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                         Abstract-In this paper; we are interested principally in 
dynamic modelling of quadrotor while taking into account 
the high-order nonholonomic constraints in order to develop 
a new synoptic control scheme as well as the various 
physical phenomena, which can influence the dynamics of a 
flying structure. These permit us to introduce a new state-
space representation and a new control scheme. We present 
also the development and the synthesis of a control 
algorithm based on sliding mode technique ensuring desired 
tracking trajectories, regulation and Lyapunov stability. 
Finally simulation results are also provided in order to 
illustrate the performances of the proposed controller. 
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I.   INTRODUCTION 
  Unmanned aerial vehicles (UAV) have shown a 
growing interest thanks to recent technological 
projections, especially those related to 
instrumentation. They made possible the design of 
powerful systems (mini drones) endowed with real 
capacities of autonomous navigation at reasonable 
cost.   
  Despite the real progress made, researchers must still 
deal with serious difficulties, related to the control of 
such systems, particularly, in the presence of 
atmospheric turbulences. In addition, the navigation 
problem is complex and requires the perception of an 
often constrained and evolutionary environment, 
especially in the case of low-altitude flights.   
  Nowadays, the mini-drones invade several 
application domains [4]: safety (monitoring of the 
airspace, urban and interurban traffic); natural risk 
management (monitoring of volcano activities); 
environmental protection (measurement of air 
pollution and forest monitoring); 
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intervention in hostile sites (radioactive workspace 
and mine clearance), management of the large 
infrastructures (dams, high-tension lines and 
pipelines), agriculture and film production (aerial 
shooting).   
  In contrast to terrestrial mobile robots, for which it is 
often possible to limit the model to kinematics, the 
control of aerial robots (quadrotor) requires dynamics 
in order to account for gravity effects and 
aerodynamic forces [3]. 
  In [7], authors propose a control-law based on the 
choice of a stabilizing Lyapunov function ensuring the 
desired tracking trajectories along (X, Z) axis and roll 
angle. However, they do not take into account 
nonholonomic constraints. In [9], authors do not take 
into account frictions due to the aerodynamic torques 
nor drag forces or nonholonomic constraints. They 
propose a control-law based on backstepping in order 
to stabilize the complete system (i.e. translation and 
orientation). In [1], authors take into account the 
gyroscopic effects and show that the classical model-
independent PD controller can stabilize asymptotically 
the attitude of the quadrotor aircraft. Moreover, they 
used a new Lyapunov function, which leads to an 
exponentially stabilizing controller based upon the 
PD2 and the compensation of coriolis and gyroscopic 
torques. While in [2] the authors develop a PID 
controller in order to stabilize altitude.  
  Others papers; presented the sliding mode and high-
order sliding mode respectively like an observer [13] 
and [14] in order to estimate the unmeasured states 
and the effects of the external disturbances such as 
wind and noise. 
  In this paper, based on the vectorial model form 
presented in [2] we are interested principally in the 
modelling of quadrotor to account for various 
parameters which affect the dynamics of a flying 
structure such as frictions due to the aerodynamic 
torques, drag forces along (X, Y, Z) axis and 
gyroscopic effects which are identified in [2] for an 
experimental quadrotor and for high-order 
nonholonomic constraints [11]. Consequently, all 
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these parameters supported the setting of the system 
under more complete and more realistic new state-
space representation and new control scheme which 
cannot be found easily in the literature being interested 
in the control laws synthesis for such systems.   
  Then, we present a control technique based on the 
development and the synthesis of a control algorithm 
based upon sliding mode using linear sliding surfaces 
and ensures Lyapunov stability and desired tracking 
trajectories expressed in term of the center of mass 
coordinates along (X, Y, Z) axis and yaw angle, while 
the desired roll and pitch angles are deduced from 
nonholonomic constraints unlike to [9]. 
  Finally, all synthesized control laws are validated by 
simulations for the complete model. 
 

II. MODELLING 
 A.   Quadrotor Dynamic Modelling 
  

 
 
 
 
  The aerial robot under consideration consists of a 
rigid cross frame equipped with four rotors [1] as 
shown in figure 1. The up-down motion is achieved by 
increasing or decreasing the total thrust while 
maintaining an equal individual thrust. The forward/ 
backward, left/ right and the yaw motions are achieved 
through a differential control strategy of the thrust 
generated by each rotor. In order to avoid the yaw drift 
due to the reactive torques, the quadrotor aircraft is 
configured such that the set of rotors (right-left) 
rotates clockwise and the set of rotors (front-rear) 
rotates counter-clockwise. There are no direction 
changes in the rotors rotation. If a yaw motion is 
desired, one has to reduce the thrust of one set of 
rotors and increase the thrust of the other set while 
maintaining the same total thrust to avoid an up-down 
motion. Hence, the yaw motion is then realized in the 
direction of the induced reactive torque. On the other 
hand, forward and backward motion are achieved by 
pitching in the desired direction by increasing the front 
(rear) rotor thrust and decreasing the rear (front) rotor 
thrust to maintain the total thrust. Finally, a sideways 
motion is achieved by rolling in the desired directio  
by increasing the left (right) rotor thrust and 
decreasing the right (left) rotor thrust to maintain the 
total thrust. 

n

  Let ( , , , )E O X Y Z denote an inertial frame, and 

 denote a frame rigidly attached to the 
quadrotor as shown in figure 2.    
( ', , ,B o x y z

 
 

)

 Figure. 2 : quadrotor configuration. 
 
 
We will make the following assumptions:   

• The quadrotor structure is rigid and 
symmetrical. 

• The center of mass and o’ coincides. 
• The propellers are rigid. 
• Thrust and drag are proportional to the square 

of the propellers speed.   
Under these assumptions, it is possible to describe the   
fuselage dynamics as that of a rigid body in space to 
which come to be added the aerodynamic forces 
caused by the rotation of the rotors. 
Using the formalism of Newton-Euler, the dynamic 
equations are written in the following form:   
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Figure. 1: Typical example of a quadrotor.   

ξ is the position of the quadrotor center of mass with 
respect to the inertial frame.  is the total mass of the 
structure and 

m
3 3J R ×∈  is a symmetric positive definite 

constant inertia matrix of the quadrotor with respect 
to .  B
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Ω is the angular velocity of the airframe expressed in 

: B
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                    (3) 

 
In the case where the quadrotor performs many 
angular motions of low amplitude  can be 

assimilated to

Ω
[ ]T  ψθφ &&& . 

R is the homogenous matrix transformation [12]. 
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Where C and S indicate the trigonometrical functions 
cos and sin respectively. is a skew-symmetric 

matrix. For a given vector 

( )S Ω

[ ]1 2 3  TΩ = Ω Ω Ω it is 
defined as follows: 
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fF   is the resultant of the forces generated by the four 
rotors. 
 

4
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           2
i pF K ω=                             (6)                     

Where is the lift coefficient and pK iω is the angular 
rotor speed. 

tF  is the resultant of the drag forces along ( , ,X Y Z ) 
axis. 
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Where and  are the translation drag 
coefficients.  

,ftx ftyK K ftzK

gF is the force gravity. 

[ ]0 0 - T
gF m= g

)

⎤
⎥

⎥
⎥⎦

                         (8) 

fΓ is the moment developed by the quadrotor 
according to the body fixed frame. It is expressed as 
follows: 
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d is the distance between the quadrotor center of mass 
and the rotation axis of propeller and is the drag 
coefficient. 

dK

aΓ  is the resultant of aerodynamics frictions torques. 
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,fax fayK K and are the aerodynamic friction 
coefficients. 

fazK

gΓ  is the resultant of torques due to the gyroscopic 
effects. 

    

( )

4

1 1

0
0

1
g r

i i
i

J

ω
= +

⎡ ⎤
⎢ ⎥

Γ = Ω∧ ⎢
⎢ ⎥
−⎢ ⎥⎣ ⎦

∑ ⎥            (11) 

Where  is the rotor inertia. rJ
Consequently, the complete dynamics is as follows:   
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1 2, ,U U U3 and  are the control inputs of the 
system which are written according to the angular 
velocities of the four rotors as follows: 
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and                   ( )1 2 3 4ω ω ω ωΩ = − + −  
 
 B.    Nonholonomic Constraints 
 
  Taking into account nonholonomic constraints for 
our system is of major importance as are in 
compliance with physical laws and define the coupling 
between various states of the system.   
  From the equations of the translation dynamics (12) 
we can extract the expressions of the high-order 
nonholonomic constraints:   
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 C.   Rotor Dynamic 
  
  The rotor is a unit constituted by D.C-motor 
actuating a propeller via a reducer. The D.C-motor is 
governed by the following dynamic equations:   

     

2

e

m r s r

diV ri L k
dt

dk i J C k
dt

ω

ω ω

⎧ = + +⎪⎪
⎨
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                                      (15)  

 
The different parameters of the motor are defined as 
follows:   
 V  : motor input. 
  : electrical and mechanical torque constants, 
respectively. 

,e mk k

rk :  load constant torque. 
r  : motor internal resistance. 
rJ  : rotor inertia. 

 sC : solid friction. 
 
Then, the model chosen for the rotor is as follows:   

        2
0 1 2i i ibV iω β β ω β ω= − − −&              (16) 
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III. SLIDING MODE CONTROL OF QUADROTOR 
  
  The choice of this method is not fortuitous 
considering the major advantages it presents: 

− It ensures Lyapunov stability. 
− It ensures the robustness and all 

properties of the desired dynamics. 
− It ensures the handling of all system 

nonlinearities. 
The model (12) developed in the first part of this paper 
can be rewritten in the state-space form: 
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From (12) and (17) we obtain the following state 
representation: 
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  The state representation of the syste
form has never been developed before. 
  From the high-o der n nholonomic constraints 
develop  in (14), 

r o
ed φ  and θ  angles depend y 

on the 
 not onl

ψ  but also on the motions along ( , ,X Y Z ) 
axis and their dynamics. However, the adopted control 
strategy is summarized in the control of two 
subsystems: the first relates to the position control 
while the second is that of the attitude control, as 

own in figure 3. 
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 A.   Stabilizing Control Laws Synthesis 

an satisfy the 

thesized stabilizing control laws are as 

 
  In this section, the purpose is to design a sliding 
mode controller. The basic sliding mode controller 
design procedure in our case is performed in two 
steps. Firstly, the choice of sliding surface (S) 
according to the tracking error. In the second step, 
design a Lyapunov functio  cn which
necessary sliding condition ( 0SS <& ). 
  The syn
follows: 
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n is verified and Lyapunov stability is 
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The same steps are followed to 
extractU U . 3 4,  ,  ,   and x y

 
 B.    Simulation Results 
  
 The simulation results are obtained based on the 
following real parameters [15]: 

 
 
 

      
 

Figure. 4: Global trajectory of the quadrotor 
in 3D  
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