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Abstract—In this article, an original algebraic
method is used for the estimation of state variables.
The estimation is used to implement a position con-
trol scheme for DC motors. In addition, the estima-
tion of the Coulomb’s friction coefficient of the servo
motor model is also investigated. The approach is
based on elementary algebraic manipulations which
lead to specific formulaes for the unmeasured states.
The state estimation algorithm is verified by simula-
tions.
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1 INTRODUCTION

Control design methods such as state feedback controls,
which use the states in their control laws, are designed un-
der the assumption that all state variables are accessible
for measurement. However, in many practical applica-
tions to measure all state variables may not be economical
or convenient. An alternative approach is to use an es-
timation technique to provide estimates of that variables
which are not measured, based on the available measure-
ments, for its implementation on a feedback control law.

The foundation of linear state estimation was laid by
Kalman in [1], Kalman and Bucy in [2], who developed
the Kalman filter, which is an efficient recursive filter
for linear systems. This processes all available measure-
ments to estimate the current value of the variable of
interest by taking into account 1) the system knowledge
and measurement device dynamic, 2) the statistical de-
scription of the system noises, measurement errors and
uncertainty in the dynamics model, and finally 3) any
available information about the initial conditions of the
variables of interest. Later, Luenberger in [3] and [4]
introduced a deterministic version of the Kalman filter,
known as Luenberger observer. The theorical properties
of the Kalman filter and the Luenberger observer are well
understood and can be found in estimation and system
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hsira@cinvestav.mx

theory textbooks [5], [6].

It is clear that for an observable system, expressed in
state space, the state estimation problem is intimately re-
lated to the computation of time derivatives of the output
signals, in a sufficient number. The main contribution of
this article is that we attempt an algebraic method, of
non-asymptotic nature, for the estimation of states, com-
puting a finite number of time derivatives of the system
output. The method is based on elementary algebraic
manipulations which lead to specific formulaes for the
unmeasured states. The proposed approach uses the sys-
tem model, which is known most of times.The estimation
method is based on elementary algebraic manipulations
of the following mathematical tools: module theory, dif-
ferential algebra and operational calculus. They were de-
veloped in [8]. A differential algebraic justification of this
article follows similar lines to those encountered in [9],
[10], [11], [12], [13] and [14].

In this work, we use a state estimation method of
continuous-time nature for the estimation of unmeasured
states of a DC servomotor model to implement a closed
loop PD control scheme. After the estimates of the state
variables are obtained by the algebraic method proposed,
the Coulomb’s friction coefficient is instantaneously esti-
mated. The importance of estimating this coefficient and
subsequent compensation, in the control scheme, is ex-
plained in [7].

This paper is structured as follows: in Section 2, the
DC servo motor model and the algebraic state estimation
are explained. In Section 3, simulation results verify the
correctness of the method; the identification of Coulomb’s
friction coefficient by using the algebraic state estimator
is developed, and the state estimation procedure applied
to PD control is also implemented. Finally, Section 4 is
devoted to concluding remarks.

2 MOTOR MODEL AND ESTIMA-
TION PROCEDURE

This section is devoted to explain the linear model of
the DC motor and the algebraic identification method.
We assume that the linear model is affected by unknown
perturbation due to the Coulomb‘s friction effects.
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2.1 DC Motor model

A common electromechanical actuator in many control
systems is constituted by the DC motor [15]. The DC
motor used is supplied by a servo-amplifier with a current
inner loop control of the PI type.

The dynamic equation of the system, by using Newton’s
Second Law, can be expressed as follows:

kV = J
¨̂
θm + ν

˙̂
θm + Γ̂c(

˙̂
θm) (1)

where J is the inertia of the motor
[
kg ·m2

]
, ν is the

viscous friction coefficient [N ·m · s], Γ̂c is the unknown
Coulomb friction torque, which affects the motor dynam-
ics [N ·m]. This nonlinear friction term is considered as
a perturbation, depending only on the sign of the angular
velocity of the motor, of the form µsign(θ̇m), with µ con-
stant. The parameter k is the electromechanical constant
of the motor servo-amplifier system [Nm/V ]. ¨̂

θm and ˙̂
θm

are the angular acceleration of the motor
[
rad/s2

]
and

the angular velocity of the motor [rad/s] respectively.
The constant factor n is the reduction ratio of the motor
gear; thus θm = θ̂m/n, where θm stands for the position
of the motor gear and θ̂m for the position of the mo-
tor shaft. Γc = Γ̂cn, where Γc is the Coulomb friction
torque in the motor gear. V is the motor input volt-
age [V ] acting as the control variable for the system.This
is the input to the previously mentioned servo-amplifier,
which controls the input current to the motor by means
of an internally PI current controller (see Fig.1(a)). This
electrical dynamics can be rejected because this is faster
than the mechanical dynamics of the motor. Thus, the
servo-amplifier can be considered as a constant relation,
ke, between the voltage and the current to the motor:
im = uke (see Fig.1(b)), where im is the armature cir-
cuit current and ke includes the gain of the amplifier, k̃,
and the input resistance of the amplifier circuit, R. V +
and V−, in the pictures, represent the connections which
provide the control input voltage u to the servo-amplifier.

(a)

(b)

Figure 1: (a) Complete amplifier scheme. (b) Equivalent
amplifier scheme.

The total torque given to the motor, ΓT , is directly pro-
portional to the armature circuit in the form ΓT = kmim,
where km is the electromechanical constant of the motor.
Thus, the electromechanical constant of the motor servo-
amplifier system is k = kekm.

In order to obtain the transfer function of the system, the
following perturbation-free system is considered:

KV = Jθ̈m + νθ̇m (2)

where K = k/n. To simplify the developments, let A =
K/J , B = ν/J . The DC motor transfer function is then
written as:

G(s) =
θm(s)
V (s)

=
K
J

s2 + ν
J s

=
A

s(s + B)
(3)

2.2 The procedure of state estimation

Consider the second order perturbed system given in
(1). By taking this into account, and also the fact that
K = k/n, the following expression is obtained after some
rearrangements:

θ̈m + Bθ̇m + Γ∗ = AV (4)

where Γ∗ = Γ̂c

nJ . This parameter is considered as a con-
stant perturbation input and this will be identified in a
next stage.

We proceed to compute the unmeasured states: the mo-
tor velocity, dθm

dt , and the motor acceleration, d2θm

dt2 .

Taking Laplace transforms of (4) yields

(s2θm(s)− sθm(0)− θ̇m(0))+ (5)

+B(sθm(s)− θm(0)) +
Γ∗

s
= AV (s)

by multiplying out by s, the following expression is ob-
tained:

(s3θm(s)− s2θm(0)− sθ̇m(0))+ (6)

+B(s2θm(s)− sθm(0)) + Γ∗ = AsV (s)

Taking the third derivative with respect to the complex
variable s, independence of initial conditions is obtained.
Thus, (6) results in an expression free of the initial con-
ditions θ̇m(0), θm(0) and Coulomb’s friction coefficient
Γ∗:

d3

ds3

[
s3θm(s)

]
+ B

d3

ds3

[
s2θm(s)

]
= A

d3

ds3
[sV (s)] (7)
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The terms of (7) are developed as

d3

ds3

[
s3θm(s)

]
= s3 d3θm(s)

ds3
+ 9s2 d2θm(s)

ds2
+ (8)

+ 18s
dθm(s)

ds
+ 6θm(s)

d3

ds3

[
s2θm(s)

]
= s2 d3θm(s)

ds3
+ 6s

d2θm(s)
ds2

+ 6
dθm(s)

ds
(9)

d3

ds3
[sV (s)] = s

d3V (s)
ds3

+ 3
d2V (s)

ds2
(10)

Recall that multiplication by s in the operational domain
corresponds to derivation in the time domain. After re-
placing the expressions (8, 9, 10) in equation (7), both
sides of the resulting expression are multiplied by s−2.
The following equation is obtained:

s
d3θm(s)

ds3
+ 9

d2θm(s)
ds2

+ 18s−1 dθm(s)
ds

+ 6s−2θm(s) (11)

+B(
d3θm(s)

ds3
+ 6s−1 d2θm(s)

ds2
+ 6s−2 dθm(s)

ds
) =

A(s−1 d3V (s)
ds3

+ 3s−2 d2V (s)
ds2

)

In the time domain, this is expressed as

− d

dt
(t3θm) + 9t2θm − 18

∫ t

0

σθm(σ)dσ

+6
∫ t

0

∫ σ

0

θm(λ)dλdσ + B((−t3θm)

+6
∫ t

0

σ2θm(σ)dσ − 6
∫ t

0

∫ σ

0

λθm(λ)dλdσ)

= A(−
∫ t

0

σ3V (σ)dσ + 3
∫ t

0

∫ σ

0

λ2θm(λ)dλdσ) (12)

Hence, the estimation of the motor velocity is

dθm

dt
=

1
t3

(6t2θm − 18
∫ t

0

σθm(σ)dσ

+6
∫ t

0

∫ σ

0

θm(λ)dλdσ) +
1
t3

(−Bt3θm+

6B

∫ t

0

σ2θm(σ)dσ − 6B

∫ t

0

∫ σ

0

λθm(λ)dλdσ)

+
1
t3

(A
∫ t

0

σ3V (σ)dσ − 3A

∫ t

0

∫ σ

0

λ2θm(λ)dλdσ) (13)

After replacing the expressions (8, 9, 10) in equation (7),
both sides of the resulting expression are multiplied by
s−1 to obtain the following expression:

(s2 d3θm(s)
ds3

+ 9s
d2θm(s)

ds2
+ 18

dθm(s)
ds

+ 6s−1θm(s))

+B(s
d3θm(s)

ds3
+ 6

d2θm(s)
ds2

+ 6s−1 dθm(s)
ds

)

= A(
d3V (s)

ds3
+ 3s−1 d2V (s)

ds2
) (14)

which may be written in the time domain as

− d2

dt2
(t3θm) + 9

d

dt
(t2θm)− 18tθm + 6

∫ t

0

θm(σ)dσ

+B(
d

dt
(−t3θm) + 6t2θm − 6

∫ t

0

σθm(σ)dσ)−At3V

+3A

∫ t

0

σ2θm(λ)dσ

And the following expression for the motor acceleration,
d2θm

dt2 , is obtained:

d2θm

dt2
=

1
t3

(3t2
dθm

dt
− 6tθm + 6

∫ t

0

θm(σ)dσ + 3Bt2θm)

+
1
t3

(−Bt3
dθm

dt
− 6B

∫ t

0

σθm(σ)dσ + At3V

−3A

∫ t

0

σ2θm(λ)dσ) (15)

This expression may now be evaluated with the help of
the already computed estimate of dθm

dt .

The practise real time implementation of the velocity
and acceleration observers can also be carried out by
computation of properly time-varying linear, unstable,
Brunovsky filters. For the velocity observer:

θ̇m =
6
t
θm −Bθm + x1

ẋ1 = −18
t2

θm +
6B

t
θm + AV + x2

ẋ2 =
6
t3

θm − 6B

t2
θm − 3A

t
θm (16)

For the acceleration observer:

θ̈m =
[
3
t
−B

]
θ̇m +

3B

t
θm + AV + y1

ẏ1 =
6
t3

θm − 6B

t2
θm − 3A

t
θm (17)

3 SIMULATIONS

This section is devoted to show the good performance
of the proposed state estimation method. The values of
the motor parameters used in simulations are depicted
in Table 1. The differential equation of the closed loop
system is solved by using a 1 · 10−3 [s] fixed step fifth
order Dormand Prince method to emulate real-time ex-
periments, where the data is obtained every time instant
with an acquisition card. We consider that there exists
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Table 1: Parameters of the DC motor used in the simu-
lations

A B k n µ
61.13 15.15 0.21 50 34.74

a servo-amplifier which is used to supply voltage to the
DC motor. This amplifier accepts control inputs from the
computer in the range of [−10, 10] [V ].

The signals used for the on-line estimation of the motor
velocity are the input voltage to the DC motor and the
motor position as a result of that input. In this case, we
chose the input to be a Bezier’s eighth order polynomial
with an offset of 0.8 (V ). Thus, we consider the following
initial conditions for the motor to show the robustness of
the method with respect to initial conditions: θm(0) =
100, θ̇m(0) = 0. Both signals are depicted in Fig.2(a) and
Fig.2(b) respectively.

The results are compared with the numerical derivative
used in Simulink of Matlab. Fig.3(a) depicts the out-
put of the velocity motor observer represented by dθt

dt .
We can compare it with that of the Simulink numerical
block here represented by dθtn

dt . Note that the two signals
are superimposed. The difference between them is de-
picted in Fig.3(b) and this is with 10−3 order. In Fig.3(c)
the estimation of the motor acceleration d2θt

dt2 is depicted,
and also the numerical estimation d2θtn

dt2 . The difference
d2θt

dt2 − d2θtn

dt2 between them is depicted in Fig.3(d). Now,
the difference is more noticeable because the first deriva-
tive of the signal is required to obtain the second one, and
in the case of the numerical estimation not knowledge of
the system is used. This is the reason because the differ-
ence increases. Furthermore, the observer proposed takes
all the information of the system as possible providing
more exact estimations. This premise is demonstrated in
the application of Coulomb’s friction estimation, where
more accurate state estimation provides better parame-
ter estimation.

In the new simulations, robustness with respect noise of
the algebraic state estimation is demonstrated. We con-
sider noise in the measure (i.e in the motor position mea-
sure) with zero mean and 1 · 10−3 standard deviation.
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Figure 2: Input and response of the motor. (a) Input to
the DC motor. (b) Response of the DC motor.
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Figure 3: Comparison between the estimations of the ve-
locity and acceleration of the DC motor with the numer-
ical method and with the algebraic state estimation. (a)
Velocities estimation. (b) Difference between the two ve-
locity estimations, θ̇tn− θ̇t. (c) Accelerations estimation.
(d)Difference between the two acceleration estimations,
θ̈tn − θ̈t.

When noise appears in a measure, numerical estimation
of the signal derivatives is very imprecise and the estima-
tion of bounded derivatives amplify the noise level. These
signals are, customarily, quite noisy and the use of low
pass filters become necessary to smooth them, causing
the well known dynamic delays which affect the perfor-
mance of the obtained signals as a result. A solution
to this problems may be the use of the algebraic state
estimator, which present robustness with respect to the
noise. In Fig.4(a) the numerical estimation of the motor
velocity is depicted. The effect that the noise produces
in the estimation is obvious. Fig.4(b) depicts the velocity
estimation with the algebraic state estimator. In Fig.4(c)
the second derivative of the motor position is represented.
Note that the noise level has been increased in this signal.
Finally, Fig.4(d) depicts the second derivative of the mo-
tor estimated with the algebraic state estimator. Let us
recall that filters have not been used in the estimations.

An scheme of the observers implementation is depicted
in Fig.5.

This technique may be used in many applications such
as estimation of parameters in which estimation of states
are required, and control of a feedback system because
the estimators can be used in both open and closed loop
due to the method does not require dependence between
the system input and output.

3.1 Estimation application

From the 1990’s decade has existed an increasing interest
in controlling systems with gear reduction coupled in the
motor shaft. Researchers had to deal with non linearities
which strongly affect the motor dynamics and which were
produced by the friction torque [7]. In order to solve
that problem, researchers used many techniques such as
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Figure 4: Velocity estimations. (a) Numerical velocity es-
timation. (b) Algebraic velocity estimation . (c) Numer-
ical acceleration estimation. (d) Algebraic acceleration
estimation.

Figure 5: Scheme of the algebraic observers implementa-
tion

robust control schemes with high gain that minimized
this effect [17] or the most modern techniques such as
neural networks [16] which delay the obtaining of the non
linearity parameters. We here propose a new and precise
technique to obtain such parameters by using algebraic
state estimators, which can be used in real time and in
continuous time without the use of any sort of filter.

It is well established that for a system operating at rel-
atively high speed, the Coulomb’s friction torque is a
function of the angular velocity. For those systems, the
Coulomb’s friction is often expressed as a signum func-
tion dependent on the rotational speed [9], [10].
Consider system (4) with Γ∗ = µsign(θ̇m). From this
equation, and due to the fact that the angular velocity
and acceleration of the motor are obtained with the fast
state estimation method, and that A and B are known,
we have

µsign
.

θm = AV − (θ̈m)e −B(θ̇m)e (18)

The term: µsign(
.

θm) is a perturbation produced by
the Coulomb’s friction torque, where µ is the scaled
Coulomb’s friction amplitude, or coefficient 1. The model

1Note that Γ∗ = Γ̂c
nJ

= µsign(θ̇m) then, the Coulomb’s friction
coefficient is ξ = Jnµ.

sign(θ̇m) is defined as follows:

sign(
.

θm) =
{

1 (θ̇m > 0),
−1 (θ̇m < 0)

}
(19)

With the motor spinning only in one direction, Coulomb’s
friction coefficient will not change its sign, and can be
considered as a constant. When the motor angular ve-
locity is close to zero, the Coulomb’s friction effect is that
of a chattering high frequency signal.

Γ∗ = µsign(V ) =
{

µ (V > 0),
−µ(V < 0)

}
(20)

Then, if the motor always spins in the same direction, in
the identification time interval, we have Γ∗ = µ and

µ = AV − (θ̈m)e −B(θ̇m)e (21)

Fig.6(a) shows the estimation of the Coulomb’s friction
coefficient by using numerical state estimation (µn sig-
nal) and by using algebraic state estimation (µs signal).
Note that the estimation µs is obtained from the begin-
ning, at time t ≈ 0, and this value is maintained while the
estimator works. Nevertheless, the estimation µn which
uses numerical state estimations introduce an error un-
til t = 1 (s), time at which the Bezier’s trajectory fin-
ishes. The error of the two estimates with respect the
real value of the Coulomb’s parameter µ is depicted in
Fig.6(b). Note that the error in the estimation with the
algebraic state estimators is null. This is because the
state estimation with the proposed method provides an
exact estimation of the bounded derivatives of the motor
position due to the estimator uses all the information as
possible from the system to estimate.
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Figure 6: Coulomb’s friction coefficient estimation. (a)
Estimation of the Coulomb’s friction coefficient. (b) Es-
timation error.

Fig.7(a) to Fig.7(c) depict the results obtained in the
Coulomb’s parameter estimation with a noise in the mea-
sure of the motor position with zero mean and 10−3 stan-
dard deviation, as done in the previous simulations. In
Fig.7(a) the estimation with numerical estimations of the
states is depicted. Note that to identify any value in such
a figure is impossible. However, Fig.7(b) depicts an ac-
curate estimation of the parameter estimated by using
the algebraic method. The error of this last estimation is
shown in Fig.7(c).
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Figure 7: Coulomb’s friction coefficient estimation. (a)
Numerical estimation. (b) Algebraic estimation. (c) Al-
gebraic estimation error.

3.2 Control application

DC motor is a topic of interest since this is used as ac-
tuator in an extensive variety of robotics systems and
one of the most used control methods is that based on
proportional derivative PD controller. [18] and [19] are
examples of this. The inconvenient of this sort of con-
trol is the computation of the derivative action which
always introduce noises in the control voltage input due
to the on-line estimation of the input derivative to the
controller. Sometimes filters are required to smooth that
signal. In this subsection a control application for DC
motors is proposed, based on the on-line algebraic esti-
mation of the motor velocity.

A PD controller is proposed, Cpd(s) = kp + kvs, whose
gains {kp, kv} can be designed by locating all the poles
in closed loop of the complete system (See Fig.8 ) in the
same location of the negative real axis.

Figure 8: Closed loop PD controller with algebraic ob-
server implementation

The stability condition on the closed loop expression
(1 + Gm0(s)Cpd(s)) leads to the following characteristic
polynomial,

s2 + (kvA + B)s + kpA = 0 (22)

We can equate the corresponding coefficients of the closed
loop characteristic polynomial (22) with those of a desired
second order Hurwitz polynomial. Thus, we can choose
to place all the closed loop poles at some real value using

the following desired polynomial expression,

p(s) = (s + a)2 = s2 + 2as + a2 (23)

where the parameter a, strictly positive, represents the
common location of all the closed loop poles. Identifying
the corresponding terms of the equations (22) and (22)
the parameters kp and kv may be uniquely obtained by
computing the following equations,

kp = a2

A (24)

kv = 2a−B
A (25)

With the previous estimation of the Coulomb‘s friction
torque, Γc, a compensation term is introduced in the sys-
tem to eliminate the effect of this perturbation [7]. The
compensation term is included in the control input volt-
age to the motor, and this is of the following form:

Γ̃ =
Γ̂c

k
(−sign(θ̇m)) =

µ · J · n
k

(−sign(θ̇m)) (26)

when θ̇m 6= 0. The function sign(V ) is the same as that
defined in (19). When θ̇m ≈ 0, the compensation term is
included as:

Γ̃ =
Γ̂c

k
(−sign(V )) =

µ · J · n
k

(−sign(V )) (27)

The function sign(V ) is the same as that defined in (20).

Fig.9 depicts the trajectory tracking of the motor with
the PD controller with numerical computation of the mo-
tor velocity θtn and with the algebraic computation θt.
The two signals properly track the reference trajectory
θ∗t with good performance.
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Figure 9: Trajectory tracking of the closed loop system.
θ∗t , reference. θtn, response with numerical PD. θt re-
sponse with algebraic PD.

In Fig.10(a) the tracking error of the motor position,
when numerical PD is used, is presented. By compar-
ing such an error with that of the Fig.10(b), in which the
tracking error of the motor position with algebraic PD
is depicted, we can observe that the two signals are the
same in phase and magnitude. And we can observe the
same characteristic in Fig.11(a) and Fig.11(b), where the
control input voltages to the DC motor are depicted. This
accurate tracking of both control schemes is due to the
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Figure 10: Tracking errors. (a) Tracking error with nu-
merical implementation. (b) Tracking error with alge-
braic implementation.

gains of the controllers, which force the system to track
the command trajectory by minimizing the error in the
feedback. However, in real life we always find noises and
errors which corrupt the measuring data. In this case,
the encoder is not an infinite precisely measure system,
therefore, noises are included in the control system due
to the limited precision of the apparatus.
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Figure 11: Control input voltages to the DC motor. (a)
Input voltage with numerical implementation. (b) Input
voltage with algebraic implementation.

We consider a noise corrupting the data with zero mean
and 10−3 standard deviation, as considered in the pre-
vious simulations. Fig.12 depicts the trajectory tracking
of the motor position with numerical PD, θtn, and with
algebraic PD, θt. Both trajectories properly follow the
reference θ∗t . Fig.13(a) and Fig.13(b) depict the tracking
errors of the previous signals respectively. Note that the
noise is introducing an aleatory component in the error.
Although the two errors have the same amplitude, the
control input voltage to the DC motor of the numerical
PD has not a smooth shape. Nevertheless, such a volt-
age would saturate the amplifier, which has the limits in
±10 (V ) (see Fig.14(a)). In contrast, the control input
voltage, when algebraic PD is used, has a smoother pro-
file with much less control effort, therefore, such a signal
would never saturate the amplifier. As a consequence, the
amplifier would not suffer overheating (see Fig.14(b)).
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Figure 12: Trajectory tracking of the closed loop system.
θ∗t , reference. θtn, response with numerical PD. θt, re-
sponse with algebraic PD.
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Figure 13: Tracking errors. (a) Tracking error with nu-
merical implementation. (b) Tracking error with alge-
braic implementation.
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Figure 14: Control input voltages to the DC motor. (a)
Input voltage with numerical implementation. (b) Input
voltage with algebraic implementation.

4 SUMMARY AND CONCLUSIONS

The state estimation method using the algebraic method
proposed, based on module theory, differential algebra
and operational calculus, has accurately performed on a
DC motor model. The methodology only requires the
measurement of the motor angular position and input
voltage.

The method has been successfully applied to estimate
the Coulomb ´s friction coefficient. Performance stud-
ies show that the algebraic method provides satisfactory
estimates even in the presence of significant noise lev-
els. In addition, the state feedback controller is designed.
Closed-loop simulation runs show that the state estimates
obtained by the proposed method can be used efficiently.

Among the advantages of this approach we find that i)
this is independent of the motor initial conditions; ii) the
methodology is robust with respect to the Coulomb’s fric-
tion torque, considered as a constant perturbation input;
iii) this is also robust with respect to zero mean high
frequency noises; iv) a direct estimation of the states is
achieved without translation between discrete ant contin-
uous time domain, which usually provides an erroneous
information of the system dynamics; and finally, v) the
approach does not require a specific design of the inputs
to the system.

The results obtained with the method demonstrate an
accurate performance, and can be successfully used in
regulated closed loop systems.
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