
 
 

 

  
Abstract— The paper presents a novel scheme for target-tracking 
realized with two mobile robots, where one robot is configured as 
tracker and the other as moving target. Fuzzy C-means 
clustering algorithm has been employed here to segment the 
target robot in images grabbed by the tracker. A new localization 
algorithm has also been proposed to determine the location of the 
target in the segmented images. An extended Kalman filter has 
been employed here for predicting the direction of motion of the 
moving target from its current and last few positions. The robot 
is pre-trained with back-propagation learning algorithm to plan 
its trajectory amidst obstacles. The pre-trained neural net is used 
in target-tracking application to control the motion of the tracker 
in the predicted direction of the moving target. Performance of 
the proposed neuro-Kalman synergism in target-tracking has 
experimentally been found to be superior to a tracking scheme 
without prediction by Kalman filter.  

 
Index Terms— Fuzzy c-means, Kalman Filter,  Robotic Vision, 

Target Tracking.   

I. INTRODUCTION 
The paper provides a novel approach to target-tracking realized with 
two mobile robots, where one robot acts as a moving target and the 
other plays the role of a tracker. The target robot is controlled 
manually, while the tracker has to predict the motion of the target and 
plan its trajectory to meet the target. The target-tracking problem has 
many interesting applications in defense, such as missile and aircraft 
tracking .The problem addressed in this paper, however, is restricted 
to 2-D only for simplicity of realization with mobile robots. The 
tracking problem in the present context is concerned with: i) 
prediction of the next location of the tracker from its previous and 
current positions and ii) controlling the motion of the tracker towards 
the predicted location of the target. Nomad Super Scout II mobile 
robots have been used to realize the proposed target-tracking scheme. 
These robots have a fixed camera mounted on top of the robot 
and 16 sonar transducers mounted around the cylindrical 
structure of the robot. To determine the current location of the 
moving target, the tracker rolls around its z-axis to grab an 
image of its target on the camera and then determine the radial 
distance of the target by activating the sonar sensors below the 
camera. The well-known extended Kalman filter algorithm has 
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been employed in this paper to determine the next position of 
the moving target from it current and last few positions. After 
the next position of the target is predicted, a pre-trained back 
propagation neural net based algorithm is invoked to control 
the motion of the tracker towards the predicted location of the 
target. 
To determine the next position of the target from its current 
and previous few positions, we need to recognize the target 
from its visual image, which is grabbed by the tracker. The 
recognition process includes an image segmentation algorithm 
realized with the well-known fuzzy C-means clustering 
technique, and followed by a novel localization algorithm, to 
be addressed in Section 2. After localization is over, an image 
matching algorithm, proposed by our research team elsewhere 
[2] is used to recognize the target robot in the localized 
position of the possible target region. 
Significant work has already been undertaken by our research 
team to identify the most appropriate neural algorithm for 
motion planning by a mobile robot [9]. The benchmark 
analysis performed by our research team suggests that the 
Back-propagation neural net algorithm is most efficient for 
motion planning with reference to both the shortest path and 
the shortest time. The same algorithm has therefore been 
employed in the present context to move the tracker towards 
the predicted position of the target. 
Some traces of progresses in target-tracking by mobile robots 
have been reported in the current literature on mobile robotics. 
For example, Ollero and Garcia-Cerezo in a recent book paper 
[16], provide a novel approach to target tracking by mobile 
robots using a fuzzy tracking controller. The merit of their 
tracking scheme lies in automatic updating of the look-ahead 
distance of the target with the help of a fuzzy predictor. 
Hitchings et al. in a recent paper presented a motion-tracking 
scheme of two co-operative robotic agents, where the leader is 
the target and the follower is the tracker. Experiments 
undertaken by these researchers reveal that the follower can 
track both the linear and the curved motion of the moving 
leader [6]. Besides robotic applications, there exists a vast 
literature on target-tracking in applied engineering literature. 
Well-known stochastic algorithms, such as Bayesian tracking 
[19,20] and Kalman Filtering [4] have successfully been used 
for multi-agent tracking in mobile robotics. A complete listing 
of the relevant references will be too large to be presented in 
this paper. Some of the popular works that need special 
mention include tracking using a non-linear filter based on 
portraying min principle [1]. Optimum tracking of a 
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maneuvering target in clutter [8], neural net based tracking 
[11], integer programming based target tracking [13] and 
tracking and classifying without a priori identification [14]. 
Shirai et al. introduced a novel method for visual tracking 
using the well-known principles of optical flow techniques 
[18]. This scheme is useful for its inherent robustness, and has 
many applications in real-time human tracking system in 
cluttered background. The whole work presented in this paper, 
however, is novel from the point of view of the technological 
merits of synergism of Kalman filter and neural networks for 
tracking applications in mobile robotics. 
The paper has been divided into six sections. Section 2 
provides the experimental details of image segmentation and 
object localization. In section 3, we provide the prediction 
scheme of the extended Kalman filter and demonstrate its role 
in determining the next position of the target from its current 
and previous few positions. In section 4, the back-Propagation 
neural net algorithm has been briefly outlined to illustrate its 
application in motion planning of the tracker. Experimental 
results and their interpretations are included in section 5, and 
conclusions are listed in section 6.      

II. IMAGE SEGMENTATION USING FUZZY C-MEANS 
CLUSTERING ALGORITHM 

A monochrome digital image usually is a two-dimensional 
array of gray pixels. On occasions, the components of the 
image are needed to be isolated. The process of isolating 
important regions of an image into components/ modules is 
generally referred to as image segmentation. A number of 
well-known algorithms of image segmentation is available in 
any textbook of image processing [12] [17] [7]. In this section, 
we following Raghukrishnapuram [10] present a study of 
image segmentation [12] using fuzzy c-means algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              
 
 
 
 

The fuzzy c-means clustering algorithm for image 
segmentation has 2 parameters, namely, the number of 
clusters, denoted by ‘c’, and the exponential weighting factor 
‘m’ over the membership functions. The experiments are 
performed by gradually varying these two parameters and 
their effects on clustering are noted. The number of clusters 
needed is usually determined by the problem in hand. For 
segregating a dark object from a light background or vice 
versa, we should select c=2 and thus obtain 2 clusters, one 
corresponding to the dark region and the other to the lighter 
region. Fig 1 shows the results of clustering with c=2. Further, 
the value of exponential weighting factor m has been 
increased in steps from m slightly greater than 1, followed by 
m=1.2 and m=2.5. The variation of m clearly indicates the 
difference between a hard cluster and a soft cluster.  
For the purpose of illustration, we have constructed the figures 
using the membership value of each pixel mapped to gray 
value levels. The contrasting shades in Fig. 2(b) indicate that 
each pixel belongs to either of the classes with large 
membership value and with a very small membership value 
for the other class. This is typical of a hard cluster where the 
pixels are assigned to either of the two classes. In the 
subsequent figures 2(c) and 2(d), the 2 shades become less 
contrasting. As the shades are representing the membership 
values, it means that each pixel now have intermediate 
membership values of belonging to the 2 classes. This is fuzzy 
clustering where each pixel has finite memberships of 
belonging to the 2 classes. Thus, we have greater latitude of 
deciding which pixels to select based on their membership 
values. 
 
 

 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
                                      
In Fig. 3, the number of clusters is 3 and they are represented 
by 3 shades: dark, intermediate gray and light. Here, too, we 
observe that how the value of m alters the final membership 
values of the pixels. As explained in Fig. 2, a value of m close 
to 1 (m=1.01) generates crisp clusters while m=1.2 or larger 
makes the clusters fuzzy.         
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c

Fig. 1: Fuzzy C -means clustering algorithm applied to segment
the given image (a) into 2 clusters with m=1.01 in (b),  m=1.2 
in (c), and m=2.5 in (d). 

Fig. 2: Fuzzy C-means clustering algorithm applied to segment
the image in 2(a) into 3 Clusters with m=1.01 in (a), m=1.2 in
(b) and m=2.5 in (c). 



 
 

 

In all the above experiments, we used gray level of the pixels 
as the feature of interest and accordingly constructed the 
feature vector. In Fig. 3(b), we observe that although the 
clustering is done, we do not get the cluster as expected 
intuitively. This may be attributed to the fact that the general 
illumination of the image is so low that the black objects 
cannot be distinguished from the surrounding floor based on 
gray level alone. We propose that in such circumstances, some 
transformation of the gray level values be taken to construct 
the feature vector. The choice of this transformation is based 
on some prior knowledge of the object of interest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To illustrate the above point, let us consider the case where we 
are interested in segregating some dark object from a poorly 
illuminated workspace. The suitable transformation in such a 
circumstance is to take the logarithm of the gray level values 
of the pixels. As we know, logarithmic transform expands and 
emphasizes the lower values and cramps the larger value in a 
smaller range, thus de-emphasizing them. Fig. 3(c) illustrates 
the process of clustering with gray levels as the elements of 
the feature vector. It is now observed that this transformation 
has successfully clustered the ‘very’ dark objects from the 
dark environment. Thus, we have a third controlling factor, 
namely, the transformation on the gray level, whereby we may 
classify the image according to the requirements of the 
problem in hand. 

III. OBJECT LOCALIZATION 
Once the robot and other objects, which have sufficiently low 
gray scale values, are segmented from the image by FCM 
clustering algorithm, the task that remains at hand is to 
localize the robot solely from the other black objects. This is 
however difficult because it involves separating the 
geographically isolated objects in the image. The most widely 
used technique for object localization is region growing. In the 
present scenario, the conventional region-growing technique 
fails because the seed point, which needs to be initialized in 
the algorithm, cannot always be located within our object of 
interest. Moreover, high time complexity of the algorithm 

renders it automatically vulnerable for real-time applications 
like navigation or target tracking.    
After considering all these constraints, a novel algorithm for 
object localization has been devised [5]. One useful feature 
that is used at this point is the size information of the object 
under consideration. The essence of this algorithm lies in 
splitting the FCM clustered image into some fixed size 
windows/blocks and determining whether each window is 
dark black, indicating the robot region. The next task is to 
identify the connected windows by testing the 4-connectivity 
between them. Then the 4-connected windows are clubbed 
together to form the separate geographic regions.  
The selection of the experimental window size is a pertinent 
parameter to be determined judiciously. A large sized window 
may include more than one object. For example, a large 
window may include the target object with others. A small 
window size is good for accuracy, but a too small window 
demands a significant computational time.  The size of the 
window chosen in the present application is of 12 × 16 pixels. 
In fact, the choice of 4-connectivity testing over that of the 8-
connectivity testing for identifying geographically connected 
regions is also guided by the same consideration that the 
whole computation process should be amenable to a real-time 
application. A procedure is presented below, describing the 
various steps of the object localization process.  
 
PROCEDURE LOCALIZE-OBJECT 
Input: FCM clustered image (containing the robot and other 
black objects as one cluster and every other object as another 
cluster) 
Output: An image containing localized target object, well 
separated from noise and other objects having similar type of 
coloration as that of the target 
Begin 
Step1:  partition the input image into (m x n) number of equal 
sized blocks;  
Step2: For each block (i, j) Do 

 Begin 
   For each pixel within a block Do 

 Begin 
  If intensity of pixel <=20 
  Then declare it dark and increase  

  dark_pixel_count_block (i, j) by 1; 
   End For; 
Step3:   If dark_pixel_count_block (i, j) >50 
              Then mark block (i, j) as dark; 
      End For; 
Step4:  k: =1; 
 Repeat 

Region[k]= any dark block(i, j); 
Region_count[k]: =0; 
For each dark block (i, j) in Region[k]  

 If its neighbors are dark, 
 Then do 

Begin 
Region[k]: =Region[k] U (block(i, j)); 

 Region_count[k]: = Region_count[k] +1; 

a b

c 
Fig. 3: Fuzzy C-means clustering algorithm applied to isolate
very black objects from the image in (a) with grayscale as the
feature vector in (b), logarithm of the grayscale as the feature
vector in (c). 



 
 

 

 End For; 
 Mark Region[k] dark; 
 k: =k+1; 

Until no dark blocks remain; 
 K: =kmax; 
Step 5: For k: =1 to kmax 

 Identify the Region with the largest    
 Region_count[k] and  
 Call it target; 

             End For;  
End. 
The procedure localize-object aims at identifying the locations 
of the target object in a segmented image. in the present 
context, the target object has been assumed to occupy the 
largest area. thus identifying the largest dark region in the 
image suffices our purpose.   
The procedure comprises of 5 main steps. In step 1, we 
partition the given segmented image into m.n number of equal 
sized blocks. Step 2 of the algorithm identifies dark pixel 
based on their intensity values. For this implementation, we 
select a threshold of 20. Thus if pixel intensity is less than 20, 
it is declared dark. The dark pixel count in each block is also 
determined in this step. Step 3 marks a block dark if its dark 
pixel count exceeds 50. Step 4 of the procedure assembles 
neighborhood dark blocks in the segmented image into regions 
such that each two regions are disjoint. In step 5 of the 
algorithm we declare the largest region as the target object. 
The localization of the robot from the segmented image of Fig. 
4(a) is presented in Fig. 4(b) for convenience.  
In case the largest region does not correspond to the target 
object, the regions need to be sorted in descending order based 
on their block counts. Now, a shape-matching algorithm may 
be invoked for comparing the boundary of the target object 
with each region in the list in sequence. The region having the 
closest resemblance with the reference object shape is 
declared as the target.  
The process of image localization presented in this section has 
been utilized to build a real-time system for vision based 
target tracking and co-operation schemes in mobile robotics. 
The novelty of the approach lies in a successful merging of the 
FCM algorithm for image segmentation with the “windowing-
and-connectivity-checking” method for image localization.  
 
 
 
 
 
 
 
 
 
 
 
 
 
One interesting and noteworthy issue about the application of 
the FCM algorithm is the selection of the logarithm of the 

pixel intensities as the feature. Such selection is important for 
segmenting a dark target from a background of comparable 
(but unequal) darkness.  If gray scale intensities, instead of 
their logarithms, are directly used as the feature, then 
segmentation of comparable dark regions in an image is not 
feasible. 

IV. TARGET TRACKING AND INTERCEPTION BY MOBILE    
ROBOTS USING KALMAN FILTERING 

Target tracking is a problem of common interest for 
researchers of numerous domains. The concept of target 
tracking classically emerged from the disciplines of control 
engineering. The concerned problem in the present context is 
to predict the online trajectory of a moving target by a given 
tracker. Usually, the speed of response of the tracker is higher 
or at least comparable to that of the target. Since the intelligent 
target and the tracker both use the same level of technology, it 
is expected that their speed of response is more or less 
comparable. Designing an intelligent tracker under such a 
circumstance is really a complex problem. In this section, we 
present the design and implementation aspects of an intelligent 
tracker. The tracker employs a video camera to capture the 
images of the moving target for segmentation and subsequent 
localization of the target in its image.  It then identifies the 
location of the target by a range finder and consequently plans 
a path towards the target by using the knowledge of the 
obstacle map in its workspace. An overview of the proposed 
scheme of target tracking is outlined below.  
For realization of the target-tracking scheme, 2 mobile robots 
identical in all respects have been configured as the target and 
the tracker. Each robot has its own desktop server and is 
equipped with a movie type video camera, a video frame 
grabber, a radio communication system and 16 ultrasonic 
transducers mounted around the periphery of the robot at 
uniform spacing. The target robot is controlled to move on a 
fixed trajectory by a control program running at its desktop 
server. The tracker robot on the other hand receives sensory 
information by using the video camera and the ultrasonic 
sensors. The received real time video frames collected by the 
tracker robot are first transferred to its server. The server 
preprocesses the image and segments it into objects of interest 
(here the target robot). A fuzzy clustering technique is then 
invoked for segmentation and subsequent localization of the 
target.  After the target is identified in the image, its distance 
and orientation with respect to some reference axis of the 
tracker needs to be determined. The following scheme has 
been undertaken to evaluate the polar co-ordinate of the target 
with reference to two mutually perpendicular axes of the 
tracker. 
First, the tracker robot should activate its sonar transducers. 
The particular sonar transducer radiating its beam towards the 
target gives an approximate measure of the range of the target 
with respect to the tracker.  The polar co-ordinate (r, θ) of the 
target with respect to a reference x-axis, say Sonar12-axis, of 
the tracker is then determined.  

a b 

Fig. 4:  The target robot (b) has been isolated
from the image (a) by “windowing and
connectivity checking”. 



 
 

 

The sonar readings in all other directions of the tracker 
describe the range of the obstacles in the tracker's world map.  
These readings along with the estimated range of the target are 
supplied as input to a pre-trained neural net for controlling the 
speed and direction of motion of the tracker. Since the control 
decision about the motion generated by the neural net is based 
on the sampled (sonar/ vision) data of the last cycle, the 
tracker may occasionally be misled by wrong control 
commands. To overcome the limitation, a 'tracker motion 
predictor' may be employed in the system. The predictor 
should provide the possible current direction of motion of the 
target from its preceding positions. This has been realized by 
embedding an extended Kalman filter in the proposed scheme. 
A complete schematic diagram of the proposed tracking 
system is presented in Fig. 5. 
The proposed work has a number of merits with respect to 
traditional target tracking systems. First, most traditional 
systems are designed with the pre-assumption that the speed of 
the target is less than that of the tracker. Fortunately, the 
proposed design is free from such constraints. Secondly, 
conventional trackers usually do not estimate the range of the 
target, and therefore do not pay much attention to velocity 
modulation of the tracker. The present work, however, takes 
care of the range measurement of the dynamic target, and 
consequently adjusts the velocity of the tracker on-line. 
Thirdly, accuracy in range estimation along near-linear 
trajectories has shown significant improvement in this 
presentation by employing extended Kalman filtering. Lastly, 
the proposed tracker requires insignificantly small time of the 
order of 400 milliseconds only to respond to a change in the 
target position. Finally, the back-propagation algorithm being 
trained with quite a large number of sensory-response 
instances selects the right step of discrete motion of the 
tracker. The min-square error in position of the tracker with 
respect to the dynamic target position thus diminishes in most 
cases.  
 
IV.1 Measurements of the Input to Kalman Filter 
 
The Kalman filter employed in the tracking system can predict 
the current position of the target from its preceding positions. 
The accuracy in prediction by a Kalman filter greatly depends 
on the time gap between successive data samples. The time 
needed for on-line image registration, segmentation, 
localization and neural net activation being of the order of 400 
milliseconds, the sampling interval cannot be fixed less than 
400 milliseconds. The prediction of the current position of the 
target from its last, say 3 positions indirectly means exciting 
the filter with the sonar data collected (400 × 3) milliseconds = 
1.2 seconds earlier. Since the speed of the robots is 
considerably high (around 20 inches/ second), the predicted 
current position of the target may suffer from inaccuracy. To 
overcome the above problem the tracker is designed to work 
in 2 phases. 
In the first phase, the tracker is given a controlled rotation 
around its z-axis so that it can direct its vision system to grab 3  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
successive frames of the target. Let the polar co-ordinates of 
these 3 positions be (r0,θ0), (r1, θ1) and (r2, θ2) respectively.  
All these measurements are performed by considering the S12 -
axis of the Super Scout II robot as the reference x-axis and S0 
as the reference y-axis. 
Fig. 6 describes 3 successive positions of the target in the 
measurement update phase of the tracker. The time t=0, t=t1, 
t=t2 correspond to the image sampling times associated with 
these measurements. After the measurement update phase is 
over, the tracker switches to prediction phase. In the prediction 
phase, the tracker determines the current position of the target 
from its preceding positions (ri, θi) for i= 0 to 2. Once the 
prediction phase is over, the tracker starts its next 
measurement update phase, and the process continues until the 
tracker intercepts the target. A schematic view of a tracking 
cycle comprising of the measurement update phase and 
prediction phase is presented in Fig. 7. 
Fig. 6 describes 3 successive positions of the target in the 
measurement update phase of the tracker. The time t=0, t=t1, 
t=t2 correspond to the image sampling times associated with 
these measurements. After the measurement update phase is 
over, the tracker switches to prediction phase. In the prediction 
phase, the tracker determines the current position of the target 
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Fig. 5: A schematic diagram of the proposed target – 
tracking scheme. 



 
 

 

from its preceding positions (ri, θi) for i= 0 to 2. Once the 
prediction phase is over, the tracker starts its next 
measurement update phase, and the process continues until the 
tracker intercepts the target. A schematic view of a tracking 
cycle comprising of the measurement update phase and 
prediction phase is presented in Fig. 7. 
 
 
 
 
 
 
 
 
 
 

          

 

  The tracker robot in its observation phase locates the target  

      The target robot in three different positions. 
 

 
 
 
 

 
   

 
 

 
 

 
            

IV.II Extended Kalman Filter- an Overview 

Kalman Filtering [3], which basically stems from statistical 
estimation theory, has tremendous applications in robotics. A 
Kalman filter is a digital filter that provides a recursive 
solution to an estimation problem. It is impossible to explore 
such a vast and important mathematical tool in a few 
paragraphs. In the present section, the principle of extended 
Kalman filtering is just outlined to demonstrate its application 
in target tracking. 
An extended Kalman filter [15] is a digital filter that attempts 
to minimize the measurement noise for estimating a set of 
unknown parameters, linearly related with a set of 
measurement variables. The most important significance of 
this filter is that it allows recursive formulation and thus 
improves accuracy of estimation up to the  users’ desired level 
at the cost of new measurement inputs.  
 
Let 
           f i (xi, a) = 0 be a set of measurement equations 

describing relationships among an estimator vector a 
and measurement variable vector xi, 

 

           xi *    = xi  + li, , where li is a white Gaussian type 
measurement noise such that  

          E [ li] =0, E [li li T] = positive symmetric matrix Λi, and 
E [li lj T ] =0, 

 
           ai – 1*   = a + si – 1,  where si – 1  is a white Gaussian type 

estimation noise  such that E[si – 1] = 0,  
 
          E [ si -1 sj - 1

T] = positive  symmetric matrix Si – 1 and     
          E [Si –1  Si – 1

T ] =0. 
 
Expanding f i (xi, a) by Taylor’s series around (xi

 *, ai – 1
* ), we 

find   
f i (xi, a) =   fi (xi* , ai –1*) +  (∂ fi / ∂ x) (xi – xi *)  + 
                   (∂ fi / ∂ a) (a – ai -1*)                    

    =0.                                                                            (1) 
 

After some elementary algebra, we find 
 yi = Mi  a +  wi                                                                       (2)                   
where  yi  =   -  fi (xi* , ai –1)  + ( ∂ fi / ∂ a) (- ai -1*)               (3)                    
is a new measurement vector of dimension (pi x 1). 

 
Mi  =  (∂ fi / ∂ a)                                                                     (4)                    
and wi   = (∂ fi / ∂ x ) (xi – xi *)                                              (5)                    
is a measurement noise vector of   dimension (pi × 1). We also 
want that E [wi] =0 and define 
Wi = E [wi wi

T ] =  ( ∂ fi / ∂ x) Λi  ( ∂ fi / ∂ x)T.                     (6)                    
Let      Si    = E [( ai – aI

*) (ai  – ai*)T ]                                    (7)                    
 

An attempt to minimize Si  yields the filter equations [10], 
given by: 

 
ai* = ai – 1* +  Ki (  yi – Mi ai –1*)                                           (8)                    

   
Ki = Si – 1 Mi T (Wi + Mi Si – 1Mi

 T)  - 1        and                          (9)                   
 

Si = (I – Ki Mi ) Si – 1.                                                                                            (10)    

                                                    
Given S0 and a0, the Kalman filter recursively updates ai, Ki, 
Si until the error covariance matrix Si becomes insignificantly 
small, or all the number of data points have been submitted. 
The ai thus obtained after termination of the algorithm is the 
estimated value of the parameters. 
 

IV.III Predicting Target Position Using Extended   
Kalman Filter 

 
Let the input measurement vector x be given by 
 

 r 
x =       θ                                                                           (11)    
                t  
 
where 
            r is the perpendicular distance of the target from    
           the tracker at time t, 

Time 
Update 

(Predict) 

Measure-
ment 

Update 
(Correct) 

Fig.7:  The recursive Kalman filter cycle. 

Fig. 6:  The tracker observing the motion of the target. 
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             θ is the angular displacement of the target measured 
with respect to the axis S12 of the tracker, i.e. θ  is the 
angular shift of tracker with respect to the target from 
time  t=0 to the current time of observation, 

           t is the time elapsed measured from the beginning   
           of the observation phase  
 
Let the measurement equations in the present context be 
 
                            at2+bt+c-rcosθ          
          fi  =                                                   = 0                  (12) 
                   pt2+qt+s-rsinθ 
 

where 
           c and s are the initial displacements of the target with 

respect to S12 axis and its   perpendicular direction, 
           b and q are the velocity in the corresponding    
           directions, and 

    a and p are the time rate of change of velocity in   
    the corresponding   directions. 

 
For determination of the current position of the target we need 
to evaluate a, b, c, p, q, s from the measured (r, θ)s at time t= 
0, t= t1 and t=t2 respectively. The estimated values of a, b, c, p, 
q, s then may be substituted in the measurement equations to 
evaluate r cos θ and r sin θ at time t ≥t2. 
The estimator in the present context thus is given by   
 

                     a 
           b 
                     c 

                    a =           p                                                       (13)                                                                                                    
                       q 
                           s 
 
 
For the evaluation of the estimator we, however, need to 
determine the following derivatives: 
 
    ∂fi /∂x=       -cosθ       r sinθ      2at+b                  (14) 
                       - sinθ      -r cosθ     2pt+q 
 
 
 ∂fi /∂a=    t2      t       1        0        0       0                             (15)     
                  0      0      0        t2        t       1       . 
 Let 
 
   ∧i =         α        0      0                                                       (16) 
                  0        β       0 
                  0        0       γ  

 
 
where   α = the variance of the noise in measurement of range   
             r,  
             β = the variance of the noise in measurement of    
             angle θ, 
            and    γ = the variance of the noise in measurement   

            of time t. 
The algorithm for the evaluation of the current position (r,θ) 
of the tracker at time t = t3 from its preceding positions is 
presented below. 
 
Procedure Evaluate (r0 , θ0 , r1, θ1, r2, θ2) 
Begin 

Initialize  
a) W0:= ( ∂ f0 / ∂ x) Λi  ( ∂ f0/ ∂ x)T where Λ0 and 

( ∂ f0 / ∂ x) are available in expressions (16) 
and (14) respectively; 

b)  S0  as a diagonal matrix with large positive 
diagonal values; 

c)  a0 to be zero; 
d) M0 := ∂ f0 / ∂a vide expression (15); 
e) loop iteration index i:= 1; 

Repeat 
a) input new measurement xi and evaluate yi by 

expression (2); 
b) update Ki, ai, Si  in order using expressions 

(9), (8) and (10);  
              Until abs(ai - ai-1) <a pre-defined threshold; 

Determine 
a) at2+bt+c at time t= t3 > t2; 
b) pt2+qt+r  at time t=t3> t2 
 for known a, b, c, p, q and r; 

End.  
 

IV. IV Use of the Back-Propagation Neural Net 
 
After the current target position and the obstacle locations in 
the tracker's workspace are determined, we use a pre-trained 
back-propagation neural net for controlling the step-wise 
motion of the tracker. A three layered feed-forward neural net 
has been employed in the present context for generating the 
control commands for motion of the tracker.  The inputs of the 
neural net are the sonar readings obtained by the tracker robot 
at time t=t3 and the predicted target position at time t= t3. In 
our realization, we considered the readings from 7 sonar 
transducers; consequently, the neural net has 8 inputs, the last 
one being the predicted position of the target.  
The output of the neural net could be the amplitude and 
direction of motion of the tracker robot. But since speed of 
response is a prime consideration in the tracker design, we 
need to modulate the speed of the target depending on the 
estimated range of the tracker and obstacle locations. Thus 
speed and heading direction have been considered as the 
output fields of the proposed neural net. It may be added here 
that unlike in section 2 of the previous paper, where the 
heading direction was represented by 2 fields (amplitude and 
clockwise/ counter-clockwise orientation), the heading 
direction in the present context has been represented by a 
single field to limit the output fields to 2 only. 
The proposed neural net is trained using 600 training instances 
with a root mean square sum error at the output layered nodes 
below 0.003 units. Approximately 10,000 learning epochs are 



 
 

 

needed to train the neural net with the said error margin. In the 
application phase, the neural net just requires one forward 
pass, thus the speed of response of the neural net is very fast 
of the order of 0.5 milliseconds on a IBM 300 M-Hz Pentium 
machine. 

V. EXPERIMENTAL RESULTS 
The experiments were carried out on Nomad simulator and 
also on 2 practical super scout II mobile robots. Figures 8 and 
9 describe 2 simulated runs of the tracking program. Fig. 8 has 
been run by directly feeding the measured range to the input of 
the neural net. In Fig. 9 extended Kalman filter has been 
employed to predict the current position of the moving target. 
It is clear from these 2 figures that the tracker can generate 
more accurate control commands in presence of the extended 
Kalman filter. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI CONCLUSIONS 
The paper examined the scope of fuzzy c-means clustering 
algorithm in segmentation of a moving object from the real-
time video stream and its localization by the proposed 4-
neighbor match algorithm. The experimental results on FCM 

clustering reveal that the logarithm of the gray scale pixel 
intensity is a good feature for clustering the dark  
pixels from relatively less dark ones. The localization 
algorithm is very efficient, as it needs minimum search to 
localize the object in the scene. 
The paper also attempted to develop a scheme for target 
tracking and interception of mobile robots. An extended 
Kalman filter has been employed here to predict the next 
position of the target robot from its current and few preceding 
positions. A pre-trained back-propagation neural net is used to 
generate the motion information of the tracker from the 
predicted target position and the obstacle map around the 
tracker. The speed of response of the tracker, being very fast 
of the order of 400 milliseconds, significantly reduces  the 
probability of missing the target.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 8: Target tracking and interception without Kalman
filter. The rectangular white window represents the
tracker's world map. The dark objects denote the obstacles
in the map. The path with circular traces denotes the
trajectory of the target, and the solid path describes the
trajectory of the tracker. The scheme was tested on a
Nomadic platform. 

Fig.  9: Target tracking and interception with Kalman
filtering. The tracker here intercepts the target much earlier
than what it had done in fig. 8. 
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