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     Abstract —An unknown input high gain observer (UIHGO) 
based component fault detection and isolation (FDI) technique 
is presented. First, a reduced order UIHGO is derived for a 
linear system whose parameters are uncertain to some extent. 
The observer gain is determined by solving the well-known 
algebraic Riccati equation (ARE). Then, using a bank of such 
observers, a FDI algorithm is devised to detect and isolate the 
component fault (i.e., parametric fault) of an uncertain system. 
The FDI algorithm consists of two steps. In the first step, the 
detection of fault and the isolation of faulty region are 
accomplished and in the next step, the faulty parameter is 
isolated from the faulty region. Effectiveness of the proposed 
observer as well as the FDI technique is shown with the help of 
a numerical example. 
   
    Index Terms— Unknown input high gain observer; 
component fault; fault detection and isolation; uncertain 
system; parameter estimation.     

 

I. INTRODUCTION 
  With the rising demands of high reliability and safety of 
advanced processes like avionics, nuclear power stations, 
automobiles etc have led to increasing requirements of 
developing new methods of supervision and monitoring as a 
part of overall process control scheme. Different fault 
detection and isolation (FDI) schemes have been developed 
for avoiding failure of the plants. Model based fault 
detection techniques (like Kalman filter or observer based) 
have received increasing attention following the pioneering 
work of Beard [1].  
    The FDI concept using observers or Kalman filters is 
devised based on the assumption that the mathematical 
model of a system is perfectly known. In reality, however 
this assumption does not hold because the parameters of a 
process are in general uncertain or time varying. Again the 
characteristics of disturbances or noise are not completely 
known; hence they cannot be perfectly modeled. There is 
always a mismatch between the actual process model and its 
mathematical model (even if there is no fault in the process), 
which   sometimes   produces   false  alarms   corrupting  the  
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performance of the FDI technique. To avoid false alarms, 
the FDI method should be robust i.e., insensitive to 
modeling uncertainties. But the algorithm should not be too 
robust to ignore the fault i.e., a significantly large variation 
of the parameter values.  
    Over the years, various kinds of robust fault detection and 
isolation techniques have been developed to diagnose 
different types of faults like sensors, actuators or 
components [2-4, 7, 9, 10, 12, 16-20]. Frank [8], in a survey 
paper, described different types of observer based robust 
fault diagnosis techniques. Patton and Chen [15] discussed 
various robustness issues related observer based fault 
diagnosis techniques. Linear matrix inequality (LMI) based 
robust fault detection techniques for uncertain systems have 
been developed in [19, 20]. The identification based FDI 
techniques have been used by many researchers [2, 11, 13] 
to detect parameter faults. Daley and Wang [5] used a high 
gain observer, which was developed by Petersen and Hollot 
[14], as a tool for sensor fault detection.  
     In the present work, an unknown input high gain 
observer (UIHGO) based component (i.e., parameter) fault 
detection and isolation technique is derived. First, an 
unknown input high gain observer is developed for a linear 
uncertain system. Such type of unknown input observers has 
wide applications in modern control systems where the 
uncertainties (modeling or parametric or both) are 
unavoidable. Next, using a bank of such observers, a 
parameter fault detection and isolation technique is devised 
for a parametrically uncertain system on the assumptions 
that sensors and actuators are fault free. Since the high gain 
observer [5, 14] is robust against parameter uncertainties to 
some extent, the FDI technique is also robust against the 
uncertainties. The FDI algorithm works in two steps. In 
step-1, the detection of fault and isolation of faulty zone is 
accomplished using a bank of UIHGOs. In the next step, 
faulty parameter is isolated by parameter isolation method. 
In the present work, a part of the system parameters (i.e., the 
parameters of the faulty subsystem) is estimated in step-2 
and only when a fault occurs in the system. In this respect 
the complexity of fault isolation is drastically reduced in 
comparison with standard parameter identification technique 
[2, 11, 13] where all the parameters of a system are 
estimated at every time step irrespective of the occurrence 
of any fault and the estimated values are compared with 
their nominal values. A numerical example is presented to 
demonstrate the effectiveness of the proposed observer as 
well as the FDI technique. 
    The basic methodology of designing the unknown input 
high gain observer for an uncertain system is discussed in 
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section II. The fault detection and isolation algorithm is 
explained in section III. In section IV, a numerical example 
is presented to demonstrate the performances of the 
proposed methods. The concluding remarks are included in 
section V. 
 

II. UNKNOWN INPUT HIGH GAIN OBSERVER 
    In this section, an unknown input high gain observer is 
developed for a linear uncertain system. The sufficient 
conditions for the existence of the observer are provided.  
  Consider a linear time-invariant system with unknown 
inputs   

( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed t
t

                        (1)                                                                       
                                                    ( ) ( )t =y Cx .                                                                       (2)                                    

where - the state vector, - the 
measurable input vector, 

( ) nt ∈x R ( ) mt ∈u R
( ) pt ∈y R - the output vector and 

- the unknown input vector. The matrices  
and 

( ) qt ∈d R , ,A B C
E  of suitable dimensions are known. The matrices ∆A  

and  are the uncertainties of the system and input 
matrices respectively. These may be constant or time 
varying depending on the system. It is assumed that 

 is always asymptotically stable for all 

∆B

( + ∆A A) ∆A . If this 
condition is not satisfied then first a controller is to be 
designed to stabilize the system. 
     It is also assumed that the system satisfies the rank 
condition: . This is a basic assumption 
for designing any unknown input observer.  

( ) (rank rank=CE E )

t

    Now, using a state transformation matrix T , the states 
are redefined as ( ) ( )t =z Tx  such that ( )

2

n r q− ×⎡
= ⎢
⎣ ⎦

TE
E

φ ⎤
⎥

 where 

2E  is  dimensional matrix with r q×
2( ) ( )rank rank=E E  

and  is a null matrix. φ
    The system and output equations can be recast as follows 

1 1 1 111 12 11 12

2 2 2 221 22 21 22

( )1

2 2

n r q− ×

⎡ ⎤ ⎡ ⎤ ⎡ ⎤∆ ∆⎧ ⎫ ⎧ ⎫ ⎧ ⎫= + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆ ∆⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤∆

+ + ⎢ ⎥⎢ ⎥∆⎣ ⎦ ⎣ ⎦

z z z BA A A A u 
z z z BA A A A

B                                                       u d
B E

φ

  (3)                                                 

 1
1 2

2
( )t ⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦ ⎩ ⎭

z
y C C

z
.                                                        (4) 

    Now it is assumed that the measurement signals are such 
that the following rank condition is satisfied: 

. This is a necessary condition for 
designing this observer as the extra measurement signals are 
used to design the reduced order observer after decoupling 
the unknown inputs.  

( ) ( )rank rank>C E

    This condition allows the rearrangement of the output 
equation in the following form with the help of a 
transformation 1

2
=

⎡ ⎤
⎢ ⎥⎣ ⎦

y
Vy

y
, where V  is a nonsingular matrix, 

as 

 1 11

2 221 22

=
⎡ ⎤ 1⎧ ⎫ ⎧ ⎫

⎨ ⎬ ⎢ ⎥
⎩ ⎭ ⎩ ⎭⎣ ⎦

⎨ ⎬
y zC
y zC C

φ .                                                     (5)  

Now the equations (3) and (5) can be written in expanded 
form as follows 

1 11 1 12 2 11 1 12 2 1 1∆ ∆ ∆= + + + + +z A z A z A z A z B u B u                    (6)                       

2 21 1 22 2 21 1 22 2 2 2 2∆ ∆= + + + + + +z A z A z A z A z B u B u E d            (7)    

1 11 1=y C z                                                                             (8)    

2 21 1 22 2= +y C z C z .                                                             (9)                      

Eliminating 2z  from the equation (6) using the equation (9), 
one gets  

1
1 11 1 12 22 2 21 1 1( ) u u

−= + − + +z A z A C y C z B u E d .                    (10) 
where 

11 1 12 2 1u u ∆ ∆ ∆= + +E d A z A z B u  with uE - known 
matrix and - unknown signal. ud
It can be seen that 1

22
−C  should be full rank matrix, which 

will be always so as . ( ) (rank rank=CE E)
    Now, the equation (10) can be re-written in simplified 
form as 

1 1s s u= + + uz A z B u E d ,                                                   (11)                       
where 11 12 22 21

1
s

−= −A A A C C , 1
1 12 22s

−⎡ ⎤= ⎣ ⎦B B A C  and 

2
=
⎧ ⎫
⎨ ⎬
⎩ ⎭

u
u

y
. 

    For designing an observer, the system should satisfy the 
observability condition: .   ( ( , ))rank O n=A C
 Now one can design an observer for the systems (11) and 
(8) to estimate the state 1̂z  as 

1 1 1
ˆˆ ˆ (s s= + + − 1)z A z B u K y y                                               (12)                       

1 11
ˆ ˆ=y C z1 .                                                                          (13)                      

The observer gain matrix  is determined by solving the 
following algebraic Riccati equation (ARE) [5, 14]  

K

2

11 11 2 0
T

T Tu u u u
s s

q
q

T

+ + + − + =
σ σ

E E PE E PA P PA Q PC C P  (14)                       

with 
11

T=K PC ,                                                                (15)   
where  is a pre-chosen positive definite matrix and  the 
constants q & 

Q
σ  are specified numbers. It was shown in 

[14] that for any 0σ > , there exists q such that gain 
obtained from the above equations will lead to 

11 11( )s ujw − + < σC I A KC E 1w R for ∀ ∈  where  is 
the frequency. This condition implies that the effect of 
unknown signal  becomes very small in error dynamics 
for an appropriate value of 

w

ud
σ . 

    Now the state 2ẑ  is estimated from equation (9) using the 
estimated state 1̂z  as 

1
2 22 2 21 1ˆ (−= − ˆ )z C y C z .                                                      (16)                      

    Finally using { }1 2ˆ ˆ ˆ
TT T=z z z , the estimated states  are 

found out as . With this, observer design process 
completes. 

x̂
1ˆ ˆ−=x T z
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III. FAULT DETECTION AND ISOLATION 
ALGORITHM 

    In this section, a component fault detection and isolation 
technique for a linear uncertain system is derived. It consists 
of two steps. In the first step, a set of residuals is generated 
with the help of a bank of unknown input high gain 
observers (UIHGOs) to detect the fault and isolate the faulty 
region. In the second step, faulty parameter is isolated from 
the faulty region.  
    Consider a linear time invariant system as  

( ) ( ) ( ) ( ) ( )t t= + ∆ + + ∆x A A x B B u t

t

                                 (17) 
where the significance of the matrices and vectors are same 
as described in section II. 
    Suppose a fault occurs in a component of the plant. The 
detection and isolation of the fault are carried out in two 
steps as follows. 

 Step-1: Detection and partial isolation of fault   
  The faulty system is written as 

( ) ( ) ( ) ( ) ( )f ft t= + ∆ + ∆ + + ∆ + ∆x A A A x B B B u ,            (18)                                                                      
where 

f∆A  and f∆B  are the faulty parts of the matrices A  
and  respectively. It can be emphasized that the 
magnitude of faults (i.e.,  and 

B
f∆A f∆B ) should be 

significantly larger compared to the magnitude of 
uncertainties (i.e., ∆A  and ). The state equation (18) can 
now be rearranged as 

∆B

( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed t ,                     (19)                                                                            
where E  is a known matrix and  is the unknown 
input satisfying the relation 

( ) qt ∈d R

( ) ( ) ( )f ft t= ∆ + ∆ tEd A x B u .                                              (20)                                                                                  
    Now the system is divided into N  numbers of 
subsystems with each characterized by a few parameters. 
The choice of subsystems is quite arbitrary but there should 
not have any common elements between them. In a physical 
system, the subsystems are chosen based on the physical 
proximity of different parameters. Assume that the fault has 
been occurred in the i-th subsystem.  
The system equation considering the fault in the i-th 
subsystem is written as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )i it t t= + ∆ + + ∆ +x A A x B B u E di i t

t

ˆ t

)

           (21)                                                                       
where the subscript (i) indicates that the fault has been 
considered in the i-th subsystem.  
The output equation for this system is written as 

( ) ( ) ( )( ) ( )i i it =y C x ,                                                             (22)    
    The equations (21) and (22) are similar to the equations 
(1) and (2). Now, following the procedure discussed in 
section II, an unknown input high gain observer is designed 
to estimate the states . ( )ˆ ( )i tx
    Once the states  are estimated, the residuals are 
calculated as 

( )ˆ ( )i tx

 .                       (23)           
( ) ( ) ( ) ( ) ( ) ( )ˆ( ) ( ) ( ) ( ) ( )i i i i i it t t t= − = −r y y y C x                                            

    Now, an unknown input observer, if properly designed, 
can estimate the states irrespective of unknown inputs. So 
the residual , calculated from the equation (23), 

converges within a bounded value known as threshold value 
if the fault occurs in the i-th subsystem or there is no fault in 
the system as the effect of possible faults in i-th subsystem 
is considered as unknown inputs. In ideal case, i.e., in the 
absence of noise and parameter uncertainties, the residuals 
should converge to zero (though a small threshold value is 
always set to take care of errors due to the numerical 
limitations) whereas in the present case the convergence 
takes place within a threshold value, which again depends 
on the amount of uncertainties and input signal applied to 
the system. In this way, one can detect a fault and isolate the 
faulty subsystem using  numbers of residuals calculated 
with the help of that numbers of UIHGOs. However ( 1

( ) ( )i tr

N
N −  

such observers will be sufficient to isolate a faulty 
subsystem when  because once (2N > )1N −  subsystems 
are found fault free, the remaining subsystem is 
automatically identified as the faulty one. A decision table 
(as shown in table 1) is drawn to isolate the faulty 
subsystem from observation of (  residuals.   1N − )

Table 1: Decision table for isolation of faulty subsystem 

For given residuals ( ) and 

threshold values (
( )ir

( )iε ): if 

( ) ( )i iε>r

i

 then  use ‘1’ and if 

( ) ( )i ε≤r  then use ‘0’. 

Observa
tion 
cases 

(1)r  (1)r  (1)r  …..… 
( 1)N −r
 

Decision 

Case-0 0 0 0 …..... 0 No fault 
Case-1 0 1 1 …..... 1 Fault: SS1 
Case-2 1 0 1 ….…. 1 Fault: SS2 
Case-3 1 1 0 ….…. 1 Fault: SS3 
. 
. 
. 
. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

....….. 

....….. 

..…… 

.….… 

. 

. 

. 

. 

. 

. 

. 

. 
Case-
(N-1) 

1 1 1 …..… 0 Fault:  
SS (N-1) 

Case-N 1 1 1 …..... 1 Fault:    
SS (N) 

 

Step-2: Total isolation of fault 
  Once the faulty subsystem is isolated, the faulty parameter 
in the faulty subsystem is identified in this step. First, the 
effect of the faulty subsystem is simulated as an unknown 
input signal, say . The relationship between , the 
parameters of the faulty subsystem, say , and the states 

 are known and can be written as 

( )uF t ( )uF t
s

( )tx
,( ) ( ( ))u t f s t= x

t

F ,                                                              (24)                      
where the function ‘f ’ is linear for a linear system. 
    The system equation for this case becomes 
 ( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed ,                    (25)                       
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where . With a measurement matrix , an 
observer is then designed to estimate the states.  Knowing 
the states, the unknown input signal is estimated from the 
state equations neglecting the uncertainties using the 
nominal values of the parameters of the other non-faulty 
subsystems.  

( ) ( )ut F t=d C

    The estimated signal ˆ ( )uF t  is now used to estimate the 
parameters 's from the relation (24), which is rewritten as s
ˆ ˆ( ) ( , ( ))uF t f s t= x .                                                              (26) 

    All the elements of equation (26) excepting the 
parameters  are known. Different parameter estimation 
techniques can be used to estimate  from equation (26). 
However, a very simple logical approach is applied in the 
present work in order to isolate the faulty element.   

s
s

    Let us consider the k-th parameter  as the faulty one. 

From the above relation,  can be estimated using nominal 
values of rest of the parameters. Mathematically, 

ks

ks

 1 2 1 1
ˆˆˆ ( , ,....., , ,... , ( ), ( ))k k k l us g s s s s s t F t− += x                            (27) 

where  is the number of parameters of the faulty 
subsystem and g is a functional. 

l

    It is observed that in steady state, the estimated values 
fluctuate very less if the assumption is correct. The moving 
averages technique can be used to smoothen the fluctuation 
of the estimated values due to uncertainties. If the 
assumption is wrong, the estimated values vary significantly 
large. Now, as the single fault case is being considered, 
there will be only one case when the estimated parameter 
will vary less. The particular parameter for which it happens 
is the faulty one. In this way, the faulty parameter is 
isolated.   In  the  same  way,   any  parametric  fault  of  any  

 
Figure 1: Structure of the FDI algorithm 

subsystem can be detected and isolated following the above 
two steps. The FDI technique can be summarized in a block 
diagram as shown figure 1.  
 

IV. NUMERICAL EXAMPLE 
    Consider a mechanical system (as shown in figure 2) that 
consists of two mass elements and three sets of springs and 
dampers. The state space model of the system can be written 
as follows: 
        ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆x A A x B B u , 
where      

   
1 2 2 1 2 2

1 1 1 1

2 3 2 32 2

3 3 3

0 0 1 0
0 0 0 1

( ) ( )

( ) (

K K K C C C
M M M M

K K C CK C
M M M M3

)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +
− −⎢ ⎥
⎢ ⎥
⎢ ⎥+ +

− −⎢ ⎥
⎣ ⎦

A =
, 

, [ ]30 0 0 (1/ ) TM=B { }1 2 1 2
T

X X X X=x , ( ) ( )t F t=u , 

where iX  and iX  are the displacement and velocity of the 
mass element iM  respectively, jK - the stiffness element 

and jC - the damping coefficient (i=1,2 and j=1, 2, 3). The 
matrices ∆A  and ∆B  are the uncertainties of the system 
and input matrices respectively. 

 
Figure 2: Mechanical system having two masses and three 

sets of spring-damper 

The numerical values of the system parameters are 
1 870 kgM = , 3 1550 kgM = , , 1 280000 N / mK =

2 370000 N / mK = , 3 340000 N / mK = , 1 3500 Ns / mC = , 

2 3000 Ns / mC =  and 3 5675 Ns / mC = . 
    The system response with arbitrary initial conditions is 
simulated using MATLAB-SIMULINK toolbox. The 
parametric uncertainties are simulated in such a way that the 
elements of the matrices A  and B  differ maximum of ± 5 
% from their nominal values. A fault is now introduced in 
the spring of stiffness 2K  at . The new value of 250sect = K  
is set to 185000 N/m. Now using the FDI algorithm, 
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discussed in section III, the fault is detected and the faulty 
element (here 2K ) is isolated as follows.  

Step-1: Detection and partial isolation of the fault      
  First, the system is divided into three subsystems as 
follows: :SS1 1K ,  & 1C 1M ; :SS2 2K  &  and SS :2C 3 3K , 

 & 3C 3M .  
The uncertainties are introduced as follows: 1∆ =A M NΣ  
and 2∆ =B M NΣ  with , n=M I 1 0.05= × uN A , 

 and  where 2 0.05= × uN B 0 1sin( )w t=Σ Σ 0 0.25= × IΣ  
and  rad/s. The matrices  and 1 0.05w = uA uB are same as 
A  and  excepting the elements containing constant terms 
are replaced with zeros. The sinusoidal variation in system 
parameters is introduced in simulation. The following input 
signal is applied for this case:  with 

B

0sin( )u w=u t 0 100u =  
N and rad/s. 1w =
    As the system is divided into three subsystems, so two 
UIHGOs are sufficient as a part of step-1. The observers are 
designed for SS1 and SS3. The unknown input matrices 
E ’s and unknown input signals ’s for those observers are 
given below 

d

 ,                  [ ](1) 0 0 1 0 T=E (1) (1) (1) (1) (1)= ∆ + ∆d A x B u

 [ ](3) 0 0 0 1 T=E , .    
(3) (3) (3) (3) (3)= ∆ + ∆d A x B u

    The output matrices are  

(1)

0 1 0 0
0 0 1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C  and  . 
(3)

0 1 0 0
0 0 1 1
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C

    Now applying the method discussed in section-II, two 
uE ’s are found out as [ ](1) 0 0 1 T

u =E  and 

[ ](3) 0 0 1 T
u =E . The values of the tuning parameters σ  

and  are considered as q (1) 0.05σ = , (3) 0.05σ = , (1) 15q =  
and . The value of Q  is chosen as  for both 
the observers. 

(3) 15q =
1

5 n=Q I

    The gain matrices are calculated by solving the equations 
(14) and (15). The values of the observer gains for the above 
observers are [ ](1) 0.7253 4.7760 14.8934 T=K  and 

[ ](3) 0.4368 2.9387 -13.1569 T=K  respectively. Two high 
gain observers are then designed for the above systems. 
Finally the residuals are calculated and plotted in figure 3 
and figure 4. 
    In ideal situation (i.e., fault free and in the absence of 
parameter uncertainties), the residuals should be zero. 
However in the present case these will not be zero due to 
presence of parameter uncertainties. Hence two small 
constant threshold values { }5 2

(1) 1.5 10 1 10
T

ε − −= × × 0 and 

{ }9 2
(3) 3 10 3 10

T
ε − −= × × 0  units are chosen as the simulation 

is carried out applying fixed input signals. In real situation, 
adaptive threshold values [15] should be chosen as input 
signals vary depending on operating conditions. Here the 
threshold values are calculated in normal operating 
condition i.e., when there is no fault in the system. 

 
Figure 3: Components of the residual  (1) ( )tr

 

 
Figure 4: Components of the residual  (3) ( )tr
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    As both the residuals cross the threshold values, the 
existence of a fault is confirmed. To isolate the faulty 
subsystem a decision table (table 2) is constructed as shown 
below. 

Table 2: Decision table for isolation of faulty subsystem 

Is ( ) ( )i >r iε  (use ‘1’) or 

( ) ( )i ≤r iε  (use ‘0’) ? Observation 

(1)r  (3)r  

Decision 

Case 1 1 Fault: SS2. 

    From table-2, it is seen that the fault is in subsystem 2. So 
the next step (i.e., step-2) is carried out to isolate the faulty 
parameter. 

Step-2: Total isolation of the fault 
  Here the faulty subsystem (SS2) is first replaced with an 
unknown force ( )uF t  as 
          2 2 1 2 2 1( ) ( ) ( )uF t K X X C X X= − + − . 
    Then the system is remodeled as follows  
         ( ) ( ) ( ) ( ) ( ) ( )t t t= + ∆ + + ∆ +x A A x B B u Ed t
where [ ]10 0 1/ 1/ TM M= −E 3

 and . It can 
be noticed that the parameter uncertainties for this system 
are only in 3

( ) ( )ut F t=d

rd and 4th rows of A  and  matrices, which 
indicate  and  have non-zero elements in 3

B
∆A ∆B rd and 4th 

rows only. Again the matrix E  contains non-zero elements 
in the same rows. For this similarity here the system 
equation is remodeled combining the unknown inputs and 
uncertainties as  
            ( ) ( ) ( ) ( )c ct t t= + +x Ax Bu E d t

⎥
⎥

⎥

 where and . 
0 0
0 0
1 0
0 1

c

⎡ ⎤
⎢
⎢=
⎢ ⎥
⎢ ⎥
⎣ ⎦

E
3,1 4 3,1 1

4,1 4 4,1 3

/
/

u
c

u

F M
F M

−

−

∆ + ∆ +⎧ ⎫
= ⎨ ⎬∆ + ∆ −⎩ ⎭

A x B u
d

A x B u

This is a special case, which may not appear for all systems. 
Now a full order unknown input observer [6] is designed 

with output matrix  to estimate the 

states . Using the estimated states  and the nominal 
values of the parameters of subsystem-1, the unknown force 

0 1 2 0
0 0 1 1
1 0 0 0

⎡ ⎤
⎢= −⎢ ⎥
⎢ ⎥⎣ ⎦

C

ˆ ( )tx ˆ ( )tx

( )uF t  is estimated from the following relationship 

              1 3 1 1 1 3
ˆ ˆ ˆ( )u ˆF t M K C= + +x x x , 

where  is calculated taking the derivative of  with 
respect to time. 

3x̂ 3x̂

    Finally the faulty parameters are estimated using the 
following relation  
            . 2 2 1 2 4 3

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )uF t K C= − + −x x x x
    First, the fault is assumed to reside in the stiffness 
element  and using the nominal value of =3000 Ns/m, 

 is estimated. The moving averages are taken to reduce 
the effect of uncertainties and numerical errors to the 
estimated values. The initial moving average is taken with a 
time window of 15 (5-20 seconds of data) sec. Initial data 
are not taken to reduce the transition effect that comes due 
to initial conditions. Now with an increment of 1 sec, the 
moving averages are calculated upto 320 sec of time span 
and the estimated values are plotted in figure 5. The plot 
shows that estimated values vary very less (maximum 
variation of 1.5 % from its mean value). Now  is 
assumed to be faulty and using the nominal value of 

2K 2C

2K

2C

2K =370000 N/m,  is estimated. The estimated values 
after taking moving averages in similar manner as in case of 

 are plotted in figure 6. The plot shows that the estimated 
values of  vary widely (as high as 175 % from its mean 
value),  which  is  because  of  the  wrong  assumption.  This  

2C

2K

2C

 
Figure 5: Estimated stiffness 

 
Figure 6: Estimated damping coefficient 
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confirms that faulty element is 2K  and thereby the fault 
isolation process completes. 
    Thus it is seen that the FDI scheme works well for the 
occurrence of a fault in subsystem 2. It can be shown easily 
that the method works with equal ease for the occurrence of 
any parameter fault in any other subsystem. 
 

V.  CONCLUSIONS 
  An unknown input high gain observer (UIHGO) based 
component fault detection and isolation (FDI) scheme is 
presented. First an UIHGO for a linear uncertain system is 
derived. These types of observers have wide applications in 
robust control and fault diagnosis. Then, using a bank of 
such observers, a FDI technique is devised. The advantage 
of the FDI algorithm is that it is capable of estimating faults 
even if the parameters are coupled in the system matrix. It 
also reduces the complexity of estimating all the parameters 
at every time instant unlike existing identification based 
parameter fault diagnosis techniques. The same FDI 
technique can also be used to detect a fault in a noisy system 
or a nonlinear system provided other types of unknown 
input estimators capable of handling noise or nonlinearity 
should be used. 
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