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ABSTRACT
A Bloom filter is a probabilistic bit-array-based set rep-
resentation that has recently been applied to address-set
disambiguation in systems that ease the burden of parallel
programming. However, many of these systems intersect
the Bloom filter bit-arrays to approximate address-set in-
tersection and decide set disjointness. This is in contrast
with the conventional and well-studied approach of making
individual membership queries into the Bloom filter. In this
paper we present much-needed probabilistic models for the
unconventional application of testing set disjointness using
Bloom filters. Consequently, we demonstrate that intersect-
ing Bloom filters requires substantially larger bit-arrays to
provide the same probability of false set-overlap as querying
into the bit-array. For when intersection is unavoidable, we
prove that partitioned Bloom filters require less space than
unpartitioned. Finally, we show that for Bloom filters with a
single hash function, surprisingly, intersection and querying
share the same probability of false set-overlap.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures

General Terms
Design, Performance, Theory

Keywords
Bloom filters, signatures, set intersection, address-set disam-
biguation, transactional memory, thread-level speculation,
parallelism

1. INTRODUCTION
The over-arching challenge for parallel programming stems

from detecting and managing data access conflicts between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

parallel threads, since they can lead to invalid data and
incorrect execution when improperly handled. A variety
of programming models and debug tools have hence been
proposed to augment locking, a conventional form of man-
aging potential conflicts. Progress has been made in tools
for finding, replaying, and avoiding concurrency bugs [18]
that may result when a programmer: (i) fails to synchronize
accesses to a mutable shared variable (i.e., a data race) [28];
or (ii) incorrectly reasons about atomicity, failing to enclose
a set of memory accesses in a critical section (i.e., an
atomicity violation) [17, 18]. Debugging in a concurrent
environment is made even more challenging as the man-
ifestation of these bugs depends on the non-deterministic
interleavings of threads. Several debugging systems thus
focus on deterministically replaying concurrency bugs to find
their source [13,25,38]. Despite thorough testing, some bugs
still make it to deployment, motivating dynamic avoidance
of concurrency bugs [17]. Beyond debugging, Transactional
Memory (TM) [12] and Thread-Level Speculation (TLS) [10,
15, 37] have emerged as methods of more automatically
managing data access conflicts for the programmer. TM
allows potentially conflicting transactions to execute concur-
rently, where the underlying system tracks memory accesses
and detects and handles data conflicts. TLS divides a
legacy sequential program into ordered speculative threads
that are executed optimistically in parallel, also via an
underlying system of detecting and recovering from data
access conflicts.

All of these recently-proposed programming models and
tools require a means of conflict detection (CD) that dis-
ambiguates streams of concurrent memory address accesses
to find unsafe access interleavings (conflicts). Read- and
write-sets accumulate the memory addresses read or written
over epochs of instructions as defined by the application—
including synchronization points, race-free episodes, trans-
actions, or“chunks”of sequentially-consistent instructions [5].
In general, a conflict results when a memory address appears
in the write-set of one thread and the read- or write-set of
another thread. Two schedules determine when conflicts
are detected: eagerly at the time of memory access (e.g., by
checking coherence messages [26,41]), or lazily at the end of
an epoch.

1.1 Address-Set Disambiguation Using Bloom
Filters

Given this demand for runtime address-set operations,
Bloom filters [1] have emerged as the address-set repre-
sentation of choice for many systems in hardware TM [6,



16, 21, 32–35, 39–42], software TM [8, 19, 30, 36], TLS [6,
11], and concurrency debugging tools [13, 17, 18, 25, 28, 31,
43]. These approximate set representations provide address
membership queries and set insertion in constant time, while
operating on a compact, static-length bit-array. To track
an address-set using a Bloom filter, addresses are hash-
encoded into the large bit-array, and each thread maintains
a distinct Bloom filter for each of the read- and write-
sets over the course of each execution epoch. The bit-
array length is designer-tunable, but the filter suffers in-
creasing inaccuracy as length decreases; hence space and
time requirements must be balanced with an acceptable
probability that set membership tests falsely accept a non-
member. In parallelization systems, these Bloom filter
false positives force unnecessary conflicts among epochs, but
pose no threat to correctness—e.g., their impact is limited
to the re-execution of a transaction or epoch, or a false
concurrency bug reported to the programmer. Hardware
systems leverage Bloom filters to represent unbounded sets
using statically-sized registers, and software systems benefit
from fast set operations. The main concern for designers
of these parallelization systems is to size the Bloom filters
appropriately to achieve an acceptable false positive rate.

Despite the popularity of using Bloom filters for address-
set disambiguation, few analytical models have been de-
veloped for these use-scenarios: for most recent work, the
bit-arrays in Bloom filters are sized via time-consuming
design space exploration, where the false positive rates are
determined empirically. Eager systems use Bloom filter
membership queries to detect conflicts, and the resulting
false positives of individual queries follow a well-understood
probability distribution [1,2,7,33]. Configuring Bloom filters
for individual queries therefore requires tuning only the
Bloom filter length and number of hash functions, and can
be guided by the known analytical model.

1.2 Needed: Analytical Models for Lazy
Applications of Address-Set Bloom Filters

In contrast with eager systems, lazy systems disambiguate
finalized address-sets at the end of epochs1, affording de-
signers more flexibility but an expanded design space to
explore. With finalized Bloom filters, there exist three
different methods of determining whether address-sets are
disjoint, or deciding set disjointness. The first method is
intuitive: test every address of one set for membership in the
Bloom filter of the other set [21]—we call this method queue-
of-queries. For both the second and third approach, rather
than serially querying many addresses, Bloom filters are
quickly intersected and the result is analyzed to determine
whether the input sets are disjoint [5, 6, 8, 17, 19, 25, 28, 30,
36, 43]. For the second approach, Bloom filter intersection
approximates set intersection by performing the bit-wise AND
of two bit-arrays, but has lower resolution (i.e., a greater
probability of false conflict) than the corresponding series
of queries. The third approach partitions the two bit-
arrays, and the partitions are pairwise intersected. The
third approach is hence called partitioned, while the sec-
ond approach is unpartitioned—sometimes referred to as

1There also exist systems where finalized address-sets of a
committing epoch are compared with growing address-sets
of in-flight epochs. We continue to use the term “finalized
set,”but this could alternatively be interpreted as“nontrivial
set.”

a true Bloom filter [32, 33]. When the two input sets are
disjoint, each disambiguation method might return a false
set-overlap. In this context, the statistical properties of
the three set-intersecting approximations, to the best of
our knowledge, have neither been studied analytically nor
conclusively compared in prior work.

In this paper we provide system designers with a new
analytical model of the probability of false set-overlap for
address-set Bloom filter intersection. We conclusively show
which bit-array configuration admits fewer false positives,
and prove that to achieve equivalent probability of false set-
overlap, intersection-based usage requires Bloom filters that
are at least a factor of the square root of set cardinality larger
than query-based usage: for example, our models suggest
that a change from unpartitioned Bloom filters to 2- or 4-way
partitioning of the bit-array will yield considerable reduction
of false conflicts in a number of existing parallelization sys-
tems [30, 36]. These results also reveal that for set-overlap-
testing intersect-based schemes, the query-based approach
should still receive serious consideration as an alternative,
despite its time complexity.

Related Work: Prior work on address-set Bloom fil-
ters (a.k.a. signatures [6]) has optimized false positives in
membership queries, but has not focused on Bloom filter
intersection in particular. The work includes evaluating the
impact of hash function families and parallel access to the
bit-array partitions [33], optimizing the complexity of hash
functions for a fixed false positive rate [42], application-
specific address hashing [16], and exploiting the locality of an
address stream [32]. The database community has applied
Bloom filter intersection to accelerate relational join oper-
ations: approximating set intersection, and subsequently
performing membership queries to the remaining bits [20].
Estimation of join cardinality has also benefited from this
fast intersection [3, 27, 29]. However, unlike address-set dis-
ambiguation, database applications generally do not strive
for the intersection result to be an empty set. Our work
builds on these studies of Bloom filter intersection, with a
focus on address-set disambiguation, and hence targeting
intersections that return empty sets in the ideal case.

Contributions: This paper makes the following contribu-
tions: (i) we derive the probability distributions of false set-
overlaps between two address-sets, for each of the three ways
Bloom filters are applied in lazy address disambiguation;
(ii) we prove that the partitioned Bloom filter configuration
statistically induces fewer false conflicts than the unpar-
titioned configuration; (iii) we prove that for equivalent
probability of false set-overlap in Bloom filters, intersection
exceeds a space requirement that is larger than querying by
a factor of the square root of set cardinality; (iv) we observe
that, for the special case of one-way hashing, Bloom filter
querying and intersection remarkably share an equivalent
probability of false set-overlap.

2. BLOOM FILTERS
This section gives a brief background on the relevant

aspects of Bloom filters [1]. For preliminary notation, let
[N ] denote the set {1, . . . , N}. A Bloom filter compactly
represents a set S = {x1, x2, . . . , xn} of n elements from
some universe U . The filter is a bit-array of m bits indexed
by a hash function tuple of k mutually-independent hash
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Figure 1: Bloom filter insertion and querying of address a
for (a) an unpartitioned and (b) partitioned Bloom filter.
In both cases, the filter has length m bits, and a tuple of
k truly random hash functions. Addresses are inserted by
asserting the bits indexed by the k hash values (dark boxes).
A query accepts an address as a member of the set iff all k
indexed bits are set to 1. Inspiration for figure is from [32].

functions h(x) = (h1(x), . . . , hk(x)), supporting operations
such as element insertion, membership queries, set union,
and set intersection. Two configurations of bit indexing
are widely used, called unpartitioned (or “true”) and par-
titioned. The k-tuple hash function of an unpartitioned
Bloom filter uniformly maps to the entire m-bit range of the
bit-array, h : U → [m]k. In contrast, a partitioned Bloom
filter distinguishes k disjoint sub-arrays of the filter, with
each hash tuple value uniformly mapping to an integer m

k
-bit

partitioned range, h : U → ˆ
m
k

˜k
[24]. In the context of ad-

dress disambiguation, S is a set of memory addresses from a
v-bit address space (or universe): S ⊂ U = {0, 1, . . . , 2v−1}.

Figure 1 illustrates the individual element operations on
a Bloom filter. To initialize an empty set, all bits of the
array are set to 0. Each element x ∈ S is subsequently
inserted in the filter by asserting the k bits indexed by each
hash of x; the hi(x)’th bit is set to 1 for 1 ≤ i ≤ k. We
denote the Bloom filter representation of S as BF (S), which
corresponds to the set of asserted bits after inserting all x ∈
S [9, 32]. With a fully-constructed Bloom filter for S, an
address y ∈ U can be quickly tested for membership in S.
The membership query accepts y ∈ S if all of the hi(y)’th
bits of the array are 1, and otherwise indicates y /∈ S.

For the remainder of this paper, we assume that the
bit-array length, m, and number of hash functions, k, are
constant. Let Hm = {h|h : U → [m]k} be the set of all
hash functions mapping from the address space to the full
m-bit range of a partitioned Bloom filter. Similarly, let
Hm

k
= {h|h : U → [m

k
]k} represent the set of all hash

functions from the address space to the m
k

-bit sub-arrays
of a partitioned Bloom filter.

2.1 Bloom Filters for Membership Queries
By encoding elements of a large universe into a compact

bit-array, there is a small probability that an element y (that
is not in S) has collisions on each of its k hashes with some
elements in the set. Both hash aliasing and filter density
(fraction of asserted bits) can lead to membership queries
being falsely accepted, and so the Bloom filter actually
represents a superset of the original address set: S ⊆ BF (S).

In essence, the membership query“is y in S?”is not answered
by no or yes, but rather no or maybe. The following
definition formalizes this notion.

Definition 1. Let S = {x1, . . . , xn} ⊂ U be represented
by an m-bit Bloom filter, BF (S), using the k-tuple hash
function h ∈ (Hm ∪ Hm

k
). When testing some element

y /∈ S for membership in S, we define the false positive
predicate FP∈(S, y, h) to be true when the query accepts y
as a member of BF (S)—i.e., when y /∈ S, but ∀i ∈ [k],
hi(y) = hi(xj) for some xj ∈ S.

This definition describes the false positive event for both
unpartitioned and partitioned Bloom filters, as h ∈ (Hm ∪
Hm

k
); however, throughout the paper we will specify the

Bloom filter indexing via conditioning on h. The probability
of false positives for a Bloom filter is well understood and
estimated in a straightforward fashion [1, 3, 32]—the reader
is directed to prior work for a formal proof. Assuming the
partitioned Bloom filter indexing scheme, the distribution is
as follows:

Lemma 1. [1,24] Let h ∈ Hm
k

be a truly random k-tuple

hash function. For any fixed set S ⊂ U and element y /∈ S,
the probability that y is accepted in a membership query of
partitioned BF (S) is

Pr
h
FP∈(S, y, h) | h ∈ Hm

k

i
=

 
1 −

„
1 − k

m

«|S|!k

. (1)

For unpartitioned Bloom filters, Pr[FP∈(S, y, h) | h ∈
Hm] is less than the result above, since a partitioned filter
typically has more asserted bits. Notably, the two distribu-

tions asymptotically approach
“
1 − e−

k|S|
m

”k

[3]2, and the

latter approximation is minimized when k = m
|S| ln 2 [3].

2.2 Bloom Filters for Set Intersection
Beyond individual element operations, Bloom filters can

be used to perform set union and intersection. In this work
we focus on set intersection and its application for deciding
address-set disjointness. Let S1, S2 ⊂ U be two sets that
are represented by Bloom filters, BF (S1) and BF (S2), that
use the same m and hash functions. The filter BF (S1 ∩
S2) is computed by hash-encoding elements of the actual
intersection of these sets. The Bloom filter representations
of S1 and S2 are insufficient to accurately compute BF (S1∩
S2), but their Bloom filter intersection, BF (S1) ∩ BF (S2),
is quickly computed by the bit-wise AND of their bit-arrays.
Bloom filter intersection provides an approximation to set
intersection that maintains the original querying property of
never returning false negatives [3, 9, 29].

Guo et al. quantify the uncertainty in approximating set
intersection with Bloom filter intersection. Assuming the
unpartitioned Bloom filter configuration, the theorem by
Guo is stated as a lemma toward our own contributions;
readers are directed to the original work [9] for a proof.

Lemma 2. [9] Assuming the same m and random hash
function h ∈ Hm are used in the Bloom filters of S1, S2,
and S1 ∩ S2, then BF (S1 ∩ S2) = BF (S1) ∩ BF (S2) with
probability

(1 − 1/m)k2×|S1−S1∩S2|×|S2−S1∩S2|.

2Since (1 − k/m)n ≈ e−
kn
m , provided m > nk [3].



Apparently, the asserted Bloom filter bits of a set intersec-
tion are not necessarily equivalent to the bits asserted by
Bloom filter intersection of the sets; they are equivalent with
non-negligible probability.

2.3 Accuracy of the False Positive Rate
Recent work [2, 7] indicates that the “classic” analysis of

the Bloom filter that proves the above Lemmas 1 and 2 is
optimistic. The result attributed to Bloom (and republished
in decades of subsequent work) is in fact a strict lower bound
to the correct false positive probability. The new insight by
Bose et al. and Christensen et al. has only focused on
unpartitioned Bloom filters; applying their methods to the
partitioned configuration, and subsequently repairing the
Lemma by Guo et al. is left as future work, beyond the
scope of this paper. Regardless, the approximation provided
by these lemmas is sufficient for this work, as Christensen
et al. demonstrated that the relative error diminishes with
the larger m (≥ 1024 bits) typically used in parallelization
systems [5, 6, 8, 13,18,21,28,32,33,36,41,42].

3. MODELING BLOOM FILTERS FOR
SET DISJOINTNESS

Despite the popularity of Bloom filters in research archi-
tectures and tools, there are no previously-proposed proba-
bility distributions that model their use in deciding pairwise
disjointness of sets, (a.k.a., set disambiguation). In the
following sections, we (i) describe how Bloom filters are
used to decide address-set disjointness, (ii) describe when
they flag false conflicts among epochs, and (iii) we model
and prove the probability distributions representing these
unfortunate events.

3.1 Methods of Deciding Set Disjointness
This section describes the three methods of deciding set

disjointness using Bloom filters: queue-of-queries, unparti-
tioned intersection, and partitioned intersection. We first
motivate a definition of false set-overlap, when two dis-
joint sets appear to have some overlap due to Bloom filter
operations. In line with Bloom’s original motivation, sys-
tems implementing eager conflict detection use Bloom filter
membership queries for runtime address-set comparison. At
the time of accessing address y, the address is tested for
membership in the read or write Bloom filters (BF (R)
or BF (W )) of other epochs (e.g., by querying incoming
coherence requests). There is a probability of a false positive
on each query (unnecessarily indicating an address conflict),
which is modeled by Lemma 1. Since address conflicts are
detected at the granularity of epochs, it becomes apparent
that the probability of individual false conflicts is not of
interest in parallel programming tools. Instead we wish to
know the probability that entire epochs will falsely conflict,
such as for lazy conflict detection schemes where the read-
and write-sets are finalized. We next define two predicates
which relate epoch failures to false set-overlaps.

3.1.1 Queue-of-Queries
Consider the lazy conflict detection scheme of SigTM [21],

which maintains a write buffer (W ) and read and write
Bloom filters (BF (R) and BF (W )) for each thread. These
sets are finalized at the end of an epoch and otherwise
grow monotonically. To detect conflicts at the end of a

transaction, the system verifies that every member of the
write-set W is not a member of all other threads’ read-
sets by performing membership queries into the read filters
via coherence broadcasts. If any address in the write-set
conflicts with the read filter of a remote transaction, the
latter transaction is aborted. We use SigTM as a sample
model of what we denote as the conventional approach to
lazy address-set intersection—executing a queue-of-queries
into a Bloom filter. Figure 2a illustrates this idea, where the
queue of elements is the aforementioned write buffer. Each
element of the write buffer (queue) is queried into the Bloom
filter of some other epoch, until a conflict is found; otherwise
the sets are disjoint. Supposing the two epochs did in fact
access independent memory, we say that a false set-overlap
occurred if one of the epochs unnecessarily aborted. The
following definition formalizes false set-overlap by a queue-
of-queries.

Definition 2. Let S1, S2 ⊂ U be two fixed, disjoint sets,
and choose S1 to be represented by a Bloom filter of m bits
and hash function h ∈ (Hm ∪ Hm

k
). We define the false

set-overlap by queries predicate FSO∈(S1, S2, h) to be true
if, for some x ∈ S2, FP∈(S1, x, h) is true.

This definition describes when two sets would be incor-
rectly reported as overlapping by the conventional method
of using Bloom filters for membership queries. The predicate
is defined for either type of bit-indexing by hash functions,
since FP∈ of Section 2 is defined for either hash function. In
later sections, we will condition on the bit-indexing scheme
as necessary.

3.1.2 Intersection: Partitioned and Unpartitioned
Lazy conflict detection must determine whether particular

address-sets are disjoint—i.e., to ask “is their intersection
empty?” Some researchers have astutely avoided the linear
time required for a queue-of-queries by applying Bloom filter
intersection to approximate this underlying set intersection
task. Independent of the bit-indexing scheme, the bitwise
AND of two bit-arrays is performed—the time-complexity of
which is determined by the amount of available hardware
(some researchers [36] reasonably argue that it is constant
time).

On the other hand, determining set emptiness depends
on the bit-indexing scheme. An unpartitioned Bloom filter
represents an empty set if and only if all m bits of the
bit-array are set to zero. Consider that if a single bit is
set, it is possible (though unlikely) that some element is
mapped to that same bit by all k hash values, making
the filter non-empty. In contrast, partitioned Bloom filters
represent an empty set if and only if at least one partition is
empty, with all m/k bits set to zero [6]. For sufficiency,
note that an empty set asserts no bits, such that all k
partitions remain zero. For necessity, since inserting one
element requires asserting one bit in all partitions, then if at
least one partition is empty, it must be that no combination
of elements can be represented by that filter—i.e., the filter
is empty. Figures 2b and 2c use logic gates to illustrate the
use of Bloom filter intersection to test for set-overlap.

The following definition introduces a predicate that iden-
tifies false set-overlap via Bloom filter intersection. Due to
the difference in empty-set representation, partitioned and
unpartitioned filters have differing statistical properties; we
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Figure 2: Three methods of testing set-overlap between sets S1 and S2: (a) by a queue-of-queries into the Bloom filter of
S1, such that if any element of S2 matches in BF (S1), the sets are reported to be non-disjoint; (b) by intersecting two
unpartitioned Bloom filters by bitwise AND, where any resulting asserted bits indicate non-disjoint sets; (c) by intersecting two
partitioned Bloom filters, where an intersection-result consisting of at least one empty partition indicates that the input sets
are disjoint.

condition on the choice of hash indexing scheme in the next
section.

Definition 3. Let S1, S2 ⊂ U be two fixed, disjoint
sets, each represented by Bloom filters of m bits and hash
function h ∈ (Hm ∪ Hm

k
). We define the false set-overlap

by Bloom intersection predicate FSO∩(S1, S2, h) to be true,
if BF (S1) ∩ BF (S2) �= ∅, even though S1 ∩ S2 = ∅.

3.2 Probability of False Set-Overlap
Having defined the conditions for three types of Bloom

filter false set-overlap events, we now model their proba-
bility distributions. We begin with the probability of false
set-overlap by queue-of-queries—using filters as Bloom “in-
tended”. Concerning the following theorem, fix two disjoint
sets S1, S2 ⊂ U . The filter BF (S1) is m bits long using a
truly random hash function of the partitioned bit-indexing
scheme: h ∈ Hm

k
.

Theorem 1. A false set-overlap by queries of S2 into
partitioned BF (S1) is reported with probability3

Pr
h
FSO∈(S1, S2, h) | h ∈ Hm

k

i

= 1 −
0
@1 −

 
1 −

„
1 − k

m

«|S1|
!k
1
A

|S2|

. (2)

Proof. Consider the contrary, between the two disjoint
sets S1 and S2, when will a false set-overlap be avoided?
Using the Bloom filter representation, the sets are correctly
reported disjoint iff (∀x ∈ S2)(x /∈ BF (S1)), when every
one of the |S2| unique queries into BF (S1) does not return
a false positive. Model these unique queries as a sequence of
up to |S2| Bernoulli trials, where a trial “success” implies a
false positive on an individual query. Let random variable N
be the number of unique membership queries from S2 before
one is reported a false positive. Thus N follows a geometric
distribution, the number of Bernoulli failures before the first
success, with probability of success p = Pr[FP∈(S1, x, h)] for
any x ∈ S2. The two sets are deemed disjoint by Bloom filter
queries if all |S2| trials fail, or if N ≥ |S2|. A false set-overlap

3Building on Lemma 1, this distribution can also be

approximated by 1 −
„

1 −
“
1 − e−

k|S1|
m

”k
«|S2|

.

results if the latter is not true. Thus,

Pr[FSO∈(S1, S2, h)]

= Pr[N < |S2|] (3)

= Pr[N ≤ |S2| − 1] (4)

= 1 − (1 − p)|S2|−1+1 (5)

= 1 − (1 − Pr[FP∈ (S1, x, h)])|S2| , x ∈ S2 (6)

where Eq. (5) substitutes the geometric cumulative distri-
bution function. Conditioning Eq. (6) on h and substituting
Eq. (1) gives (2).

We now state and prove the probability that Bloom
filter intersection will flag a false set-overlap4 (for both
unpartitioned and partitioned bit-indexing). Let S1, S2 ⊂ U
be disjoint sets. Both are represented by Bloom filters with
length m bits, using the same truly random hash function
tuple h. The bit-indexing scheme is conditioned in the
theorem.

Theorem 2. A false set-overlap by Bloom filter intersec-
tion of unpartitioned BF (S1) and BF (S2) is reported with
probability

Pr [FSO∩ | h ∈ Hm] = 1 −
„

1 − 1

m

«k2|S1||S2|
. (7)

For partitioned Bloom filters, a false set-overlap is reported
with probability

Pr
h
FSO∩ | h ∈ Hm

k

i
=

 
1 −

„
1 − k

m

«|S1||S2|
!k

. (8)

Proof. Concerning Eq. (7), Section 3.1.2 argues that
intersection of unpartitioned Bloom filters induces a false
set-overlap when some bit in the resulting bit-array is non-
zero. An all-zero Bloom filter can only be created from an
empty set (i.e., BF (S) = ∅ ⇐⇒ S = ∅). Therefore,

Pr [FSO∩ | h ∈ Hm]

= Pr [¬(BF (S1) ∩ BF (S2) = ∅) | S1 ∩ S2 = ∅, h ∈ Hm]
(9)

= 1 − Pr [BF (S1) ∩ BF (S2) = ∅ | S1 ∩ S2 = ∅, h ∈ Hm]
(10)

4Some readers may note that a membership query of y into
a Bloom filter BF (S) is akin to creating a new filter from y,
BF (y), and determining whether BF (S)∩BF (y) is empty.
It is straightforward to show that Theorem 2 represents this
idea, as Eq. (8) reduces to the false positive probability of
Lemma 1 for |S2| = 1.



We use Lemma 2 by Guo et al.,

Pr [BF (S1) ∩ BF (S2) = BF (S1 ∩ S2) | h ∈ Hm]

= (1 − 1/m)k2×|S1−S1∩S2|×|S2−S1∩S2|

but assume that the sets are disjoint:

Pr [BF (S1) ∩ BF (S2) = ∅ | S1 ∩ S2 = ∅, h ∈ Hm]

= (1 − 1/m)k2|S1||S2|. (11)

Substituting (11) into (10) shows (7).
Regarding Eq. (8), to avoid a false set-overlap, partitioned

Bloom filters require at least one partition to be empty,
with all m/k bits set to zero. Thus the negation of this
statement, a false set-overlap, results when all k partitions
are non-empty. Consider any one single partition: note that
it operates identically to an unpartitioned Bloom filter with
length m/k bits, but only a single hash function indexing
the sub-array. Eq. (7) of this theorem therefore suggests
that a single Bloom filter partition of length m/k and one
hash function is non-empty with probability

1 −
„

1 − 1

m/k

«(1)2|S1||S2|
. (12)

Looking at the entire partitioned Bloom filter, we assume
that the “emptiness” of all k partitions is mutually indepen-
dent. Using (12), the probability that all k partitions are
non-empty is  

1 −
„

1 − k

m

«|S1||S2|
!k

,

completing the proof of Eq. (8).

4. ANALYTICAL COMPARISON OF
QUERYING AND INTERSECTION

In this section we analytically compare the statistical
properties and space requirements of Bloom filter intersec-
tion and querying when determining address-set disjoint-
ness. Specifically, we demonstrate (i) that partitioned Bloom
filters always outperform unpartitioned Bloom filters when
determining address-set disjointness by intersection; (ii) that
for equivalent probability of false set-overlap (PFSO), par-

titioned Bloom filter intersection requires a factor Ω(
p|S2|)

more space than performing a queue-of-queries (of set S2)
into a Bloom filter.

4.1 Preliminary Inequalities
We state elementary inequalities from Mitrinović et al. [22,

23] used to prove the main results of the section.

Lemma 3. [23] Bernoulli’s Inequality.
If −1 < x < 1

n−1
, x �= 0, and integer n = 2, 3, . . ., then

1 + nx < (1 + x)n < 1 +
nx

1 + (1 − n)x
.

Lemma 4. [22] Generalization of Bernoulli’s Inequality.
If 0 < q < p and −q < x < 0, then„

1 +
x

q

«q

≥
„

1 +
x

p

«p

.

Lemma 5. If real x is such that 0 < x < 1 and integer
n > 1, then 1 − xn > 1 − x > (1 − x)n.

Proof. x ∈ (0, 1) ⇒ xn < x, so evidently 1−xn > 1−x.
Also, (1 − x) ∈ (0, 1) ⇒ 1 − x > (1 − x)n.

4.2 Statistical Comparison of Bit-Indexing for
Bloom Filter Intersection

The following theorem asserts that partitioned Bloom
filter intersection has a lower PFSO than unpartitioned. It
concerns two disjoint sets S1, S2 ⊂ U , that are represented
by Bloom filters of the same length m, with the same hash
function tuple. The k hash values are truly random, and
we consider m > k > 1, since for a single hash function,
partitioned Bloom filters are effectively unpartitioned.

Theorem 3. Concerning false set-overlap by Bloom filter
intersection, the partitioned bit-indexing scheme follows a
probability distribution that is strictly less than that of an
unpartitioned Bloom filter. That is, (∀hm/k ∈ Hm

k
)(∀hm ∈

Hm),

Pr
ˆ
FSO∩(S1, S2, hm/k)

˜
< Pr [FSO∩(S1, S2, hm)] .

Proof. We begin by using Lemma 4, substituting x =
−1/m, q = 1/k, and p = 1, which satisfies 0 < q < p and

−q < x < 0, to see that
`
1 − k

m

´ 1
k ≥ `1 − 1

m

´
. Additionally,

since m > k > 1, then by Lemma 5,
`
1 − 1

m

´
>
`
1 − 1

m

´k
.

Combining these observations,„
1 − k

m

« 1
k

>

„
1 − 1

m

«k

⇒
„

1 − k

m

«|S1||S2|
>

„
1 − 1

m

«k2|S1||S2|
,

(13)

where the implication follows since m > k > 1, and we
raise each side to the power of (k|S1||S2|) > 0. Rearranging
Eq. (13), we show the main result,

Pr [FSO∩(S1, S2, hm)] = 1 −
„

1 − 1

m

«k2|S1||S2|

> 1 −
„

1 − k

m

«|S1||S2|
(14)

>

 
1 −

„
1 − k

m

«|S1||S2|
!k

(15)

= Pr
ˆ
FSO∩(S1, S2, hm/k)

˜
, (16)

where Eq. (15) follows from Lemma 5.

4.3 Space Comparison of Intersection
and Queue-of-Queries

Given that partitioned intersection outperforms unparti-
tioned intersection, the following theorem thus compares
the methods queue-of-queries and partitioned Bloom filter
intersection for deciding set disjointness. The metric of
consideration is more concrete than that in the previous
theorem: we will show that the bit-array space savings of
queue-of-queries is at least a factor of the square root of set
cardinality, relative to partitioned Bloom filter intersection,
when the respective PFSOs are equal, under reasonable
conditions.

Consider the disjoint sets S1, S2 ⊂ U . Let BFq(S1) be
a partitioned Bloom filter of length mq bits with a truly



random k-tuple hash function hq ∈ Hmq
k

, for use in a queue-

of-queries. Let partitioned Bloom filters BFi(S1), BFi(S2)
have length mi bits and be indexed by the truly random
k-tuple hash function hi ∈ Hmi

k
, for use in Bloom filter

intersection. Assume more than one hash tuple value, k > 1,
nontrivial sets, |S1|, |S2| > 1, and assume bit-array lengths
mq > k and mi > d|S1||S2| > k, for some constant d ≥ 1.

Theorem 4. Assuming the preceding system and condi-
tions, the bit-array space requirement of partitioned Bloom
filter intersection is a factor Ω(

p|S2|) larger than the queue-
of-queries method, for equivalent PFSO. Specifically, if k > 1
and

Pr[FSO∈(S1, S2, hq)] = Pr[FSO∩(S1, S2, hi)],

then

mi > mq
|S2|(1− 1

k )

1 + k
d

. (17)

Proof. Using the theorems of Section 3.2, we first equate
the stated probabilities, then using the lemmas of Section
4.1, show the inequality between mi and mq. The following
equality is given: 

1 −
„

1 − k

mi

«|S1||S2|
!k

= 1 −
0
@1 −

 
1 −

„
1 − k

mq

«|S1|
!k
1
A

|S2|

.

For clarity, let a = |S1|, b = |S2|, and ci =
“
1 − k

mi

”a

, and

likewise for cq. Applying these substitutions, we have“
1 − ci

b
”k

= 1 −
“
1 − (1 − cq)

k
”b

which is rearranged into

1 −
“
1 − ci

b
”k

=
“
1 − (1 − cq)

k
”b

. (18)

Observe that ci, cq ∈ (0, 1) since mi, mq > k and a > 1.
Therefore (1 − cq)

k ∈ (0, 1), so with integer b > 1, we may
apply the left side of Bernoulli’s inequality (Lemma 3) to
the right hand side of Eq. (18) and have

1 −
“
1 − ci

b
”k

=
“
1 − (1 − cq)

k
”b

> 1 − b (1 − cq)
k .

Rearranging and simplifying terms,

b (1 − cq)
k >

“
1 − ci

b
”k

.

Isolate b on the left hand side, take the k’th root, then
expand ci and cq:

b
1
k >

1 − ci
b

1 − cq

=
1 −

“
1 − k

mi

”ab

1 −
“
1 − k

mq

”a . (19)

These steps are valid as ci, cq ∈ (0, 1). Now consider the
denominator of (19). Apply the left side of Bernoulli’s

inequality (Lemma 3), since integer a > 1, and mq > k.
Then

1 −
„

1 − k

mq

«a

<
ak

mq
⇒ 1“

1 −
“
1 − k

mq

”a” >
mq

ak
. (20)

Now focus on the numerator of (19), 1−
“
1 − k

mi

”ab

. Using

the right side of Lemma 3, we let x = − k
mi

, and n = ab,

which satisfies −1 < x < 1
n−1

since mi > k. Thus,

„
1 − k

mi

«ab

< 1 +
ab
“
− k

mi

”
1 + (1 − ab)

“
− k

mi

”

Rearranging, 1 −
„

1 − k

mi

«ab

>

kab
mi

1 + kab
mi

− k
mi

>

kab
mi

1 + kab
mi

=
kab

mi + kab
(21)

Combining inequalities (20) and (21) into (19), we have

b
1
k >

1 −
“
1 − k

mi

”ab

1 −
“
1 − k

mq

”a >

kab
mi+kab

ka
mq

= b
mq

mi + kab

Rearranging, we have shown thus far that

mi + abk > mqb
1− 1

k .

For some constant d ≥ 1, if designers choose mi > abd,
then mi

k
d

> abk, thus
`
1 + k

d

´
mi > mi + abk. Therefore,

returning b = |S2|,

mi > mq
|S2|1− 1

k

1 + k
d

,

as desired.
Regarding asymptotic notation for the space comparison,

we claim that, ∀k ≥ 2, mi
mq

= Ω(
p|S2|), or formally, ∀k ≥ 2,

(∃c, n0 > 0)(∀|S2| ≥ n0)
mi

mq
≥ c
p

|S2|. (22)

Here we show only the base case k = 2—the full proof can
be found in Jeffrey’s thesis [14].

For k = 2 and any d ≥ 1, we have from Eq. (17),

mi

mq
>

|S2|1− 1
k

1 + k
d

=

p|S2|
1 + 2

d

which satisfies (22) for c = 1

1+ 2
d

and n0 > 0.

5. EMPIRICAL VALIDATION
In this section we empirically validate the probability

distributions derived in Section 3.2. Empirical rates of false
set-overlap are gathered for each of the three address-set
disambiguation methods, in four discrete Bloom filter con-
figurations. A simple experiment tests two disjoint address-
sets for overlap, using the three methods discussed: queue-
of-queries, and partitioned and unpartitioned Bloom filter
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Figure 3: Probability and empirical rate of false set-overlap on the y-axis as they vary with increasing Bloom filter length
on the x-axis (in log scale). Each plot represents a size k of the hash function tuple. The three curves plot the probabilistic
models of false set-overlap, and are overlaid by sample points of the experimentally measured rate.

intersection. Each method returns two possible outcomes:
either a false set-overlap, or disjoint sets. The experiment is
repeated over 106 trials, and the relative frequency of false
set-overlap is recorded as the empirical rate.

For a single experiment, two disjoint sets are generated,
S1 and S2, containing random unique 32-bit integers (ad-
dresses), using the C standard library rand function. For a
given bit-array length, m, and hash function tuple size, k,
partitioned and unpartitioned Bloom filters are constructed
for each of the sets, BFp(S1), BFp(S2), BFu(S1), BFu(S2).
Random hash functions are selected from the H3 family [4]
that approximately match the performance of ideal hash
functions, for a sufficiently-random address stream [24]. To
test the queue-of-queries outcome, each x ∈ S2 is tested
for membership in BFp(S1). If at least one query returns
true, the false set-overlap is recorded. Likewise, to test the
Bloom filter intersection outcome, we separately intersect
BFp(S1) ∩ BFp(S2) and BFu(S1) ∩ BFu(S2), and deter-
mine whether the remaining bits represent an empty set

as described in Section 3.1; otherwise a false set-overlap is
recorded.

Figure 3 visualizes the false set-overlap rate as a function
of Bloom filter length, m. The four plots differ only in
the size of the hash function tuple: k = 1, 2, 4, 8. The
cardinalities of the address sets were fixed to |S1| = |S2| = 64
unique elements5 for all trials. Each set of 106 trials is
represented by a point on the plot, having been assigned a
fixed filter length. Filter lengths are shown in a log scale on
the x-axis, and each length was sampled at a power-of-two to
effectively show the trend of this roughly exponential decay.

5Address set cardinality is certainly application-specific; a
number of earlier studies displayed average read set sizes
of 26 to 67 addresses [5, 6, 32, 33, 42], but as few as 2
addresses [18, 41] and as many as 2000 addresses [32, 42].
Write set sizes are typically smaller but still vary from 1
address [5, 17, 33, 41, 42] to over 1500 [32, 42]—we choose
64-element sets as a compromise within this large space.
Varying the set cardinalities will not change the general
trends observed in Figure 3.



The derived theoretical distributions underlay the empirical
sample points, visualizing the relationship between Bloom
filter length and false set-overlap probability. It is appar-
ent that the empirical sample points follow the theoretical
distributions, validating the accuracy of our work.

6. IMPLICATIONS
Figure 3 illustrates that varying k has a different effect

on each method of deciding set disjointness. For nontrivial
hash function tuples (i.e., k > 1), the queue-of-queries
method benefits from increasing k (up to a point), while
the probability distribution for unpartitioned Bloom filter
intersection only becomes worse. Upon close inspection of
the distribution for partitioned Bloom filters, increasing k is
beneficial only for filter lengths of at least 16kbits. These
three patterns can also be shown analytically, by minimizing
the probability distributions with respect to k. Due to
space constraints, the reader is directed to Broder and
Mitzenmacher [3] for an example of this process. Without
proof, the optimal number of hash functions for partitioned
intersection is k∗ = m

|S1||S2| ln 2, minimizing the false conflict

probability to 2−k∗
.

Implication 1. Issuing a series of Bloom filter member-
ship queries provides set disambiguation with significantly
lower space overhead than Bloom filter intersection, for
larger than one-tuple hash functions.

Implication 2. When intersection is unavoidable for de-
ciding pairwise set disjointness, partitioned intersection is
preferable to unpartitioned as it provides the same service,
with the same time-complexity, with lower (or equal) proba-
bility of false set-overlap.

Surprisingly, for a single hash function, k = 1, all three
methods share the same probability distribution (and em-
pirical sample points)—this can be verified by substitut-
ing k = 1 for the theorems of Section 3, and the PFSO
is 1 − (1 − 1

m
)|S1||S2|. Given this equivalence, a time-

complexity comparison would be helpful; unfortunately the
many hardware-dependent considerations make such a study
beyond the scope of this paper.

Implication 3. Remarkably, when restricted to encoding
addresses using a single hash function, Bloom filter querying
and intersection share equivalent probability of false set-
overlap.

7. CONCLUSION
Motivated by the recently-popular use of Bloom filters for

lazy address-set disambiguation, in this paper we introduced
and conclusively compared probabilistic models for the three
methods of using Bloom filters to decide set disjointness:
(i) queue-of-queries, and intersection of (ii) unpartitioned
and (iii) partitioned Bloom filters. We analytically and
graphically demonstrated that the intersection of parti-
tioned Bloom filters has more desirable probability of false
set-overlap than their unpartitioned counterparts. We also
demonstrated that partitioned intersection requires at least
a factor of the square root of set cardinality more bit-
array space than a queue-of-queries approach, to main-
tain the same probability of false set-overlap. Finally, we
observed that when designers are (unfortunately) required

to use a one-tuple hash function, the queue-of-queries and
intersection methods share identical probability of false set-
overlap; they should use the most time-efficient strategy in
such a case. The Bloom filter is indeed an excellent fit to
address-set disambiguation for parallelization systems and
tools, but this increasingly-common yet unconventional use
for deciding set-overlap demands more study. We provide
system designers with new insight in this area, easing Bloom
filter design space exploration.

Acknowledgments
We thank the anonymous reviewers for their detailed com-
ments. Bruce Francis was of monumental help through his
tutorial, Elements of Mathematical Style, and his general
feedback on our analytical work. We thank Hratch Mangas-
sarian for the discussion on asymptotic notation, and James
Tuck for initial discussion on the need for better theoretical
understanding of Bloom filters in address-set disambigua-
tion. Mark Jeffrey was supported by the NSERC Alexander
Graham Bell Canada Graduate Scholarship (CGS-M).

8. REFERENCES

[1] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
1970.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari,
P. Morin, J. Morrison, M. Smid, and Y. Tang. On the
false-positive rate of Bloom filters. Inf. Process. Lett.,
108(4):210–213, 2008.

[3] A. Broder and M. Mitzenmacher. Network
applications of Bloom filters: A survey. Internet
Mathematics, 1:485–509, January 2004.

[4] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. Journal of Computer and System
Sciences, 18(2):143 – 154, 1979.

[5] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas.
Bulksc: bulk enforcement of sequential consistency.
SIGARCH Comp. Arch. News, 35(2):278–289, 2007.

[6] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk
disambiguation of speculative threads in
multiprocessors. In International Symposium on
Computer Architecture, 2006.

[7] K. Christensen, A. Roginsky, and M. Jimeno. A new
analysis of the false positive rate of a Bloom filter. Inf.
Processing Letters, 110(21):944 – 949, 2010.

[8] J. E. Gottschlich, M. Vachharajani, and J. G. Siek. An
efficient software transactional memory using
commit-time invalidation. In International Symposium
on Code Generation and Optimization, 2010.

[9] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The
dynamic Bloom filters. IEEE Transactions on
Knowledge and Data Engineering, 22:120–133, 2010.

[10] L. Hammond, M. Willey, and K. Olukotun. Data
speculation support for a chip multiprocessor. In
Conference on Architectural Support for Programming
Languages and Operating Systems, October 1998.

[11] L. Han, W. Liu, and J. M. Tuck. Speculative
parallelization of partial reduction variables. In
International Symposium on Code Generation and
Optimization, 2010.



[12] M. Herlihy and J. E. B. Moss. Transactional memory:
architectural support for lock-free data structures. In
Intl. Symposium on Computer Architecture, 1993.

[13] D. R. Hower and M. D. Hill. Rerun: Exploiting
episodes for lightweight memory race recording. In
Intl. Symposium on Computer Architecture, 2008.

[14] M. Jeffrey. Modeling Bloom filter intersection for
address-set disambiguation. Master’s thesis, University
of Toronto, June 2011.

[15] V. Krishnan and J. Torrellas. A chip multiprocessor
architecture with speculative multithreading. IEEE
Transactions on Computers, Special Issue on
Multithreaded Architecture, September 1999.

[16] M. Labrecque, M. Jeffrey, and J. G. Steffan.
Application-specific signatures for transactional
memory in soft processors. In Intl. Symposium on
Applied Reconfigurable Computing, 2010.

[17] B. Lucia, L. Ceze, and K. Strauss. Colorsafe:
architectural support for debugging and dynamically
avoiding multi-variable atomicity violations.
SIGARCH Comput. Archit. News, 38(3):222–233,
2010.

[18] B. Lucia, J. Devietti, L. Ceze, and K. Strauss.
Atom-aid: Detecting and surviving atomicity
violations. IEEE Micro, 29(1):73 –83, Jan.-Feb. 2009.

[19] M. Mehrara, J. Hao, P.-C. Hsu, and S. Mahlke.
Parallelizing sequential applications on commodity
hardware using a low-cost software transactional
memory. In Conference on Programming Language
Design and Implementation, 2009.

[20] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski.
Improving distributed join efficiency with extended
Bloom filter operations. In International Conference
on Advanced Networking and Applications, 2007.

[21] C. C. Minh, M. Trautmann, J. Chung, A. McDonald,
N. Bronson, J. Casper, C. Kozyrakis, and
K. Olukotun. An effective hybrid transactional
memory system with strong isolation guarantees. In
Intl. Symposium on Computer Architecture, 2007.
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