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Preface

Digital communication and information theory talk about the same problem from very

different aspects. Lattice codes provide a framework to tell their mutual story. They

suggest a common view of source and channel coding, and new tools for the analysis of

information network problems.
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This book makes the language of quantization and modulation more accessible to

the hard core information theorist. For him or her, lattices serve as a bridge from the

high dimension of Shannon’s theory to that of digital communication techniques. At

the same time, lattices provide a useful tool for the communication engineer, whose

scope is usually limited to the low – sometimes even one or two – dimensions of

practical modulation schemes (e.g., QAM or PCM). She or he can “see,” through

the lattice framework, how signals and noise interact as the dimension increases, for

example, when modulation is combined with coding. Surprisingly for both disciplines,



xiv Preface

the generalization of the lattice framework to “Gaussian networks” is not only very

natural, but in some cases is more powerful than the traditional techniques.

This book is beneficial to the “Gaussian-oriented” information theorist, who wishes

to become familiar with network information theory from a constructive viewpoint

(as opposed to the more abstract random-coding/random-binning approach). And it is a

useful tool for the communication practitioner in the industry, who prefers a “geometric”

and “signal-processing oriented” viewpoint of information theory in general, and multi-

user problems in particular. The algebraic coding theorist can celebrate the variety of

new applications for lattice codes found in the book. The control theorist, who wishes

to add communication constraints into the system, will find the linear-additive model

of dithered lattice quantization useful. Other readers, like those having a background in

signal processing or computer networks, can find potential challenges in the relations to

linear estimation and network coding.

Ram Zamir

Tel Aviv

March 2014
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about systematic lossy source-channel codes, inspired me to introduce the idea of

nested lattices for the Wyner–Ziv (source coding with side information) problem. This

idea, which started as a toy example for a more practical systematic source-channel code,

grew later into a general framework for “algebraic binning” for information networks.

Uri Erez took my first advanced information theory course in the spring of 1997; in his

final project he developed an interesting technique for using channel-state information

at the transmitter. His PhD research then became a fusion center of many ideas in

lattice coding for noisy channels: following a pointer given to us by Shlomo Shamai

to the Costa problem, Uri came up with the innovative idea of lattice pre-coding for

the “dirty-paper” channel (a channel with interference known at the transmitter), using

dither and Wiener estimation. Simon Litsyn helped in showing the existence of lattices

which are “good for almost everything,” which turned out to be a crucial element in

the asymptotic optimality of nested lattice based coding schemes for general network



xvi Acknowledgements

problems. Dave Forney provided insightful comments about Uri’s work, and – after

noticing that the zero-interference case resolves an open question about lattice decoding

of Voronoi codes – summarized his interpretations under the multiple-meaning title

“Shannon meets Wiener” (2002).

Emin Martinian and Greg Wornell contributed the idea of lattice codes with variable

partition (for source coding with distortion side information at the encoder) during my

Sabbatical at MIT in 2002–2003.

The work in my research group during the years 2003–2010 revealed two new exciting

aspects of lattice codes. Yuval Kochman developed the modulo-lattice modulation

technique for joint source-channel coding, and in particular, for bandwidth conversion

(an idea proposed earlier in Zvi Reznic’s PhD work). Tal Philosof discovered (during

his PhD research with Uri Erez and myself) that lattice codes are stronger than random

codes for the “doubly dirty” multiple-access channel.

Although the material had been there for quite a few years, it took some courage and

encouragement to initiate this book project. The idea was thrown into the air during

my visit at Andy Loeliger and Amos Lapidoth’s groups at ETH, in the summer of

2008, and suggested again by Jan Østergaard during my visit at Aalborg University a

couple of months later. Dave Forney gave me important comments and suggestions in

the early stages of the writing, and I thank him for that. Tom Cover, whose book with

Joy Thomas was a source of inspiration for many years, was kind enough to give me a

few writing-style tips during my visit at Stanford in the summer of 2009.

Our research students in Tel Aviv University provided enormous help during the

writing of this book. The chapter about lattice error exponents grew from extensive

discussions with Amir Ingber. Sergey Tridenski and Arie Yeredor made specific con-

tributions to the section on error exponents for Voronoi codebooks. Or Ordentlich and

Uri Erez helped me shape the material about the existence of good lattices and nested

lattices. My thanks are due to Yuval Domb, Eli Haim, Anatoly Khina, Adam Mashiach,

Nir and Michal Palgy, Nir Weinberger and Yair Yona for many fruitful discussions; and

to the students who participated in my “Lattices in information theory” course in the

fall of 2011 for the valuable feedback.

Special thanks are due to my programming assistant Ilai Bistritz, whose good advice

went much beyond the numerical work, graphs and illustrations that he contributed to

this book.

During the work I received help and good advice from Ofer Amrani, Benny Appel-

baum, Joseph Boutrus, Shosh Brosh-Weitz, Robert Calderbank (who gave me his class

notes on coded modulation), Avner Dor, Moran and Tal Gariby, Michael Gastpar, Bo’az

Klartag, Frank Kschischang, Stella Achtenberg, Tamas Linder, Bobak Nazer, Jan Øster-

gaard, Dan Rephaeli, Kenneth Rose, Yaron Shany, Anelia Somekh-Baruch and Alex

Vardy. (And I have surely missed here some important people who helped along the

way.) Comments on early drafts of the book were kindly provided by Ling Cong, Adam

Mashiach, Jan Østergaard, Danilo Silva, Shlomo Shamai and Yaron Shani, who also

provided references and pointers.



Acknowledgements xvii

This writing project could last forever without the constant attention and professional

advice of my editors at Cambridge University Press, Phil Meyler, Sarah Marsh and Mia

Balashova.

I was extremely happy when Bobak Nazer agreed to join me in writing the chapter

about Gaussian networks; his deep understanding of the subject and clear writing style

took this part of the book to a much higher level. Also the chapter about modulo-lattice

modulation greatly benefitted from the collaboration in writing with Yuval Kochman.

Last but not least, I could not have survived these four long years of writing without

the infinite love and patience of my wife Ariella and three children Kessem, Shoni and

Itamar.



Notation

Lattices

3 lattice

G generating matrix (columns are basis vectors)

det(3) lattice determinant

P0 fundamental cell

V0, Vλ fundamental Voronoi cell, Voronoi cell of lattice point λ

V (3) cell volume

γ (3) point density

mod 3, modP0
3, x/3 modulo-lattice operations

Q3(·) lattice quantizer

Q
(N N )
3 (·) nearest-neighbor lattice quantizer

dmin minimum distance

N3(d) number of lattice points at distance d from the origin

N3(dmin) kissing number of 3

rpack(3), rcov(3) packing radius, covering radius

reff (3) effective radius

ρpack(3), ρcov(3) packing and covering efficiencies

σ 2(3) second moment

G(3) normalized second moment (NSM)

Ŵq (3), Ŵs(3) vector-quantizer granular gain, shaping gain

Pe(3, σ 2) error probability (in the presence of AWGN)

µ(3, σ 2) volume to noise ratio (VNR)

µ(3, Pe) normalized volume to noise ratio (NVNR)

µmatched(3, Z, Pe) noise-matched NVNR

µeuclid(3, Z, Pe) Euclidean (mismatched) NVNR

µmix(31,32, Pe, α),

µmix(31,32, Pe, ξ )

mixture-noise NVNR

Ŵc(3, Pe) coding gain (relative to cubic lattice)

U, Ueq dither, equivalent dithered quantization noise

RECDQ entropy rate of lattice quantizer

R∞(3) rate per unit volume
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L Minkowski–Hlawka–Siegel (MHS) ensemble

NS (3) number of non-zero lattice points in S

J nesting matrix

Ŵ = Ŵ(31,32) nesting ratio

31/32 quotient group, relative cosets

C31,P0(32), C31,V0(32) lattice-shaped codebook, Voronoi codebook

Cu,31,P0
dithered codebook

R(31/32) codebook rate [bit per dimension]

Zeq equivalent noise in mod 3 channel

Information theory

H (X ) regular entropy (of random variable X )

HB(p) binary entropy

h(X ) differential entropy

I (X ; Y ) mutual information (between a pair of random

variables)

PE (X ) entropy power of a random variable

(PE (X ) = 22h(X )/2πe)

C channel capacity

C∞ capacity per unit volume (Poltyrev’s capacity)

C (d), C (euclid-th) mismatched capacities

R(D) rate-distortion function

A(n)
ǫ typical set

C codebook

rnoise =
√

nσ 2 typical AWGN radius

General

x, y scalar variables

x, y vector variables

X, Y random variables

X, Y random vectors (column form)

Xt X transpose (row form)

Var(X) average variance per dimension

R
n Euclidean space

Z = {0,±1,±2, . . .} integers

Zq = {0, 1, . . . , q − 1} modulo-q group

N (µ, σ 2) Gaussian distribution with mean µ and variance σ 2

Br a ball of radius r centered about the origin

B(x, r ) a ball of radius r centered at x

Vn volume of a unit-radius n-dimensional ball
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Vol(S) volume of a set S
·= equality to the first order in the exponent

⊗ binary convolution (p ⊗ q = p(1 − q) + q(1 − p))

[x]+ maximum between x and zero.

Abbreviations

AWGN additive white-Gaussian noise

BPSK binary phase-shift keying

BSC binary-symmetric channel

BSS binary-symmetric source

ECDQ entropy-coded dithered quantization

MAC multiple-access channel

ML maximum likelihood

MSE mean-squared error

NN nearest-neighbor

NSM normalized second moment

NVNR normalized volume to noise ratio

PAM/QAM pulse/quadrature-amplitude modulation
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1 Introduction

Roughly speaking, a lattice is a periodic arrangement of points in the n-dimensional

Euclidean space. 1 It reflects the “geometry of numbers” – in the words of the

late nineteenth century mathematician Hermann Minkowski. Except for the one-

dimensional case (where all lattices are equivalent up to scaling), there are infinitely

many shapes of lattices in each dimension. Some of them are better than others.

Good lattices form effective structures for various geometric and coding prob-

lems. Crystallographers look for symmetries in three-dimensional lattices, and relate

them to the physical properties of common crystals. A mathematician’s classical

problem is to pack high-dimensional spheres – or cover space with such spheres –

where their centers form a lattice. The communication engineer and the information

theorist are interested in using lattices for quantization and modulation, i.e., as a

means for lossy compression (source coding) and noise immunity (channel coding).

Although these problems seem different, they are in fact closely related.

The effectiveness of good lattices – as well as the complexity of describing or

using them for coding – increases with the spatial dimension. Such lattices tend to be

“perfect” in all aspects as the dimension goes to infinity. But what does “goodness”

mean in dimensions 2, 3, 4, . . .?

In two dimensions, the hexagonal lattice is famous for the honeycomb shape

of its Voronoi cells. The centers of the billiard (pool) balls in Figure 1.1 fall on a

hexagonal lattice, which forms the tightest packing in two dimensions. The same

hexagonal lattice defines a configuration for deploying cellular base stations that

maximizes the coverage area per base station.

Interestingly, however, for higher dimensions the problems of packing and cov-

ering are not equivalent. In Figure 1.2, the centers of the oranges fall on the face-

centered cubic (FCC) lattice, which is the best known sphere packing in three

dimensions. In contrast, the best deployment of cellular base stations in a skyscraper

(which maximizes their three-dimensional coverage) is over a body-centered cubic

(BCC) lattice, illustrated in Figure 1.3.

1 See the Wikipedia disambiguation page for other meanings of the word “lattice”: in art and design, music,

math and science.
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Figure 1.1 Billiard (pool) balls packed in a triangle, for an initial game position.

Figure 1.2 Packing oranges in a pile: each row is half-diameter shifted with respect to the

previous row to reduce the unused volume. Similarly, each layer is staggered to fill the

holes in the layer below it. The centers of the oranges form a lattice known as a

face-centered cubic (FCC) lattice.

Which is the “best” lattice in each dimension is a question we shall not address;

issues of efficient design and coding complexity of lattices are not at the focus

of this book either. Instead, we characterize the performance of a lattice code

by its thickness (relative excess coverage) and density (relative packed volume),

and by the more communication-oriented figures of merit of normalized second

moment (NSM) for quantization, and normalized volume to noise ratio (NVNR)

for modulation. We define these quantities in detail in Chapter 3, and use them

in Chapters 4–9 to evaluate lattice codes for the basic point-to-point source and

channel coding problems. As we shall see, high-dimensional lattice codes can close
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Figure 1.3 Three-dimensional sphere covering with a BCC lattice, describing the best

deployment of cellular base stations in a skyscraper. The solid line shows even layers; the

gray line shows odd layers. Compare the staggering pattern with that of the pile of oranges

in Figure 1.2.

the gap to the information theoretic limits of communication: the capacity and rate-

distortion function, quantities introduced by Shannon in his seminal 1948 paper

[240], and further refined during the 1950s and 1960s.

The 1970s and 1980s saw the blooming of network information theory. Remark-

ably, some of the fundamental network problems were successfully solved using

Shannon’s information measures and random coding techniques, now with the

additional variant of random binning. Simple examples of such network setups

are side-information problems: the Slepian–Wolf and Wyner–Ziv source coding

problem, and the Gelfand–Pinsker “dirty-paper” channel coding problem. The lat-

tice framework provides a structured coding solution for these problems, based on

a nested pair of lattices. This nested lattice configuration calls for new composite

figures of merit: one component lattice should be a good channel code (have a low

NVNR), while the other component lattice should be a good quantizer (have a low

NSM). For joint source-channel coding problems, lattices with a good NSM-NVNR

product are desired. We shall develop these notions in Chapters 10 and 11.

The curious reader may still wonder why we need a book about lattices in

information theory. After all, Shannon’s probabilistic measures and random coding

techniques characterize well the limits of capacity (channel coding) and compression

(source coding), and they also allow the study of source and channel networks

[53, 64]. From the practical world side, communication theory provides ways to

combine modulation with “algebraic” codes and approach the Shannon limits.

All this is true, yet between the theoretical and the constructive points of view

something gets lost. Both the probabilistic and the algebraic approaches somewhat
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Quantization
Lossless Source

Coding

Source Coding

S1,...,Sn b1,...,bk Error Correction
Code

Modulation

Channel Coding

X1,...,Xm

Figure 1.4 Source coding followed by channel coding. For an analog source and channel, the

combined system maps a point in R
n (a source vector) to a point in R

m (a channel input

vector). The ratio m/n is known as the “bandwidth-expansion factor.”

hide the interplay between analog signals like sound or noise (created by nature)

and digital modulation signals (created by man). Lattices are discrete entities in the

analog world, and as such they bridge nicely the gap between the two worlds. At

large dimensions, good lattices mimic the behavior of Shannon’s random codes. For

small dimensions, they represent an elegant combination of modulation and digital

coding. As a whole, lattices provide a unified framework to study communication

and information theory in an insightful and inspiring way.

Recent developments in the area of network information theory (mostly from

the 2000s) have added a new chapter to the story of lattice codes. In some setups,

structured codes are potentially performance-wise better than the traditional random

coding schemes! And as Chapter 12 shows, the natural candidates to achieve the

benefit of structure in Gaussian networks are, again, lattice codes.

1.1 Source and channel coding

Let us describe briefly how lattices fit into the framework of digital communication

and classical information theory.

By Shannon’s separation principle, transmission of an information source over a

noisy channel is split into two stages: source coding, where the source is mapped into

bits, and channel coding, where the digital representation of the source is mapped

into a channel input signal. These two stages, which we describe in detail below, are

illustrated in Figure 1.4.

The source coding (or compression) problem deals with compact digital represen-

tation of source signals. In lossless compression, our goal is to remove redundancy

due to asymmetry in the frequency of appearance of source values, or to “memory”

in the source. In this case, the source signal is available already in a digital form,

say, as a sequence of binary symbols. And the task is to map n “redundant” source

bits s = s1, . . . , sn into k = k(s) code bits, where k < n. 2

2 We would like k to be smaller than n for most source vectors (or for the most likely ones) in order to

compress; but not too small, so the mapping would be invertible for (almost) all source vectors, for lossless

reproduction.
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Figure 1.5 Scalar uniform quantization of a Gaussian source, followed by variable-length

coding, i.e., n = 1 and k is varying. Each quantization level represents a range of source

values.

In lossy compression, the source is usually continuous in nature: an analog rep-

resentation of speech, sound, picture or video signal. Digitizing an analog signal

consists first of converting it into a discrete form (both in time and in amplitude),

and then coding it in the discrete alphabet domain. In discrete time the source

is again a vector s = s1, . . . , sn , representing n consecutive source samples. After

the vector s is encoded into a k-bit codeword, it is decoded and reconstructed as

ŝ = ŝ1, . . . , ŝn . The overall operation of mapping s to ŝ is called quantization, and

the image (for a fixed k, the set of all 2k possible reconstruction vectors ŝ in R
n) is

the quantization codebook.

A lattice quantizer codebook consists of points from an n-dimensional lattice.

The codebook can be a truncated version (of size 2k) of the lattice, or the whole

lattice (with a variable codeword length k = k(ŝ)). We would like to make the bit

rate R = k/n (or the average coding rate R = k̄/n) as small as possible, subject

to a constraint on the reconstruction fidelity. Figure 1.5 shows the case of a scalar

(n = 1) lattice quantizer with a variable code length k(ŝ).

Channel coding deals with transmitting or storing information over a noisy chan-

nel or on a storage device. Our goal here is to add redundancy to the transmitted

signal, to make it distinguishable from the noise. The channel input alphabet may

be discrete, say, binary. In this case, transmission amounts to mapping k bits of

information into n “redundant” code bits, where n > k.

The most common communication links are, however, over continuous media:

telephone lines, cables or radio waves. The baseband channel representation is in
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Figure 1.6 Two-dimensional finite lattice constellations, consisting of 16 points (k = 4).

(A) A simple square constellation, representing uncoded quadrature-amplitude modulation

(QAM); here n′ = k = 4. (B) A hexagonal lattice constellation, represented as a mapping

of redundant binary vectors of length n′ = 5 into a rectangular constellation.

discrete time, so the channel input is a vector x = x1, . . . , xn . Coding over such

a channel turns out to be in many ways the dual of encoding an analog source.

It consists of two stages: an error-correction coding stage, where redundancy is

added in the discrete alphabet domain (e.g., by converting k information bits to

n′ > k code bits); and a modulation stage, where the digital codeword is mapped

into the vector x. The overall encoder mapping is thus of a k-bit information vector

into a point in R
n (representing n consecutive channel inputs). The set of all 2k

possible input vectors x is called a codebook or a constellation.

A lattice constellation is a truncated version (of size 2k) of an n-dimensional

lattice. We would like to make the coding rate R = k/n – which is now the (usually

fixed) number of transmitted information bits per channel input – as large as possible,

subject to a constraint on the probability of decoding error. See two examples of

two-dimensional lattice constellations in Figure 1.6.

One benefit of the lattice coding framework that we can immediately recognize

is that coding and modulation (or quantization) are combined as a single entity; a

lattice code directly maps digital information (say, an index) into a vector in R
n ,

and vice versa.

1.2 The information theoretic view

Information theory characterizes the ultimate performance limits of source and

channel coding, as the code block length n goes to infinity.
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In the channel coding case, the coding rate R is upper bounded (for a vanish-

ing error probability) by the Shannon capacity C of the channel. The quantity C

(associated with a memoryless channel with a transition distribution p(y|x)) is cal-

culated by maximizing the mutual information (a functional of p(x) and p(y|x))

over the input distribution p(x). The maximizing input distribution p∗(x) is used to

prove the achievability of C : a set of ≈2nC codewords is generated randomly and

independently with an i.i.d. distribution p∗(x); a random coding argument is then

used to show that based on the channel output, the decoder can guess the correct

transmitted codeword with a high probability as n → ∞.

We see that à la Shannon, good codewords look like realizations of random noise.

In the case of a binary-symmetric channel, the code generating noise consists of

equally likely 0/1 bits. In the quadratic-Gaussian case, the code should be generated

by a white-Gaussian noise (WGN).

Rate-distortion theory uses similar ideas to establish the ultimate performance

limits of lossy source coding [18]. The Shannon rate-distortion function R(D) lower

bounds the coding rate R of any lossy compression scheme with distortion level

of at most D (under some given distortion measure). And similarly to the channel

coding case, computation of R(D) induces an optimal reconstruction distribution,

which is used to generate a good random codebook: independent realizations of

a Bernoulli(1/2) sequence compose the codewords for a binary-symmetric source

under Hamming distortion, while independent realizations of WGN compose the

codewords for a white-Gaussian source under mean-squared distortion.

The fact that good codewords look like white noise is intriguing. Intuitively, one

would expect the symbols of a codeword to be dependent, to distinguish them from

the channel noise. This has made the random coding idea, on the one hand, a source

of inspiration for many since Shannon presented his landmark theory in 1948. On

the other hand, it sets a challenge for finding more structured ways to approach

the information theoretic limits, ways in which the dependence between the code

symbols is more explicit. Can noise be realized in a structured way?

1.3 Structured codes

The Hamming code – mentioned already in Shannon’s 1948 paper – was the early

bird of the structured coding approach. It was followed by the breakthrough of

algebraic coding theory in the 1950s and 1960s [21]. The implication was that, in

fact, a good collection of random-like bits can be constructed as an additive group

in the binary modulo-2 space. These linear codes take various forms, such as Reed–

Muller, BCH and, more recently, LDPC, turbo and polar codes, and they also have

extensions to non-binary (Reed–Solomon) codes and convolutional (trellis) codes.

Common to all these codes is that for a random message, the resulting n-length

codeword is indeed roughly uniformly distributed over the n-dimensional binary
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space. That is, each code bit takes the values 0 and 1 with equal probability;

furthermore, small subsets of code bits are roughly independent.

The extension of this concept to continuous signals is however less obvious:

can a code mimic Gaussian noise in a structured way? A first step towards this

goal is provided by Shannon’s asymptotic equipartition property (AEP). In a high

dimension n, the typical set of WGN of variance σ 2 is a spherical shell of radius

≈
√

nσ 2. Thus, the codewords of a good code are roughly uniformly distributed

over such a spherical shell.

The concept of geometrically uniform codes (GUC) [86] suggests a deterministic

characterization for a “uniform-looking” code: every codeword should have the

same distance spectrum to its neighboring codewords. This concept captures the

desired property of a good Euclidean code, in both the block and the convolutional

(trellis) coding frameworks.

Due to their periodic and linear structure, lattices are natural candidates for

unbounded GUCs. For example, the commonly used QAM constellation shown in

Figure 1.6(A) is a truncated version of the square lattice, while the more “random-

like” set of two-dimensional codewords shown in Figure 1.6(B) is a truncated

version of the hexagonal lattice. Moreover, the code designer can shape the borders

of these constellations to be more round, for example, by truncating them into a

circle or into a coarser hexagonal cell. And as the dimension gets high, lattices

which are truncated into a “good” coarse lattice cell become closer to a randomly

generated Gaussian codebook.

1.4 Preview

We shall get to the exciting applications mentioned earlier after building up some

necessary background. The book starts by introducing lattices in Chapter 2, and the

notions of lattice goodness in Chapter 3. Chapter 4 introduces two central players

in our framework: dithering, which is a means to randomize a lattice code, and

Wiener estimation, which is a means to reduce the quantization or channel noise.

The importance of these techniques will be revealed gradually throughout the book.

Equipped with these notions and techniques, we consider variable-rate (“entropy-

coded”) dithered quantization (ECDQ) using an unbounded lattice in Chapter 5. In

particular, we shall see how the NSM characterizes the redundancy of the ECDQ

above Shannon’s rate-distortion function. The reader who is interested primarily in

channel coding may skip Chapter 5, and continue directly to modulation with an

unbounded lattice constellation in Chapter 6. 3 This chapter shows how the NVNR

determines the gap from capacity of a lattice constellation. It also describes variable-

rate dithered modulation, which is the channel coding counterpart of ECDQ.

3 Sections which are optional reading for the flow of the book are denoted by an asterisk.
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Before moving to more advanced coding setups, we stop to examine the existence

of asymptotically good lattices in Chapter 7. In Chapter 8 we define nested lattices,

and finite Voronoi-shaped codebooks taken from a lattice. These notions form

in Chapter 9 the basis for Voronoi modulation, which achieves the capacity of a

power-constrained AWGN channel, and for Voronoi quantization, which achieves

the quadratic-Gaussian rate-distortion function. In both these solutions, dither and

Wiener estimation play crucial roles.

A small step takes us from the point-to-point communication setups above to side-

information problems in Chapter 10. We shall construct lattice code solutions for

the Wyner–Ziv problem (source coding with side information at the decoder) and

the “dirty-paper” problem (channel coding with side information at the encoder).

These lattice coding schemes serve as building blocks for common multi-terminal

communication problems: encoding of distributed sources and broadcast channels.

Before moving to more general networks, we examine in Chapter 11 a lattice-

based joint source-channel coding technique, called modulo-lattice modulation

(MLM). A combination of MLM and prediction leads to “analog matching” of

sources and channels with mismatched spectra, and to “bandwidth conversion.”

Chapter 12 extends the discussion on multi-terminal problems to general Gaussian

networks. There we shall see that when side information is distributed among

several nodes of the network, lattice codes are not only attractive complexity-wise,

but sometimes they have better performance than traditional random coding and

binning techniques.

Chapter 13 complements the discussion of asymptotically good lattice codes in

Chapter 7 by examining their error exponents. As for capacity, good lattice codes

turn out to be optimal also in terms of this more refined aspect.

Information theory is not a critical prerequisite for reading this book, but (starting

from Chapter 5) we use information measures, such as entropy, mutual information

and capacity, to assess system performance. To keep the book self-contained, the

Appendix includes elementary background in information theory, as well as some

other complementary material.

As mentioned above, dithering and Wiener estimation are central concepts in

the lattice coding framework. The question of where and in what sense they are

necessary will follow our discussion throughout the book.

What’s not in the book?

The writer has the freedom to focus on his favorite subject. Naturally (in the case

of this writer) the book takes an information theoretic flavor, with less emphasis on

coding theoretic aspects. For algebra of lattices, and for specific constructions of

lattices and coded-modulation schemes from error-correcting codes, the reader is

referred to the comprehensive book of Conway and Sloane [49], and to the excellent

class notes of Forney [81] and Calderbank [28].
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Encoding and decoding complexity is a topic of theoretical as well as practi-

cal importance, although traditionally neglected by information theory. A good

introduction to the subject can be found in the survey paper of Agrell et al.

[3]. The vast literature on MIMO communication contains numerous publications

about the design of linear coded-modulation schemes and efficient lattice decoding

algorithms.

In the fight between a timely manuscript and time of publication, some topics

which are natural to the spirit of the book were left out. One such topic is the

extension to colored-Gaussian sources and channels; see, for example, [211, 288,

291]. Another topic is the emerging area of lattice wiretap codes; see, for example,

the survey paper by Liang et al. [156] and other recent work [118, 168]. Hopefully

these topics will find their way to a later edition of the book.

Finally, since the late 1990s lattice-based cryptography has been a major area

of research in computer science. Its connection to lattice codes for communication

is yet to be explored; see the book by Micciancio and Goldwasser [186], and the

survey by Micciancio and Regev [188].
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The simplest lattice is the one-dimensional grid {. . . , −21, −1, 0, 1, 21, . . .}.
In one dimension, all lattices are equivalent up to scaling. To make life more

interesting – and to obtain better geometric properties – we must consider multi-

dimensional lattices.

∆

This chapter presents n-dimensional lattices and important ideas associated with

lattice codes that are used throughout the book. We take a geometric and, for

some asymptotic results, probabilistic viewpoint. The algebraic aspects of lattices –

although crucial for their implementation at a low complexity – are secondary for

our purposes, and will not be treated in this book.

We restrict our attention to communication problems in which the lattice code

is selected by the system designer. Thus, we rely on the existence of lattices with

certain “good” properties, and on algorithms for encoding and decoding them at a

reasonable complexity. 1

We start with the basic definitions of a lattice and lattice partition.

2.1 Representation

A lattice is a regular array in the Euclidean space. Mathematically, it is a discrete

sub-group of R
n: a set of points which is closed under reflection and real addition.

The set is discrete in the sense that the distance between any two points is greater

than some positive number. If a point λ is in the lattice then so is its reflection −λ,

and if two points λ1 and λ2 are in the lattice then so is their vector sum λ1 + λ2. Thus,

the origin (the point 0) is always in the lattice because it is the sum of λ and −λ.

1 The situation is different when the lattice is selected by nature or at random. For example, in digital

communication (e.g., QAM) over a fading MIMO channel, the physical multi-path channel behaves like a

random matrix which creates an equivalent lattice constellation at the receiver. In cryptography, a “hard-to-

break” lattice is created by a random number generator.
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2
1

y

x

Figure 2.1 The two-dimensional grid {(2i, j) : i, j ∈ {0,±1,±2, . . .}} contains all points

in the plane whose y-coordinate is an integer and whose x-coordinate is an integer multiple

of 2.

Furthermore, the lattice is a countably infinite set: it must contain all integer multiples

±2λ, ±3λ, ±4λ, . . . of any lattice point λ, as well as all integer linear combinations

λ1 ± λ2, λ1 ± 2λ2, . . . , 3λ1 ± 2λ2, . . . , of any two lattice points λ1 and λ2, etc.

We can obtain simple multi-dimensional lattices by taking the Cartesian product

of scalar lattices, like the two-dimensional grid shown in Figure 2.1. Such a simple

grid, however, would not allow us to obtain the efficient arrangements of oranges

and cellular base stations shown in Figures 1.2 and 1.3. Our next step is to define a

lattice in a more general and constructive way.

The linearity property of the lattice reminds us of a linear vector space. It is

only in the latter that any real-valued coefficients, and not just integer multiples, are

possible. This analogy calls for a definition of a lattice in terms of a basis.

Definition 2.1.1 A non-degenerate n-dimensional lattice 3 is defined by a set of

n linearly independent basis (column) vectors g1, . . . , gn in R
n . The lattice 3 is

composed of all integral combinations of the basis vectors, i.e.,

3 =
{

λ =
n

∑

k=1

ik gk : ik ∈ Z

}

=
{

λ = G · i : i ∈ Z
n
}

, (2.1)

where Z = {0, ±1, ±2, . . .} is the set of integers, i = (i1, . . . , in)t is an n-

dimensional integer (column) vector, and the n × n generator matrix G is given

by

G = [ g1 | g2| . . . | gn ].

The resulting lattice is denoted 3(G).
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g2

g1

g′1

Figure 2.2 The hexagonal lattice is generated by the basis vectors g1 = (0, 2)T and

g2 = (
√

3, 1)T . But it can also be generated by the pair g′
1 = (

√
3,−1)T and the same g2, or

by the pair g′′
1 = (

√
3, 1)T and g′′

2 = (−
√

3, 1)T . Clearly this lattice cannot be written as a

Cartesian product of two scalar lattices. Nevertheless, we can construct it by alternating

between two staggered horizontal scalar lattices, one for the even rows and one, half-step

shifted, for the odd rows.

Figure 2.2 shows the famous two-dimensional hexagonal lattice – denoted as A2.

The reason why it is called “hexagonal” will become clear in the next section.

We shall soon discuss the degenerate case, where the number of basis vectors in

G is less than the dimension n, or the basis vectors are linearly dependent. When G

is an identity matrix, we get the integer lattice, 3 = Z
n , also called the cubic lattice

or “Z lattice.” Any lattice can be viewed as a linear transformation, by the generator

matrix, of the integer lattice:

3 = G · Z
n, (2.2)

which is simply another way of writing (2.1).

However, the generator matrix is not unique for a given lattice. A lattice is invariant

to a unimodular transformation of its basis.

Proposition 2.1.1 (Change of basis) A matrix G ′ generates the same lattice as G,

i.e., 3(G ′) = 3(G), if and only if

G ′ = G · T = [ Gt1 | Gt2 | . . . | Gtn ] (2.3)

for some unimodular matrix T = [ t1 | t2 | . . . | tn ], i.e., an integer matrix with a unit

absolute determinant, det(T ) = ±1.

Proof If T satisfies the condition, then each column of G ′ is an integer combination

of the columns of G, i.e., g′
j = Gt j =

∑n
i=1 ti j gi . Thus, by Definition 2.1.1, 3(G ′)
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is contained in 3(G). Conversely, since det(T ) = ±1, the inverse matrix T −1 is

a (unit-determinant) integer matrix too (by Cramer’s rule for matrix inversion), so

3(G ′) also contains 3(G). Hence, 3(G ′) and 3(G) must be identical. To prove the

“only if” part, note that since the basis vectors are linearly independent, T must

be integer valued otherwise 3(T G) will contain points outside 3(G). The same

argument shows that if | det(T )| is greater than 1, then | det(T −1)| is smaller than

1, hence 3(T −1G ′) contains points outside 3(G ′). Thus 3(G ′) = 3(G) implies

| det(T )| = 1. �

A by-product of Proposition 2.1.1 is that all (square) generator matrices of a

lattice have the same absolute determinant: det(G ′) = det(GT ) = det(G) det(T ) =
± det(G). Thus, the absolute value of the determinant of the generator matrix is an

invariant property of the lattice.

Definition 2.1.2 (Lattice determinant) 2 The lattice determinant det(3) is defined

as the absolute determinant of its generator matrix | det(G)|.

Due to the linear independence of the basis vectors, the matrix G is non-singular,

thus det(3) > 0.

As we saw in Figure 2.1, a simple way to construct high-dimensional lattices is

by taking Cartesian products of lower-dimensional lattices.

Definition 2.1.3 (Cartesian product) The Cartesian product of two lattices 31 and

32 of dimensions n1 and n2 is an n = n1 + n2 dimensional lattice:

31 × 32 =
{(

x

y

)

: x ∈ 31, y ∈ 32

}

. (2.4)

The generator matrix of the product lattice is a block-diagonal matrix

G =
(

G1 0

0 G2

)

(2.5)

with the component generator matrices on its diagonal, hence its determinant is the

product of the component determinants det(31 × 32) = det(31) · det(32).

Equivalent dimension We expect that under a “natural” goodness measure, the

product lattice 3 × · · · × 3 is as good as its component lattice 3; hence, both

lattices have the same equivalent dimension.

2.1.1 Characterization of lattice bases

Does the invertible generator matrix form (2.1) describe the most general arrange-

ment of points satisfying the linearity property at the beginning of the section?

2 In the literature (e.g., [49]) det(3) is sometimes defined as det2(G), which is also the determinant of the

Gram matrix G t G.
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Degenerate and dense lattices A lattice in R
n may have less than n basis vectors

(or the basis vectors may be linearly dependent). In this case, the lattice is contained

in a linear sub-space of R
n , and is called degenerate. For example, the basis vec-

tors [1, −1, 0]t and [0, 1, −1]t span a two-dimensional hexagonal lattice, which is

embedded in some tilted plane in R
3. See Problem 2.1.

On the other hand, we never need more than n basis vectors to generate a lattice

in R
n: if some of the vectors are linearly dependent then, either a smaller basis for

the lattice can be found, or the set generated by (2.1) is dense (non-discrete) and

therefore cannot be considered as a lattice.

Example 2.1.1 (Dense lattice) In one dimension, G = (1,
√

2) generates a dense

set; that is, integer combinations of 1 and
√

2 can arbitrarily approach any point in

R. 3

Example 2.1.2 (Extended basis) A basis is not necessarily a subset of an extended

basis. In one dimension, the points 9 and 10 span the entire Z lattice, but none of

them can span it alone. In two dimensions, the three points (1,2), (2,1) and (2,2)

span the entire Z
2 lattice, but neither pair does.

Primitive points A lattice point λ is called primitive if it is the shortest lattice point

in its direction, i.e., αλ is not in 3, for all 0 < α < 1. Basis vectors are necessarily

primitive, but the opposite is not true.

Example 2.1.3 (Checkerboard lattice) A set of n linearly independent primitive

vectors does not necessarily form a basis for a lattice. Consider as an example the

n-dimensional “checkerboard” lattice, which consists of all the all-even and all-odd

vectors in R
n , i.e., the union of 2Z

n and [1, . . . , 1] + 2Z
n . Figure 2.3 shows the two-

dimensional case. In three dimensions, this is exactly the BCC lattice of Figure 1.3.

A simple basis for this lattice consists of the all-one vector [1, . . . , 1], plus any n − 1

vectors from the set of n elementary even vectors [2, 0, . . . , 0], . . . , [0, . . . , 0, 2].

Note that the elementary even vectors are primitive, independent of each other, and,

for n > 4, shorter than the all-one vector. However, they cannot span odd vectors;

hence, without the all-one vector they do not form a basis for the checkerboard

lattice. (See for comparison the definition of the Dn lattice in Example 2.4.2.)

Good basis for a given lattice Since the basis is not unique, we may ask which

basis is “best” for a given lattice. The answer is, however, not precise. A common

rule of thumb for a good basis is that

r the basis vectors g1, . . . , gn are the shortest possible,
r the basis vectors are nearly orthogonal.

3 Quasicrystals can be modeled using a basis with more than three vectors in R
3 [158].
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Figure 2.3 Checkerboard lattice in two dimensions.

The first criterion guarantees numerical stability, while the second is useful for

reducing the complexity of searching for the closest lattice point to a given point in

space – a problem which is at the heart of the coding and decoding of lattice codes.

It nevertheless turns out that the two criteria are closely related by the Hadamard

inequality [53]:

det(3) = | det(G)| ≤
n
∏

i=1

‖gi‖ (2.6)

with equality if and only if the basis vectors are orthogonal. Thus, a short basis

also tends to be close to orthogonal. The LLL algorithm [154] reduces a given basis

into a new and usually shorter basis, which satisfies a certain “near-orthogonality”

criterion.

Interestingly, the n shortest lattice vectors do not necessarily form a basis. Take,

for example, the checkerboard lattice (Example 2.1.3): the elementary even vectors

do not form a basis for that lattice, although for dimension n > 4 they are the

shortest (in particular, shorter than the all-one vector, whose length is
√

n).

2.1.2 Cosets

The final point we should discuss before the end of this section is that of a lattice

shift, or coset, defined as

3x = x + 3 = {x + λ : λ ∈ 3}. (2.7)

A coset is a discrete set of points such that the difference vector between every pair

of points belongs to the lattice. However, the coset itself is, in general, not a lattice,

as it is not closed under reflection and addition; in particular, it does not contain the

origin.



2.2 Partition 17

Clearly, the union of 3x over all shifts x covers the entire space R
n . But this union

contains many overlaps. A natural question to ask then is: what is the minimal set

of shifts S such that
⋃

x∈S

3x = R
n ? (2.8)

This question leads us to the subject of lattice partition.

2.2 Partition

A lattice induces a division of the Euclidean space into congruent cells. Like the

lattice representation, this division is not unique; there are many ways to partition

space with respect to a given lattice 3.

From a geometric viewpoint, the most important division is the Voronoi partition,

which uses a nearest-neighbor (NN) rule. Let ‖ · ‖ denote some norm, for example,

Euclidean distance. The distance of a point x in R
n from 3 is defined as

‖x − 3‖ 1= min
λ∈3

‖x − λ‖. (2.9)

The nearest-neighbor quantizer Q
(N N )
3 (·) maps x to its closest lattice point:

Q
(N N )
3 (x) = arg min

λ∈3

‖x − λ‖, (2.10)

and the Voronoi cell Vλ is the set of all points which are quantized to λ:

Vλ = {x : Q
(N N )
3 (x) = λ}. (2.11)

The breaking of ties in (2.10) is carried out in a systematic manner, so that the

resulting Voronoi cells {Vλ, λ ∈ 3} are congruent.

If not stated otherwise, the Voronoi partition refers to using the Euclidean norm

in (2.9) and (2.10). In this case, the Voronoi cell Vλ is a convex polytope, which –

like the lattice – is symmetric about the origin. See Problem 2.2. Each face of Vλ is

determined by a hyperplane, crossing orthogonally to the line connecting λ to one

of its neighbors. These neighbors are then called face-determining points.

Example 2.2.1 (Honeycomb) The Voronoi partition of the lattice of Figure 2.2

(with G =
(

0
√

3
2 1

)

) divides the plane into equilateral hexagonal cells with edge

length 2/
√

3, as shown in Figure 2.4(A). A possible “tie breaking” rule, which

keeps the cells congruent, is that each cell contains three out of its six edges and

two out of its six corners, with the same orientation for all cells. 4

4 Any systematic association of half the (non-corner) boundary points to each cell would keep the cells

congruent. This is because each of these points is on the border of two cells, while each corner point

is on the border of three cells. For n-dimensional cells, boundary points are classified into n types of
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C
D

B

A

Figure 2.4 Hexagonal lattice with four possible partitions: (A) Voronoi partition;

(B) parallelepiped partition; (C) “brick wall” partition generated by successive quantization

(first quantize the y-component then, conditioned on that, quantize the x-component); (D) a

general (non-polytope) fundamental cell.

The fundamental Voronoi cell V0 is the Voronoi cell associated with the origin

(λ = 0). Due to the periodic nature of the lattice, all the Voronoi cells are shifted

versions (by the lattice points) of V0. Hence, any point in space can be uniquely

expressed as the sum of a lattice point and a point in the fundamental Voronoi cell.

As mentioned previously, we do not have to use the Euclidean distance in (2.10).

A periodic partition will result by using any function of the difference x − λ; an

example comparing the ℓ2 and ℓ4 norms is shown in Figure 2.5. An alternative

definition for a general lattice-based partition, which does not rely explicitly on a

distance measure, is based on the notion of a fundamental cell.

We say that a collection of sets {Si } covers the Euclidean space if any point in

space is in one of the sets, i.e., ∪i Si = R
n . We say that the sets are packed in the

Euclidean space if no point in space belongs to more than one set, i.e., Si ∩ S j = ∅
for all i 6= j . Finally, if the sets both cover R

n and are packed in R
n , then {Si } is a

partition of R
n .

Definition 2.2.1 (Fundamental cell, lattice partition) A fundamental cell P0 of

a lattice 3 is a bounded set, which, when shifted by the lattice points, generates a

partition P = {Pλ} of R
n . That is,

(i) each cell Pλ is a shift of P0 by a lattice point λ ∈ 3

Pλ = P0 + λ = {x : (x − λ) ∈ P0};

k-dimensional edges, for k = 0, 1, . . . , n − 1. Although the boundary has zero volume, its association to

the cell is critical for lattice codebooks (see Chapter 9).
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Figure 2.5 Examples of lattices and lattice partitions: (A) the Z
2 lattice with a Euclidean

Voronoi partition; (B) the Z
2 lattice with a fourth-power norm-based Voronoi partition;

(C) a hexagonal lattice with a Euclidean Voronoi partition; (D) a hexagonal lattice with a

fourth-power norm-based Voronoi partition.

(ii) the cells do not intersect, Pλ ∩ Pλ′ = ∅ for all λ′ 6= λ; and

(iii) the union of the cells covers the whole space,
⋃

λ∈3 Pλ = R
n .

It is convenient to think of a fundamental cell as a connected region, although the

definition does not require that.

Definition 2.2.1 implies that given a lattice 3 and a fundamental cell P0, any

point x in space can be uniquely expressed as a sum

x = λ + xe, where λ ∈ 3 and xe ∈ P0. (2.12)

We may think of λ in (2.12) as the quantization of x to the lattice 3,

λ = Q3(x), (2.13)

and of xe in (2.12) as the quantization error. This extends the notion of a nearest-

neighbor quantizer (2.10) with Voronoi partition (2.11), to the case of a general

fundamental cell P0 inducing a lattice partition P = 3 + P0.

The Voronoi partition generated by the nearest-neighbor quantizer (2.10) clearly

satisfies the properties in Definition 2.2.1 (provided that ties are broken in a
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systematic manner). The simplest lattice partition is, however, a parallelepiped

partition generated by some lattice basis g1, . . . , gn . Here P0 is the fundamental

parallelepiped, consisting of all points which are linear combinations of the basis

vectors with coefficients between zero and one:

P0 =
{

x =
n

∑

i=1

αi gi : 0 ≤ α1, . . . , αn < 1

}

(2.14)

= G · Unit Cube, (2.15)

where Unit Cube = {x : 0 ≤ xi < 1, i = 1, . . . , n}. Note that the unit cube is the

parallelepiped partition of the Z-lattice. 5 See Figure 2.4(B).

Since the lattice has more than one basis, its parallelepiped partition is not unique.

Moreover, a shift or reflection of a fundamental cell is another fundamental cell,

which generates another partition of the lattice. Interestingly, though, it follows

from a simple “volume preservation” argument that the volume of a cell is the same

under any lattice partition. And, as we shall see later, all lattice partitions are, in

fact, equivalent in several senses; for example, any fundamental cell is a complete

set of coset shifts in (2.8).

Proposition 2.2.1 (Cell volume) The cell volume

V = Vol(P0) =
∫

P0

dx (2.16)

is independent of the lattice partition P , and it is equal to the lattice determinant of

Definition 2.1.2

V = det(3) = | det(G)| 1= V (3). (2.17)

Proof Consider first the parallelepiped partition (2.14) induced by the generator

matrix G. By a change of variables x = Gx′, and using (2.15), we have

V =
∫

P0

dx = | det(G)|
∫

Unit Cube

dx′ = | det(G)|. (2.18)

Next, for a general partition, consider the cells contained in a large cube B. Since

the cells have a finite diameter, the volume of the fractional cells at the boundary of

the cube B becomes negligible when B is sufficiently large. Thus, if there are N (B)

lattice points inside B, then the cell volume is roughly

V ≈
Vol(B)

N (B)
, (2.19)

independent of the shape of the cells, and this approximation becomes exact when

the edge length of B, and hence also N (B), go to infinity. �

5 To see that the parallelepiped cell P0 in (2.14) satisfies the conditions of Definition 2.2.1, note that (i) the

difference between any two points in P0 is not a lattice point, and (ii) every point outside P0 can be written

as a sum of a point in P0 and a lattice point. See Lemma 2.3.2 in the next section.
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In the following section (see Corollary 2.3.1) we shall see an alternative (more

direct) proof for the second part of the proof above, showing that the cell volume is

partition invariant.

The approximation in (2.19) holds, in fact, for any body which is large compared

to the cells, i.e., the number of lattice points N (S) in a large body S is approximately

Vol(S)/V (3). We thus define the lattice point density as the reciprocal of the cell

volume:

γ (3) =
1

V (3)
, (2.20)

measured in points per unit volume.

2.3 Equivalent cells and coset leaders

An even stronger notion of equivalence between partitions holds: all the funda-

mental cells of a lattice are identical modulo a fixed partition. More explicitly, any

fundamental cell can be decomposed into pieces and rearranged (via lattice shifts)

to form another fundamental cell. Although this may seem to be a geometric prop-

erty, it is, in fact, a consequence of the lattice being a sub-group of the Euclidean

space.

Definition 2.3.1 (Mod P0, Mod 3) For a given lattice partition P with a funda-

mental cell P0, the modulo fundamental cell operation is defined as

x mod P0 = xe = x − Q3(x), (2.21)

where Q3(x) and xe are the quantization and quantization error (2.12), respectively,

induced by the partition P . We shall call this a modulo-lattice operation – and use

the notation x mod 3, or x/3 – whenever there is no ambiguity about the assumed

partition of 3.

Proposition 2.3.1 (Modulo laws) The modulo-lattice operation satisfies the shift-

invariance property

(x + λ) mod 3 = x mod 3, ∀λ ∈ 3, (2.22a)

and the distributive law,

(x mod 3 + y) mod 3 = (x + y) mod 3. (2.22b)

Proof If x = λ′ + xe (with λ′ ∈ 3 and xe ∈ P0) is the unique decomposition (2.12)

of x with respect to a partition P , then x + λ = (λ + λ′) + xe must be the unique

decomposition of x + λ with respect to P , i.e., both x and x + λ have the same

quantization error xe, which proves the shift-invariance property. The distributive

law now follows because the inner modulo operation in (2.22b) amounts to shifting


