value in the attribute
domain.

Once a node is split, Quinlan suggests adding o,,=»S to each
one of the outgoing edges with the following corresponded
weight: |04, =y, ;S|/|S — 04,=2S5].

The same idea is used for classifying a new instance with
missing attribute values. When an instance encounters a node
where its splitting criteria can be evaluated due to a missing
value, it is passed through to all outgoing edges. The predicted
class will be the class with the highest probability in the
weighted union of all the leaf nodes at which this instance ends
up.

Another approach known as surrogate splits was presented by
Breiman et al. [5] and is implemented in the CART algorithm.
The idea is to find for each split in the tree a surrogate split
which uses a different input attribute and which most resembles
the original split. If the value of the input attribute used in the
original split is missing, then it is possible to use the surrogate

A (ai,S - Jai:?S). (24)

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 483

split. The resemblance between two binary splits over sample .S
is formally defined as

res(a;, dom; (a;), doms(a;), a;, dom; (a;), doms(ay), S)

?

O—a1 €domy (a;) and a;€domy (aj) S‘

|51

O-aiedomg (as) and aj€doms (aj)S‘

|51

When the first split refers to attribute a; and splits its domain
to domj (a;) and doms(a;). The alternative split refers to at-
tribute a; and splits its domain to dom; (a;) and doms(a;).

Loh and Shih [28] suggest estimating the missing value based
on other instances. On the learning phase if the value of a nom-
inal attribute a; in tuple ¢ is missing, then it is estimated by it
mode over all instances having the same target attribute value.
Formally

(25)

S (26)

est(a;,yq,, S) = argmax |o

a;=v,; ; and y=q
v;,jE€dom(a;) T Y=Y

where 7, denotes the value of the target attribute in the tuple q.
If the missing attribute a; is numeric then instead of using mode
of a; it is more appropriate to use its mean.

X. DECISION TREES INDUCERS
A. ID3

Quinlan [11] has proposed the ID3 algorithm. It is considered
as a very simple decision tree algorithm. ID3 uses information
gain as splitting criteria. The growing stops when all instances
belong to a single value of target feature or when best infor-
mation gain is not greater than zero. ID3 does not apply any
pruning procedures. Nor does it handle numeric attributes nei-
ther missing values.

B. C4.5

C4.5 is an evolution of ID3, presented by the same author
[12]. It uses gain ratio as splitting criteria. The splitting ceases
when the number of instances to be splitted is below a certain
threshold. error-based pruning is performed after the growing
phase. C4.5 is capable to handle numeric attributes. It can induce
from a training set that incorporates missing values by using
corrected gain ratio criteria as presented in Section IX.

C. CART

CART stands for classification and regression trees. It was
developed by Breiman et al. [5] and is characterized by the fact
it constructs binary trees, namely each internal node has exactly
two outgoing edges. The splits are selected using the twoing cri-
teria and the obtained tree is pruned by cost-complexity pruning.
When provided CART can consider misclassification costs in
the tree induction. It also enables users to provide prior proba-
bility distribution.

An important feature of CART is its ability to generate re-
gression trees. Regression trees are trees where their leaves pre-
dicts a real number and not a class. In case of regression CART
looks for splits that minimize the prediction squared error (the

least-squared deviation). The prediction in each leaf is deter-
mined based on the weighted mean for node.

D. CHAID

Researchers in applied statistics have developed starting from
early seventies several procedures for generating decision trees,
such as: AID [49], MAID [50], THAID [51] and CHAID [52].
Chisquare-automatic-interaction-detection (CHIAD) was origi-
nally designed to handle nominal attributes only. For each input
attribute a;, CHAID finds the pair of values in V; that is least
significantly different with respect to the target attribute. The
significant difference is measured by the p value obtained from
a statistical test. The statistical test used depends on the type of
target attribute. If the target attribute is continuous, an F' test is
used, if it is nominal, then a Pearson chi-squared test is used, if
it is ordinal, then a likelihood-ratio test is used.

For each selected pair CHAID checks if the p value obtained
is greater than a certain merge threshold. If the answer is positive
it merges the values and searches for an additional potential pair
to be merged. The process is repeated until no significant pairs
are found.

It then selects the best input attribute to be used for splitting
the current node, such that each child node is made of a group of
homogeneous values of the selected attribute. Note that no split
is performed if the adjusted p value of the best input attribute is
not less than certain split threshold. This procedure stops also
when one of the following conditions is fulfilled.

Maximum tree depth is reached.

Minimum number of cases in node for being a parent is
reached, so it can not be split any further.

Minimum number of cases in node for being a child node is
reached.

CHAID handles missing values by treating them all as a
single valid category. CHAID does not perform pruning.

E. QUEST

Loh and Shih [28] have presented the quick, unbiased, effi-
cient, statistical tree (QUEST) algorithm. QUEST supports uni-
variate and linear combination splits. For each split, the associa-
tion between each input attribute and the target attribute is com-
puted using the ANOVA F-test or Levene’s test (for ordinal and
continuous attributes) or Pearson’s chi-square (for nominal at-
tributes). If the target attribute is multinomial, two-means clus-
tering is used to create two super-classes. The attribute that ob-
tains the highest association with the target attribute is selected
for splitting. Quadratic discriminant analysis (QDA) is applied
to find the optimal splitting point for the input attribute. QUEST
has negligible bias and it yields binary decision trees. Ten-fold
cross-validation is used to prune the trees.

FE. Reference to Other Algorithms

Table I describes other decision trees algorithms available in
the literature. Obviously, there are many other algorithms which
are not included in this table. Nevertheless most of these al-
gorithms are variation of the algorithmic framework presented
above. A profound comparison of the above algorithms and
many others has been conducted in [72].

484 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

TABLE 1
ADDITIONAL DECISION TREES INDUCERS

Reference
[74]

Algorithm
CAL5

Description

Designed specifically ~ for
numerical-valued attributes
An earlier version of QUEST.
Uses statistical tests to select
an attribute for splitting each
node and then uses discrimi-
nant analysis to find the split
point.

Constructs a decision tree
based on multivariate tests that
are linear combinations of the
attributes.

Tl A one-level decision tree that
classifies instances using only
one attribute. Missing values
are treated as a “special value”.
Support both continuous an
nominal attributes.

FACT [75]

LMDT [76]

(771

PUBLIC Integrates the growing and
pruning by using MDL cost.

A multiple regression function
is approximated using linear
splines and their tensor prod-

ucts.

[78]

MARS [79]

XI. ADVANTAGES AND DISADVANTAGES OF DECISION TREES

Several advantages of the decision tree as a classification tool
have been pointed out in the literature.

. Decision trees are self-explanatory and when com-
pacted they are also easy to follow. Furthermore
decision trees can be converted to a set of rules. Thus,
this representation is considered as comprehensible.

. Decision trees are capable to handle both nominal and
numeric input attributes.

. Decision tree representation is rich enough to represent
any discrete-value classifier.

. Decision trees are capable of handling datasets that
may have errors.

. Decision trees are capable of handling datasets that
may have missing values.

. Decision trees are considered to be a nonparametric

method. This means that decision trees have no as-
sumptions about the space distribution and on the clas-
sifier structure.

On the other hand decision trees have disadvantages such as
the following.

. Most of the algorithms (like ID3 and C4.5) require that
the target attribute will have only discrete values.

. As decision trees use “divide and conquer” method,
they tend to perform well if a few highly relevant at-
tributes exist, but less so if many complex interac-
tions are present. One of the reasons for that is that
other classifiers can compactly describe a classifer that
would be very challenging to represent using a decision
tree. A simple illustration of this phenomenon is the
replication problem [53] of decision trees. Since most
decision trees divide the instance space into mutually
exclusive regions to represent a concept, in some cases

Fig. 3. Illustration of decision tree with replication.
(2,10)
>50 <]
@>< False <] (10.1)

>30 (0,8)
>=107 ®<' False (9.3)
<=30 ®< Fals (2.0)
True
True <] ©.1)

Fig. 4. Tllustration of oblivious decision tree.

the tree should contain several duplications of the same
subtree in order to represent the classifier. For instance
if the concept follows the following binary function:
y = (A;1NA2)U(A3N Ay,) then the minimal univariate
decision tree that represents this function is illustrated
in Fig. 3. Note that the tree contains two copies of the
same subtree.

. The greedy characteristic of decision trees leads to
another disadvantage that should be point it. This is
its over-sensitivity to the training set, to irrelevant at-
tributes and to noise [12].

XII. SPECIAL CASES OF TOP-DOWN DECISION
TREES INDUCTION

A. Oblivious Decision Trees

Oblivious decision trees are decision trees in which all nodes
at the same level test the same attribute. Despite its restriction,
oblivious decision trees are found to be effective as a feature
selection procedure. Almuallim and Dietterich [54] as well as
Schlimmer [55] have proposed forward feature selection pro-
cedure by constructing oblivious decision trees, whereas Lan-
gley and Sage [56] suggested backward selection using the same
means. Kohavi and Sommer [57] have showed that oblivious de-
cision trees can be converted to a decision table.

Recently, Last et al. [58] have suggested a new algorithm for
constructing oblivious decision trees, called information fuzzy
network IFN() that is based on information theory.

Fig. 4 illustrates a typical oblivious decision tree with four
input features: glucose level (G), age (A), hypertension (h), and
pregnant (p) and the Boolean target feature representing whether
that patient suffers from diabetes. Each layer is uniquely asso-
ciated with an input feature by representing the interaction of

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 485

that feature and the input features of the previous layers. The
number that appears in the terminal nodes indicates the number
of instances that fit this path. For example: regarding patients
whose glucose level is less than 107 and their age is greater than
50, ten of them are positively diagnosed with diabetes while two
of them are not diagnosed with diabetes.

The decision tree is built by a greedy algorithm, which tries
to maximize the mutual information measure in every layer.
The recursive search for explaining attributes is terminated
when there is no attribute that explains the target with statistical
significance.

B. Decision Trees Inducers for Large Datasets

With the recent growth in the amount of data collected by
information systems there is a need for decision trees that can
handle large datasets.

Catlett [59] has examined two methods for efficiently
growing decision trees from a large database by reducing the
computation complexity required for induction. However, the
Catlett method requires that all data will be loaded into the
main memory before induction. Namely, the largest dataset that
can be induced is bounded by the memory size.

Fifield [60] suggests parallel implementation of the ID3 al-
gorithm. However, like Catlett it assumes that all dataset can fit
in the main memory.

Chan and Stolfo [61] suggest partitioning the datasets into
several disjoin datasets, such that each dataset is loaded sepa-
rately into the memory and used to induce a decision tree. The
decision trees are then combined to create a single classifier.
However, the experimental results indicate that partition may
reduce the classification performance, meaning that the classi-
fication accuracy of the combined decision trees is not as good
as the accuracy of a single decision tree induced from the entire
dataset.

Mehta et al. [62] have proposed SLIQ an algorithm that does
not require loading the entire dataset into the main memory, in-
stead it uses secondary memory (disk) namely a certain instance
is not necessarily resident in main memory all the time. SLIQ
creates a single decision tree from the entire dataset. However,
this method also has upper limit for the largest dataset that can
be processed because it uses a data structure that scales with the
dataset size and this data structure is required to be resident in
main memory all the time.

Shafer et al. [63] have presented a similar solution called
SPRINT. This algorithm induces decision trees relatively
quickly and removes all of the memory restrictions from de-
cision tree induction. SPRINT scales any impurity based split
criteria for large datasets.

Gehrke et al. [64] introduced RainForest; a unifying frame-
work for decision tree classifiers that are capable of scaling
any specific algorithms from the literature (including C4.5,
CART, and CHAID). In addition to its generality, RainForest
improves SPRINT on a factor of three. In contrast to SPRINT,
however, RainForest requires a certain minimum amount of
main memory, proportional to the set of distinct values in a
column of the input relation. However, this requirement is
considered modest and reasonable.

Other decision tree inducers for large datasets can be found
in the works of Alsabti et al. [65], Freitas and Lavington [66],
and Gehrke et al. [67].

C. Incremental Induction

Most of the decision trees inducers require rebuilding the tree
from scratch for reflecting new data that has became available.
Several researches have addressed the issue of updating decision
trees incrementally.

Utgoft [68], [69] presents several methods for updating deci-
sion trees incrementally. An extension to the CART algorithm
that is capable of inducing incrementally is described in Craw-
ford [70]).

XIII. CONCLUSION

This paper presented an updated survey of top-down decision
trees induction algorithms. It has been shown that most algo-
rithms fit into a simple algorithmic framework whereas the dif-
ferences concentrate on the splitting criteria, stopping criteria
and the way trees are pruned.

REFERENCES

[1] S. R. Safavin and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3, pp.
660-674, Jul. 1991.

[2] S. K. Murthy, “Automatic construction of decision trees from data: a
multidisciplinary survey,” Data Mining Knowl. Disc., vol. 2, no. 4, pp.
345-389, 1998.

[3] R.Kohavi and J. R. Quinlan, “Decision-tree discovery,” in Handbook of
Data Mining and Knowledge Discovery, W. Klosgen and J. M. Zytkow,
Eds. London, U.K.: Oxford Univ. Press, 2002, ch. 16.1.3, pp. 267-276.

[4] S.Grumbachand T. Milo, “Toward tractable algebras for bags,” J. Comp.
Syst. Scie., vol. 52, no. 3, pp. 570-588, 1996.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Belmont, CA: Wadsworth, 1984.

[6] J.R. Quinlan, “Simplifying decision trees,” Int. J. Man-Mach. Studies,
vol. 27, pp. 221-234, 1987.

[7]1 T.R.Hancock, T.Jiang, M. Li, and J. Tromp, “Lower bounds on learning
decision lists and trees,” Inform. Comput., vol. 126, no. 2, pp. 114-122,
1996.

[8] L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees
is NP-complete,” Inform. Process. Lett., vol. 5, no. 1, pp. 15-17, 1976.

[9] H. Zantema and H. L. Bodlaender, “Finding small equivalent decision

trees is hard,” Int. J. Found. Comput. Sci., vol. 11, no. 2, pp. 343-354,

2000.

G. E. Naumov, “NP-completeness of problems of construction of op-

timal decision trees,” Sov. Phys.: Doklady, vol. 36, no. 4, pp. 270-271,

[10]

1991.

[11] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, pp.
81-106, 1986.

[12] ——, C4.5: Programs for Machine Learning. San Francisco, CA:

Morgan Kaufmann, 1993.

S. B. Gelfand, C. S. Ravishankar, and E. J. Delp, “An iterative growing
and pruning algorithm for classification tree design,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 13, no. 2, pp. 163—174, Feb. 1991.

E. Attneave, Applications of Information Theory to Psychology. New
York: Holt, Rinehart and Winston, 1959.

J. R. Quinlan, “Decision trees and multivalued attributes,” in Machine
Intelligence, J. Richards, Ed. London, U.K.: Oxford Univ. Press, 1988,
vol. 11, pp. 305-318.

R. Lopez de Mantras, “A distance-based attribute selection measure for
decision tree induction,” Mach. Learn., vol. 6, pp. 81-92, 1991.

U. M. Fayyad and K. B. Irani, “The attribute selection problem in de-
cision tree generation,” in Proc. 10th Nat.Conf. Artificial Intelligence,
Cambridge, MA, 1992, pp. 104-110.

J. H. Friedman, “A recursive partitioning decision rule for nonparametric
classifiers,” IEEE Trans. Comput., vol. C26, no. 4, pp. 404—408, Apr.
1977.

[13]

[14]

[15]

[16]

[17]

(18]

486

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 35, NO. 4, NOVEMBER 2005

E. Rounds, “A combined nonparametric approach to feature selection
and binary decision tree design,” Pattern Recognit., vol. 12, pp. 313-317,
1980.

P. E. Utgoff and J. A. Clouse, “A Kolmogorov-Smirnoff metric for deci-
sion tree induction,” Dept. Comp. Sci., Univ. Massachusetts, Amherst,
Tech. Rep. no. 96-3.

X. Li and R. C. Dubes, “Tree classifier design with a permutation
statistic,” Pattern Recognit., vol. 19, pp. 229-235, 1986.

P. C. Taylor and B. W. Silverman, “Block diagrams and splitting criteria
for classification trees,” Statist. Computing, vol. 3, no. 4, pp. 147-161,
Dec. 1993.

J. K. Martin, “An exact probability metric for decision tree splitting and
stopping,” Mach. Learn., vol. 28, no. 2-3, pp. 257-291, 1997.

E. Baker and A. K. Jain, “On feature ordering in practice and some finite
sample effects,” in Proc. 3rd Int. Joint Conf. Pattern Recognition, San
Diego, CA, 1976, pp. 45-49.

M. BenBassat, “Myopic policies in sequential classification,” IEEE
Trans. Comput., vol. C-27, no. 2, pp. 170-174, Feb. 1978.

J. Mingers, “An empirical comparison of pruning methods for decision
tree induction,” Mach. Learn., vol. 4, no. 2, pp. 227-243, 1989.

W. L. Buntine and T. Niblett, “A further comparison of splitting rules
for decision-tree induction,” Mach. Learn., vol. 8, pp. 75-85, 1992.

T. Loh and T. Shih, “Split selection methods for classification trees,”
Statistica Sinica, vol. 7, pp. 815-840, 1997.

S. K. Murthy, S. Kasif, and S. Salzberg, “A system for induction of
oblique decision trees,” J. Artif.Intell. Res., vol. 2, pp. 1-33, Aug.
1994.

R. Duda and P. Hart, Pattern Classification and Scene Analysis.
York: Wiley, 1973.

P. Bennett and O. L. Mangasarian, “Multicategory discrimination via
linear programming,” Optimization Meth. Softw., vol. 3, pp. 29-39,
1994.

J. Sklansky and G. N. Wassel, Pattern Classifiers and Trainable Ma-
chines. New York: Springer-Verlag, 1981.

Y. K. Lin and K. Fu, “Automatic classification of cervical cells using
a binary tree classifier,” Pattern Recognit., vol. 16, no. 1, pp. 69-80,
1983.

W. Y. Loh and N. Vanichsetakul, “Tree-structured classification via
generalized discriminant analysis,” J. Amer. Statist. Assoc., vol. 83, pp.
715-728, 1988.

G. H. John, “Robust linear discriminant trees,” in Learning From
Data: Artificial Intelligence and Statistics V, D. Fisher and H. Lenz,
Eds. New York: Springer-Verlag, 1996, ch. 36, pp. 375-385.

P. E. Utgoft, “Perceptron trees: a case study in hybrid concept represen-
tations,” Connect. Sci., vol. 1, no. 4, pp. 377-391, 1989.

D. Lubinsky, “Algorithmic speedups in growing classification trees
by using an additive split criterion,” in Proc. Al Statistics, 1993, pp.
435-444.

I. K. Sethi and J. H. Yoo, “Design of multicategory, multifeature split
decision trees using perceptron learning,” Pattern Recognit., vol. 27, no.
7, pp- 939-947, 1994.

I. Bratko and M. Bohanec, “Trading accuracy for simplicity in decision
trees,” Mach. Learn., vol. 15, pp. 223-250, 1994.

T. Niblett and I. Bratko, “Learning decision rules in noisy domains,” in
Expert Systems. Cambridge, MA: Cambridge Univ. Press, 1986.

H. Almuallim, “An efficient algorithm for optimal pruning of decision
trees,” Artif. Intell., vol. 83, no. 2, pp. 347-362, 1996.

J. Rissanen, Stochastic Complexity and Statistical Inquiry, Singapore:
World Scientific, 1989.

J. R. Quinlan and R. L. Rivest, “Inferring decision trees using the
minimum description length principle,” Inform. Comput., vol. 80, pp.
227-248, 1989.

R. L. Mehta, J. Rissanen, and R. Agrawal, Proc. Ist Int. Conf. Knowledge
Discovery and Data Mining , 1995, pp. 216-221.

C. Wallace and J. Patrick, “Coding decision trees,” Mach. Learn., vol.
11, pp. 7-22, 1993.

M. Kearns and Y. Mansour, “A fast, bottom-up decision tree pruning al-
gorithm with near-optimal generalization,” in Proc. 15th Int. Conf. Ma-
chine Learning, J. Shavlik, Ed., 1998, pp. 269-277.

F. Esposito, D. Malerba, and G. Semeraro, “A comparative analysis of
methods for pruning decision trees,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 19, no. 5, pp. 476-492, May 1997.

J. Quinlan, “Unknown attribute values in induction,” in Proc. 6th Int.
Machine Learning Workshop, A. Segre, Ed., Cornell, New York, 1989,
pp. 164-168.

A. Sonquist, E. L. Baker, and J. N. Morgan, “Searching for structure,”
Inst. Social Research, Univ. Michigan, Ann Arbor, MI, 1971.

New

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]
[69]
[70]
[71]

[72]

[73]
[74]

[75]

[76]
[771

[78]

[79]

M. W. Gillo, “MAID: A Honeywell 600 program for an automatised
survey analysis,” Behav. Sci., vol. 17, pp. 251-252, 1972.

M. W. Morgan and R. C. Messenger, “THAID: A sequential search pro-
gram for the analysis of nominal scale dependent variables,” Inst. Social
Research, Univ. Michigan, Ann Arbor, MI, 1973.

G. V. Kass, “An exploratory technique for investigating large quanti-
ties of categorical data,” Appl. Statist., vol. 29, no. 2, pp. 119-127,
1980.

G. Pagallo and D. Hassler, “Boolean feature discovery in empirical
learning,” Mach. Learn., vol. 5, no. 1, pp. 71-100, 1990.

H. Almuallim and T. G. Dietterich, “Learning Boolean concepts in the
presence of many irrelevant features,” Artif. Intell., vol. 69, no. 1-2, pp.
279-306, 1994.

J. C. Schlimmer, “Efficiently inducing determinations: a complete and
systematic search algorithm that uses optimal pruning,” in Proc. Int.
Conf. Machine Learning, San Mateo, CA, 1993, pp. 284-290.

P. Langley and S. Sage, “Oblivious decision trees and abstract cases,”
in Proc. Working Notes of the AAAI-94 Workshop on Case-Based Rea-
soning, Seattle, WA, 1994, pp. 113-117.

R. Kohavi and D. Sommerfield, “Targeting business users with decision
table classifiers,” in Proc. 4th Int. Conf. Knowledge Discovery and Data
Mining, R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, Eds., 1998,
pp. 249-253.

M. Last, O. Maimon, and E. Minkov, “Improving stability of decision
trees,” Int. J. Pattern Recognit. Artif. Intell., vol. 16, no. 2, pp. 145-159,
2002.

J. Catlett, “Mega Induction: Machine Learning on Vary Large
Databases,” Ph.D. thesis, Univ. Sydney, Sydney, Australia, 1991.

D. J. Fifield, “Distributed Tree Construction From Large Datasets,” B.S.
honor thesis, Australian Nat. Univ., Canberra, Australia, 1992.

P. Chan and S. Stolfo, “On the accuracy of meta-learning for scalable
data mining,” J. Intell. Inform. Syst., vol. 8, pp. 5-28, 1997.

M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: a fast scalable classifier
for data mining,” in Proc. 5th Int. Conf. Extending Database Technology
(EDBT), Avignon, France, Mar. 1996, pp. 18-32.

J. C. Shafer, R. Agrawal, and M. Mehta, “SPRINT: a scalable par-
allel classifier for data mining,” in Proc. 22nd Int. Conf. Very Large
Databases, T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, Eds., 1996, pp. 544-555.

J. Gehrke, R. Ramakrishnan, and V. Ganti, “RainForest—a framework
for fast decision tree construction of large datasets,” Data Mining Knowl.
Discov., vol. 4, no. 2/3, pp. 127-162, 2000.

K. Alsabti, S. Ranka, and V. Singh, “CLOUDS: a decision tree classi-
fier for large datasets,” in Proc. Conf. Knowledge Discovery and Data
Mining (KDD-98), Aug. 1998, pp. 2-8.

A. Freitas and S. H. Lavington, Mining Very Large Databases With Par-
allel Processing. Norwell, MA: Kluwer, 1998.

J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh, “BOAT-opti-
mistic decision tree construction,” in Proc. SIGMOD Conf., 1999, pp.
169-180.

P. E. Utgoff, “Incremental induction of decision trees,” Mach. Learn.,
vol. 4, pp. 161-186, 1989.

——, “Decision tree induction based on efficient tree restructuring,”
Mach. Learn., vol. 29, no. 5, 1997.

S. L. Crawford, “Extensions to the CART algorithm,” Int. J. Man-Mach.
Stud., vol. 31, no. 2, pp. 197-217, Aug. 1989.

S. L. Loh and S. L. Shih, “Families of splitting criteria for classification
trees,” Statist. Comput., vol. 9, pp. 309-315, 1999.

S.L.Lim, S. L. Loh, and S. L. Shih, “A comparison of prediction accu-
racy, complexity, and training time of thirty-three old and new classifi-
cation algorithms,” Mach. Learn., vol. 40, pp. 203-228, 2000.

S. L. Shih, “Selecting the best splits classification trees with categorical
variables,” Statist. Probability Lett., vol. 54, pp. 341-345, 2001.

W. Muller and F. Wysotzki, “Automatic construction of decision trees
for classification,” Ann. Oper. Res., vol. 52, pp. 231-247, 1994.

W. Y. Loh and N. Vanichsetakul, “Tree-structured classification via
generalized discriminant analysis,” J. Amer: Statist. Assoc., vol. 83, pp.
715-728, 1988.

C. E. Brodley and P. E. Utgoff, “Multivariate decision trees,” Mach.
Learn., vol. 19, pp. 45-77, 1995.

R. C. Holte, “Very simple classification rules perform well on most com-
monly used datasets,” Mach. Learn., vol. 11, pp. 63-90, 1993.

R. Rastogi and K. Shim, “PUBLIC: a decision tree classifier that inte-
grates building and pruning,” Data Mining Knowl. Discov., vol. 4, no. 4,
pp- 315-344, 2000.

J. H. Friedman, “Multivariate adaptive regression splines,” Annu. Statis-
tics, vol. 19, pp. 1-141, 1991.

ROKACH AND MAIMON: TOP-DOWN INDUCTION OF DECISION TREES CLASSIFIERS—A SURVEY 487

Lior Rokach received the B.Sc., M.Sc. and Ph.D. de-
grees in industrial engineering from Tel-Aviv Univer-
sity, Tel-Aviv, Israel.

He is a recognized expert in business intelligence,
and served in several leading positions in this field.
His research interests include data mining, data ware-
housing and medical informatics. He has recently
co-authored the book Decomposition Methodology
for Knowledge Discovery and Data Mining (Sin-
gapore: World Scientific, 2005) and co-edited the
handbook Data Mining and Knowledge Discovery
Handbook: A Complete Guide for Research Scientists and Practitioners (New
York: Springer, 2005).

Oded Maimon received the B.Sc. degrees in indus-
trial engineering and mechanical engineering and the
M.Sc. degree in operations research, both from The
Technion, Haifa, Israel, and the Ph.D. degree from
Purdue University, West Lafayette, IN.

He is a Professor and former Chair of the Indus-
trial Engineering Department, Tel-Aviv University.
Before joining Tel-Aviv University, he was a Re-
search Scientist at the Massachussetts Institute of
Technology, Cambridge, and a Project Leader at
Digital Equipment Corporation. He has recently
co-authored the book Decomposition Methodology for Knowledge Discovery
and Data Mining (Singapore: World Scientific, 2005) and co-edited the hand-
book Data Mining and Knowledge Discovery Handbook: A Complete Guide
for Research Scientists and Practitioners (New York: Springer, 2005).

	toc
	Top-Down Induction of Decision Trees Classifiers A Survey
	Lior Rokach and Oded Maimon
	I. I NTRODUCTION
	II. P RELIMINARIES
	III. D ECISION T REE R EPRESENTATION

	Fig.€1. Decision tree presenting response to direct mailing.
	IV. A LGORITHMIC F RAMEWORK FOR D ECISION T REES
	V. U NIVARIATE S PLITTING C RITERIA
	A. Overview
	B. Impurity Based Criteria

	Fig.€2. Top-down algorithmic framework for decision trees induct
	C. Gini Index
	D. Likelihood Ratio Chi-Squared Statistics
	E. Normalized Impurity Based Criteria
	F. Gain Ratio
	G. Distance Measure
	H. Binary Criteria
	I. Twoing Criteria
	J. Orthogonality Criterion
	K. Kolmogorov Smirnov Criteria
	L. Other Univariate Splitting Criteria
	M. Comparison of Univariate Splitting Criteria
	VI. M ULTIVARIATE S PLITTING C RITERIA
	VII. S TOPPING C RITERIA
	VIII. P RUNING M ETHODS
	A. Overview
	B. Cost-Complexity Pruning
	C. Reduced-Error Pruning
	D. Minimum-Error Pruning (MEP)
	E. Pessimistic Pruning
	F. Error-Based Pruning (EBP)
	G. Optimal Pruning
	H. Minimum Description Length Pruning
	I. Other Pruning Methods
	J. Comparison of Pruning Methods

	IX. O THER I SSUES
	A. Weighting Instances
	B. Misclassification Costs
	C. Handling Missing Values

	X. D ECISION T REES I NDUCERS
	A. ID3
	B. C4.5
	C. CART
	D. CHAID
	E. QUEST
	F. Reference to Other Algorithms

	TABLE€I A DDITIONAL D ECISION T REES I NDUCERS
	XI. A DVANTAGES AND D ISADVANTAGES OF D ECISION T REES

	Fig.€3. Illustration of decision tree with replication.
	Fig.€4. Illustration of oblivious decision tree.
	XII. S PECIAL C ASES OF T OP -D OWN D ECISION T REES I NDUCTION
	A. Oblivious Decision Trees
	B. Decision Trees Inducers for Large Datasets
	C. Incremental Induction

	XIII. C ONCLUSION
	S. R. Safavin and D. Landgrebe, A survey of decision tree classi
	S. K. Murthy, Automatic construction of decision trees from data
	R. Kohavi and J. R. Quinlan, Decision-tree discovery, in Handboo
	S. Grumbach and T. Milo, Toward tractable algebras for bags, J.
	L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification
	J. R. Quinlan, Simplifying decision trees, Int. J. Man-Mach. Stu
	T. R. Hancock, T. Jiang, M. Li, and J. Tromp, Lower bounds on le
	L. Hyafil and R. L. Rivest, Constructing optimal binary decision
	H. Zantema and H. L. Bodlaender, Finding small equivalent decisi
	G. E. Naumov, NP-completeness of problems of construction of opt
	J. R. Quinlan, Induction of decision trees, Mach. Learn., vol.
	S. B. Gelfand, C. S. Ravishankar, and E. J. Delp, An iterative g
	F. Attneave, Applications of Information Theory to Psychology .
	J. R. Quinlan, Decision trees and multivalued attributes, in Mac
	R. Lopez de Mantras, A distance-based attribute selection measur
	U. M. Fayyad and K. B. Irani, The attribute selection problem in
	J. H. Friedman, A recursive partitioning decision rule for nonpa
	E. Rounds, A combined nonparametric approach to feature selectio
	P. E. Utgoff and J. A. Clouse, A Kolmogorov-Smirnoff metric for
	X. Li and R. C. Dubes, Tree classifier design with a permutation
	P. C. Taylor and B. W. Silverman, Block diagrams and splitting c
	J. K. Martin, An exact probability metric for decision tree spli
	E. Baker and A. K. Jain, On feature ordering in practice and som
	M. BenBassat, Myopic policies in sequential classification, IEEE
	J. Mingers, An empirical comparison of pruning methods for decis
	W. L. Buntine and T. Niblett, A further comparison of splitting
	T. Loh and T. Shih, Split selection methods for classification t
	S. K. Murthy, S. Kasif, and S. Salzberg, A system for induction
	R. Duda and P. Hart, Pattern Classification and Scene Analysis .
	P. Bennett and O. L. Mangasarian, Multicategory discrimination v
	J. Sklansky and G. N. Wassel, Pattern Classifiers and Trainable
	Y. K. Lin and K. Fu, Automatic classification of cervical cells
	W. Y. Loh and N. Vanichsetakul, Tree-structured classification v
	G. H. John, Robust linear discriminant trees, in Learning From D
	P. E. Utgoff, Perceptron trees: a case study in hybrid concept r
	D. Lubinsky, Algorithmic speedups in growing classification tree
	I. K. Sethi and J. H. Yoo, Design of multicategory, multifeature
	I. Bratko and M. Bohanec, Trading accuracy for simplicity in dec
	T. Niblett and I. Bratko, Learning decision rules in noisy domai
	H. Almuallim, An efficient algorithm for optimal pruning of deci
	J. Rissanen, Stochastic Complexity and Statistical Inquiry, Sing
	J. R. Quinlan and R. L. Rivest, Inferring decision trees using t
	R. L. Mehta, J. Rissanen, and R. Agrawal, Proc. 1st Int. Conf. K
	C. Wallace and J. Patrick, Coding decision trees, Mach. Learn.,
	M. Kearns and Y. Mansour, A fast, bottom-up decision tree prunin
	F. Esposito, D. Malerba, and G. Semeraro, A comparative analysis
	J. Quinlan, Unknown attribute values in induction, in Proc. 6th
	A. Sonquist, E. L. Baker, and J. N. Morgan, Searching for struct
	M. W. Gillo, MAID: A Honeywell 600 program for an automatised su
	M. W. Morgan and R. C. Messenger, THAID: A sequential search pro
	G. V. Kass, An exploratory technique for investigating large qua
	G. Pagallo and D. Hassler, Boolean feature discovery in empirica
	H. Almuallim and T. G. Dietterich, Learning Boolean concepts in
	J. C. Schlimmer, Efficiently inducing determinations: a complete
	P. Langley and S. Sage, Oblivious decision trees and abstract ca
	R. Kohavi and D. Sommerfield, Targeting business users with deci
	M. Last, O. Maimon, and E. Minkov, Improving stability of decisi
	J. Catlett, Mega Induction: Machine Learning on Vary Large Datab
	D. J. Fifield, Distributed Tree Construction From Large Datasets
	P. Chan and S. Stolfo, On the accuracy of meta-learning for scal
	M. Mehta, R. Agrawal, and J. Rissanen, SLIQ: a fast scalable cla
	J. C. Shafer, R. Agrawal, and M. Mehta, SPRINT: a scalable paral
	J. Gehrke, R. Ramakrishnan, and V. Ganti, RainForest a framework
	K. Alsabti, S. Ranka, and V. Singh, CLOUDS: a decision tree clas
	A. Freitas and S. H. Lavington, Mining Very Large Databases With
	J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh, BOAT-optimisti
	P. E. Utgoff, Incremental induction of decision trees, Mach. Lea
	S. L. Crawford, Extensions to the CART algorithm, Int. J. Man-Ma
	S. L. Loh and S. L. Shih, Families of splitting criteria for cla
	S. L. Lim, S. L. Loh, and S. L. Shih, A comparison of prediction
	S. L. Shih, Selecting the best splits classification trees with
	W. Muller and F. Wysotzki, Automatic construction of decision tr
	W. Y. Loh and N. Vanichsetakul, Tree-structured classification v
	C. E. Brodley and P. E. Utgoff, Multivariate decision trees, Mac
	R. C. Holte, Very simple classification rules perform well on mo
	R. Rastogi and K. Shim, PUBLIC: a decision tree classifier that
	J. H. Friedman, Multivariate adaptive regression splines, Annu.

