
Economy Informatics vol. 16, no. 1/2016 27

A Comparative Study of Agile Project Management Software Tools

Marius-Constantin BRAD, Florian-Cristian BIRLOI, Alexandra BRATULESCU,

Ioana-Bianca BLAGA

Bucharest University of Economic Studies, Romania

mariusconstantinbrad@yahoo.com, birloiflorian@gmail.com, b_ioana.bianca@yahoo.com

The paper aims to present a comparative analysis between 2 selected agile software tools: At-

lassian Jira and Microsoft Team Foundation Server. In the next sections, we will present the

methods of our study, expose the analysis of results, make a few discussions on the subject and

draw our conclusions. The paper highlights the similarities and differences between these tools

with respect to some identified functional requirements. The study will be done in two phases:

(1) identification of the key functional requirements for agile management tools, and (2) a com-

parative analysis of the selected 2 tools. The study has shown that the identified key functional

requirements that belong to the groups User stories and epics management, high-level release

planning and low-level release planning have been mostly well covered by the examined tools.

However, not all the basic functionalities are currently fully covered by some tools. The need

for acceptance testing support has been recognized and efforts are being in this direction, alt-

hough the current state is not satisfactory. User role modeling and personas support has not

been covered entirely.

Keywords: Agile Methods, Agile Software Tools, User Story Management, Software Support,

Atlassian Jira, Team Foundation Server, Project Management, Team Build, Process Tracking,

Burndown Chart

Introduction and Literature Review

Modern organizations depend on software

and software systems in many ways. Business

processes are often implemented in a digital

flow and without software to support it, even

small companies would experience problems.

For most companies, the business has changed

and is still changing at rapid pace. The devel-

opment of software has changed as well. Soft-

ware requirements tend to evolve quickly and

become outdated. Traditional project manage-

ment techniques and especially traditional

SDLC (Software Development Life Cycle)

methods (i.e. waterfall, “V” or incremental

methods) cannot cope with that any more.

Nowadays many organizations have large de-

velopment teams working on software to sup-

port the business. Many times these teams are

spread globally. This poses many potential

problems, such as collaboration issues, source

code maintenance, requirements management

and so on. Without processes to support mod-

ern software development, business will likely

suffer. This explains why agile methods have

become more and more adopted lately [1].

Agile methods have emerged as a reaction to

traditional approaches in software engineering

known as documentation-driven and heavy-

weight software development processes. Alt-

hough developed separately, different agile

methods comprise practices (or techniques)

that are based on values and principles defined

in the document entitled “Agile Manifesto”.

They are characterized by iterative and incre-

mental approach to software development and

close communication with customers or end

users. This family comprises a number of

methods. The most widely known are: eX-

treme Programming (XP), Scrum, Dynamic

Systems Development Method (DSDM), Fea-

ture-Driven Development (FDD), Lean Soft-

ware Development and the Crystal family.

DSDM is probably the original agile develop-

ment method. DSDM was around before the

term “agile” was even coined. Scrum concen-

trates particularly on how to manage tasks

within a team-based development environ-

ment. Scrum is the most popular and widely

adopted agile method, it is relatively simple to

implement and addresses many of the man-

agement issues that have plagued IT develop-

1

mailto:birloiflorian@gmail.com

28 Economy Informatics vol. 16, no. 1/2016

ment teams for decades. On the other side, Ex-

treme Programming (XP) is a software devel-

opment methodology, which intends to im-

prove software quality and responsiveness to

changing customer requirements in a more

radical way than Scrum does.

Every agile method has its own tools. The core

of an agile development project are user sto-

ries (sometimes called epics) which were ini-

tially hand written by end users on index cards

and placed on pin boards. Nowadays agile

teams are able to use computer-based tools

that offer virtualization of index cards, pin

boards (now called taskboards) and more

other features.

This study aims to present a comparative anal-

ysis between 2 selected agile software tools:

Atlassian Jira and Microsoft Team Founda-

tion Server. We try to reveal similarities and

differences between these tools with respect to

some identified functional requirements. We

test them on our own project environments

and we analyze their features. We also seek

for the practitioners’ worldwide opinion and

personal satisfaction in using them. In partic-

ular, the study was done in two phases: (1)

identification of the key functional require-

ments for agile management tools, and (2) a

comparative analysis of the selected 2 tools.

The literature review on this topic is somehow

underrepresented. Although we have dived in

to some well-known academic and scientific

sources such as IEEE, ACM, Springer or

Google Academics few studies concerning

functional qualitative comparisons between

agile tools have been conducted so far. As for

agile tooling oriented surveys, the sources

usually come directly from software vendors

[1][2].

In 2006, “Agile Project Management (APM),

Tooling Survey Results” focused on collect-

ing statistics on tools used in requirements

management, and also there are some statis-

tics on agile method used and reasons for se-

lecting an agile project management tool. In

2009 “Agile tools: the good, the bad, and the

ugly” mainly focused on tools used in agile

projects. It focused on gathering statistics on

company structure and maturity of agile meth-

ods using TargetProcess trial versions. Alt-

hough the paper has published a couple years

ago and in recent years, many new tools have

captured the market, it is beneficial as a refer-

ence to choose most important tools and met-

rics. In 2013, “8th Annual State of Agile,”

written by the VersionOne Company includes

a normalized and wide distribution of re-

sponses of multitude of channels from compa-

nies, engineers, scrum masters, product own-

ers and even self-employed engineers. The re-

spondents are from different countries and

questions have focused on details such as rea-

sons for adopting Agile, agile techniques

used. The main points of the paper are detailed

statistics in the agile methods in projects, and

the information about adopting agile methods.

The Swedish telecommunications company

Ericsson coined one paper that stands out as a

general and independent survey focused on

the tool usage and needs. Its main purpose was

to collect statistics about tools usage and to get

a clear idea on what features are most desired

by companies. It provides a list of some top-

ranked features: (1) reporting features, (2) vir-

tual task board, (3) interface improvements,

(4) project status tracking (e.g. burndown

charts and charts showing epic and story com-

pletion rates). Some other needed features

were mentioned, thus in small percentages,

such as requirements and user stories prioriti-

zation, sprint planning and better handling of

tasks, collaboration modules and virtual

boards.

Also in 2012, Azizyan described a process to

select an agile tool for a specific anonymous

company. This paper gives a short description

of the company, lists and presents the metrics

used for evaluating currently existing tools.

What is more important is that this paper in-

troduces a methodology to select the right

tool.

In "New Generation Project & Resource Man-

agement for Atlassians's Jira by Gerald Aq-

uila, Founder & CEO" the author wants to

take a closer look on how the project lifecycle

looks like with Onepoint’s two-way JIRA in-

tegration and how the workload is typically

divided between both systems (Onepoint

PROJECTS and Atlassinan JIRA). According

Economy Informatics vol. 16, no. 1/2016 29

to this paper JIRA is one of the most appreci-

ated and widely deployed issue tracking and

agile task management solution worldwide. IT

departments love it for its ultra-simplistic ap-

proach to workflow-style task management.

Developers like its tight integration with IDEs

and source code management systems such as

GIT and SVN. Atlassian also provides great

add-ons to JIRA such as Fish Eye, which

brings more value to developers and quality

engineers.[5]

Another paper "Collaboration Tools and

Trends by Clearvisions-cm, 2015" mentioned

that one of the bestselling development tools

is Atlassian's Jira, ’, which is a tracking tool

designed for teams planning and building big

products. It helps to organize work tasks, as-

sign responsibility, and follow team activity.

On Fortune.com, Rich Wong, general partner

at Accel Partners and a longstanding Atlassian

board member, says workflow platforms such

as JIRA Service Desk are redefining business

collaboration software.[4][6]

The aforementioned papers and surveys do

not offer far-reaching proper study methods

nor the possibility to elect the perfect agile

software tool due to smallness and immaturity

of projects. In addition, none of them offers a

standard methodology to choose out of an ec-

lectic range of products. The majority of them

are still realized by major agile software ven-

dors. Therefore, the question remains firm:

how do we choose the best agile tool for our

company’s requirements?

In the next sections, we will present the meth-

ods of our study, expose the analysis of re-

sults, make a few discussions on the subject

and draw our conclusions.

2 Methods

In order to present a functional-technical com-

parative study of agile project management

tools we have pursued in identifying some key

functional requirements that every agile tool

should meet. Then we chose for our tool com-

parison the standalone Atlassian Jira agile

project management software product and the

Microsoft Visual Studio Team Foundation

Server plugin for Application Lifecycle Man-

agement. These ones have been selected ac-

cording to high rating and recommendations

made by community members on the World

Wide Web (e.g. userstories.com) and the

availability for review.

We have decided to conduct our analysis by

answering the following guideline questions:

a) Do the features of the 2 agile software

tools cover the key functional require-

ments as defined in the relevant literature

and confirmed by practitioners?

b) Are there any unique features that the

tools can offer?

c) What is the general opinion of practition-

ers about each tool?

At the end of our analysis we provide a full-

featured parallel comparison summative table.

The individual functional requirements in the

list shown below have been elicited based on

the importance given to the corresponding ag-

ile practices in the primary literature and/or

the frequency of taking these requirements

into consideration in the literature on agile

tool development. The key functional require-

ments identified are as follows:

1) User role modeling and personas support

2) User stories and epics management (esti-

mation of user stories in different time-

work units of measure, decomposition of

epics/bigger user stories into the corre-

sponding smaller stories, ways to display

epics/user stories)

3) User Acceptance Testing (UAT) support

(writing and tracking acceptance tests)

4) High-level release planning (decomposi-

tion of a release into iterations/sprints, cal-

culating iteration length, managing a re-

lease plan, prioritization of user stories/ep-

ics and product backlog and taskboard

support)

5) Low-level iteration planning (decomposi-

tion of user stories into tasks, assignment

of task responsibility and estimation of

task work and remaining time)

6) Progress tracking (release burndown

charts/bar charts, iteration charts, daily

workload graphics and charts, velocity

tracking, key performance indicators)

30 Economy Informatics vol. 16, no. 1/2016

3 Analysis and Results

A) Microsoft Team Foundation Server

Microsoft has been in the business of creating

sophisticated software for a long time. Large

teams crank out and maintain complex code

bases over multiple releases continuously. To

be successful at producing software, they had

to develop effective approaches for version

control, defect and work item tracking and

build management. At the same time, they

have spent considerable time with customers

and industry experts to understand the broad

spectrum of project management approaches

employed by enterprise customers on a regu-

lar basis. With the help of the Microsoft Solu-

tions Framework team, they have distilled the

essence of these techniques into a set of flexi-

ble project management elements.

After combining the results of their experi-

ence and investigation in software creation

and methodologies to produce a set of new

technologies and techniques that aim optimiz-

ing the process of developing software in

teams, the result was Microsoft Team Foun-

dation Server (TFS). This tool is a collection

of features that are shared by the various

members of a project team to enable them to

work together more effectively. Team mem-

bers can share project plans, work products

and progress assessments easily and in an ef-

fective way.

The main features that are included in

Team Foundation Server:

On one hand, TFS was created to provide a

hub for all members of the development team

to collaborate, representing the team project

portal. It also includes project management

functions, which allow the shaping of a team

project based on a user-specifiable software

process and which enable planning and track-

ing using Microsoft Excel and Microsoft Pro-

ject.

TFS provides a unified solution for storing

source code (along with a history of changes),

work item tracking (which can include bugs,

requirements and so on) and automated

builds. By providing a single solution with all

of these capabilities, Microsoft delivered the

ability to link all these artifacts for end-to-end

traceability, reporting, process enforcement

and project management. Visual Studio seam-

lessly integrated with TFS, but much of this

tooling could also be used independently or

with third-party source control solutions.[4]

Elements of Team Foundation Server:

1. Project Management

2. Version Control

3. Work Item Tracking

4. Team Build

5. Data Collection and Reporting

6. The Project Portal

7. Shared Services
Each tool offered in TFS is highly customiza-

ble and automatable. Work item definitions,

source control policies, build scripts, process

templates, and programmability interfaces all

enable customers to tailor their TFS installa-

tion to their needs. In addition, at the core of

TFS is a set of mechanisms intended to enable

outside tools to integrate into the TFS envi-

ronment as first-class citizens.

Process work item types and workflow us-

ing Team Foundation Server:

Teams use the work item types provided with

the Agile process template to plan and track

progress of software projects. Teams define

user stories to manage the backlog of work

and then track progress by updating the status

of those stories. To gain insight into a portfo-

lio of features, scenarios or user experiences,

product owners and program managers can

map user stories to features. When teams work

in sprints, they define tasks that automatically

link to user stories.[7]

Define user stories: User stories define the

applications, requirements, and elements that

teams need to create. Product owners typically

define and stack rank user stories. The team

then estimates the effort and work to deliver

the highest priority items. Using TFS you can

create user stories from the quick add panel on

the product backlog page.

Story Points: By defining the Story Points,

teams can use the forecast feature and velocity

Economy Informatics vol. 16, no. 1/2016 31

charts to estimate future sprints or work ef-

forts. By prioritizing the user stories on the

backlog page (which is captured in the Stack

Rank field), product owners can indicate

which items should be given higher priority.

Track progress: Teams can use the Kanban

board to track progress of user stories, and

the sprint task board to track progress of tasks.

Dragging items to a new state column updates

the workflow State and Reason fields. The

client can customize the Kanban board to sup-

port additional swim lanes or columns.

A typical workflow progression for a user

story follows:

 The product owner creates a user story in

the New state with the default rea-

son, New user story.

 The team updates the status to Ac-

tive when they decide to complete the

work during the sprint.

 A user story is moved to Resolved when

the team has completed all its associated

tasks and unit tests for the story pass.

 A user story is moved to the Closed state

when the product owner agrees that the

story has been implemented according to

the Acceptance Criteria and acceptance

tests pass.

By updating the workflow, teams know which

items are new, in progress, or completed.

Most WITs support transition both forward

and backward from each workflow state.

Agile workflow states: These diagrams show

the main progression and regression states of

the feature, user story, bug, and task work item

types.

Map user stories to features: The client can

view the scope and progress of work across

the product portfolio by defining features

and mapping user stories to features. From the

Feature backlog page, he can quickly add fea-

tures, in the same way that added user stories.

From the backlog page with Mapping turned

on, you can drag user stories to the feature that

they implement. The links tab captures the

links to mapped user stories. From the backlog

page with Mapping turned on, you can drag

user stories to the feature that they implement.

The links tab captures the links to mapped

user stories.

This mapping creates parent-child links from

feature to user stories, which is captured in

the links tab. Using portfolio backlogs, the cli-

ent can drill down from one backlog to an-

other to view the level of detail he wants. Also

he can use portfolio backlogs to view a rollup

of work in progress across several teams when

they setup a hierarchy of teams.[8].

Define tasks: When the team manages their

work in sprints, they can use the sprint back-

log page to break down the work to be accom-

plished into distinct tasks. Using agile pro-

cesses, teams forecast work and define tasks

at the start of each sprint, and each team mem-

ber performs a subset of those tasks. Tasks can

include development, testing, and other kinds

of work. For example, a developer can define

tasks to implement user stories, and a tester

can define tasks to write and run test cases.

When teams estimate work using hours or

days, they define tasks and the Remaining

Work and Activity (optional) fields.

Test user stories: From the web portal or Test

Manager, the client can create test cases that

automatically link to a user story or bug. Or he

can link a user story to a test case from

the links tab. The test case contains a number

of fields, many of which are automated and

integrated with Test Manager and the build

process. For a description of each field,

see Build and test integration field reference.

The links tab captures the links to user stories

and bugs in a test case. By linking user stories

and bugs to test cases, the team can track the

progress made in testing each item. By defin-

ing these links, you support information that

appears in the Stories Overview Report re-

port.

Track code defects: The client can create

bugs from the web portal, Visual Studio, or

when testing with Test Manager.

Track issues: Issues are used to track events

that may block progress or shipping a user

32 Economy Informatics vol. 16, no. 1/2016

story. Bugs, on the other hand, are used to

track code defects. You can add an issue from

the New work item widget added to a team

dashboard or from the New menu on the Que-

ries page. Work items you add from the

widget are automatically scoped to the team's

area and iteration paths.

Track business value: The Priority field can

be used to differentiate the value of various

stories. Or to add a custom field to the User

Story Work Item Type that tracks the relative

value of stories.

Backlog list order: The Stack Rank field is

used to track the relative ranking of user sto-

ries, however by default it doesn't appear on

the work item form. The sequence of items on

the backlog page is determined according to

where it should be added the items or moved

the items on the page. As the items are

dragged, a background process updates this

field which is assigned to type="Order" in the

ProcessConfiguration file.

B) Atlassian Jira

JIRA Software is a proprietary issue-tracking

product, developed by Atlassian that unlocks

the power of agile by giving your team the

tools to easily create & estimate stories, build

a sprint backlog, identify team commitments

& velocity, visualize team activity, and report

on your team's progress. According to Atlas-

sian, over 25.000 customers around the globe

use JIRA for issue tracking.

A really nice thing about Jira is the flexibility

it provides, becoming very helpful for whom

work with multiple types and sizes of projects.

You can customize screens, fields, workflows,

share configurations between projects, import

issues from Github, smart commits boards

with multiple projects. You can have a board

for each project or a board with multiple pro-

jects, making easier to plan the week since you

have to switch between different projects

daily. Another great feature is its powerful

search. You can create very complex queries

in a kind of SQL syntax if you want.

User role modeling: With JIRA project roles

are a flexible way to associate users and/or

groups with particular projects. Project roles

can be used in: permission schemes, email no-

tification schemes, issue security levels, com-

ment visibility and workflow conditions.

JIRA has 3 default project roles which are cre-

ated immediately after installing the product.

These roles are: Administrators, Developers

and Users. You can create, edit and delete pro-

ject roles according to your organization re-

quirements. After a role is created it can be as-

signed to any user of that particular project in-

cluding the project administrator.

Deleting a project role will remove any as-

signed users and groups from that project role,

for all projects, this kind of operation must be

treated very carefully because if a role is going

to be deleted then all the permissions associ-

ated with it will be nullified.

User stories and epics management: JIRA

has a hierarchy for organizing work: initia-

tives, epics (that are a single feature or initia-

tive), issues (user stories and tasks) represent

the pieces of a feature, and sub-tasks are even

smaller chunks of work that comprise the par-

ent story or task.

A story point is an estimate of the relative

complexity of a story. In JIRA Agile, you can

choose to perform estimation for each board

based on either Story Points, hours, or any

other numeric field of your choice. If an is-

sue’s description sounds more like a feature,

or the workload is morphing into a larger am-

bition, the issue should be turned into an epic,

then linked with its component user stories

and tasks.

In JIRA, there is only really support for two

levels of issue hierarchy, task and subtask. An

Epic is unique and behaves more like an at-

tribute of another issue. Kind of like how ver-

sions are just attributes that help with structur-

ing the work in your project.

In textbook scrum, the only hierarchy is sto-

ries and the subtasks that get them done (there

is no such thing as a 'Feature', so to speak).

When a story is too big to fit into a single

sprint, it is split into smaller stories, and the

original 'big story' becomes an Epic and is

Economy Informatics vol. 16, no. 1/2016 33

used like a label to indicate the smaller stories

have a common origin.

Acceptance testing support: Acceptance

tests allow you to express specific needs for

your software product in a way that is testable

and measurable. It is also invaluable for

breaking down the barriers in software devel-

opment.

If you need to do UATs, JIRA puts at your dis-

posal: ‘Behave’. Behave for JIRA is a tool for

agile testing and requirements discovery

within JIRA. It allows users to easily add ac-

ceptance tests to any issue in your JIRA pro-

jects. Acceptance tests are written in a natural

language, e.g. English, but in a structured way

so that those needs can be matched up to the

software that is created to satisfy them. To

have a better understanding of this concept

you can think of it as “specification by exam-

ple,” an agile testing method where automated

acceptance criteria are defined early in the de-

velopment cycle and used in the development

process itself, rather than as validation after

testing is completed.

An example acceptance test would be:

Given a specific situation - When something

occurs - Then you will get a specific outcome.

Behave for JIRA is for

 Product owners to define requirements

early in the development cycle and attach

them to user stories, which is critical to

establishing the real requirements in the

product and responding to customer de-

mands.

 Developers, who can use Gherkin to de-

fine tests and automate them with Cu-

cumber, speeding up the development

process by clarifying requirements and

ensuring that written code has the func-

tionality customers want.

 Testers, who can read tests in natural lan-

guage and understand the entire context

of the code, and can track any broken

functionality up to the scenario level.

Release planning: If your team is geograph-

ically distributed, planning and communi-

cating not only becomes more of a challenge,

but also more critical to the success of your

project. That is where a centralized release-

planning page comes in.

Every product release requires a lot of hard

work and a ton of coordination between indi-

viduals and teams. At Atlassian feature re-

leases are planed using a page on their internal

wiki (Confluence, which is their collaborative

tool) that organizes all the relevant infor-

mation in a central place that is accessible to

the team and anyone else who needs to know

what’s going on.

Planning and communicating this way solves

a slew of problems all in one go. It is essential

that anyone who comes to your release-plan-

ning page can quickly identify who is in-

volved, and what the goals and expected out-

comes are.

You can start by creating a blank page and

then add a two-column page layout so you can

fit all your key information above the fold.

Add a table inside it that displays the high-

level details of your release. Should use

the profile picture macro, which you can find

in the macro browser and then typing "profile

picture", to display each person's image.

This helps people put a face to a name. Hover

over someone's name in an @mention and

you'll find a bit more information about that

person.

You will also want to capture critical details

like the name of the release, expected ship

date, and the status of the planning page or

even the release itself. Should use the status

macro to communicate status of pages or indi-

vidual line items. You will find it in the "Insert

more content" button in the editor toolbar.

Change the text and the color to indicate

changes in status.

To visualize your plans you should sketch a

roadmap to get a rough idea of how various

streams of work will fit together and to com-

municate the timing within the team and to

others. You can use the roadmap macro in

Confluence to visualize the plans at a high

level. Insert the roadmap macro just

like any other macro. You can then create as

detailed or as simple a roadmap as you need

by adding additional lanes for work streams,

bars for epics, and markers for milestones.

34 Economy Informatics vol. 16, no. 1/2016

The final piece in your release planning page

is all about connecting people to the infor-

mation they need, thus connecting the dots.

Pages that are typically created for a release

include the following:

 Design Hub - for all the relevant UX/UI

designs

 Competitor insights - an overview of how

other tools tackle this problem

 Analytics - how will we measure usage?

What other feature usage might be af-

fected?

 Success criteria - what metrics do we

want to hit?

 Workshop notes - takeaways and white-

boards from related spikes and work-

shops

 User testing - plans and notes around test-

ing the new features with users

Commonly the page is finished off

with a release checklist using tasks.

Low-level iteration planning: In JIRA the it-

eration planning is made through the Tempo

Planer. With Tempo Planner, product manag-

ers can now view story points on a feature

level and thereby track the progress of fea-

tures for teams that work in relative estima-

tions.

Story points mark the effort (rather than actual

hours) that a project requires – they represent

an abstract scale for measuring the amount of

focus, work, risk and complexity that goes

into a story. The majority of users incorporate

story points into their planning and Tempo

may well add to the range of options for those

users in the future. Many teams estimate in

days or hours when beginning the agile jour-

ney. Breaking user stories down into compo-

nent tasks that last no more than 8 to 12 hours

is a huge step forward in taming uncertainty.

Product managers will be able to view aggre-

gated story points in the Team Backlog and

plan out individual sprints based on the

amount of effort that they estimate would go

into the sprint. Provided that story points have

been set for the issue, they will be visible in

the header of each issue contained within a se-

lected iteration. A sum of story points can be

seen in the metrics bar in the Team Backlog.

Story points can also be viewed in the Pro-

gram Kanban, where they are shown in the

header of each epic, next to the hour estimate.

This constitutes a new way to determine the

scope of an epic with ease.

The new Iteration Timeline in the Team Back-

log opens up a wealth of possibilities to help

team leaders create reliable forecasts for their

team’s workloads.

An iteration section has been added to the

team overview page. There, users can see at a

glance the status of the iteration a team is cur-

rently working on. Users can view the esti-

mated and remaining capacity to see if an iter-

ation is on track and dive right into it if neces-

sary. If the iteration is over 100% capacity

then it will show as “over capacity”.

You can’t improve your processes if you don’t

measure them. To help teams keep track of

time, JIRA supports a feature called time

tracking, which allows teams to estimate work

and log the amount of time spent on an issue

into JIRA. JIRA then aggregates that data in

several useful reports. JIRA has a panel in the

issue detail view that exposes time infor-

mation.

The time tracking helps the team understand

how work got done, and it gives everyone

measurable results from the iteration that can

then drive planning for the next iteration.

Users can also view an upcoming iteration and

the plan items that compose the iteration by

clicking the drop-down arrow. For each plan

item you will see the type, key, summary, as-

sociated epic, and remaining estimate. Click-

ing on an iteration will take you to the view

for the corresponding iteration in the Team

Backlog.

In the Team Backlog, users are greeted by the

brand-new iteration timeline in place of the

previous drag-and-drop view for member

availability within the iteration. However,

both views are still there and users can choose

which views they would like visible by click-

ing the corresponding symbols in the metrics

bar. With the Iteration Timeline, team mem-

bers can forecast their iteration planning com-

fortably against actual visualizations of the

plan. When you assign an issue to a team

Economy Informatics vol. 16, no. 1/2016 35

member, the forecast will show a plan for the

team member on the iteration timeline.

Progress tracking: When backlog items are

linked with your JIRA application issue, you

can track their status and progress directly

from your plan. Portfolio for JIRA supports

different ways to track progress depending on

your team's requirements. In the backlog pro-

gress column, progress is displayed for indi-

vidual story items, and for epics and initiatives

as an aggregate of all their sub-stories. For

items that are un-estimated, the option exists

to show those items in relation to items that

are estimated. This allows you to see the per-

centage of work done on estimated items

(which could be 100%), while still seeing that

some un-estimated items are still outstanding

and require work. The progress and status col-

umns in the backlog allow you to see the pro-

gress of your plan items.

 Issue Status - Only exists if the backlog

item links to one or multiple JIRA appli-

cations issues. It shows the actual work-

flow status of these issues. In case of mul-

tiple issue links, an icon is shown for the

status of each linked issue.

 Progress - Sum of work logs on the linked

JIRA applications issue(s), as well as

their child elements.

Progress bars show the progress of any linked

items in the backlog. If your active filters are

hiding issues, the progress of those issues will

not be represented in the progress bar. To see

the detailed progress of any item on the back-

log click on the item's progress bar.

1. When an epic or initiative is expanded, the

bar shows the total progress of all the child

stories. If the 'display un-estimated stories'

option is set in progress tracking options,

the progress bar is displayed as a grey bar

that represents the ratio of un-esti-

mated items to the total number of items.

2. Items with no progress are displayed as a

faded grey line.

3. Stories that are in progress show the per-

centage of progress completed as a green

line.

4. Completed issues show a full green line.

5. Un-estimated items show a dark grey line.

Progress tracking types:

 Time based progress tracking

The progress is calculated based on the time

spent that is entered into the issue's work log

in your JIRA application. If work time is

logged for an issue, its progress is calculated

as follows:

Progress = Time Spent / (Time Spent + Re-

maining Estimate)

 Resolved issue count progress tracking

Progress is calculated based on the issue’s

Resolution field and the progress of sub-is-

sues. If the issue does have sub-issues pro-

gress is calculated as follows:

Progress = Number of Resolved Child Ele-

ments / Total Number of Child Elements

 Story point progress tracking

Story point progress is calculated from the es-

timates set in JIRA application issues. The

stories progress that do not have sub-

tasks will be 0 until the issue is resolved, at

which point its progress will be 100% (com-

plete). The progress of an epic is computed

as:

Progress = ∑(Estimate (Story 1) x Progress

(Story 1) … Estimate (Story n) x Progress

(Story n)) / Estimate (Epic).

The Burndown Chart is another useful track-

ing tool, which can help you visualize your

team's progress, as well as determine whether

your team is on target to achieve the sprint

goal. The grey line in your Burndown Chart is

a guide showing the rate of work required to

complete the sprint. The red line, on the other

hand, shows the actual work completed by

your team. If your Burndown Chart shows the

red line above the grey line, your team may

not achieve the sprint goal. You may want to

consider removing some issues from the

sprint.

Below is the resulting summative table after

our analysis.

36 Economy Informatics vol. 16, no. 1/2016

Table 1. Summative considerations

Features Microsoft Team Foundation

Server

Atlassian Jira

User role modeling and

personas support

User role modeling X ✓

Personas Support X X

User stories and epics

management

Estimation of user stories in

different time-work units of

measure

✓ ✓

Decomposition of epics/big-

ger user stories into the cor-

responding smaller stories

X ✓

Ways to display epics/user

stories
✓ ✓

UAT support

Writing and tracking ac-

ceptance tests

X ✓

High-level release planning

Decomposition of a release

into iterations/sprints, calcu-

lating iteration length

✓ ✓

Managing a release plan X ✓

Prioritization of user sto-

ries/epics
✓ ✓

Product backlog and task-

board support
✓ ✓

Low-level iteration plan-

ning

Decomposition of user sto-

ries into tasks
✓ ✓

Assignment of task respon-

sibility and estimation of

task work and remaining

time

✓ ✓

Progress tracking

Release burndown charts/bar

charts
✓ ✓

Iteration charts X X

Daily workload graphics and

charts

X ✓

Velocity tracking ✓ X

Key performance indicators X X

Economy Informatics vol. 16, no. 1/2016 37

4 Discussions

In this section, we discuss the results of our

research from the perspective of the three

guiding methodology questions:

a) Do the features of the 2 agile software

tools cover the key functional require-

ments as defined in the relevant literature

and confirmed by practitioners?

b) Are there any unique features that the

tools can offer?

c) What is the general opinion of practition-

ers about each tool?

Judging by our summative table, the Atlassian

Jira software covers more key functional re-

quirements than TFS. It has support for user

role modeling and it can decompose big user

stories into smaller ones. It can also provide

the environment for writing and tracking ac-

ceptance tests. There are some drawbacks re-

garding personas support, iteration charts, ve-

locity tracking or key performance indicators.

However, these improvements must not be at

the expense of usability as it is found to be of

utmost importance for agile project manage-

ment tools.

On the other hand, TFS has some unique fea-

tures that make it different from other agile

tools. TFS is an application lifecycle manage-

ment (ALM) solution, while Jira is more like

an issue tracker. It has features like source

control and automatic builds, check-in, check-

out mechanisms and it is integrated with Vis-

ual Studio.

Although both tools are commercially li-

censed, each one has good reviews on many

practitioners’ web sites. The essence of user

satisfaction lies in their needs which, based on

the results of the qualitative analysis, may sig-

nificantly differ from team to team. For in-

stance Atlassian Jira has been preferred in

many open source projects such as JBoss and

Spring. When it comes to specific agile meth-

ods, both tools have been widely used for

Scrum projects and Scrum like processes. In

fact, when learning the Scrum methodology or

any other Agile method, users prefer to exper-

iment with the help of Atlassian Jira.

There is a general need for integrated “soft-

ware development life cycle” platforms that

would combine software development and

testing processes with agile project manage-

ment processes. There is also a need for an in-

tegration with collaboration tools, as SDLC

becomes more and more distributed with

teams spread all over the globe. Microsoft

tries to bring all these elements together with

its core development IDE Microsoft Visual

Studio 2015 (as its latest edition) in perfect

harmony with TFS.

5 Conclusions

In the present study, the key functional re-

quirements for our tools have been identified

and a comparative analysis has been made be-

tween the two of them. The study has tried to

show how these tools implement the identified

functional requirements and on the potential

differences in the corresponding set of fea-

tures, they offer, especially in terms of support

for agile concepts and practices.

The identified key requirements belong to one

of the following six groups:

 user role modeling and personas support;

 user stories and epics management;

 acceptance testing support;

 high-level release planning;

 low-level iteration planning;

 process tracking

The following tools were selected for the

comparative analysis: Atlassian Jira and Mi-

crosoft Team Foundation Server. The selec-

tion criteria were: diversity, high rating and

availability for review.

The tools have been compared based on the

following criteria: coverage of the key func-

tional requirements by the provided set of fea-

tures, support for basic agile concepts and

practices and user satisfaction with the tool.

The study has shown that the identified key

functional requirements that belong to the

groups User stories and epics management,

high-level release planning and low-level re-

lease planning have been mostly well covered

by the examined tools. In general, there is a

noticeable trend to further enrich process

tracking. However, not all the basic function-

alities are currently fully covered by some

tools. The need for acceptance testing support

has been recognized and efforts are being in

this direction, although the current state is not

38 Economy Informatics vol. 16, no. 1/2016

satisfactory. User role modeling and personas

support has not been covered entirely.

However, the coverage of the corresponding

functional requirements itself does not say

enough about the quality of support for agile

concepts and practices. The study has re-

vealed that there may be significant differ-

ences in the way agile concepts and practices

have been supported by different tools, if sup-

ported at all. This is corroborated by the result

of the qualitative analysis of user reviews

which showed that agile professionals invest

considerable time and efforts to find a tool,

and if is really necessary, a tool that is easy to

customize.

Acknowledgement

This research paper is made possible through

the help and support from everyone, includ-

ing: parents, teachers, family, friends, and in

essence, all sentient beings. Especially, please

allow me to dedicate our acknowledgment of

gratitude toward the following significant ad-

visors and contributors:

First and foremost, we would like to thank

Professor Constanta BODEA for her most

support and encouragement. She kindly read

our paper and offered invaluable detailed ad-

vices on grammar, organization, and the

theme of the paper.

Secondly, we would like to thank our col-

leagues who work in the same field for read-

ing our research paper and providing valuable

advices, as well as all the other professors who

have taught us over the past two years on our

pursuit of the master degree.

Finally, we sincerely thank to our parents,

family, and friends, who provide the advice

and financial support. The product of this re-

search paper would not be possible without all

of them.

References
[1] James Shore, ”The Art of Agile Develop-

ment”, O’Reilly Media, 2007

[2] Stephen Haunts, ”Agile Software Devel-

opment Succintly”, Syncfusion Inc., 2015

[3] L. Constantine, ”Users, Roles and Per-

sonas”, http://www.foruse.com/arti-

cles/rolespersonas.pdf

[4] Mickey Gousset, Ed Blankenship, Martin

Woodward, Grant Holliday,”Proffesional

Application Lifecycle Management with

Visual Studio 2012”, Apress, 2012

[5] Brian Blackman, Gordon Beeming, Mi-

chael Fourie, Willy-Peter Schaub, ”Man-

aging Agile Open-Sourse Software Pro-

jects with Microsoft Visual Studio

Online”, Microsoft Press,1st editon,2015

[6] Jennifer Greene, Andrew

Stellman,”Learning Agile”, O’Reillu Me-

dia,2014

[7] “Buyer’s Guide Agile Project Manage-

ment Software, http://technologyad-

vice.com/smart-advisor/downloads/tech-

nologyadvice-agile-pm-buyers-guide-

43d.pdf

[8] “About agile work innovation”,

http://planbox.com/about-agile-work-in-

novation/

http://technologyadvice.com/smart-advisor/downloads/technologyadvice-agile-pm-buyers-guide-43d.pdf
http://technologyadvice.com/smart-advisor/downloads/technologyadvice-agile-pm-buyers-guide-43d.pdf
http://technologyadvice.com/smart-advisor/downloads/technologyadvice-agile-pm-buyers-guide-43d.pdf
http://technologyadvice.com/smart-advisor/downloads/technologyadvice-agile-pm-buyers-guide-43d.pdf
http://planbox.com/about-agile-work-innovation/
http://planbox.com/about-agile-work-innovation/

Economy Informatics vol. 16, no. 1/2016 39

