
National Technical University of Athens
School of Electrical & Computer Engineering

Division of Communication, Electronic and Information Engineering

Run-time resource management
and application customization for
many-core embedded platforms

Ph.D. Thesis

Iraklis Anagnostopoulos

Athens, January 2014





National Technical University of Athens
School of Electrical & Computer Engineering
Division of Communication, Electronic and

Information Engineering
Microprocessors and Digital Systems Lab

Run-time resource management
and application customization for
many-core embedded platforms

Ph.D. Thesis
of

Iraklis Anagnostopoulos

Submitted in School of Electrical & Computer Engineering of
National Technical University of Athens





National Technical University of Athens
School of Electrical & Computer Engineering
Division of Communication, Electronic and

Information Engineering
Microprocessors and Digital Systems Lab

Run-time resource management and application
customization for many-core embedded platforms

Supervising committee

Dimitrios Soudris Kiamal Pekmestzi George Economakos
Ass. Professor N.T.U.A. Professor N.T.U.A. Ass. Professor N.T.U.A.

Advisory committee

Dimitrios Soudris Kiamal Pekmestzi George Economakos
Ass. Professor N.T.U.A. Professor N.T.U.A. Ass. Professor N.T.U.A.

Nectarios Koziris Ioannis Papaefstathiou
Professor N.T.U.A. Ass. Professor T.U.C.

Dimitris Gizopoulos Axel Jantsch
Ass. Professor N.K.U.A. Professor KTH





©2014, Iraklis N. Anagnostopoulos
Electrical & Computer Engineer N.T.U.A.

This Ph.D. Thesis was cofinanced by the E.C. funded projects FP7-
248716 2PARMA, FP7-215244 MOSART and ENIAC-2010-1 TOISE.
Also, part of this Ph.D. Thesis was partially supported by Hellenic
Funds and by the European Regional Development Fund (ERDF) un-
der the Hellenic National Strategic Reference Framework (NSRF) 2007-
2013, for the project “Next Generation Millimeter Wave Backhaul Ra-
dio”.





Abstract

In this Ph.D. Thesis, we present (i) memory management middleware
acceleration and customization methodologies for applying customized
dynamic memory managers (allocators) and (ii) frameworks for dis-
tributed run-time resource management on many-core platforms. Firt-
sly, the customization is achieved by applying, on the middleware level,
custom microcoded memory allocators. Secondly, the run-time resource
management on the platform is achieved by using cores in different roles
and by applying a distributed on-chip communication scheme. The
proposed methodologies showed that the microcode approach is a good
alternative to overcome the performance-flexibility dilemma, offering a
programmable and flexible solution for accelerating a wide range of ap-
plications. Thus, we adopt the microcoded approach to address memory
management issues on Distributed Shared Memory (DSM) many-core
embedded platforms, aiming for hardware performance but maintaining
the flexibility of programs. Also, the developed framework provides a
flexible solution in the run-time mapping problem offering different lev-
els of platform utilization according to application’s needs and without
a central point of failure.

Concerning microcoded memory management services, experimental re-
sults show that the gain, of the proposed approaches for designing
customized microcoded memory managers, was approximately 7× for
served allocation requests with a small increase of approximately 14%
to average energy consumption per allocation. The run-time resource
management framework adapts to application’s needs and application’s
execution restrictions by using the matching factor parameter and pro-
duces on average 21% and 10% better on-chip communication cost for
homogeneous and heterogeneous platforms respectively. Last, concern-
ing the malleable parallel applications, the developed framework has on
average 70% less messages, 64% smaller message size and 20% appli-
cation speed-up gain.

9



Abstract

10



Contents

Abstract 9

List of Figures 15

List of Tables 19

1 Introduction 21
1.1 Memory management acceleration and customization on

embedded systems . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Convergence general and embedded computing . . . . . . 23

1.2.1 Heterogeneous computing systems . . . . . . . . . 24
1.3 Dynamic applications . . . . . . . . . . . . . . . . . . . . 25
1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Contribution 31
2.1 Objectives and Contributions . . . . . . . . . . . . . . . . 31
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.1 Memory management middleware acceleration . . 35
2.2.2 Microcode-accelerated distributed dynamic mem-

ory management . . . . . . . . . . . . . . . . . . . 36
2.2.3 Microcode-accelerated distributed dynamic mem-

ory management . . . . . . . . . . . . . . . . . . . 38

3 Memory management middleware acceleration and customiza-
tion 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Platform Used . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Cache coherency and memory consistency . . . . . 47
3.3 Memory management middleware acceleration . . . . . . 48

3.3.1 Custom Microcoded Dynamic Memory Management 48
3.3.1.1 Application mapping to platform’s cores 50

11



Contents

3.3.1.2 Application dependent DMM customiza-
tion . . . . . . . . . . . . . . . . . . . . . 51

3.3.1.3 Platform dependent DMM customization 52
3.3.1.3.1 DMM Microcode Translation . . 52
3.3.1.3.2 Customization according to mem-

ory distribution . . . . . . . . . . 53
3.3.1.4 Evaluation of CustomMicrocoded Dynamic

Memory Management . . . . . . . . . . . 56
3.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Microcode-accelerated distributed dynamic memory man-
agement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Heap SPace Map . . . . . . . . . . . . . . . . . . . 65
3.4.2 MAD-DMM implementation . . . . . . . . . . . . 66
3.4.3 MAD-DMM evaluation . . . . . . . . . . . . . . . . 71

3.5 Power-aware DMM on Many-core Platforms utilizing DVFS
74
3.5.1 Integration of DVFS mechanisms to DMM library 76

3.5.1.1 Monitor mechanisms . . . . . . . . . . . 78
3.5.1.2 DVFS decision mechanism . . . . . . . . 82
3.5.1.3 Integrated DVFS interfaces . . . . . . . . 83

3.5.2 Experimental set-up . . . . . . . . . . . . . . . . . 84
3.5.2.1 DVFS overview . . . . . . . . . . . . . . . 84
3.5.2.2 Benchmarks and execution model . . . . 86
3.5.2.3 Selected DM managers . . . . . . . . . . 87

3.5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . 88
3.5.3.1 Power consumption and heap fragmen-

tation of the selected DM managers . . . 88
3.5.3.2 Power consumptions . . . . . . . . . . . . 91
3.5.3.3 Performance overhead . . . . . . . . . . . 95
3.5.3.4 Power consumption and performance over-

head trade-off . . . . . . . . . . . . . . . 97
3.5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 99

4 Distributed Run-time resource management 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 Divide and Conquer based Distributed Run-time Mapping

on many-core platforms . . . . . . . . . . . . . . . . . . . 104
4.2.1 Proposed run-time mapping methodology frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2.1.1 Definitions . . . . . . . . . . . . . . . . . 108

12



Contents

4.2.1.2 Homogeneous Platform . . . . . . . . . . 109
4.2.1.3 Heterogeneous Platform . . . . . . . . . . 111

4.2.2 Experimental results . . . . . . . . . . . . . . . . . 114
4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . 118

4.3 Distributed run-time resource management for malleable
applications . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.1 Methodology Framework . . . . . . . . . . . . . . 120

4.3.1.1 Definitions . . . . . . . . . . . . . . . . . 122
4.3.1.2 Communication Scheme . . . . . . . . . . 123
4.3.1.3 Gain calculation . . . . . . . . . . . . . . 126
4.3.1.4 Self-optimization process . . . . . . . . . 126

4.3.2 Experimental Results . . . . . . . . . . . . . . . . . 128
4.3.2.1 Evaluation on C simulator . . . . . . . . 128

4.3.3 Evaluation on Intel SCC platform . . . . . . . . . . 130
4.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . 135

5 High-level customization framework for resource management
on NoC architectures 139
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 NoC framework overview for resource management . . . 141

5.2.1 Resource management in regular NoC design . . . 144
5.2.2 Resource management in irregular NoC design . . 147

5.2.2.1 Application partitioning . . . . . . . . . . 148
5.2.2.2 Clustering . . . . . . . . . . . . . . . . . . 150
5.2.2.3 Routing Table Generation . . . . . . . . . 151

5.2.3 Buffer Sizing . . . . . . . . . . . . . . . . . . . . . 153
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.0.1 NoC’s throughput . . . . . . . . . . . . . 156
5.3.0.2 NoC’s average dealy . . . . . . . . . . . . 157

5.3.1 Buffer’s power consumption . . . . . . . . . . . . 158
5.3.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . 159

6 Conclusions 161
6.1 Summary of Ph.D. Thesis . . . . . . . . . . . . . . . . . . 161
6.2 Perspectives and Future Extensions . . . . . . . . . . . . 163

Publications 167

Bibliography 171

13



Contents

14



List of Figures

1.1 Gap between hardware and software development for em-
bedded systems . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Performance gap between processors and memory [42] . 22
1.3 HSA solution stack [6] . . . . . . . . . . . . . . . . . . . . 25
1.4 Data growth vs. Moore’s Law trends in the last 5 years [4] 26
1.5 Traffic management requirements for mobile broadband

applications [3] . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1 Flow of the ADAM algorithm [9] . . . . . . . . . . . . . . 39
2.2 General task migration mechanism [63] . . . . . . . . . . 40

3.1 16-node mesh McNoC; Processor-Memory (PM) node [29] 45
3.2 The DMC architecture and synthesis results [29] . . . . . 46
3.3 DSM organization and V2P translation . . . . . . . . . . . 46
3.4 Framework for supporting custom microcoded DMM on

McNoC platforms with distributed memories . . . . . . . 49
3.5 MTh-DMM Explorer tool [89] . . . . . . . . . . . . . . . 51
3.6 Code translation example. From C++ to microcode. First

Fit algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.7 NoC memory distribution-aware DMM customization ex-

ample: a)Selected topology and mapped cores, b) Thread
to memory priority table, c) SLL structure. d) Microcoded
topology aware function templates. . . . . . . . . . . . . . 57

3.8 The used multi-threaded application. Squares define the
different threads which communicate asynchronously through
asynchronous FIFO queues . . . . . . . . . . . . . . . . . 58

15



List of Figures

3.9 a) Topology used for evaluation 2 × 2 NoC with 3 pro-
cessing nodes with local memory (LM) and 1 memory
node. b) Pure Distributed Memory c) Centralized sin-
gle Heap d) Distributed multiple-Heap with global Heap
e) Memory distribution-aware multiple-Heap with global
Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Performance comparison and DMM event distribution. . 63
3.11 Average cycles and energy consumption per DMM event. 64
3.12 The implementation of Heap Space Map on top of V2P

translation service. . . . . . . . . . . . . . . . . . . . . . . 66
3.13 Overview of the MAD-DMM distributed allocation alloca-

tion procedure. . . . . . . . . . . . . . . . . . . . . . . . . 67
3.14 Abstract presentation of MAD-DMM interfaces . . . . . . 69
3.15 Communication between nodes using message passing in-

structions. The src node triggers the malloc microcode in
the dst node and after the completion of the function, the
dst node returns the block address back to the src DMC.
Last, the block address is returned to the C application . 70

3.16 Performance comparison of MAD-DMMwith [10] and [57]
under a pure private heap. . . . . . . . . . . . . . . . . . 73

3.17 Average cycles per malloc/free call and number of mi-
crocode instructions needed for intercommunication for
various NoC sizes. (a) FAST, (b) Matrix, (c) Gaussian
and (d) Integral. . . . . . . . . . . . . . . . . . . . . . . . 74

3.18 Power-aware dynamic memory management flow. . . . . 76
3.19 Monitoring process and DVFS decision mechanism inte-

grated to (de)allocation process . . . . . . . . . . . . . . . 78
3.20 Abstract view of monitoring mechanism for gathering al-

locator’s accesses. The total number of accesses is prop-
agated to the DVFS decision mechanism (Section 3.5.1.2). 80

3.21 GRLS Overview [26] . . . . . . . . . . . . . . . . . . . . . 85
3.22 Power management architecture of the McNoC platform [26] 86
3.23 Normalized power consumption comparison of the se-

lected DM managers without any monitoring or DVFS
changing mechanism. . . . . . . . . . . . . . . . . . . . . 88

3.24 Heap fragmentation of the selected DM managers. . . . . 89
3.25 Normalized power consumption for DM manager 1 com-

pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS). . . . . . . . . . . . . . . . . . 90

16



List of Figures

3.26 Normalized power consumption for DM manager 2 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS). . . . . . . . . . . . . . . . . . 91

3.27 Normalized power consumption for DM 3 manager com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS). . . . . . . . . . . . . . . . . . 92

3.28 Normalized power consumption for DM manager 4 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS). . . . . . . . . . . . . . . . . . 92

3.29 Normalized power consumption for DM manager 5 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS). . . . . . . . . . . . . . . . . . 93

3.30 Number of accesses in DMmanager’s linked lists for FAST
benchmark in comparison with DM manager’s decisions
for frequency changes for WS = 4 and WS = 8 . . . . . 94

3.31 Number of accesses in DMmanager’s linked lists for FAST
benchmark in comparison with DM manager’s decisions
for clock frequency changes for WS = 16 and WS = 32 . 95

3.32 P (ei) values, for all DM Managers, in comparison to nor-
malized power consumption (compared to no DVFS), per-
formance overhead and window size (WS). . . . . . . . . 98

4.1 Illustration of the mapping problem [46] . . . . . . . . . 101
4.2 Divide and Conquer in computer science. . . . . . . . . . 104
4.3 Divide and Conquer on many-core platform . . . . . . . 106
4.4 Flow of our D&C methodology. . . . . . . . . . . . . . . . 107
4.5 Communication Cost comparison in homogeneous plat-

forms to ADAM [9] and design-time mapping [46]. . . . 114
4.6 Mapping computational effort in homogeneous platforms

in comparison with ADAM [9] and design-time map-
ping [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Communication cost comparison for the five selected ap-
plications with ADAM [9] and design-time mapping [46]. 116

4.8 Run-time mapping scenarios on an heterogeneous many-
core platform compared with ADAM [9] . . . . . . . . . 117

4.9 Overall flow of the proposed methodology. . . . . . . . . 121
4.10 Example of the communication scheme. . . . . . . . . . . 125
4.11 More fair resource allocation through self-optimization

process [50] . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.12 Overview of the Inter SCC Platform [81] . . . . . . . . . . 131

17



List of Figures

4.13 Memory architecture of the SCC processor [58] . . . . . . 132
4.14 Symmetric name space model for the MPB as designed

for RCCE library [58] . . . . . . . . . . . . . . . . . . . . 133
4.15 Total number of messages sent for intercommunication

by all nodes for various applications compared with Dis-
tRM [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.16 Total size of sent messages in bytes compared with Dis-
tRM [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.17 Average application speed-up using the speed-up func-
tion presented in [50]. . . . . . . . . . . . . . . . . . . . . 136

4.18 Computational effort comparison with DistRM [50] . . . . 136

5.1 Examples of irregular NoC topologies. Each router (r) can
serve more than one Processing Element (PE) by having
multiple ports. . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Proposed high-level simulation framework for automatic
generation of application-spcific NoC architectures . . . . 143

5.3 VOPD (a) application task graph , (b) partitioning using
Multilevel −KL algorithm [41] and (c) clustering. . . . . 149

5.4 Configuration file structure . . . . . . . . . . . . . . . . . 151
5.5 Example of the generated topology using the configura-

tion file presented in Figure 5.4 . . . . . . . . . . . . . . 152
5.6 Average, best and worst gains ,in terms of cycles, for

packet delivery time while employing priorities. . . . . . 155
5.7 NoC’s throughput for the selected applications . . . . . . 157
5.8 NoC’s average delay for the selected applications . . . . . 158
5.9 Normalized power consumption for both regular and ir-

regular design path with the addition of the proposed
buffer sizing algorithm . . . . . . . . . . . . . . . . . . . . 159

6.1 Trends of increased complexity in Systems-on-Chip tar-
geting the market of consumer mobile devices [74] . . . . 164

18



List of Tables

3.1 Description of the Selected DMM Configurations . . . . . 59
3.2 Power management commands and description [26] . . . 84
3.3 Performance overhead in terms of cycles . . . . . . . . . . 96

4.1 Utilization of platform’s resources . . . . . . . . . . . . . 118
4.2 Comparison of the proposed technique to the DistRM [50]

in the C simulator. . . . . . . . . . . . . . . . . . . . . . . 129

19



List of Tables

20



Chapter 1

Introduction

1.1 Memory management acceleration and
customization on embedded systems

Future integrated systems will contain billion of transistors [73], com-
posing tens to hundreds of IP cores. Modern embedded platforms take
advantage of this manufacturing technology advancement and are mov-
ing from Multi-Processor Systems-on-Chip (MPSoC) towards Many-Core
architectures employing high numbers of processing cores. Intel has al-
ready created platforms with 80 and 48 general purpose processing
cores [45, 72, 85], while Networks-on-Chip (NoC) are already sup-
ported by the industry (such as the Æthereal NoC [38] from NXP and
the STNoC [80] from STMicroelectronics). The industrial vision goes as
far as thousand core chips [20]. Also, the development of such many-
core architectures is driven by the development of highly parallel/multi-
threaded demanding applications.

The gap between hardware and software development for embedded
systems is depicted in Figure 1.1. We see that the needs for software
double every 10 months while the performance of hardware platforms
is doubling every 24 months. Despite the fact that the productivity of
hardware designers improved the recent years, additional functions and
services provided only by software. The red arrow in Figure 1.1 shows
the size of this gap.

Memory is an important contributor to the performance and power
consumption of embedded systems. As the number of on-chip cores
increased, the embedded memory content also increased from 20% ten

21



Chapter 1 Introduction

  

EUROPEAN EDA ROADMAP 2009
- Page 81 - 

HdS is strongly interrelated with the development of the corresponding hardware platform. But 

on the other hand, the application software can also have significant impact on the appropriate 

functionality of the embedded system especially in the case of real-time critical embedded systems. 

The evaluation of real-time requirements needs to include the complete embedded software stack 

into the verification process. 

In general, embedded software development significantly contribute to the design productivity 

gap, as shown in figure V.3-3. This figure shows the demand for software which is currently doubling 

every 10 months, the capability of technology which is currently doubling every 24 months as 

well as the hardware and software design productivity. Whereas the hardware design productivity 

improved over the last couple of years by filling the silicon with multi-core components and memory 

providing functionality with additional software only, the productivity especially for hardware-

dependent software is far behind and only doubling every 5 years. The red arrow summarises the 

new design gap including both hardware and software.  This material is based on ITRS data on one 

hand and on additional input from Infineon and STMicroelectronics [3-5, 3-8].

Figure V.3-3 

Hardware/Software Design Gap

A key observation, common to all aspects of system-level design, is the identified need to provide 

accurate, fast, portable, platform independent functional models of all components (HW and SW) 

in a system at all levels of abstraction. This opens a possible field of study for the automation 

of the models. The issue of complexity at the system level can be contained by assuring proper 

encapsulation of the function with well defined boundaries, which in turn will require the use of 

standardised interface descriptions to allow portability and reuse of the function. These last two 

observations lead towards a paradigm of component-based design, where a “component” can be 

hardware (a traditional IP block), software, or an integrated combination of both. In addition to the 

design aspects, verification issues for embedded software strongly need to be addressed. This has 

to include non-formal, semi-formal and formal verification approaches.

Figure 1.1: Gap between hardware and software development for em-
bedded systems

Figure 1.2: Performance gap between processors and memory [42]

22



1.2 Convergence general and embedded computing

years ago to 85% of the chip area today and will continue to increase in
the future. Memories are preferably distributed for medium and large
scale system sizes, since centralized memory has already become the
bottleneck of performance, power and cost. Traditional memory opti-
mization uses compile-time information and focuses on static allocation
in respect to memory hierarchy [25]. For modern dynamic applications,
using many-core architectural templates, this is no longer possible since
there is a lot of memory unpredictability, which cannot be captured by
source code analysis alone and the increased dynamism in data storage
leads to unexpected memory footprint variations, unknown at design
time. Insufficient memory management leads to overall performance
degradation, big memory footprint and increased power consumption
as shown in Figure 1.2.

1.2 Convergence general and embedded computing

Computing Systems have a tremendous impact on everyday life in all
domains, from the internet to consumer electronics, transportation to
manufacturing, medicine, energy, and scientific computing. Also, the
traditional perspective of single-purpose/single-core embedded systems
and devices is rapidly changing as increased computing performance
and functionality is being added by industry leaders. Convergence,
both in hardware and software platforms, is rampant throughout the in-
dustry with desktop processors and embedded processors merging and
applications moving from local systems to commodity cloud platforms
and the web. For example, there was a time when mobile phones was
invented just for the ease of communication and the hardware require-
ments were minimal. Nowadays, mobile phones accommodate up to
four cores, with high definition cameras and hardware accelerators and
they are available to consumers at an affordable cost. Samsung Galaxy
S4, HTC One X, Huawei Ascend P2 etc. are considered among the best
mobile phones in terms of performance, with computing capacity bigger
than yesterday’s high-performance systems.

The computing systems industry is likewise experiencing a range of dis-
ruptive trends. Dr. Doug Burger, Director of Client and Cloud Applica-
tions at Microsoft Research, in his HiPEAC2013 keynote stated “there is
more uncertainty in the field of computing now than at any time in the past 40

23



Chapter 1 Introduction

years; computing needs a revolution that will leave no part of it untouched”.
We can see companies working as hardware vendors for computing
systems (e.g., Apple, Samsung, etc.) expanding to higher levels pro-
ducing software products targeting and claiming a bigger market share
(e.g., iOS, Samsung Store, etc.) Similarly, classic software development
companies (e.g., Microsoft, Google, Canonical, etc.) are moving towards
to mobile and embedded computing markets (e.g., MS Surface, Kinect,
Google Glass, and Ubuntu Tablet/Phone). These trends are putting in-
creased pressure on companies to effectively integrate software and hardware
components and the main result of this pressure is system heterogeneity and
the development and usage of custom hardware accelerators (e.g., GPU accel-
erators).

1.2.1 Heterogeneous computing systems

It is evident that the desktop PC is no longer driving the computing
industry, since smart phones and tablets are attracting more and more
consumers than PCs, and traditional applications, such as communica-
tion, sharing images, videos and chatting, are being offered by mobile
systems that can be used anywhere, anytime. The use of “cloud” re-
sources pushes this trend even further. As a result, the market sees most
growth in the cloud and mobile devices, which pushes hardware design
resources in those directions. Thus, modern embedded systems are
including programmable custom accelerators to improve performance
and energy efficiency. However, these accelerators even though pre-
vail as the key feature in performance improvement; they are still not
fully exploited due to the lack of software interfaces and programming
paradigms (middleware and its corresponding APIs).

So, heterogeneity and hardware accelerators are the dominant charac-
teristics of modern computing systems. In order to face the problem
of the proper hardware exploitation, many industrial leaders grouped
and founded the Heterogeneous System Architecture (HSA) Founda-
tion. HSA is a not-for-profit consortium of SoC IP vendors, OEMs,
academia, SoC vendors, OSVs and ISVs whose challenging the normal
of how whole system architecture is structured for combing CPUs, GPUs,
DSPs, and other accelerators to bring about forward progress in comput-
ing foundation to make it dramatically easier to program heterogeneous
parallel devices [5]. HSA Foundation members are building a hetero-

24



1.3 Dynamic applications

Figure 1.3: HSA solution stack [6]

geneous compute software ecosystem which is rooted on open royalty
free industry standards. Members of this foundation are world lead-
ing industrial companies such as AMD, ARM, Samsung, Qualcomm etc.
To enable easier programming, HSA allows developers to program at
a higher abstraction level using mainstream programming languages,
with the addition of libraries targeting HSA. Figure 1.3 shows a high-
level view of the HSA Solution Stack. The key to enabling one language
for heterogeneous core programming is to have an intermediate runtime
layer that abstracts hardware specifics away from the developer, leaving
the hardware-specific coding to be done once by the hardware vendor
or IP provider.

1.3 Dynamic applications

These hardware changes are also driven by application changes. All
facets of society are generating increasing amounts of data confirm-
ing the term Big Data for modern applications: multimedia (streaming
videos and images), medical (in-silico drug development, population
databases and records), security (financial transactions) and cloud ap-
plications (search histories, weather prediction). Figure 1.4 shows the
comparison of data growth with Moore’s law. It is clear that data

25



Chapter 1 Introduction

212. market trends

This data is not only a byproduct of our digital society, but also a 
valuable resource. Buried within this data are key insights into 
human behavior, market trends, diseases, engineering safety, 
environmental change, and the basic workings of physics. Yet 
with such a massive deluge of data it is becoming increasingly 
difficult to get the most from it, and to do so in a timely manner.

To exploit this data we need to be able to analyze it and respond 
in real time. Rapid analysis is key not only for financial trading 
(where a microsecond advantage can make the difference 
between a profit and a loss) and safety systems (where unknown 
delays can cause disaster), but also for delivering compelling 
customer experiences (by identifying trends early) and for society 
as a whole (identifying pandemics and optimizing transportation). 
Other opportunities are also emerging: massively instrumenting 
the energy grid in order to detect problems early to avoid general 
disasters. Reliable response time concerns are growing in data 
centers and HPC to avoid cascading delays caused by unpredictable 
response times. 

The challenge for the next decade will be in coping with this 
humongous increase in data and the simultaneous demand for 
processing it faster and in due time.

2.1.5. INTELLIGENT PROCESSING

As we populate the physical world with devices and sensors that are 
connected to the cloud, they generate a constantly growing stream 
of unstructured data, audio, video, and physical measurements. To 
make the most of this information, we need systems that can 
analyze the data to extract useful information, as well as detect 
threats (for security – like detecting intrusion or abnormal behavior) 
and faults (out of tolerance in factory automation applications, for 
example). As the volume of data is growing exponentially, we need 

“The new resources of humanity are the data.”

DATA DELUGE: A FEW FIGURES

The term “Data Deluge” was coined in 2003 [Hey03] in the 
context of scientific data management to describe the massive 
growth in the data volume generated in research (and by 
scientific instruments), which was rapidly dwarfing all the 
data previously collected in the history of research. Since then, 
the ability to generate vast quantities of data has outpaced 
the infrastructure and support tools. This is true for scientific 
data, digital media (audio and video), commercial transactions, 
social networks, legal and medical records, digital libraries, and 
so on. The need to analyze, organize, and sustain “big data” is 
one of the highest priorities in information technology across 
disciplines, organi zations and geographies [E10].
In 2010 the world generated over 1.2 Zettabytes (1021 bytes) of 
new data, 50% more than it had in all of human history before 
that. To put this in perspective, 120 Terabytes of new data was 
generated in the time it took to read the previous sentence. 
For example, Microsoft Update and Windows Update push out 
a Petabyte of updates monthly. Cisco predicts that by 2013 
annual Internet traffic flowing will reach 667 Exabytes. A social 
network like Facebook produces 10TB/day of data, with Twitter 
is not far behind (7 TB/day); each of the 4.6B mobile phones 

and 30B RFID tags produce several events per seconds that 
need to be stored, processed and analyzed. Likewise, the 2B 
Internet users also generate a variety of events that can have 
important value in areas like statistics, demographics or 
marketing. And the 50B connected devices expected by the 
year 2020 will cause all of the previously mentioned figures to 
balloon even further. Domains like gaming and other virtual 
worlds or augmented reality are also turning into massive 
data management problems.
In the scientific community, discovery has turned into a data-
driven process, which represents a relatively new fourth 
paradigm in science [Hey09], next to the empirical, theoretical 
and computational models. The problem is that with current 
increases in computation, it may take over a decade to gain 
some understanding of what has already been archived from 
the most important scientific experiments. All fields of science 
(astronomy, physics, energy, medicine, drug discovery, climate, 
public health, etc.) are completely swamped with data, which 
requires major breakthroughs in repositories, storage, and 
computing architectures, all of which are central to the HiPEAC 
mission.
If we compare this growth with Moore’s law (transistor density 
doubling every two years, see below), it is clear that data is on 
a higher exponential growth than computation capacity, and 
this unprecedented trend is forcing us to reevaluate how we 
work with data in computer systems.

 

Data growth vs. Moore’s Law trends in the last 5 years.  
Data “deluge” means that we are heading towards a world 
where we will have more data available than we can process.

Figure 1.4: Data growth vs. Moore’s Law trends in the last 5 years [4]

is on a higher exponential growth than computation capacity. This
unprecedented growth of data is forcing industry to reevaluate com-
munication and memory middleware services in computing platforms
using hardware accelerators for improving its performance and energy
efficiency.

The next generation of embedded systems will be dominated by mo-
bile and smart devices that will be capable of offering a wide range of
communications services and applications anywhere anytime. The inte-
gration of multimedia and network applications such H.264/AVC/SVC,
JPEG 2000 and WiMax, creates complex and dynamic applications that
have significant resource real-time requirements (Figure 1.5). The main
characteristic of such applications is the increased need for data stor-
age and transfer for efficient memory management. Resource man-
agement is a key technology for the successful use of such embedded
platforms. The run-time resource management paradigm has become
prominent recently because it can deal with the run-time dynamics of
applications and platforms. Thus, the efficient run-time application
resource management enables the efficient usage of the platform re-
sources.

The memory management can be achieved in several levels of abstrac-
tion: management of application’s virtual/dynamic memory, unlike to
the management of physical memory (the application source code is
platform independent). Also, the memory management can be ap-
plied with greater detail/accuracy in the hierarchy/architecture mem-
ory level. The inefficient memory management leads to reduced per-

26



1.3 Dynamic applications
Traffic management requirements for mobile broadband applications-web.jpg (JPEG Image, 511×338 ... http://www.ecnmag.com/sites/ecnmag.com/files/legacyimages/ECN/Articles/2011/01/Traffic managem...

1 of 1 13/9/2013 12:58 μμ

Figure 1.5: Traffic management requirements for mobile broadband ap-
plications [3]

formance (mainly due to the performance gap between processors and
memory modules), to increased memory demands and high energy con-
sumption.

Adopting the many-core architectural template, applications running on
yesterday’s high-performance computers start to appear in embedded
systems. From high-intensive applications (video decoding, games etc.)
to internet-based ones, new applications take over the embedded world.
However, the application developers are not willing to change the way
of developing applications’ source code leading to insufficient memory
usage. The memory restrictions raised by embedded systems are not
taken into consideration resulting in performance degradation. Keeping
the same APIs and application source code while maximizing memory
utilization in embedded systems appears to be the challenge for the
designers.

27



Chapter 1 Introduction

1.4 Thesis overview

The design challenge in the above cases is the difficulty of achieving co-
operation between software applications and heterogeneous platforms.
This Thesis focuses on the run-time resource management and appli-
cation customization for many-core embedded platforms. An overview
of the developed techniques and frameworks is presented in Figure 1.6.
The starting point of the developed methodologies is the application and
the many-core platform that the application will be executed on. The
proposed techniques have a manyfold aim. They are specially focused
on the field of developing hardware accelerated Dynamic Memory Man-
agers (DMM) and run-time resource management. Key point in all tech-
niques is the exploitation of platform’s heterogeneity and of any avail-
able hardware accelerators. On the field of memory management mid-
dleware acceleration and customization, we firstly perform application-
based DMM customization followed by the customizations according to
the platform heterogeneity. This results in better exploitation of memory
locality, offering distributed functionality, and utilization of platform’s
heterogeneity and hardware accelerators. Middleware proves out to
be a solution for keeping software flexibility while taking advantage of
hardware acceleration. On the field of run-time resource management,
a run-time mapping framework takes into account any platform’s het-
erogeneity and utilizes best the presence of hardware accelerators. Also,
following the trends in application domains, a run-time resource man-
agement framework for parallel applications is presented while it is also
focused on a self-reconfiguration process.

The presented Thesis is organized in six chapters as follows:

• In Chapter 1, a presentation of the industry trends for software and
hardware in embedded systems is presented. Also, the abstract
Thesis overview is depicted and it is clarified the focus of the
developed techniques.

• In Chapter 2, the Thesis contribution is presented and it is ana-
lyzed in topics. Also, the solutions for specific problems are pin-
pointed and last, the contribution and differentiations to other
state-of-art approaches is mentioned.

• Chapter 3 introduces the concept of accelerating dynamic mem-

28



1.4 Thesis overview

Many-core 
platform

DMM 
customization

Exploitation of 
memory locality

Hardware 
accelerated
allocators

Run-time 
framework

Run-time 
resource 

management

Run-time 
reconfiguration

Application

Exploitation of 
platform 

heterogeneity

Figure 1.6: Thesis overview

ory management functions in the middleware level. A framework
for custom and distributed microcoded Dynamic Memory Man-
agement is presented. Last, a framework for coupling the concept
of dynamic memory management with DVFS techniques targeting
low power consumption is shown.

• Chapter 4 presents the run-time resource management frame-
works. Firstly, a distributed run-time mapping framework for
heterogeneous platforms is presented. Secondly, an algorithm for
run-time resource management, in a distributed way, for malleable
parallel applications is shown.

• Chapter 5 presents a high-level customization framework and method-
ology for resource management on Network-on-Chip (NoC) archi-
tectures, both regular and irregular, based on application needs.

• Last, Chapter 6 summarizes the innovative points and findings of
this thesis and highlights future extenesions.

29



Chapter 1 Introduction

30



Chapter 2

Contribution

In this chapter an overview of the research area and problems are pre-
sented as well as the contribution of the proposed solutions is men-
tioned.

2.1 Objectives and Contributions

Our work has a manyfold aim. We focus on the run-time resource
management and application customization for many-core embedded
platforms. The research work is specially focused on the field of (i)
memory management middleware acceleration and customization; (ii)
run-time resource management and (iii) application-based platform cus-
tomization and resource management.

Firstly, we present the memory management acceleration and customiza-
tion framework. We apply these techniques to efficiently address the
problems of:

1. Providing customized dynamic memory allocators on many-core
embedded platforms.

2. Exploiting platform’s characteristics in order to provide distributed
functionality over a Distributed Shared Memory (DSM) environ-
ment.

3. Coupling the concept of Dynamic Memory Management (DMM)
with DVFS techniques targeting low power consumption on many-
core embedded platforms.

31



Chapter 2 Contribution

We adopt the microcoded approach for supporting custom Dynamic
Memory Managers (DMMs), also known as allocators on MPSoC plat-
forms, aiming for hardware performance but maintaining the flexibility
of software implementations. In order to guarantee high performance,
the proposed DMM services are developed on top of a hardware dual-
microcoded controller (DMC) [29] that a) works transparent to the on-
chip communication, b) is responsible for handling distributed memory
requests and c) mitigates processor’s workload.

The main contributions of memory management acceleration and cus-
tomization framework are:

1. Microcoded allocator: We propose a framework for generating
microcoded DMM services on top of a hardware dual-microcoded
controller (DMC) [29] exploiting platform’s DSM characteristics.
By uploading microcoded DMM to DMC instruction memory, the
processors of the Many-core Network-on-Chip (McNoC) platform
stop being responsible for servicing DMM requests or keeping
track of the status of the heaps, thus alleviating their load.

2. Distributed functionality and scalability: Amicrocode-accelerated
flexible, distributed and scalable allocator, called MAD-DMM, is
proposed. MAD-DMM provides distributed functionality over a
DSM environment, under microcode implementation, while keep-
ing the standard C-API (malloc()/free()) thus being transparent
to the application. MAD-DMM handles the heap continuous space
under a heap space map scheme and all nodes on the many-core
platform are seamlessly aware of the heap state. Unlike high-level
allocators, information about the allocator metadata is not stored
at high-level but at microcode-level as part of a local heap table.

3. Power monitoring: A new design strategy is proposed for the the
implementation of an efficient high-level methodology of applying
transparent monitor and DVFS decision mechanisms into any any
C-allocator targeting low power consumption.

4. Evaluation: Evaluation of the proposed frameworks is conducted
through extensive experimentation and explorative results.

Concerning microcoded DMM services, experimental results show that
the proposed approach for designing customized microcoded memory

32



2.1 Objectives and Contributions

distribution-aware DMM [10] (a) can serve more DMM events by us-
ing all available Heaps of the platform; (b) increases Heap lifetime; (c)
is fully configurable and easy to use (offering microcoded templates);
(d) achieves better performance exploiting the presence of the DMC
for handling distributed memory requests, thus mitigating processor’s
workload; and (e) has a negligible penalty regarding energy consump-
tion. Specifically, the gain was approximately 7× for served allocation
requests with a small increase of approximately 14% to average energy
consumption per allocation. Also, the microcode approach is on average
25% faster than the C implementation, enhancing the reason for choos-
ing a hardware controller for handling distributed memory requests.
Furthermore, MAD-DMM proved to be on average 25% slower than the
microcoded allocator [10] and 10% faster than the high-level one [57],
since most of the (de)allocation operations are performed at microcode
level and only the high-level heap address manipulation is performed
in C. On the other hand, MAD-DMM proved to be more scalable, since
purely microcoded allocator needs on average 29% more cycles to serve
an event each time the platform increases, whereas MAD-DMM needs
approximately 20% more cycles. Last, the proposed framework for
coupling DVFS techniques along with DMM showed that by using the
proposed method for monitoring and applying DVFS mechanisms, the
power consumption concerning heap management was reduced by ap-
proximately 37%. In addition, by combining this method with heap
fragmentation-aware DMMs, we can achieve low power consumption
with low heap fragmentation values.

Secondly, we present distributed run-time resource management frame-
works for many-core platforms. Specifically, we (i) adopt the concept
of the Divide & Conquer (D&C) method in order to perform distributed
run-time mapping on both homogeneous and heterogeneous many-core
platforms; (ii) couple the concept of distributed computing with parallel
applications and present a workload-aware distributed run-time frame-
work for malleable applications running on many-core platforms and
(iii) present a high-level customization framework and methodology for
resource management on NoC architectures, both regular and irregu-
lar. The proposed frameworks are based on the idea of using multiple
cores in different roles while, in all case, an on-chip intercommunication
scheme ensures decision distribution. The proposed frameworks were
evaluated on the experimental many-core platform presented in [29]
and on the Intel Single Cloud Chip (SCC) many-core one [45]. Last,

33



Chapter 2 Contribution

a high-level customization framework and methodology for resource
management on NoC architectures, both regular and irregular, based on
application needs is presented.

The main contributions of the presented distributed run-time resource
management frameworks are:

1. Support of heterogeneous platforms: The proposed framework
for distributed run-time mapping supports both homogeneous and
heterogeneous many-core platforms

2. Resource utilization: The proposed distributed run-time frame-
works can achieve different levels of platform�s resources utiliza-
tion depending on application’s needs in comparison with other
state-of-the-art distributed algorithms [9, 50]

3. Application’s needs: Make sure that the application will get the
optimum number of cores avoiding dominating effects

4. Heterogeneity exploitation : Takes into account the type of pro-
cessors best utilizing any platform’s heterogeneity while having a
small overhead in overall core intercommunication.

5. Evaluation: Evaluation of the proposed frameworks is conducted
through extensive experimentation and explorative results on ex-
perimental [29] and industrial [45] many-core platforms.

Experimental results shows that the proposed D&C based distributed
run-time application mapping framework, for both homogeneous and
heterogeneous many-core platforms, produces on average 21% and 10%
better on-chip communication cost for homogeneous and heterogeneous
platforms respectively, compared to other state-of-the-art distributed
scheme[9] with almost the same computational effort. The random im-
plemented runtime scenarios showed that the proposed algorithm can
have different behavior according to the selected matching factor and
resulting to different platform�s resources utilization. Also, the pro-
posed distributed run-time manager for malleable applications proved
to have 70% less messages, 64% smaller message size and 20% appli-
cation speed-up gain compared to the DistRM distributed scheme for
malleable applications [50]. Also, the presented framework has a small
communication overhead, takes into account platform�s heterogeneity

34



2.2 Related Work

and makes sure that the application will maximize its speed-up func-
tion.

2.2 Related Work

Increasingly, the current design trend in System-on-Chip devices (SoC) is
based on utilizing multiple processors, thus shifting towards the MPSoC
design paradigm. This design trend stands for both general-purpose
computing architectures [78] and embedded computing systems [8, 43].
To utilize this high number of cores, modern embedded applications are
increasingly becoming multi-threaded. Furthermore, multiple use-case
scenarios and increased interaction with the environment expose the
high dynamic behavior of these systems.

2.2.1 Memory management middleware acceleration

There are three ways to offer memory management services on Dis-
tributed Shared Memory (DSM) platforms. Historically, software-only
solutions are the current practice, being flexible but consuming many
processor cycles, limiting system performance. Extensive research has
been conducted for general-purpose dynamic memory management,
which target either the single processor [87, 88], or the multi-processor
domain [16, 48, 54, 55, 91]. However, the amount of work that the
DMMs perform is not always the same, it changes at run-time since
the state of the heap and the number of applications accessing it varies,
and it also depends on the type of calls and their parameters. Devel-
oping dynamic multi-threaded applications, using worst-case estimates
for managing memory in a static manner, would impose severe over-
heads in memory footprint and power consumption. To avoid such
type of costly over-estimations, developers are motivated to efficiently
utilize dynamic memory.

Dedicated hardware solutions can achieve high performance, but any
small change in functionality leads to re-design of the entire hardware
module. A memory allocator which favors cache locality on specific SMP
systems is proposed in [71]. Authors in [12] study heap management
in the Cell processor, a relevant hardware architecture, but they do not

35



Chapter 2 Contribution

handle shared memory; instead of this, the processing units have to
handle their own, dedicated memory and they communicate with the
system through explicit DMA calls, a limitation posed by the individual
hardware platform.

Microcode approach is a good alternative to overcome the performance-
flexibility dilemma, offering a programmable and flexible solution to ac-
celerate a wide range of applications [86]. Thus, we adopt the microcoded
approach to address DSM issues on McNoCs, aiming for hardware perfor-
mance but maintaining the flexibility of programs. The microcode approach
has been used in previous multiprocessor systems to solve DSM related
memory management issues. The Alewife [7] machine addresses the
problem of providing a single address space machine with integrated
message passing mechanism. However, it is a dedicated hardware solu-
tion and also does not support virtual memory. Both FLASH [52] and
Typhoon [67] use a programmable co-processor for supporting flexi-
ble cache coherence policy and communication protocol. However, the
FLASH and the Typhoon host only one programmable coprocessor to
deal with requests from the network and the CPU. If two or more re-
quests come concurrently, only one can compete to be handled while
the others have to be delayed, resulting in contention delay. Further-
more, the FLASH and the Typhoon organize memory banks to form a
cache-coherent shared memory. Memory accesses are handled by the
programmable coprocessor. However, in comparison with the dedicated
hardware solution, the local processor spends much more time in ac-
cessing data even only used by itself. In our memory organization, the
memory is partitioned into the private part and a shared one. The
private memory access is local and fast so as to improve performance.
The SMTp [28] exploits SMT in conjunction with a standard integrated
memory controller to enable a coherence protocol thread used to sup-
port DSM multiprocessors. The protocol programmability is offered by
a system thread context rather than an extra programmable coproces-
sor.

2.2.2 Microcode-accelerated distributed dynamic memory
management

Traditional optimizations use compile-time, manifest information and
have focused on static allocation and how to synthesize memory hi-

36



2.2 Related Work

erarchies for SoCs [25]. For modern dynamic applications this is no
longer possible, as the dynamicity of the behavior due to the input dy-
namics cannot be captured by source code analysis alone. As presented
in [82], dynamic memory management for MapReduce [33] algorithms
plays an essential role to overall system performance. More specifi-
cally, shared memory MapReduce performance is sensitive to memory
allocation pressure among others. This is the reason why the memory
allocator limits scalability [92]. Furthermore, static allocation of mem-
ory leads to an inefficient memory utilization [11]. Thus, the application
behavior and memory requirements significantly vary during run-time.
The dynamic memory management (DMM) is a critical component in
NoCs, since it often forms the main performance, and scalability bot-
tleneck of multi-threaded applications [16]. Also, it greatly affects the
energy and memory consumption of the overall system [11]. Exten-
sive research has been conducted for general purpose dynamic memory
allocators targeting either the single processor or the multiprocessor do-
main [16, 88]. General-purpose, scalable allocators have been suggested
for multi-core systems [69], but they focus mostly on synchronization
issues and do not study distributed memory schemes. In the field of
high-performance computing, global address spacing is considered im-
portant and distributed solutions for dynamic memory management
have been proposed [56], but this work is aimed on cluster networks,
not exploiting the locality and latency benefits of an NoC. Hardware ac-
celerators for dynamic memory management have been proposed by
many researchers [27, 88]. A hardware memory management unit
(SoCDMMU), responsible for the dynamic allocation and de-allocation
of memory is presented in [75]. However, this is a centralized unit and
could be a potential bottleneck in McNoCs. Furthermore, SoCDMMU
is able to allocate only complete global memory pages and the man-
agement of the data (de)allocation of the local (or private) memories is
left out to the processors. A hardware MMU (HwMMU) offering dy-
namic allocation of data on the DSM space of an NoC is proposed in [59].
HwMMU supports dynamic allocation and de-allocation of shared mem-
ory with a granularity of complete memory pages, supported by new
API calls.

37



Chapter 2 Contribution

2.2.3 Microcode-accelerated distributed dynamic memory
management

The authors of [65] present a mapping and scheduling strategy for
hard real-time embedded systems, which communicate over a shared
medium (i.e., bus) aiming at minimizing the system modification cost.
A run-time application mapping onto homogeneous NoC platforms with
multiple voltage levels is presented in [30]. That technique consists of
a region selection algorithm and a heuristic for run-time application
mapping. Broersma et al. [21] propose the MinWeight algorithm for
solving the minimum weight processor assignment problem but only
for task graphs with maximum degree at most two. Smit et al. in [79]
extend the aforementioned algorithm by solving the problem of run-time
task assignment on heterogeneous processors with task graphs restricted
to a small number of vertices or a large number of vertices with degree
of no more than two [21]. A unified single-objective algorithm, called
UMARS, couples path selection, mapping of cores and TDMA time-slot
allocation, such that the network required to meet the constraints of the
application is minimized [39].

Faruque et al. [9] present a runtime application mapping in a distributed
manner using agents targeting for adaptive NoC-based heterogeneous
multi-processor systems. The main idea is that in order to achieve
the distributed computation of the mapping, the platform is partitioned
in virtual clusters and computation of the mapping on each cluster is
performed individually. More specifically, a cluster is a subset of the set
of tiles of the NoC. Its boundaries are not set and may change at any
time, including more tiles, or excluding previously owned tiles. One of
the cluster’s tiles is selected to act as the cluster agent. An agent is a
computational entity which acts on behalf of others. The cluster agent
specifically, is an agent that is responsible for mapping operations within
its cluster (Figure 2.1).

Authors claim that a centralized run-time resource management may
bear a series of problems such as single point of failure and large volume
of monitoring-traffic. However, Nollet et al. [63] present a centralized
runtime resource management scheme that is able to efficiently man-
age a NoC containing fine grain reconfigurable hardware tiles and two
task migration algorithms. The resource management heuristic con-
sists of a basic algorithm completed with reconfigurable add-ons. The

38



2.2 Related Work

 

Figure 2.1: Flow of the ADAM algorithm [9]

basic heuristic contains ideas from multiple resource management ap-
proaches. The proposed mechanism is based on the assumption that
many algorithms are pipelined and contain stateless points. Stateless
points are moments where new and independent data is put into the
pipeline. This assumption allows a migration mechanism to move mul-
tiple pipelined tasks at once without being concerned about transferring
task state. This mechanism is useful when new QoS requirements affect
an application and tasks must be reallocated. The mapping algorithm
proposed in [63], isn’t the most effective possible, since it encounters
the constraints of being centralized. Nevertheless, the migration mecha-
nisms (Figure 2.2) proposed can be very useful as parts of any run-time
manager that uses migration techniques. However, even though these ap-
proaches handle application mapping at run-time in a good way, they are
designed for fixed-size applications without any malleability aspect. Thus, no
application reconfiguration is performed in response to any dynamic
changes of platform’s available resources and no resizing or remapping
of the applications is allowed.

On the field of self-organized and dynamic systems and from the aspect

39



Chapter 2 Contribution

 

Figure 2.2: General task migration mechanism [63]

of malleable or parallel applications in general, Sabin et al. [68] present
a greedy centralized scheduling strategy and demonstrate that the im-
portance of efficiency varies with respect to the characteristics of the
workload a scheduler encounters. The main idea, is that the scheduler
associates defines a maximum allowable partition size on the process-
ing elements for an application and afterward uses a greedy schedul-
ing strategy to choose an actual partition size with aim to minimize
response time. The fundamental problem of an unrestricted greedy
approach to choose partition sizes for all jobs is that most jobs tend to
choose very large partition sizes as far as their processing element usage
is concerned. As a result, the authors [68] employ a fair-share based
allocation scheme with system-wide factor which takes into account the
weight of each job in order to utilize the recourses in a more fair way.
Desell et al. [34] show that the application malleability provides up to
a 15% speedup over component migration alone on a dynamic cluster
environment. For the examination of the malleability, two representa-
tive applications have been chosen and modified to utilize malleability
features. The first is an astronomical one while the second is an appli-

40



2.2 Related Work

cation which simulates heat diffusion. Both of them have their unique
need in data manipulation and malleability design. The resource avail-
ability is altered by making clusters available and unavailable to the
applications. Kobe et al. [50] present a distributed agent-based task
mapping for malleable applications supporting also self-organization.
The agent is assigned at run-time to a random core when a new ap-
plication arrives having the disadvantage of a possible communication
bottleneck when a randomly selected already occupied core serves the
new request. To manage regional information in a distributed way, the
authors suggest that there is a directory service distributed to the en-
tire platform. This directory service enables the agents to communicate
with other agents without the need of broadcast communication. All
available cores are split into evenly distributed clusters and each cluster
contains one directory service running on one of the cores. The agents
register themselves at the directories corresponding to the cores occupied
by the own application. The differentiators of the proposed methodologies
lay in the fact that (i) the aforementioned approaches do not take into account
platform’s heterogeneity, leaving unutilized platforms’ special characteristics
and (ii) the developed approach has a small overhead in overall core intercom-
munication.

41



Chapter 2 Contribution

42



Chapter 3

Memory management middleware
acceleration and customization

3.1 Introduction

The current trend in computing and embedded architectures is to re-
place complex superscalar architectures with many processing units con-
nected by an on-chip network. Future integrated systems will contain
billion of transistors [78], composing tens to hundreds of IP cores and
the number of cores to be integrated in a single chip is expected to
rapidly increase in the coming years, moving from multi- to many-core
architectures. Modern embedded platforms take advantage of this man-
ufacturing technology advancement and they are moving from Multi-
Processor Systems-on-Chip (MPSoC) towards Many-Core architectures
employing high numbers of processing cores. From an industrial point
of view, the vision goes as far as thousand core chips [20]. Addition-
ally, the development of such many-core architectures is driven also by
the development of highly parallel/multi-threaded demanding applica-
tions.

Dynamic Memory Managers (DMMs), also known as heap managers
or allocators, are responsible for organizing the dynamically allocated
data in memory and servicing the application memory requests at run-
time [88]. The efficient implementation of dynamic memory managers,
which can be implemented either in software or in hardware, plays an
important role to the application performance and platform’s power
consumption. As illustrated in [16] simple dynamic memory manage-
ment implementations often form a performance and scalability bottle-

43



Chapter 3 Memory management middleware acceleration and customization

neck in the case of multi-threaded applications, affecting the memory
and energy consumption of the overall system. Thus, customized DMM
solutions are critical components during the design phase of modern
systems. Moreover, power consumption in embedded architectures is
an important issue that system designers always try to reduce as much
as possible respecting applications’ performance constraints affecting the
design of DMMs themselves.

3.2 Platform Used

The system we used to evaluate and develop memory management
middleware acceleration and customization techniques is composed of
Processor-Memory (PM) nodes interconnected via a packet-switched
mesh network (Figure 3.1). A PM node is composed of a LEON3 pro-
cessor with its own I-Cache and D-Cache, a Dual Microcoded Controller
(DMC) and memory which can be shared among the nodes.

The key module, on which the developed techniques are based for
memory and data management, is the DMC, able to simultaneously
serve various requests from the local core and the remote ones via the
network. Figure 3.2 shows the structure of the DMC. More informa-
tion regarding its hardware characteristics can be found in [29]. The
platform offers base distributed shared memory (DSM) services such
as:

• virtual-to-physical (V2P) address translation

• synchronization

• cache coherency

• memory consistency

• shared memory access

These services are implemented in DMC micro-code and they are stored
in DMC’s control store. Moreover, they are executed by the DMC trans-
parently to any high-level (C) application running on LEON3 processors
thus alleviating the processors from performing memory management

44



3.2 Platform Used

! $!

understand because the author has not identified the key aspects of how the system 

works.”

Answer: 

In the 1
st

paragraph of Section III (page 3) we provide more details about the 

used platform, the key aspects of how the system works, the base DSM services 

that are already implemented and the structure of our platform.

In our platform, memories are distributed but shared among network nodes. An 

example is shown in Fig. 1.

Figure 1. A 16-node mesh McNoC; Processor-Memory (PM) node [9]

The system is composed of Processor-Memory (PM) nodes interconnected via a 

packet-switched mesh network. A node can also be a memory node without a 

processor, pure logic or an interface node to off-chip memory. As shown in Fig. 2, 

each PM node contains a processor (in our case a LEON3), hardware modules 

connected to the local bus, and a local memory. The key module is an engine for 

memory and data management, called DMC, able to simultaneously serve various 

requests from the local core and the remote ones via the network. 

More details regarding the DMC module and the base DSM services it offers can be 

found in [9]. To speed up frequent private accesses as well as to maintain a single 

logical addressing space, the local memory is partitioned into two parts: private and 

shared (Fig. 2). Accordingly, two addressing schemes are introduced: physical 

addressing and virtual addressing. The local core using physical addressing can 

only access the private memory. All shared memories are globally visible to all 

nodes and organized as a single virtual addressing space using virtual addressing 

and virtual-to-physical (V2P) translation. Such translation incurs overhead but 

makes the DSM organization transparent to the application and the other DSM 

services, thus facilitating programming.

Figure 3.1: 16-node mesh McNoC; Processor-Memory (PM) node [29]

actions. This approach offers software flexibility (due to the transparency of the
services) with hardware-accelerated/improved performance.

The used platform does not support an Operating System (OS) however;
LEON3 processors are capable of running C applications using the Bare-
C Compiler (BCC). Under the C programming language, dynamic mem-
ory management does not require the presence of an OS and there
are no C built-in facilities for such operations. Instead, these facilities
are defined in a standard library, which is compiled and linked with
user applications. The developed memory management techniques are
linked with C applications running on LEON3 and compiled with Bare-
C Compiler 1.0.36b.

To speed up frequent memory accesses as well as to maintain a sin-
gle logical addressing space, the local memory of each node is parti-
tioned into two parts: private and shared. Accordingly, two addressing
schemes are introduced: physical addressing and virtual addressing.
The local core using physical addressing can only access the private memory.
All shared memories are globally visible to all nodes and organized as a sin-
gle virtual addressing space using virtual addressing and virtual-to-physical
(V2P) translation. Such translation incurs overhead but makes the DSM
organization transparent to the application and the other DSM services,
thus facilitating programming.

Figure 3.3 shows the DSM organization and V2P translation. On the

45



Chapter 3 Memory management middleware acceleration and customization

Figure 3.2: The DMC architecture and synthesis results [29]

...

Private Shared

Private Shared

Private Shared

Virtual
Address Space

0x40200000
#0 Node

#1 Node

#2 Node

Physical 
Local Memory

0x00000

0x20000 0x40220000

0x40240000

0x40260000

0x00000

0x20000
0x00000

0x20000

Physical 
Addresses

Figure 3.3: DSM organization and V2P translation

46



3.2 Platform Used

left, there are the platform’s nodes each of which have their private
and shared memory. The physical addresses of the shared part range
from 0x00000 to 0x20000. Under V2P translation in the DSM environ-
ment, all shared memories are organized as a single virtual addressing
space. The application uses the virtual addresses (0x40200000, etc.)
in order to access the shared memory and the triggering of the corre-
sponding physical node is performed but the DMC after the V2P trans-
lation.

3.2.1 Cache coherency and memory consistency

As mentioned in Section 3.2,the low-level services of the platform, are
transparently used by other high-level services, such as dynamic mem-
ory management.

Maintaining coherent caches with efficiency in multi-core systems is a
well-recognized challenge, especially when both caches and local mem-
ories are distributed. To be scalable, the platform supports a directory-
based cache coherency where, for each shared memory address, there
is a caching state (uncached, cached) and associated directory recording
the sharers when shared. Rather than a flat organization, the directo-
ries are organized hierarchically in order to minimize the area overhead
and to reduce network communication latency exploiting the communi-
cation locality. The cache coherency functions are realized in microcode,
specifically, for cache coherent read, write and invalidation, respectively.
Since only read and write misses are visible to the communication archi-
tecture, the DMCs process read/write misses and generate invalidation
signals to sharers according to a particular cache coherency protocol
(write back vs. write through, no-allocate vs. allocate), which can be
configured in a caching protocol register in the DMCs. The microcoded
coherency enables to flexibly support different protocols, and different
directories with possible different hierarchical levels, depending on the
system scale.

To enhance application performance, program and memory transaction,
re-ordering is typically required to allow compiler, software, and hard-
ware optimizations. To reason about the correct program behavior, a
memory consistency model serves as a contract between the architecture
and the application. Due to ordering restrictions imposed by the se-

47



Chapter 3 Memory management middleware acceleration and customization

quential consistency model, a relaxed consistency model is often favored
for high performance computing architectures. The platform supports
two relaxed memory consistency models, weak and release consistency.
Both models set synchronization checkpoints before executing next code
segments. While the weak consistency model uses one uniform synchro-
nization checkpoint, the release consistency model differentiates acquire
from release synchronization, allowing more re-ordering possibilities.
The platform supports both models using a transaction counter based
approach. With one transaction counter at each node, we realize the
weak consistency model. With two transaction counters per node, we
realize the release consistency model.

3.3 Memory management middleware acceleration

This section introduces the concept of accelerating dynamic memory
management functions in the middleware level. We adopt the mi-
crocoded approach for supporting custom DMMs on MPSoC platforms,
aiming for hardware performance but maintaining flexibility of soft-
ware implementations. Specifically, we address the problem of provid-
ing customized microcode DMM on NoC platforms under a Distributed
Shared Memory (DSM) environment. In order to guarantee high perfor-
mance, the proposed DMM services are developed on top of a hardware
dual-microcoded controller (DMC) [29] that a) works transparent to the
the routing engine, b) is responsible for handling distributed memory
requests and c) mitigates processor’s workload. In order to further
exploit DSM characteristics we developed a flexible and scalable dis-
tributed allocator, called MAD-DMM. MAD-DMM provides distributed
functionality over a DSM environment while keeping the standard C-
API (malloc()/free()). Last, we show an effective way of integrating
DVFS mechanisms into any high-level DM manager transparently to
the application developer.

3.3.1 Custom Microcoded Dynamic Memory Management

The methodology framework for supporting custom microcoded DMM
on McNoC platforms with distributed memories is showed in Fig. 3.4

48



3.3 Memory management middleware acceleration

INPUT

T6

T2

T1T0

T4

T3

49

16
313
94

49 49

Application DMM Explorer 
tool

DMM Pareto 
Configurations

NoC template

Mapping
(Bandwidth constraint)

Microcode 
topology aware
customization

DMM microcode 
translation

Selected 
DMM

Profiled
C/C++ code Pareto 

points

Task 
graph

.xml file

Microcode 
uploading 

to DMC

Application’s code 
mapped to proseccors

DMM to DMC portingThread to core 
assignment

Topology 
mapping 
decisions

DMM 
C/C++ 
Library

Step 3
Platform Dependent
DMM Customization

Step 2
Application Dependent

DMM Customization

Proseccor

Hardware 
accelerator

Bus

Private Shared

Local 
Memory

NoC implementation

T0

T2 T4 T6

T3

T5T1

Step 1 
Mapping Procedure

Proseccor

Hardware 
accelerator

Bus

Private Shared

Local 
Memory

Figure 3.4: Framework for supporting custom microcoded DMM on
McNoC platforms with distributed memories

49



Chapter 3 Memory management middleware acceleration and customization

Given the source code of a multi-threaded dynamic application and an
NoC template, we perform three steps:

1. Application mapping to platform’s cores.

2. Application dependent DMM customization.

3. Platform dependent DMM customization by refining the application-
dependent DMM configuration.

3.3.1.1 Application mapping to platform’s cores

The application mapping decisions have a great impact on the perfor-
mance and energy consumption of the derived system, so the neces-
sary decisions should be taken at an early design stage. The targeted
application is composed of a number of tasks (nodes in the applica-
tion graph). The edges among the tasks denote the communication
cost and data dependencies. We formulate the mapping problem as
an one-to-one mapping between two graphs. The first graph repre-
sents the application, while the second one represents the NoC plat-
form.

• Application Graph: We define as application graph a directed
graph AppG(V,E), where each vertex vi ∈ V represents a kernel
of the application, and the directed edge ei,j ∈ E represents the
communication between the kernels vi and vj . The weight of the
edge ei,j denoted as wi,j , represents the communication load from
vi to vj .

• Platform Graph: We define as platform graph a directed graph
PlatformG(N,L), where each vertex ni ∈ N represents a node in
the architecture. Without loss of generality, we define NProc ∈ N
to represent the processing nodes of the NoC and NMem ∈ N
represent the memory ones. The directed edge li,j ∈ L represents
direct communication between the platform nodes ni and nj . The
available bandwidth among these nodes is represented by bwi,j .

50



3.3 Memory management middleware acceleration

Overall Inter/Intra-Thread Pareto Sets

Mem. Footprint

En
er

gy
 

Mem. Footprint

#A
cc

es
se

s

DMM Mem. 
Footprint

#D
M

M
 A

cc
es

se
s

sd
fd

sf

Constrained Intra-Heap 

Intra-Thread DTs 
C++ Mixin Layers 

1. Max. Free-lists
2. Split/Coalesce Decisions
3. Fit policies
4. Search Order Policies

Intra-Thread 
Structures DT Prunning

Intra-Thread Exploration

Configuration Vectors Generation

Automated Code 
Generation 

Inter-Thread 
Analysis

Simulation

Application
…………………………….
…………………………….
…………………………….

Profiling

MTh-DMM

Statistics Extraction 
Pareto Analysis

Inter-Heap

Inter-Thread DTs 
C++ Mixin Layers 

1. Heap Architectures 
2. Synchronization 
3. Thread to Heap
4. Heap Ownership
5. Heap Thresholds 

Inter-Thread 
Structures DT Prunning

Inter-Thread Exploration

Configuration Vectors Generation

Automated Code 
Generation

Fixed Intra-Heap 
Configuration

sdfdsf

sdfdsf

sdfdsf

Pareto Constraint Propagation

100

200

300

400

20000 40000 60000 80000

Inter-Thread Pareto Configurations

Inter- to Intra-Heap 
Constraint Propagation 

sd
fd

sf

sd
fd

sf

sdfdsf

Intra-Thread 
Analysis

Figure 3.5: MTh-DMM Explorer tool [89]

The mapping goal is the minimization of the total communication cost
(Ctotal) on the NoC, which is calculated by Equation 3.3.1.1:

Ctotal =
∑
i

∑
j

Di,j ×Wi,j (3.1)

where Di,j is the distance (measured in hops) between the i and j nodes
of the platform graph, whereasWi,j is the weight of the communication.
For the application mapping, we use the bandwidth-constraint mapping
algorithm presented in [60].

3.3.1.2 Application dependent DMM customization

In this step, we generate a set of Pareto customized Multi-Threaded
Dynamic Memory Managers (MTh-DMM), tailored to the designer’s
constraints and the application’s specific needs. MTh-DMM Explorer
tool [89] was used to generate the application specific MTh-DMMs. This
tool works on a platform-independent level searching among inter- and
intra-thread DMM decision trees [89] as depicted in Figure 3.5.

Inter-heap level MTh-DMM exploration searches the corresponding so-
lution space to find optimal combinations of design decisions for the
dynamic application under study. The exploration procedure effectively
prunes the solution space by exploiting the inter-heap inter-dependencies.

51



Chapter 3 Memory management middleware acceleration and customization

After the determination of the exploration parameters, the structures
representing the examined decision trees of interest are initialized. The
inter-dependency aware exploration loops are generated producing the
inter-heap exploration script. The source code of each inter-heap MTh-
DMM solution is linked to the dynamic application source code in order
to evaluate its impact on the overall performance metrics.

A Pareto analyzer module is invoked to extract the MTh-DMM solutions
presenting the most efficient trade-offs. In case that the statistics collec-
tion is performed to evaluate the inter-heap explored DMM solutions,
the extracted Pareto points form the Pareto constraints to be propagated
to the intra-heap level exploration tool. Intra-heap level exploration tool
performs the extra refinement/customization of the inter-heap Pareto so-
lutions. Each inter-heap Pareto solution is propagated to the intra-heap
exploration tool forming its constraints. Intra-heap exploration cus-
tomizes the internal heap structure considering as fixed the inter-heap
decisions defined in the propagated Pareto point.

The exploration is performed based on a constraint-orthogonal partition
methodology. The Pareto dimensions for extracting the application-
specific memory allocators are: a) memory footprint and b) number
of accesses. The MTh-DMM explorer tool generates application-specific
C++ allocators.

3.3.1.3 Platform dependent DMM customization

The main goal of the third step is to move from platform-independent
to platform-dependent DMM configurations in order to increase perfor-
mance and exploit platform’s features. This is done through porting
the application-specific allocators to DMC. Two steps are required. At
first, the high level C++ DMM configurations are translated to DMC’s mi-
crocode. Secondly, the microcode is extended to take into consideration
topology-aware features, such as memory distribution and communica-
tion cost. This extended microcode is uploaded to DMC’s instruction
memory.

3.3.1.3.1 DMM Microcode Translation Having as input the C++ DMM
Pareto configurations, we transform the high-level code to equivalent

52



3.3 Memory management middleware acceleration

microcode functions. We have built generic microcode templates based
on the C++ dynamic data structures and exploit platform’s features. The
microcode functions that are produced are fully configurable. Fig. 3.6
shows an example of the C++ to microcode translation for the First
Fit [88] algorithm. More specifically, according to platform characteris-
tics the designer can generate a large number of Heap organizations by
configuring different DMM parameters, such as:

• Number and Type of Fixed List Heaps: This type of Heaps
serve fixed sized allocation requests and in a quick manner. They
can be viewed as memory caching mechanisms for dynamic data
thus having a great impact on DMM’s performance and memory
fragmentation.

• Heap size: The maximum assigned memory space that DMM can
use for allocation request in a specific heap. In case heap size
threshold is crossed, additional memory is required from the sys-
tem, otherwise allocation requests fail.

• Heap positioning: Refers to the mapping of the overall heap or-
ganization onto the distributed memory of the platform. With
microcode functions we can generate various heap organizations
mapped onto the NoC nodes. For example, we can characterize
heaps according to their position either as local (heaps laying into
processor nodes) or as a global heap (heaps laying into memory
nodes). Heap size is closely connected with heap positioning due
to different memory sizes across the NoC.

By uploading microcoded DMM to DMC instruction memory, the processors of
the McNoC stop being responsible for servicing DMM requests or keeping track
of the status of the heaps, thus alleviating their load.

3.3.1.3.2 Customization according to memory distribution The last
step is to perform topology-aware refinement. As mentioned, the C++
DMM implementations work at a high abstraction level, thus leaving
to the host operating system the decision of which (part of) physical
memory is accessed during allocation requests.

However, the management of accessing physical memory becomes dom-
inant in MPSoC architectures due to memory distribution over the plat-

53



Chapter 3 Memory management middleware acceleration and customization

inline void * first_fit_free_list (size_t sz) {
// Check the free list first.
freeObject * prev = &head;
while (prev->next != &tail) {
if (Header::getSize(prev->next) >= sz) {
freeObject * ptr = prev->next;
prev->next = ptr->next;
if (prev->next == &tail) {
tail.next = prev;

}
return (void *) ptr;

}
prev = prev->next;

}
return 0

}

C/C++ code

C/C++ to 
DMC Microcode

FIRSTFIT:
set A1 {N_FREES} ; If there are no empty blocks perform an INSERT
set A6 {G_HEAP_START}
beqz A1 INSERT
LOOP: 
set A4 0 ; Check the indexes of the single linked list, 

;to check where is the empty block
add A6 A6 4
lw *A6 A2
lrs A2 A4 1
beqz A4 FOUND_EMPTY_BLOCK ; Empty block found?
add A6 A6 A2
jmp LOOP
FOUND_EMPTY_BLOCK: ;As soon anempty block is found we check 

;whether we can accommodate the allocation request

set A5 DATA
bleq A5 A2 ADD ;If so, INSERT (place) the element to that address
sub A1 A1 1
beqz A1 ADD ;If not, check other free blocks (if any), else INSERT 

;as a new element to the end of the Allocated List
Add A6 A6 5
add A6 A6 A2
jmp LOOP

Figure 3.6: Code translation example. From C++ to microcode. First
Fit algorithm.

54



3.3 Memory management middleware acceleration

form. For a given memory distribution, we further increase perfor-
mance of the selected DMM by implementing microcoded functions in-
structing DMC: i) which (neighboring) Local Heap is more appropriate
to ask for a (remote) allocation request and ii) which Global Heap is
closer.

At design time, based on topology criteria, we build priority tables PTs,d,
(s, d ∈ N) for each node N of the MPSoC platform. P ∈ N represents
the processing nodes of the MPSoC and M ∈ N represents the memory
ones. PTs,d describes the priority weight of source s accessing desti-
nation d. PTs,d priorities are exploited at run-time guiding DMC to
try allocation to (neighboring) nodes according to PTs,d table, starting
from the node with the highest priority. The PTs,d value is defined in
Equation 3.2.

PTs,d =
w1Ps,d + (1− w1)(w2MLd + (1− w2)(w3MPd + (1− w3Ds,d)))

(i̸=d)∑
∀i
{w1Ps.i+ (1− w1)(w2MLi + (1− w2)(w3MPi + (1− w3Ds,i)))}

(3.2)
where i ∈ M , Ps,d and Ds,d are the power consumption and delay of
the (s, d) link respectively. MLd and MPd are the memory latency
and memory power consumption per access of the d memory respec-

tively. Also,
3∑

i=1
wi = 1, wi ≥ 0, are the weights for configuring the

cost function. The microcode functions responsible for triggering re-
mote Heaps (local or global) are totally independent and transparent to
DMM’s code.

DMC uses the message passing policy to propagate information to neigh-
boring nodes. In that way, the execution of microcode to a different
node is allowed even if the remote DMC has not received any signal
from its own local core. What mainly affects the scalability of the DMM
solution is: a) the thread to heap mapping and b) the heap to memory
mapping.

Figure 3.7 shows an illustrated example of customization according to
memory distribution. We assume a 3 × 3 NoC architecture which con-
sists of three memory nodes (M(0,1), M(1,2) and M(2,0)). There are three
processing nodes executing threads (Thd(0,2), Th

d
(1,0), Th

d
(1,1)) with dy-

55



Chapter 3 Memory management middleware acceleration and customization

namic allocation operations and the rest execute code with static data
(Ths(0,0), Th

s
(2,1), Th

s
(2,2). All processing nodes have their own Local

Memory (LM). Topology aware DMM customization manages threads
with dynamic data. According to Equation 3.2 we build the priority
access table presented in Fig. 3.7(b) (0 = highest priority, 8 = lowest
priority).

Looking at the priority table (Fig. 3.7(b)) for each Thd(i,j) we build
a Single Linked List (SLL) structure containing microcoded memory
distribution-aware functions responsible for triggering the correct phys-
ical memory when needed. The SLL structure is presented in Fig. 3.7(c).
The microcode templates responsible for triggering remote memory nodes
are presented in Fig. 3.7(d). We have selected the message passing
policy to propagate information to neighboring nodes. The microcoded
functions are totally independent and transparent to DMM’s code. They
are placed at the end of the code and they are automatically triggered
when the local DMC asks for a remote (de)allocation request. With
these functions, the execution of microcode to a different node is al-
lowed even if the remote DMC hasn’t received any signal from its own
local core.

3.3.1.4 Evaluation of Custom Microcoded Dynamic Memory
Management

The application we use as a test driver is a combination of several
real-life kernels (performing packet processing, encryption, schedul-
ing, etc.) that are present in network applications [13] and it is pre-
sented in Figure 3.8. The application consists of 5 kernels and each
kernel is executed in its own independent thread and communicates
asynchronously with the other kernels through asynchronous FIFO
queues:

• Network traffic corresponding to activities like VoIP, FTP and web
browsing, and which have been studied in [40]. This execution
thread feeds the entire system with data packets containing the
network traffic. The information available for each data packet
is: time, IP addresses of the source and destination, source and
destination ports and the size of the package. This thread engages
the memory needed for the data packet (without including the

56



3.3 Memory management middleware acceleration

M(2,0)

Th(1,0)
d Th(1,1)

d M(1,2)

Th(0,0)
s M(0,1) Th(0,2)

d

Th(2,2)
sTh(2,1)

s

Th(1,0)
s LM(1,0) M(2,0) LM(0,0)

M1_TRIGGER:
set A0 20
set A1 {M1_ID}
set A6 1280
nop
mp A1 A0 A6 DATA
nop
set A6 1276
nop
end 1

Thread to Memory 
Priority Table

M(2,0) M(1,2)

Th(1,0)
d 1 5

Th(0,2)
d 8 2

Th(1,1)
d 5 2

M(0,1)

4

1

1

0: Highest priority, 8: Lowest priority

LM(0,0)

2

5

7

LM(1,1)

M2_TRIGGER:
set A0 20
set A1 {M2_ID}
set A6 1280
nop
mp A1 A0 A6 DATA
nop
set A6 1276
nop
end 1

M3_TRIGGER:
set A0 20
set A1 {M3_ID}
set A6 1280
nop
mp A1 A0 A6 DATA
nop
set A6 1276
nop
end 1

a)

b)

c)

d)

Memory node

Nodes executing threads with 
dynamic allocation operations.

Nodes executing threads with static 
allocation operations.

LM(0,2)

8

0

8

LM(2,2)

7

4

6

LM(2,1)

6

6

3

LM(1,1)

3

3

0

LM(1,0)

0

7

4

M(0,1) M(1,2) LM(2,1) LM(2,2) LM(0,2)

Set node id

Message passing 
instruction

Figure 3.7: NoC memory distribution-aware DMM customization exam-
ple: a)Selected topology and mapped cores, b) Thread to
memory priority table, c) SLL structure. d) Microcoded
topology aware function templates.

57



Chapter 3 Memory management middleware acceleration and customization

Queue to 
Send

Dynamic Input 
(wireless 

network traces)

User Session 
Simulator

Arrivals 
Queue

Encryption 
Queue

TCP 
Checksum 

Queue
TCP Checksum 

Subsystem

Encryption 
Subsystem

TCP/IP Packet 
Formation

Network 
Buffers

Priority 
Queues

QoS Manager & 
Deficit Round 

Robin

Figure 3.8: The used multi-threaded application. Squares define
the different threads which communicate asynchronously
through asynchronous FIFO queues

information in the header).

• Creation of a TCP/IP packet. This thread is responsible for assem-
bling a complete TCP/IP packet by completing the information
needed in the packet header. We can liken the operation of this
thread by calling the write() (a system call), and thereby built in
the entire package. The total packet size is increased by 40 Bytes.
The completed packet is inserted in the corresponding queues to
be encrypted or for error checking (TCP checksum) depending on
whether the connection is encrypted or not.

• Encryption (packages that are part of an encrypted connection are
encrypted according to the DES algorithm). This thread reads data
(payload) in packet block sizes of 8 Bytes, and after the encryption
it transfers the packet in the queue where packages wait for error
checking.

• Creation of the TCP checksum. This thread calculates the check-
sum by applying the procedure described in [47]. The package
contents are read by 16 bit and the thread applies to them the
corresponding process. Once the checksum is created, it is written
in the CRC field header and then the package is driven to the next
queue and execution thread.

58



3.3 Memory management middleware acceleration

Table 3.1: Description of the Selected DMM Configurations

Code size (# microcode instructions)
DMM Description Conf. 1 Conf. 2 Conf. 3 Conf. 4

DMM 1

FixList0(block = 40B)
FixList1(block = 1460B) 1407 485 1736 1859
FixList2(block = 1500B)
Generic heap

DMM 2

FixList0(block ∈ [0B, 40B])
FixList1(block ∈ [1280B, 1460B])
FixList2(block ∈ (1460B, 1500B]) 1467 485 1796 1919
FixList3(block = 92B)
Generic heap

• The quality service manager (QoS manager) builds a list of the
destinations of different packets and uses priorities for managing
them. Whenever a packet enters the system, it is placed in one of
the queues based on its priority type. The packets are extracted
from these queues and they are forwarded to the network output
according to the Deficit Round Robin (DRR) algorithm. When a
packet is forwarded to the output, then the weight of the particular
queue is decreased according to the packet size.

Based on the allocation behavior, the MTh-DMM Explorer tool gen-
erated the Pareto set of application specific DMMs. Table 3.1 shows
the DMM configurations selected for platform dependent customiza-
tion. Column 2 depicts the application-specific characteristics (Number
and type of fixed size freelists) of each of the selected DMM configura-
tions.

The topology used for the evaluation of the middleware acceleration
is presented in Figure 3.9. According to mapping decisions, nodes
(0, 0), (0, 1), (1, 0) are processing nodes with their own local memory.
Specially each of (0, 1), (1, 0) execute 2 threads, one that handles dy-
namic data and another that handles only static data. Node (0, 0) ex-
ecutes only one thread that handles dynamic data. Node (1, 1) is a
memory node that serves all requests that can’t be handled by local
memory. For local memories the Heap size is 4KB(2KB for fixed
lists and 2KB for free lists). For the memory node the Heap size is
32KB.

59



Chapter 3 Memory management middleware acceleration and customization

For the presented topology (Fig. 3.9a) we implemented 4 different DMM
configurations depending on memory distribution over the platform.
The implementation of DMM configurations for the selected topology
are presented in Fig. 3.9b-e. Directed edges present that an allocation
request is possible to the destination from the source node while weights,
based on PTs,d, show the priority of choosing the destination node (0
= highest priority, 3 = lowest priority).

• Configuration 1: Pure Distributed Memory. In pure distributed
memory configuration (Fig. 3.9b), each node sends allocation re-
quests for dynamic data to its Local Heap. There is no Global
Heap.

• Configuration 2: Centralized single Heap. In centralized single
Heap configuration (Fig. 3.9c), each node sends allocation requests
for dynamic data only to Global Heap (1, 1). There are no Local
Heaps.

• Configuration 3: Distributed multiple-Heap with global Heap. In
distributed multiple-Heap with global Heap configuration (Fig. 3.9d),
each node first sends allocation requests to its Local Heap. If Local
Heap is not able (due to lack of space) to serve any more allocation
requests, the request then is sent to Global Heap (1, 1).

• Configuration 4: Memory distribution-aware multiple-Heap with
global Heap. In memory distribution-aware multiple-Heap with
global Heap configuration (Fig. 3.9e), each node first sends allo-
cation requests to its Local Heap. If Local Heap is not able (due to
lack of space) to serve any more allocation requests, then, according
to priorities, the Global Heap or the Local Heap of another node is
selected in order to serve the allocation request.

For the two selected DMMs and for each of the four aforementioned
configurations, Figure 3.10 shows: i) the cycles performed until a Heap
memory overflow event appears, ii) the DMM event distribution and iii)
the microcode performance compared to the equivalent C implementa-
tion on the LEON3 processor. Above each bar the actual count of served
DMM events (Local Heap/ Global Heap) is presented. Heap memory
overflow is the time (counted in cycles) when Heap was unable, due
to lack of space, to serve any more allocation requests. According to
Figure 3.10, when DMM is aware of the memory distribution, the time

60



3.3 Memory management middleware acceleration

(0,1) (1,0)(0,0)

(1,1)

0 0 0

a)

(0,1) (1,0)(0,0)

(1,1)

0
0 0

c)

(0,1) (1,0)(0,0)

(1,1)

0 0 0

1
1

3

2 1

2 2

e)d)

0

(0,1) (1,0)(0,0)

(1,1)

0 0

1
1

1

Configuration 1 Configuration 2

Configuration 3 Configuration 4

LM

Th0
d

Memory
LM

Th1
d,s

LM

Th2
d,s

b)

Figure 3.9: a) Topology used for evaluation 2 × 2 NoC with 3 process-
ing nodes with local memory (LM) and 1 memory node.
b) Pure Distributed Memory c) Centralized single Heap
d) Distributed multiple-Heap with global Heap e) Memory
distribution-aware multiple-Heap with global Heap

61



Chapter 3 Memory management middleware acceleration and customization

in which Heap overflow appears, increases. Specifically, configuration
4 performs 7× more cycles for DMM 2 compared to configuration 1.
Also, when DMM is aware of the memory distribution, the number of
served DMM requests increases. For example, configuration 4 achieved
to serve approximately 7× more DMM events for both DMM 1 and
DMM 2 compared to configuration 1 verifying also the first result of
Heap’s lifetime increase. Additionally, according to Figure 3.10, DMC
serves the same number of DMM events in fewer cycles, performing
faster than its corresponding C implementation (for the same configu-
ration). Specifically, DMM events performed by DMC (microcode) are
on average 25% faster than LEON3 (C code). This happens because
DMC is responsible for handling distributed memory requests and so
every time LEON3 wants to access the memory, DMC is responsible for
establishing the communication.

Figure 3.11 shows: i) the average accelerator cycles, ii) the cycles spent
due to memory stall and iii) the average energy consumption (pJoule)
consumed per DMM event for DMM 1 and 2. Configuration 1 appears to
be the fastest one, however it is the one that first exhibits Heap memory
overflow. As expected, configuration 2 is the slowest among all. It needs
more cycles since all processing nodes access the same global Heap for
each (de)allocation and they are stalled due to memory synchronization
(safe-lock) mechanisms. Configuration 3 offers good performance and
additionally being more resilient in comparison to configurations 1 and
2. Configuration 4 requires a little more cycles than configuration 3 but
it is a small penalty compared to the fact that it is the best solution re-
garding Heap memory overflow and served DMM events. We accounted
energy consumed from the execution of the DMM microcode (based on
post synthesis estimations at 0.09 um2 of the DMC [29]) and the mem-
ory accessing pattern to the local and global heaps (based on Cacti [83]
estimations). Configuration 2 consumes 6% more energy compared to
configuration 1, since all its DMM events occur on the global Heap and
the local controllers use their message passing instructions to guide the
global Heap. Configuration 3, consumes approximately 18% and 19%,
for DMM 1 and DMM 2 respectively, more energy in comparison to Con-
figuration 1. This is caused by the fact that Configuration 3 consists of
more microcode instructions (Table 3.1) and thus energy consumption is
increased. Configuration 4, consumes approximately 25% more energy
in comparison to Configuration 1. Also it consumes the highest energy
amount due to the augmented code size and the often communication

62



3.3 Memory management middleware acceleration

Performance comparison and DMM event distribution

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
yc

le
s

0

50000

100000

150000

200000

250000

264/0 264/0

0/438 0/438

1210/216

700/90

1456/248 1020/620DMM 1 Microcode on DMC 
DMM 1 C code on Leon3 
DMM 2 Microcode on DMC 
DMM 2 C code on Leon3 

DMM events on 
Local Heap/Global HeapLH/GH

Figure 3.10: Performance comparison and DMM event distribution.

for detecting the most available Heap to use.

Experimental results show that the proposed approach for designing cus-
tomized microcoded memory distribution-aware DMM (configuration 4): a)
can serve more DMM events by using all available Heaps of the platform,
b) increases Heap lifetime, c) is fully configurable and easy to use (offering
microcoded templates), d) achieves better performance exploiting the presence
of the DMC for handling distributed memory requests, thus mitigating pro-
cessor’s workload and e) has a negligible penalty regarding energy consump-
tion.

3.3.2 Conclusions

The experimental results showed that in the proposed memory distribution-
aware DMMs the Heap overflow chance is reduced, while the served
allocation requests increase with a small penalty in average cycles and
energy per DMM event. Specifically for the presented application, the
gain was approximately 7× for served allocation requests with a small
increase of approximately 14% to average energy consumption per al-
location compared to the Pure Distributed Memory organization. Also,
the microcode approach is on average 25% faster than the C imple-
mentation enhancing the reason for choosing a hardware controller for
handling distributed memory requests.

63



Chapter 3 Memory management middleware acceleration and customization

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
yc

le
s

0

200

400

600

800

1000

1200

1400

8500

9000

9500

10000

10500

11000

11500
E

nergy consum
ption (pJoule)

Average cycles and energy consumption per DMM event

DMM 1 energy DMM 2 energy

DMM 1 Microcode on DMC DMM 1 C code on Leon3 DMM 2 Microcode on DMC 

DMM 2 C code on Leon3 Cycles spent due to memory stall

Figure 3.11: Average cycles and energy consumption per DMM event.

3.4 Microcode-accelerated distributed dynamic
memory management

Concerning previous research works on the dynamic memory man-
agement field, simple DMM implementations often form the perfor-
mance and scalability bottleneck in the case of multi-threaded appli-
cations [16].

The existing approaches that handle dynamic data requests rely mostly
on software solutions that even though they offer flexibility, they re-
quire many processor cycles resulting in performance degradation. On
the other hand, the available hardware solutions even though they are
faster, they do not take full advantage of platform’s characteristics and
they follow a more centralized approach. However, such centralized ap-
proaches have several disadvantages. First, they create a central point
of failure, which renders the whole system unusable when the central
core fails. Second, a central core can hinder scalability, because it is a
bottleneck for processing and communication.

In this Section, we present a flexible, distributed and scalable allocator,
called MAD-DMM, developed on top of a dual-microcoded controller

64



3.4 Microcode-accelerated distributed dynamic memory management

(DMC) [29]. The contributions of MAD-DMM are: (i) MAD-DMM exploits
the presence of the DMC hardware accelerator, with the usage of customized
microcoded functions, for accelerating dynamic data management functions; (ii)
MAD-DMM provides distributed functionality over a DSM environment; (iii)
The proposed allocator uses a standard C-API (malloc()/free()) making
the microcoded actions transparent to the application; and (iv) MAD-DMM
alleviates processor’s workload by letting all memory management actions to
DMC.

3.4.1 Heap SPace Map

As aforementioned, the local memory of each platform node is parti-
tioned into two parts: private and shared. Accordingly, two addressing
schemes are introduced for DSM functionality: physical and virtual
addressing. The local core using physical addressing can only access
the private memory while all shared memories are globally visible to
all nodes and organized as a single virtual addressing space. The ac-
tual physical address is provided by the microcoded Virtual-to-Physical
(V2P) translation service performed by the DMC (Figure 3.3). Such
translation makes the DSM organization transparent to the application
and the other DSM services, thus facilitating programming. In order to
offer microcode-accelerated distributed dynamic memory management
in the platform we introduce the Heap Space Map (HSM) addressing
scheme, which is built on top of the V2P service.

Figure 3.12 shows how the HSM is implemented on top of the V2P.
Each node offers a part of its shared memory as part of the heap. On
the left, there are the platform’s nodes each of which have their pri-
vate and shared memory. The physical addresses of the shared part
range from 0x00000 to 0x20000. Under V2P translation in the DSM
environment, all shared memories are organized as a single virtual ad-
dressing space. The application uses the virtual addresses (0x40200000,
etc.) in order to access the shared memory and the triggering of the
corresponding physical node is performed but the DMC after the V2P
translation.

In MAD-DMM, the HSM is composed of all the available heaps/pools
offered by each platform’s node and it is available as a continuous space
to the application offering transparency to applications’ malloc() and

65



Chapter 3 Memory management middleware acceleration and customization

...

Private Shared

Private Shared

Private Shared

Virtual
Address Space

0x40200000
#0 Node

#1 Node

#2 Node

Physical 
Local Memory

0x00000

0x20000 0x40220000

0x40240000

0x40260000

0x00000

0x20000
0x00000

0x20000

Physical 
Addresses

Heap in #0

Heap in #1

Heap in #2

Heap in #i

Heap

0x60000000

0x60200000

Heap Space Map

Figure 3.12: The implementation of Heap Space Map on top of V2P
translation service.

free() calls. Each node offers a part of its shared memory as part of the
heap. HSM, using the V2P service, creates another addressing scheme
(e.g. starting from 0x60000000) that will be used as the heap. All nodes
now can see the heap as a single address table even though the heap
is actually composed of separate parts of shared memory all across the
DSM environment. The heap to node translation is performed at two
levels: (i) first by the HSM service (in C level) and (ii) second by the
corresponding DMC (microcode V2P service).

3.4.2 MAD-DMM implementation

MAD-DMM exploits the acceleration in memory management operations, of-
fered by the presence of DMC, by implementing at microcode all the actions
for performing dynamic memory (de)allocation. In other words, DMM func-
tions (e.g. malloc()/free()) have been built on DMC microcode and stored
in DMC control store. Also, application interfaces have been built that
allow the usage of microcode through the C application. In this way,
MAD-DMM keeps software flexibility while maintaining hardware ac-
celeration.

Figure 3.13 shows an overview of the MAD-DMM flow. The entry
point is any C written application. When a malloc()/free() function
call appears, the DMM tries to read the local heap table of the first node

66



3.4 Microcode-accelerated distributed dynamic memory management

int main(){
...

char* ch;
malloc(ch);

...}

Application

1

DMM Library

DMM
decisions

HSM
translation

D
SM

 p
la

tf
or

m

DMC

Leon3 
processor

Bus

3

4

6
7

8

2

sw *A6, DATA
lw *A6, A0
set A2, 0
lw *A2, A3
lrs A0, A1, 8
add A4, A0, 4

...
mp A1 A0 A6 DATA
end 1

malloc() microcode

5

1

2

3

4

malloc() function call

Perform HSM translation

Trigger local DMC

Send malloc request to the destination node

6 Send reply message to source node

7 Return to library

8 Return to application

5 Perform malloc in microcode

Figure 3.13: Overview of the MAD-DMM distributed allocation alloca-
tion procedure.

67



Chapter 3 Memory management middleware acceleration and customization

in HSM by acquiring a lock. If the lock is not acquired because the node
is unavailable or out of space, MAD-DMM tries the allocation to the next
one according to HSM. When the node is found (destination), the local
DMC (source) is triggered and the following actions take place: (i) the
source node sends a message with the (de)allocation request and its node
id; (ii) when the destination node receives the message, it performs the
(de)allocation request by executing the microcoded malloc()/free()
functions stored in its control store and updates its local heap table;
and (iii) the destination node returns a success message as a reply to
the source node.

Since the C programming language does not provide built-in facilities for
performing dynamic memory management operations they have been
implemented at microcode level, taking advantage of the hardware ac-
celeration, while keeping the flexibility of software implementations by
offering the corresponding high-level interfaces.

MAD-DMM offers microcode-accelerated distributed dynamic memory
management for shared on-chip memory systems. Similar to other
allocators, MAD-DMM has a C API, offering ease of use. The main
features and differentiators of MAD-DMM are three-fold: (i) support
of distributed shared heap; (ii) microcode-accelerated (de)allocation
operations; and (iii) scalability. The proposed allocator handles the
heap continuous space under the heap space map with the help of the
DMC. Additionally, the nodes on the many-core platform are seam-
lessly aware of the heap state. Unlike many state-of-the-art high-level
allocators [16, 57, 89], information about the allocator metadata is not stored
at high-level but at microcode-level as part of each local heap table. Each time
a function call appears, the heap state information is read and the corre-
sponding functionality is triggered. In this way, no additional internal
communication between the nodes is needed.

Figure 3.14 presents an abstract presentation of the developed interfaces
and the connection between C high-level language and DMC microcode.
Whenever an application calls a malloc() function call the MAD-DMM
library is triggered. One of the first functions to be triggered is the
hsm(). The goal of this function is to check heap and find the appro-
priate node to serve the request. When hsm() function is finished, the
malloc_asm() function performs the appropriate actions in microcode
level. One of the primary things to be performed by the malloc_asm()

68



3.4 Microcode-accelerated distributed dynamic memory management

void main(){
...

malloc(ch);
...}

void* malloc {
…

hsm()
…

malloc_asm()
…

}

void hsm() {
…

get_address() 
}

set A0 20
set A1 {M1_ID}
set A6 1000
nop
mp A1 A0 A6 DATA
nop
end 1

application.c

malloc.c

hsm.c

malloc.asm

DMM library

Set node id

Message passing 
instruction

Figure 3.14: Abstract presentation of MAD-DMM interfaces

is to sent the message for the allocation request to the corresponding
node found by the hsm(). This is done using message passing instruc-
tions.

Figure 3.15 shows the communication between nodes using message
passing instructions when the node is found (destination) and the lock
has been acquired. In this case, a signal from (i,j) is sent to its local
DMC (source). Then the source DMC, using message passing instruc-
tions, sends a message with the size of the request and its node id to
the destination one. The destination DMC is triggered by its network
interface (Figure 3.2) and performs the microcode actions regarding
malloc(). Once the allocation is finished, it returns the address with a
reply message to the source node and the address is propagated to the
high-level layer of the DMM that returns it for usage to the C applica-
tion.

69



Chapter 3 Memory management middleware acceleration and customization

//start the communication
volatile unsigned int malloc_asm(unsigned int size) {

volatile unsigned int x;
*command_to_DMC = 20;

return x; }

;source node           
set A0 21
set A1 {dst_ID}
set A6 {start_of_heap_in_dst}
nop
mp A1 A0 A6 DATA
nop
end 1

Set dst id

Message passing 
instruction

;dst node           
… ;malloc operations
… ;malloc operations
set A0 22
set A1 {src_ID}
set A6 {}
nop
mp A1 A0 A6 DATA
nop
end 1;source node           

set A0 {0x40200000}
sw A0 DATA
nop
end 1

C-to-Microcode interface:
20th block of microcode 

stored in DMC control store

Block of microcode to 
be executed in dst

Message passing 
instruction

Set src id

DATA = size to be allocated 
and src id

Reply message

DATA = the address of the 
allocated block

Figure 3.15: Communication between nodes using message passing in-
structions. The src node triggers the malloc microcode in
the dst node and after the completion of the function, the
dst node returns the block address back to the src DMC.
Last, the block address is returned to the C application

70



3.4 Microcode-accelerated distributed dynamic memory management

3.4.3 MAD-DMM evaluation

For the evaluation of our approach, traces from four benchmarks were
used: (i) FAST (Features from an Accelerated Segment Test), (ii) Gaus-
sian, (iii) Integral and (iv) Matrix Multiplication. The FAST kernel is a
corner detection algorithm implementation, popularly used on computer
vision. The Gaussian kernel applies a Gaussian blur effect on a image
whose pixels are given on a matrix. The Integral kernel calculates the
integral of matrix elements and outputs the result on an output matrix.
Finally, the Matrix Multiplication kernel performs matrix multiplication
of an input matrix with a constant one.

All benchmarks follow the master-slave code design: One node acts as
the controller of the platform responsible for handling memory man-
agement, while the rest of them are available for task execution. Be-
fore executing any task, the controller should allocate memory dynam-
ically and then return a pointer of the allocated memory address to
the executed task. Respectively, the controller is responsible for the
memory deallocation after each task finishes. The cycles spent regard-
ing dynamic data management for the used benchmarks is on aver-
age 18.8% (minimum 10.83% for the FAST application and maximum
23.12% for the Gaussian one) in respect to the overall application cy-
cles.

In order to validate the performance of MAD-DMM, we compared it
on a 2×2 NoC against (i) the memory distribution-aware microcoded
DMM presented in [10] and (ii) the pure private heap high-level DMM
presented in [57]. The C allocator is able to reduce the fragmentation
of the heap memory taking into consideration the performance of the
system.

The most common technique to prevent internal memory fragmentation
is the use of free lists. The free lists are lists (i.e., double or single
linked lists) of memory blocks, which were no longer needed by the
application and, thus the DM allocator freed them. This technique can
reduce internal fragmentation significantly and improve performance in
most cases. The trade-off is that it increases external fragmentation,
because the freed blocks are not returned in the main memory pool,
where they can be coalesced with a neighboring free block to produce
a bigger contiguous memory space.

71



Chapter 3 Memory management middleware acceleration and customization

Another technique to tweak performance and fragmentation is the use
of specific fit policies. The two most popular fit policies are the first
fit policy and the best fit policy. On the one hand, the first fit policy
allocates the first memory block found that is bigger than the requested
block. On the other hand, the best fit policy searches a part (or even
100%) of the memory pool in order to find the memory block closest
to the size of the requested block. Therefore, there will be the least
memory overhead per block and, thus, the least internal fragmentation.
The trade-off is that the performance of the DM allocator decreases,
while it spends more time trying to find the best fit for the requested
block.

In the work presented in [57], the derived allocator was compared
against other general-purpose ones when it was used by different appli-
cations. The results showed that the C allocator was, on average 29%
faster, exhibiting also reduced fragmentation. The C allocator, that we
also use as a comparison to MAD-DMM, has the blocks organized in
a single-linked free list and uses the first-fit search algorithm. These
features allow the allocator to find fast the blocks that are big enough
to accommodate the allocation request.

Figure 3.16 shows the normalized performance of the three allocators.
As expected, the microcoded allocator is the fastest of all, since all oper-
ations and decisions are performed at low-level. However, this imple-
mentation lacks a high-level API making the integration with C appli-
cations difficult. As depicted in Figure 3.16, MAD-DMM is on average
25% slower than the microcoded allocator and 10% faster than the high-
level one, since most of the (de)allocation operations are performed at
microcode level and only the high-level heap address manipulation is
performed in C.MAD-DMM was designed for offering distributed DMM and
not using a pure private heap structure. The goal of MAD-DMM is to let
all nodes be aware about the heap status the same time, having a performance
penalty which in the case of pure private heaps does not exist. In other words,
MAD-DMM, with the usage of DMC for accelerating memory management
services and the reduction in instruction overhead, proved to be 10% faster than
an allocator precisely designed for performance gain.

In order to validate the distributed behavior and scalability of MAD-
DMM, we compared (i) the average cycles per (de)allocation event (malloc()/free()
call) and (ii) the number of microcode instructions needed for node in-

72



3.4 Microcode-accelerated distributed dynamic memory management

Microcoded Allocator [14]
Proposed Allocator
C – Allocator [16]

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

FAST Gaussian IntegralMatrix

R
el

at
iv

e 
pe

rf
or

m
an

ce

Figure 3.16: Performance comparison of MAD-DMM with [10] and [57]
under a pure private heap.

tercommunication to the distributed microcoded allocator [10] for vari-
ous platform sizes, ranging from 4 to 64 nodes. As shown in Figure 3.17,
the microcoded DMM needs on average less cycles than MAD-DMM to
complete an event when the platform is smaller than 5×5. However,
when the platform size increases beyond 25 nodes the MAD-DMM needs
less cycles. This happens because the distributed microcoded alloca-
tor [10] is based on priority tables. By using the technique of priority
tables, each node stores in its local memory the possible nodes to trigger
in order to serve a DMM request. For a 2×2 NoC the table contains 4
records while for an 8×8 NoC the records grow up to 64 and a lot of
nodes have the same nodes as targets while performing a (de)allocation
request. As shown in [10] experimental results, nearly 80% of the
time was ”wasted” in order to acquire a lock. So, as the platform size
increases the handling of these tables requires more cycles while MAD-
DMM uses a lighter and more generic communication scheme between
nodes, supporting arbitrary sizes of platforms and scaling well as the
platform size increases. Figure 3.17 shows that the purely microcoded
allocator needs on average 29% more cycles to serve an event each time
the platform increases, whereas MAD-DMM needs approximately 20%
more cycles. Also, MAD-DMM uses on average 1.9× less microcode
instructions for node intercommunication due to the lack of the over-
growing priority tables on large platforms [10].

To sum up, MAD-DMM exploits the presence of a dual microcoded

73



Chapter 3 Memory management middleware acceleration and customization

b) Matrixa) FAST

c) Gaussian

2x2 3x3 4x4 5x5 6x6 7x7 8x8
200

400

600

800

1000

1200

1400

1600

1800

2000

NoC size

A
ve

ra
ge

 #
cy

cl
es

 p
er

 D
M

M
 e

ve
nt

0

2000

4000

6000

8000

10000

12000

14000

16000

2x2 3x3 4x4 5x5 6x6 7x7 8x8
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

NoC size

A
ve

ra
ge

 c
yc

le
s p

er
 D

M
M

 e
ve

nt

0

2000

4000

6000

8000

10000

12000

14000

16000

2x2 3x3 4x4 5x5 6x6 7x7 8x8
200

400

600

800

1000

1200

1400

1600

1800

2000

NoC size

A
ve

ra
ge

 #
cy

cl
es

 p
er

 D
M

M
 e

ve
nt

0

2000

4000

6000

8000

10000

12000

14000

16000

d) Integral
NoC size

2x2 3x3 4x4 5x5 6x6 7x7 8x8
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

A
ve

ra
ge

 #
cy

cl
es

 p
er

 D
M

M
 e

ve
nt

0

2000

4000

6000

8000

10000

12000

14000

16000

#(m
icrocode instructions) 

used for intercom
m

unication

#(m
icrocode instructions) 

used for intercom
m

unication
#(m

icrocode instructions) 
used for intercom

m
unication

#(m
icrocode instructions) 

used for intercom
m

unication

Microcoded Allocator [14] average #cycles
MAD-DMM average #cycles 

MAD-DMM #(microcode instructions) 
Microcoded Allocator [14] #(microcode instructions)

Microcoded Allocator [14] average #cycles
MAD-DMM average #cycles 

MAD-DMM #(microcode instructions) 
Microcoded Allocator [14] #(microcode instructions)

Microcoded Allocator [14] average #cycles
MAD-DMM average #cycles 

MAD-DMM #(microcode instructions) 
Microcoded Allocator [14] #(microcode instructions)

Microcoded Allocator [14] average #cycles
MAD-DMM average #cycles 

MAD-DMM #(microcode instructions) 
Microcoded Allocator [14] #(microcode instructions)

Figure 3.17: Average cycles per malloc/free call and number of mi-
crocode instructions needed for intercommunication for
various NoC sizes. (a) FAST, (b) Matrix, (c) Gaussian and
(d) Integral.

controller for accelerating dynamic data management functions. Exper-
imental results showed that (i) MAD-DMM serves on average 10% faster
(de)allocation requests compared to high-level managers while keeping
flexibility under its C API; (ii) provides distributed functionality offer-
ing different parts of shared memory as a continuous transparent heap
space; and (iii) is scalable.

3.5 Power-aware DMM on Many-core Platforms
utilizing DVFS

As aforementioned, memory is an important contributor to the perfor-
mance and power consumption of embedded systems. New multimedia
algorithms greatly rely on dynamic memory due to the unpredictabil-
ity of the input data and user interaction at compile-time. Further-

74



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

more, modern computing paradigms have set new challenges for the
development of distributed applications and services, such as MapRe-
duce [33]. As presented in [82], dynamic memory management for
MapReduce algorithms plays an essential role to overall system per-
formance and scalability. In addition the increased dynamism in data
storage leads to unexpected memory footprint variations unknown at
design-time.

Moreover, power consumption in embedded architectures is an impor-
tant issue that system designers always try to reduce as much as possible
respecting applications’ performance constraints. Since DMMs are be-
coming prevalent components of modern systems, power consumption
issues need to be taken into consideration, thus affecting the design of
managers themselves. A design technique that targets power savings
and it is used in modern embedded platforms is the Dynamic Voltage
Frequency Scaling (DVFS) technique [44], which enables processors and
other on-chip modules to operate at multiple frequencies under differ-
ent supply voltages. DVFS techniques provide opportunities to reduce
the energy consumption of embedded systems by scaling frequencies
and voltage supply at run-time.

In this chapter, we couple the concept of dynamic memory management
with state-of-art DVFS technique targeting low power consumption on
many-core platforms. The goals of the presented methodology are (i) to
show an effective way of integrating DVFS mechanisms into any high-
level DMM transparently to the application developer and (ii) to give to
any C-allocator the capability to change at run-time the voltage and fre-
quency levels in order to reduce power consumption independently of
allocators selected policies (fitting policies, coalesce and split frequency
etc.). The innovations of the presented methodology are the devel-
opment of a lightweight high-level window-based monitor mechanism
and the integration, within the manager, of high-level DVFS interfaces
responsible for changing clock frequency supply voltage at run-time.
Furthermore, a DVFS decision mechanism has been used in order to
make the appropriate decisions about the correct frequency and voltage
level values. These techniques are completely transparent to the appli-
cation developer, the application itself and the allocator selected policies
and compatible with any C-allocator.

To the best of our knowledge, this is the first research work in which

75



Chapter 3 Memory management middleware acceleration and customization

Operating 
System

Memory
(ON/OFF 

chip)

Power 
Management Unit

(PMU)

int main(){
...

char* ch = 
malloc(sizeof(char)*10);

...}

Application

1 2

5

6

8

DMM Library

MMU 1

MMU 2

MMU n...
34

7

DMM
decisions

Monitor

Processors

1

2

3

4

malloc() function call

Access OS (if present)

Access MMU

MMU returns 
requested block

5

6

7

8

OS returns address to library

Signal to PMU for DVFS

PMU configures Processors and MMUs

Return the address to the application

Figure 3.18: Power-aware dynamic memory management flow.

DVFS techniques are integrated as part of a DMM library, thus offering
power-aware allocators, being transparent to the developer, application’s
code and allocator’s policies.

3.5.1 Integration of DVFS mechanisms to DMM library

Figure 3.18 shows an example of how an application interacts with the
enhanced DMMs and how DVFS mechanisms are triggered through the
corresponding interfaces. The starting point of the flow is any applica-
tion written in C running on a processor. The C programming language
provides no built-in facilities for performing dynamic memory man-
agement operations. Instead, these facilities are defined in a standard
library, which is compiled and linked with user applications. The pres-
ence of an Operating System (OS) is not a requirement and in many cases
it does not even exist since DMM is an OS- and platform-independent

76



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

library. Also in small embedded systems, the available memory may
not even be big enough in order to host an OS. When a DMM function
call appears (malloc()/free()), the DMM library is triggered (STEP 1).
The allocator, based on the pre-selected policies handles allocated and
freed lists by employing list searching, fitting and fragmentation han-
dling techniques. Afterwards, the DMM asks from the OS (if present) to
return a virtual memory space if necessary (STEP 2). In the next step
(STEP 3) the processor’s Memory Management Unit (MMU), which is
responsible for handling memory requests, stores the necessary informa-
tion to “chunk’s” headers and the requested (de)allocated block address
is returned to the OS (STEP 4) and then to the DMM library (STEP 5).
The developed monitor mechanisms (Section 3.5.1.1) track the required
computational cost for performing the (de)allocation procedure and a
corresponding signal is sent to processor’s Power Management Unit
(PMU) which is responsible for configuring processor’s clock frequency
and supply voltage at run-time (STEP 6). Regarding the signal sent to
PMU suitable frequency and voltage level adjustment is applied (STEP
7). Last, the requested (de)allocated block address is returned to the ap-
plication (STEP 8) and the application continues to run on the selected
clock frequency and supply voltage.

In this section, we present the coupling of DMM with DVFS tech-
nique targeting low power DM managers. DMM library has been en-
hanced with (i) software monitor mechanisms, (ii) DVFS decision mech-
anism and (iii) C-supported DVFS interfaces. Figure 3.19 shows an
overview of the enhanced DM managers which consist of four discrete
parts.

The black rectangular boxes depicted in Figure 3.19 represent the in-
strumentation code used for measuring the computational cost of ac-
cesses in free-lists (Section 3.5.1.1). As soon as the allocator finishes the
(de)allocation core process, the computational cost captured by the in-
strumentation code is forwarded to the second part, the monitor mech-
anism. For the monitoring we use an event-based window mecha-
nism in order to avoid big performance overheads (Section 3.5.1.1).
This part contains all the propagated computational cost for the past
(de)allocation events and when this part ends the DVFS decision mech-
anism is triggered. The DVFS decision mechanism part (Section 3.5.1.2)
is responsible for indexing the measured computational cost with the
available frequency and voltage levels of the platform and finds the best

77



Chapter 3 Memory management middleware acceleration and customization

O(logn)

Application DMM
API

Search allocated/
freed lists

Search m 
fixed lists

(de)allocate 
block

Split/
Coalesce

malloc/free
Block found

No block 
found

Check accesses 
interval

DVFSCHANGE(id, fk+1)

return

NO

YES

O(logm) O(logn)

Send signal 
to PMU

Indexing function 
for the new frequency

(fsel = fk+1)

DVFS decision mechanism

Monitor 
mechanism

Integrated DVFS interfaces

Instrumentation code used for 
monitoring accesses in lists

Time 
window 
ends?

Get number 
of accesses

DM Manager policies

Figure 3.19: Monitoring process and DVFS decision mechanism inte-
grated to (de)allocation process

match that meets application’s needs. The frequency-voltage selected
values are then forwarded to the PMU by the integrated DVFS inter-
face/commands (Section 3.5.1.3) and the corresponding DVFS change
event occurs.

3.5.1.1 Monitor mechanisms

Run-time observability in embedded system architectures is a require-
ment for testing, debugging, and for validating design assumptions
made about the behavior of the system and its environment. The clas-
sical approach to run-time observability is to apply monitoring mecha-
nisms to detect, collect, and report run-time information regarding the
system’s execution behavior. Common used techniques for monitoring
include hardware probes and software instrumentation. The first ones
are non-intrusive, while the latter are flexible, easy-to-implement, but
with overheads. In the hardware area, monitors are usually deployed
either at processor level or at system level and requires platform redesign
and customization which does not offer flexibility and adaptivity. On
the other hand, software monitoring mechanisms offer the cheapest and
most flexible solution for gathering system’s time information compared
to special hardware support.

We employed software monitoring and DVFS change mechanisms that

78



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

specifically target heap management and act transparently to any other
DVFS change performed by the application. The presented approach of-
fers a lightweight high-level way of monitoring and performing DVFS
targeting heap activity transparently to all other application require-
ments and allocator’s policies. The generated DM managers have been
enriched with software monitor mechanisms responsible for collecting
(de)allocation procedure performance information by tracking (at high
level) the list traversing time in DMmanager’s lists.

The advantages of the proposed monitoring mechanisms are: (i) the
software monitoring can be integrated and compiled at no cost with
any DMM library, (ii) it is platform independent, (iii) it has an easy-
to-use application interface (API) and (iv) modifications can be easily
done at C level. However, using this high level implementation type
of integration results to a small performance overhead compared to
hardware and middleware implementations that have been proved to
perform faster in dynamic memory management [10] but they are still
platform dependent and without a generic API.

Instrumentation Code: An important aspect of the monitor mechanisms
is to minimize, or completely avoid, the intrusiveness of the monitor on
the system’s timing and execution properties. As aforementioned, fail-
ing to handle monitor overhead leads to probe effects which cause non-
deterministic behavior in programs and big performance overheads.
Software monitoring solutions for self-organized systems are based ei-
ther on instrumentation code which reports at run-time performance
statistics or at well-known probabilistic distributions [18, 77]. Complex
self-organizing monitoring methods for DVFS are complementary to the
proposed monitoring scheme.

We use an instrumentation code technique which requires insertion
points in the application’s code to measure the evolution of the mem-
ory management. As depicted in Figure 3.19, instrumentation code has
been added after each discrete decision of the DM manager. An ab-
stract view of the monitoring mechanism code implementation is pre-
sented in Figure 3.20. DM Managers, as aforementioned, are composed
of orthogonal decision trees [89] that build in a modular way the allo-
cator’s behavior. This built-in modularity makes easy the insertion of
instrumentation code for monitoring the performance of the allocator.
For each discrete management policy, a new instrumentation code API

79



Chapter 3 Memory management middleware acceleration and customization

void main(){
...

malloc(ch);
...}

void* malloc {
…

fixed-lists()
…

free-lists()
…

coallesce-split()
…

}

void fixed-lists() {
…

get_accesses() 
}

void free-lists() {
…

get_accesses() 
}

void coallesce-split() {
…

get_accesses() 
}

int get_accesses() 
{

…
}

application.c

malloc.c

fixed-lists.c

free-lists.c

coallesce-split.c

get_accesses.c

DMM library

Figure 3.20: Abstract view of monitoring mechanism for gathering al-
locator’s accesses. The total number of accesses is propa-
gated to the DVFS decision mechanism (Section 3.5.1.2).

(e.g., get_accesses()) has been implemented and inserted to the cor-
responding functions. This implemented instrumentation code is responsible
for reporting the number of accesses while traversing the DM manager’s lists.
At the end of the (de)allocation procedure all the necessary information
regarding the total computational cost is collected and propagated to the
DVFS decision mechanism (Section 3.5.1.2).

By employing this method for measuring the performance of the al-
locator we manage to have a fast and accurate monitoring mechanism
compared to conventional system calls. An important issue to men-
tion is that the implemented instrumentation code does not use any
functions that trigger system calls (e.g., clock() function, in time.h
provided by libc). The reason is that system calls “freeze” the exe-
cution of the application and add even more noticeable delay to the
system (up to 15% more cycles compared to the implemented ap-
proach presented here) making them inappropriate for lightweight mon-
itoring. Last, the proposed approach does not require any changes to the
application code, since all mechanisms are integrated within the DM
Manager, and it is platform independent and compatible with any C-
allocator.

80



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

Window-based monitoring: In order to avoid big performance over-
head, the implemented monitor mechanisms use an event-window based
approach. We define asWS the window size and asW = {W1,W1, ...,Wk}
the set of windows Wi. The set W is composed of mutually exclusive
subsets Wi each of them containing the required monitoring informa-
tion for the executed DMM events. As DMM event ej we define either
a malloc() or a free() function call. We need to mention that the
number of elements in each subset Wi is the same for all subsets. For
example, if WS = 4, then W1 = {e1, e2, e3, e4}, W2 = {e5, e6, e7, e8} etc.
We define as cej and as cWi the computational cost on list traversing
by the ej event and the Wi window respectively. cWi and cej are con-
nected through Equation 3.3. Without loss of generality and based on
the DMM exploration [89] we consider that the actual time needed by
a DMM event is proportional to the time needed to traverse allocator’s
lists.

cWi =
∑
∀ej∈Wi

cej (3.3)

At the end of each window, the number of accesses performed in the
current window while traversing the free-lists of the allocator are cap-
tured by the instrumentation code and they are propagated to the DVFS
decision mechanism in order to check if there is a need to to change
the operating frequency-voltage levels or not. According to the alloca-
tion behavior and structure (the existence of fixed lists or not, fitting
policies, block splitting and coallescing, etc.) the cost for traversing
lists and returning the (de)allocated block address varies and it is not
known a priori. Also, it is difficult to predict beforehand the number
of accesses since it changes at run-time and it depends on the follow-
ing:

• {LFix}: The set LFix contains all the available fixed lists of the
DM manager. The fixed lists ares sorted by size inside LFix and
the complexity for (de)allocating a memory block in a fixed-list is
TSszm

= O(1). Thus, the cost for (de)allocating a memory block
while having m fixed lists is TLFix

= O(logm).

• {LDynamic}: The set LDynamic contains the allocated and freed
free-lists. The complexity for (de)allocating a memory block in

81



Chapter 3 Memory management middleware acceleration and customization

LDynamic is TLDynamic
= O(logn) where n is the size of the lists.

• For coallescing and splitting the complexity is based on the size
of LDynamic and so the complexity for performing these actions is
Tcoal∥split = O(logn)

So, the computational cost complexity of each window Wi is the sum
of all the aforementioned costs. The total complexity is described by
Equation 3.4.

TcWi
= TLFixWi

+ TLDynamicWi
+ Tcoal∥splitWi

(3.4)

3.5.1.2 DVFS decision mechanism

The two main questions that need to be answered by each DVFS deci-
sion mechanism are: (i) when to change the frequency and voltage levels
and (ii) which appropriate values should be chosen. An early or late
decision for frequency/voltage level changing may result in power con-
sumption overhead or performance degradation respectively. In general,
DVFS algorithms try to compute the total CPU utilization for dedicated
monitored tasks and consequently adjust clock frequency and supply
voltage level maximizing this utilization. However, overestimating the
utilization can result in inefficient power consumption. In this work, we
choose the target clock frequency based on the aforementioned monitor
mechanism reports.

At the end of each windowWi, the DVFS decision mechanism checks for
the cWi value and matches this propagated cost to predefined intervals.
The number of these predefined intervals depend on the number of
available platform frequencies and its generic type is [0, aKWS]K0,...,l−1

where l is the number of available frequencies and a is a variable, de-
fined by the designer, that is related to the number of performed accesses
while traversing in allocator’s lists in order. Let F = {f1, f2, ..., fl}, fl >
... > f2 > f1, the set of the l available clock frequencies provided by the
platform and I an one-to-one indexing function I : cWi → F that maps
the computational cost accessing DM manager’s lists to the appropriate
clock frequency (K0 → f1,K1 → f2, ...,Kl−1 → fl).

For example, suppose we have a platform that supports four frequencies
F = {f1, f2, f3, f4}, f4 > f3 > f2 > f1. At the end of a window with

82



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

size WS the DVFS decision mechanism checks the cWi and decides the
new frequency fnew according to Equation 3.5:

fnew =


f1, cWi ∈ [0, a0WS]
f2, cWi ∈ (a0WS, a1WS]
f3, cWi ∈ (a1WS, a2WS]
f4 cWi > a2WS

(3.5)

The variable a can be considered as a way of how sensitive our system
will be to the reported number of accesses in allocator’s lists and thus
how frequent the DVFS changes will be. Small value of a means small
cWi intervals and so the probability to move from one interval to an-
other and change the frequency according to the I function is bigger
and DVFS changes will appear more times. On the other hand, if the
designer chooses big values for a, then for the sameWS the intervals are
getting bigger and the probability to move from one interval to another
is smaller leading to no DVFS changes. Concerning the voltage level,
if the supply voltage of a module is V , the maximal frequency fmax at
which the module can run is given by an approximation of the Alpha
model [70].

3.5.1.3 Integrated DVFS interfaces

In this section we describe the developed interfaces for accessing the
provided DVFS features. Based on the monitor and DVFS decision
mechanisms, we need to send the signal for the DVFS change. The de-
veloped interfaces have been integrated to the DMM library and can be
triggered when needed. The API calls take the form: COMMAND(id, opt)
where id is the processor’s id and opt are command-specific options.
The API translates the command and the opt options into command
code corresponding to the PMU of the processor indicated by the param-
eter id. The developed power management API provides four power
management commands which can be directly accessed by the PMU
through the corresponding power management APIs inside the C code.
The four commands that can be accessed are: SETOPTION, DVFSCHANGE,
POWERDOWN, and WAKEUP. Table 3.2 presents in more detail the integrated
power management commands.

83



Chapter 3 Memory management middleware acceleration and customization

Table 3.2: Power management commands and description [26]

Command Description
SETOPTION used to set one configuration option of the power man-

agement unit. The command takes as a parameter a value
indicating the code of the configuration option, and the
value to which the configuration option should be set.

DVFSCHANGE used to change the DVFS point of one region. The com-
mand takes as a parameter the global clock which the
Clock Generation Unit (CGU) should select and the new
clock divider ratio.

POWERDOWN used to send to a power-down mode (clock gating, hi-
bernation or shutdown) a region. The command takes as
argument a parameter indicating the type of power-down
mode (clock gating, hibernation or shutdown).

WAKEUP used to wake up a region from a power-down mode. It
takes as argument the port on which the node receiving
the command neighbors the region that should be woken
up.

The presented framework enables the easy integration of any any high-
level allocator running on any platform (x86-based systems, McNoCs,
embedded processors, NUMA machines, etc.). Of course the developed
C-to-DVFS API is specific for the employed platform and its mem-
ory hierarchy. However, in the case of a different platform the only
thing that is needed to change is the implementation of the C-to-DVFS
API.

3.5.2 Experimental set-up

3.5.2.1 DVFS overview

A power management system has been built on top of the platform by
introducing a GRLS wrapper around every originally synchronous node.
The wrapper is used to ensure safe communication between nodes and
to enable dynamic frequency and voltage scaling. The access point to
provide the power services is given by the Power Management Unit
(PMU), which controls a Voltage Control Unit (VCU) and a Clock Gen-

84



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

Figure 3.21: GRLS Overview [26]

eration Unit (CGU), used to control the voltage and the clock frequency
respectively in the node. The PMU is accessed through the GRLS syn-
chronizers, which detect the aforementioned special power commands
(Table 3.2) and forward them to the PMU. The global structure of the
McNoC platform is shown in Figure 3.21.

In a central Clock Generation Unit, up to 4 global clocks running at fre-
quencies fG0, fG1, fG2, fG3, all submultiples of a frequency fH are gener-
ated. The value for fH can be chosen arbitrarily, but the GRLS interfaces
introduce an upper bound on fH which depends on the technological
characteristics. Up to four global supply voltages VG0, VG1, VG2, VG3(VG0 >
VG1 > VG2 > VG3) are generated in a central Voltage Control Unit, and
distributed throughout the chip using up to four parallel voltage distri-
bution grids. The global structure of the McNoC platform from the point
of view of power management is shown in Figure 3.22.

Once this configuration phase is finished, the PMU can change the DVFS

85



Chapter 3 Memory management middleware acceleration and customization

fG0
global voltage
distribution grids

VG0

GRLS
I/F

N  GRLS modulesM

VG(NV−1)

fG(Nf−1)

VCU
Central }

}CGU
Central

global unbalanced
clock trees

CGU VCU CGU VCU

f =f f =f/N /N

Local LocalLocalLocal

V =V V =VB

GRLS module M GRLS module M 10

10

0

0 1

fG0, ..., fG(N f−1)

G{0,1,.} G{0,1,.}

G{0,1,.}G{0,1,.}

all submultiples of f H

Figure 3.22: Power management architecture of the McNoC plat-
form [26]

point of every node by issuing the DVFSCHANGE command (Table 3.2) to
a node through the API. The nodes receiving a DVFSCHANGE command
automatically change their frequency by locking to the new global clock
and changing their division ratio, and their supply voltage by setting
it to the minimal possible value. They also go through a handshake
phase with neighboring nodes to inform them about the change in their
operating frequency. This is necessary for the GRLS synchronizers to
operate correctly but further discussion about this lies outside the scope
of this work [26].

3.5.2.2 Benchmarks and execution model

For the evaluation of our approach, four benchmarks were used: (i)
FAST (Features from an Accelerated Segment Test), (ii) Gaussian, (iii)
Integral and (iv) Matrix Multiplication. The FAST kernel is a corner de-
tection algorithm implementation, popularly used on computer vision.
The Gaussian kernel applies a Gaussian blur effect on a image whose
pixels are given on a matrix. The Integral kernel calculates the integral

86



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

of matrix elements and outputs the result on an output matrix. Finally,
the Matrix Multiplication kernel performs matrix multiplication of an in-
put matrix with a constant one. All benchmarks follow the master-slave
code design: One node acts as the controller of the platform, while the
rest of them are available for task execution. Resources for each task
are assigned solely by the controller, so that each node can perform
tasks independently from the rest without worrying for a resource con-
flict unless sharing is explicitly requested. In this case, synchronization
mechanisms apply in terms of mutexes, as well as forked tasks or tasks
that could be joined.

In this parallelization approach only the controller is responsible for
handling memory management. Before executing any task, the con-
troller should allocate memory dynamically and then return a pointer
of the allocated memory address to the executed task. Respectively,
the controller is responsible for the memory deallocation after each
task finishes. In order to further stress out the memory allocation
and deallocation actions we employed, for each of the aforementioned
benchmarks, a randomization pattern for the order of memory re-
quests. In this way we managed to have a more unpredicted behavior
of each benchmark concerning the size and the time of a DMM event
arrival.

3.5.2.3 Selected DM managers

In order to validate the behavior of the implemented DVFS changing
system, we have used five different DM managers which have been en-
hanced with the presented monitor and DVFS decision mechanisms and
the corresponding DVFS interfaces. Each DMmanager differs from each
other in the pool organization, block (de)allocation policy and whether
the split/coalesce mechanisms are active or not. The variety of DM
managers results in having different heap handling leading to different
frequency and voltage changes, power consumption and heap fragmen-
tation. Specifically, the tested DM managers are:

• DM manager 1: The power aware DM manager presented in [57].

• DM manager 2: The power aware DM manager presented in [57]
with enabled coalesce and split policies.

87



Chapter 3 Memory management middleware acceleration and customization

DM Manager 1 DM Manager 2 DM Manager 3 DM Manager 4 DM Manager 5

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

0.0

2.0

4.0
6.0

7.0

1.0

3.0

6.6 4.34.64.8

Figure 3.23: Normalized power consumption comparison of the selected
DM managers without any monitoring or DVFS changing
mechanism.

• DM manager 3: A freelist based memory allocator with best fit
fitting policy and without coalesce and split policies.

• DM manager 4: A freelist based memory allocator with best fit
fitting policy and enabled coalescing and splitting policies.

• DM manager 5: A fixed-sized list based allocator.

3.5.3 Evaluation

In order to validate our approach, we have performed extensive simu-
lations of the proposed framework on the aforementioned benchmarks
and platform targeting power consumption, heap fragmentation and
performance overhead for each of the aforementioned DMmanagers.

3.5.3.1 Power consumption and heap fragmentation of the selected
DM managers

The power model used to estimate power is based on the fact that power
consumption is proportional to the frequency and to the square of the
supply voltage at which a block runs. The model, according to the
synthesis results of processors and switches (including the interconnec-

88



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

0%

4%

20%

30%

17% 8.2% 5.4% 11.2% 7.6%

DM Manager 1 DM Manager 2 DM Manager 3 DM Manager 4 DM Manager 540%

2%

1%

3%

Figure 3.24: Heap fragmentation of the selected DM managers.

tion network), obtained from Synopsys Design Compiler can establish
what is the power consumption of a block when running at a certain
frequency and voltage point.

Figures 3.23 and 3.24 present the normalized power consumption and
the heap fragmentation results for the five selected DM managers re-
spectively without any monitoring of DVFS change mechanism. Values
on top of the bars represent the values that are within the break. We
define as heap fragmentation the percentage of the maximum amount
of memory allocated from the system divided by the maximum amount
of memory required by the application [16]. Heap Fragmentation is
an important metric in the field of dynamic memory management and
excessive fragmentation can degrade performance by causing poor data
locality, leading to paging problems.

Figure 3.23 presents the normalized power consumption of the five se-
lected DM managers for the used benchmarks. Power-aware DM man-
ager 1 [57] is the baseline metric for the presented results. As expected,
DM manager 1 has the lowest power consumption because it does not
have any fixed lists, it uses first-fit fitting policy and there are no coa-
lescing/splitting mechanisms available. These configurations make the
(de)allocation procedure fast and minimize memory accesses leading to
lower power consumption. DM manager 2 consumes on average about
1.9× more power compared to DM manager 1 due to coalescing and
splitting. Coalescing and splitting policies search (de)allocated mem-
ory blocks in order to reduce fragmentation resulting to an increased

89



Chapter 3 Memory management middleware acceleration and customization

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 P
ow

er
C

on
su

m
pt

io
n

No DVFS DVFS, WS = 4 DVFS, WS = 8 DVFS, WS = 16 DVFS, WS = 32

Figure 3.25: Normalized power consumption for DM manager 1 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS).

number of memory accesses thus leading to more power consumption.
DM manager 3 consumes on average 1.2× more power compared to
DM manager 1. The only difference between these two managers is the
different fitting policy they use. By using best-fit fitting policy, DM man-
ager 3 extensively searches freed list in order to return the best memory
block that serves application needs and not the first one (first-fit). DM
manager 4 consumes on average 1.7× more power compared to DM
manager 1. As aforementioned coalescing and splitting is the main rea-
son for high power consumption. Last, DM manager 5 is the worst of
all having on average 4.6× more power consumption compared to DM
manager 1. This happens because DM manager 5 searches in fixed-size
lists first and in freed lists after in order to find the appropriate memory
block.

In addition, Figure 3.24 presents the heap fragmentation of the selected
DM managers. As aforementioned heap fragmentation is the maximum
amount of memory allocated from the system divided by the maximum
amount of memory required by the application and high values of heap
fragmentation result to performance degradation. DM managers 1, 2,
3, 4 and 5 have on average 10%, 2.3%, 2.3%, 2.3% and 17% heap
fragmentation respectively. As expected, DM manager 1 results to high
heap fragmentation due to its first-fit fitting policy and the absence of
any coalescing/splitting techniques. DM managers 2, 3 and 4 have the
lowest fragmentation values because both best-fit fitting policy and co-
alesce and split techniques contribute to low heap fragmentation. Last,

90



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

0.0

0.5

1.0

1.5

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

N
or

m
al

iz
ed

 P
ow

er
C

on
su

m
pt

io
n

No DVFS DVFS, WS = 4 DVFS, WS = 8 DVFS, WS = 16 DVFS, WS = 32

Figure 3.26: Normalized power consumption for DM manager 2 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS).

DM manager 5 has the worst heap fragmentation due to the fact that it
handles specific sizes it is more likely to create holes between memory
blocks while trying to fit the fixed-size blocks.

3.5.3.2 Power consumptions

Figures 3.25-3.29 present the normalized power consumption for the
five selected DM managers respectively with the integration of the pro-
posed framework. The power overhead of both monitoring and DVFs
change mechanisms have been estimated and they are part of the over-
all presented DMM power consumption for every window-size. For
each DM manager we extracted the power consumption regarding (i)
no frequency or voltage regulation system (no DVFS mechanism) and
(ii) GRLS frequency-voltage regulation system with different window
size (WS) values (from WS = 4 to WS = 32). It was estimated that the
power consumption is directly proportional to the frequency at which
a block runs and directly proportional to the square of the supply volt-
age. The model, according to the synthesis results of processors and
switches, obtained from Synopsys Design Compiler can establish what
is the power consumption of a block when running at a certain fre-
quency and voltage point

As aforementioned, the proposed framework works transparently to
all functionalities of the DM manager leaving untouched all decisions

91



Chapter 3 Memory management middleware acceleration and customization

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 P
ow

er
 

C
on

su
m

pt
io

n

No DVFS DVFS, WS = 4 DVFS, WS = 8 DVFS, WS = 16 DVFS, WS = 32

Figure 3.27: Normalized power consumption for DM 3 manager com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS).

0.0

0.5

1.0

1.5

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

N
or

m
al

iz
ed

 P
ow

er
C

on
su

m
pt

io
n

No DVFS DVFS, WS = 4 DVFS, WS = 8 DVFS, WS = 16 DVFS, WS = 32

Figure 3.28: Normalized power consumption for DM manager 4 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS).

such as fit policies, heap management, fragmentation, block splitting and
coalescing, etc. Since these decisions/policies are the ones that affect the
performance of the manager, the proposed framework focuses on the
reduction of power consumption without affecting these performance
metrics.

Experimental results show that by using the proposed method for mon-
itoring and applying DVFS mechanisms, the power consumption con-
cerning heap management was reduced by approximately 37%. Specif-
ically, when the window size is small (e.g. WS = 4) the gain is even
bigger reaching approximately 45% compared to the case where no

92



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

0.0

0.5

1.0

1.5

FAST FAST
(randomization)

Gaussian Gaussian
(randomization)

Integral Integral
(randomization)

Matrix Mul. Matrix Mul.
(randomization)

N
or

m
al

iz
ed

 P
ow

er
C

on
su

m
pt

io
n

No DVFS DVFS, WS = 4 DVFS, WS = 8 DVFS, WS = 16 DVFS, WS = 32

Figure 3.29: Normalized power consumption for DM manager 5 com-
pared with the integration of DVFS mechanisms and dif-
ferent window sizes (WS).

DVFS mechanism is present. However, when the window size increases
the power consumption gain is reduced and varies from 33% (WS = 8)
to 21% (WS = 16) compared to the case where no DVFS mechanism is
applied. In the case where window size is equal to 32 (WS = 32) there
is a power overhead of about 16%. This can be explained by the fact
that when the window size increases, DVFS decision mechanisms can-
not take the right decision on time and time spent on heap can not be
captured correctly by the monitor mechanisms.

Figure 3.25 presents the normalized power consumption for DM man-
ager 1 with the integration of the proposed framework. By using
the proposed framework, power consumption can be reduced at max-
imum 50% (WS = 4) compared to the case where no DVFS mecha-
nism is applied. As aforementioned, when the window size increases,
the power consumption gains are reduced and in some benchmarks,
when WS = 32, there is a small power consumption overhead. In
Figure 3.23 DM manager 1 was shown to be the most power efficient
manager. With the proposed additions we managed to further reduce the
power consumption, making it ideal for systems targeting low power consump-
tion.

Figures 3.26-3.28 present the normalized power consumption for DM
managers 2, 3 and 4 respectively with the integration of the proposed
framework. The approximate maximum power gain for all the three
managers is approximately 48% and it decreases as window size in-

93



Chapter 3 Memory management middleware acceleration and customization

N
um

be
r o

f a
cc

es
se

s 
in

 
al

lo
ca

to
r’s

 li
nk

ed
 li

st
s

0 1000 2000 3000
0

10

20

30

Frequency, 
Window size = 4

Frequency, 
Window size = 8

Number of accesses

0

500

1000

1500 Frequency (M
H

z)

Cycles

Figure 3.30: Number of accesses in DM manager’s linked lists for FAST
benchmark in comparison with DM manager’s decisions
for frequency changes for WS = 4 and WS = 8

creases (compared to the case where no DVFS mechanism is applied).
In Figure 3.24, DM managers 2, 3 and 4 have been shown to be the
most efficient in terms of heap fragmentation. By applying the proposed
monitoring and DVFS changing mechanisms, we managed to achieve
such power reduction that the final consumption is comparable with
the DM manager 1, the most power efficient of all. By combining the
proposed framework, we can achieve low power consumption with low heap
fragmentation making the DM managers power-aware for systems targeting
low heap fragmentation.

Last, Figure 3.29 presents the normalized power consumption for DM
manager 5 with the integration of the proposed framework. And in
this case, as the window size is small there is a significant gain in power
consumption. But as window size increases the power gain is reduced
resulting to power overhead in some cases.

Figures 3.30 and 3.31 show the number of accesses in the DM managers
linked lists in comparison with the DM manager’s decision for DVFS
changes. As expected, when the window size is small, monitor mecha-
nisms can follow application’s needs and trigger the appropriate DVFS
mechanisms. On the other hand, as the window size becomes bigger,
monitor mechanisms find it difficult to follow application’s needs and
wrong DVFS decisions are taken or the correct decisions are taken at
wrong time.

94



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

Cycles
0

0

10

20

30

Frequency, 
Window size = 16

Frequency, 
Window size = 32

Number of accesses

1000 2000 3000
0

500

1000

1500 Frequency (M
H

z)
N

um
be

r o
f a

cc
es

se
s 

in
 

al
lo

ca
to

r’s
 li

nk
ed

 li
st

s

Figure 3.31: Number of accesses in DM manager’s linked lists for FAST
benchmark in comparison with DM manager’s decisions
for clock frequency changes for WS = 16 and WS = 32

3.5.3.3 Performance overhead

So far, we have shown that the proposed method can achieve power
reduction up to 37% approximately compared to the case where no
DVFS mechanism is applied. Also, we have showed that when the win-
dow size is small monitor mechanisms can follow application’s needs
and trigger the appropriate DVFS mechanisms when needed. How-
ever, continuous monitor mechanisms result in performance overhead
in terms of cycles. In Table 3.3 the performance overhead in terms of
cycles, for each of the used benchmark (with and without randomiza-
tion pattern), of the implemented monitoring and DVFS mechanisms
is presented. Particularly performance overhead has been split into
two parts according to whether there was a decision for DVFS change
or not: (i) the overhead added only by the monitor mechanisms in
cases where no DVFS change was decided (Idle) and (ii) the overhead
added by the monitor mechanisms including the DVFS changing pro-
cedure overhead (switching time tT ) (DVFS). As aforementioned, it is
not necessary to change frequency-voltage levels in every window if not
necessary.

As expected, when the window size is small the performance overhead
increases at an average of 14% more execution cycles due to the fact
that monitor mechanisms are activated more often and stall applica-
tion’s execution. On the other hand, when the window size increases,

95



Chapter 3 Memory management middleware acceleration and customization

W
in
do

w
Cy

cl
es

FA
ST

FA
ST

G
au

ss
ia
n

G
au

ss
ia
n

In
te
gr

al
In

te
gr

al
M
at
ri
x
M
ul
.

M
at
ri
x
M
ul
.

si
ze

(r
an

do
m
.)

(r
an

do
m
.)

(r
an

do
m
.)

(r
an

do
m
.)

4
Id
le

10
.1
6%

9.
45
%

11
.5
2%

8.
26
%

12
.0
2%

5.
47
%

6.
12
%

5.
99
%

D
V
FS

3.
56
%

4.
74
%

3.
63
%

9.
38
%

3.
79
%

10
.5
1%

2.
36
%

3.
79
%

To
ta
l

13
.7
2%

14
.1
9%

15
.1
5%

17
.6
5%

15
.8
2%

15
.9
8%

8.
48

%
9.
78

%

8
Id
le

3.
88
%

3.
88
%

4.
27
%

4.
51
%

4.
59
%

3.
92
%

2.
32
%

2.
63
%

D
V
FS

3.
52
%

3.
52
%

3.
39
%

4.
64
%

4.
17
%

4.
56
%

2.
39
%

2.
71
%

To
ta
l

7.
40

%
7.
40

%
7.
66

%
9.
14

%
8.
76

%
8.
49

%
4.
72

%
5.
35

%

16
Id
le

1.
10
%

1.
42
%

1.
75
%

2.
58
%

1.
55
%

1.
67
%

0.
69
%

1.
07
%

D
V
FS

2.
62
%

2.
10
%

2.
59
%

2.
34
%

2.
90
%

3.
12
%

1.
63
%

2.
01
%

To
ta
l

3.
73

%
3.
52

%
4.
34

%
4.
91

%
4.
45

%
4.
78

%
2.
31

%
3.
08

%

32
Id
le

0.
16
%

0.
33
%

0.
19
%

1.
01
%

0.
43
%

0.
95
%

0.
35
%

0.
50
%

D
V
FS

1.
90
%

1.
63
%

2.
17
%

1.
69
%

2.
14
%

1.
57
%

1.
40
%

1.
83
%

To
ta
l

2.
06

%
1.
95

%
2.
36

%
2.
70

%
2.
56

%
2.
52

%
1.
75

%
2.
33

%

Table 3.3: Performance overhead in terms of cycles
96



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

the monitor mechanisms are not triggered so often and the performance
overhead can be considered negligible in some cases (below 5%). An-
other noticeable remark is the fact that when the window size increases
the overhead of the DVFS changing procedure remains almost the same
while the idle monitoring cycles decreases. This is explained by the fact
that in these cases there is a DVFS change command every time a mon-
itor window ends. DM manager tries to follow benchmark’s needs and
makes the appropriate frequency-voltage changes in order to adapt to
benchmark’s needs.

According to Table 3.3 the FAST benchmark follows the aforementioned
remark about the window size. The total performance overhead is ap-
proximately 14% and decreases to 2% as the window size increases. The
Gaussian has approximately an average total performance overhead of
16% more execution cycles and decreases to 2% too as the window size
increases. Moreover, The total performance overhead of Integral bench-
mark is approximately 14.5% and decreases to 2.5% as the window size
increases. Last, the Matrix Multiplication benchmark has approximately
an average total performance overhead of approximately 8% and de-
creases to 1.3% as the window size increases.

3.5.3.4 Power consumption and performance overhead trade-off

As shown in Figures 3.30 and 3.31, when the window size is small the
monitor mechanisms can keep up with applications’ dynamic memory
needs resulting to lower voltage-frequency levels when necessary and
thus reducing the overall power consumption. However, according to
Table 3.3, continuous monitoring results in performance overhead in
terms of cycles. On the other hand, as the window size increases wrong
DVFS decisions are taken.

In order to examine the trade-off between power consumption reduc-
tion, performance overhead and window size, we define P (ei) as the
probability of serving the ei DMM event at the correct frequency and
voltage operation levels. Figure 3.32 shows the P (ei), for the different
DM Managers (Figures 3.32a-e), in comparison to normalized power
consumption (case in which no DVFS mechanism is applied), perfor-
mance overhead and window size (referenced as WS in Figure). As
expected, when the window size is small (WS = 4) the P (ei) is on

97



Chapter 3 Memory management middleware acceleration and customization

60

65

70

75

80

85

90

95

0.8
0.9

1.0
1.1

1.2
1.3 0

2
4

6
8

10

Performance 

overhead (%
)

Normalized power 

consumption

P(
e i)

 p
ro

ba
bi

lit
y

WS = 4, P(ei) = 93.2%

WS = 8, P(ei) = 80.2%

WS = 16, P(ei) = 68.5%

WS = 32, P(ei) = 64.8%

e) DM Manager 5

30

40

50

60

70

80

90

100

0.6
0.8

1.0
1.2

1.4
1.6 4

6
8

10
12

14
16

18
20

Performance 

overhead (%
)

Normalized power 

consumption

P(
e i)

 p
ro

ba
bi

lit
y

WS = 4, P(ei) = 92.1%

WS = 8, P(ei) = 75.1%

WS = 16, P(ei) = 58.1%

WS = 32, P(ei) = 34.1%

d) DM Manager 4

30

40

50

60

70

80

90

0.55
0.60

0.65
0.70

0.75
0.80 6

8
10

12
14

16
18

20 22 24

Normalized power 

consumption Performance 

overhead (%
)

P(
e i)

 p
ro

ba
bi

lit
y

WS = 4, P(ei) = 87.0%

WS = 8, P(ei) = 64.2%

WS = 16, P(ei) = 52.1%

WS = 32, P(ei) = 34.1%

c) DM Manager 3

30

40

50

60

70

80

90

100

0.6
0.8

1.0
1.2

1.4
1.6 0

2
4

6
8

10
12

14
16

Performance 

overhead (%
)

Normalized power 

consumption

WS = 4, P(ei) = 88.2%

WS = 8, P(ei) = 70.0%

WS = 16, P(ei) = 59.4%

WS = 32, P(ei) = 38.5%

b) DM Manager 2

30

40

50

60

70

80

90

100

0.5
0.6

0.7
0.8

0.9
1.0 0

2
4

6
8

10
12

14
16

Performance 

overhead (%
)

Normalized power 

consumption

P(
e i)

 p
ro

ba
bi

lit
y

WS = 4, P(ei) = 90.0%

WS = 8, P(ei) = 71.3%

WS = 16, P(ei) = 60.1%

WS = 32, P(ei) = 42.3%

a) DM Manager 1

P(
e i)

 p
ro

ba
bi

lit
y

Figure 3.32: P (ei) values, for all DM Managers, in comparison to nor-
malized power consumption (compared to no DVFS), per-
formance overhead and window size (WS).

98



3.5 Power-aware DMM on Many-core Platforms utilizing DVFS

average 90.1%, whereas when the window size is big (WS = 32) this
percentage falls down to 43.3%. The different features of the allocators
affect their behavior and this is reflected on the different P (ei) values
for the same window size as shown in Figure 3.32. For example, P (ei)
values range from 34.1% (DM Manager 3) to 64.8% (DM Manager 5),
when WS = 32, while P (ei) values range from 87% (DM Manager 3)
to 93.2% (DM Manager 5), when WS = 4.

3.5.4 Conclusions

To sump up, we couple the concept of dynamic memory manage-
ment with state-of-art DVFS technique targeting low power consump-
tion. The proposed framework consists of high-level window-based
lightweight monitor mechanisms and integrated high-level DVFS in-
terfaces responsible for changing clock frequency and supply voltage
levels. To the best of our knowledge, this is the first attempt in which
DVFS techniques are integrated as part of a library responsible for han-
dling dynamic data, thus offering power-aware DM managers. This
framework is transparent to the application code and can be integrated
to any allocator written in C. Experimental results show that by us-
ing the proposed method for monitoring and applying DVFS mecha-
nisms, the power consumption concerning heap management was re-
duced by approximately 37%. Furthermore, the designer can use the
P (ei)metric to explore the trade-off among the power consumption, per-
formance overhead and monitoring granularity. In addition, by com-
bining this method with heap fragmentation-aware DM managers, we
can achieve low power consumption with low heap fragmentation val-
ues.

99



Chapter 3 Memory management middleware acceleration and customization

100



Chapter 4

Distributed Run-time resource
management

4.1 Introduction

The concept of many-core platforms poses a new problem for the de-
signer in a higher level of abstraction, the one of allocation of resources
among the cores. Until now, we faced the problem of scheduling the
tasks in one core or a very small set of cores. In a many-core platform,
resource allocation has a spatial aspect as well. An application comprises
of tasks being executed in parallel and every task has to be assigned to a
core. The choice of core has to take into account its position as well. This
is the reason why we refer to this process as mapping. An idea of what
mapping refers to can be seen in Figure 4.1.

Calculating a cost efficient mapping for a given application in a short

 

Figure 4.1: Illustration of the mapping problem [46]

101



Chapter 4 Distributed Run-time resource management

amount of time is crucial. The design may have many aspects. Some
common goals are to maximize performance, minimize distance between
tasks or minimize energy consumption in case of heterogeneous plat-
form. Since the mapping process is an intermediate step between the
request for an application to start and the actual initialization of the ap-
plication, the process must be as fast as possible.

Resource management is a key technology for the successful use of com-
puting platforms. The run-time resource management paradigm has be-
come prominent recently because it can deal with the run-time dynamics
of applications and platforms. Thus, the efficient run-time application
mapping enables the efficient usage of the platform resources, minimiz-
ing mapping time, interconnection network communication load and
energy budget.

In the case of design-time mapping, the decisions are taken at the de-
sign phase having explored all the appropriate capabilities and solu-
tions. However, this designation cannot be altered during run-time and
in many cases a lot of time is required to recalculate the mapping. So,
this technique can be employed only when small amount of application
can be run on a man-core platform and only for specific scenarios. Ap-
parently this is not the case in modern systems.

In run-time mapping, the resources are allocated dynamically as appli-
cations enter and exit the system, providing the necessary flexibility for
the platform to function properly. An interesting fact is that run-time
mapping is not only the only way to tackle the unpredictability of the
incoming applications but has a number of other abilities as well: (i)
It adapts to applications’ needs by exploiting the available resources. These
resources may vary over time, due to different applications running simulta-
neously; (ii) it enables unforeseeable upgrades after first product release time,
e.g. new application and new or changing standards; (iii) it avoids defective
parts of a SoC. Larger chips mean lower yield. The yield can be improved
when the mapping algorithm is able to avoid faulty parts of the chip and (iv) it
is be used with reconfigurable hardware where the type of available processing
elements can vary over time.

Existing approaches to run-time mapping algorithms on many-core
platforms, even if they expose some autonomic properties, are typ-
ically centralized [23]. Traditionally, a central core periodically an-
alyzes applications’ malleability and platform resources and tries to

102



4.1 Introduction

find the best match between them. However, such centralized ap-
proaches [68] limit scalability due to bottlenecks appeared from pro-
cessing and communication functions, especially in environments that
require frequent configuration changes. Also, the large number of cores
in modern systems, increase the failure rate of single processors result-
ing in system errors when parallel applications are executing [14]. Last,
centralized run-time managers lack the concept of self-adaptation and
self-organization, actions that trend to be a solution to modern plat-
forms [51].

More specifically, centralized mapping utilizes one or a small set of
cores in order to perform the mapping for every application that ar-
rives. These cores are burdened with the responsibility to calculate the
mapping for the whole system resulting in the following problems [6!]:
(i) Monitoring traffic is increased in volume. During the run-time mapping
the centralized approach needs to collect data from the whole chip causing
unnecessary traffic on the interconnection resulting in performance degrada-
tion; (ii) a high computational cost is required to calculate the mapping for
the whole chip at once; (iii) there is a single point of failure. If the Cen-
tralized Manager fails for some reason, the mapping can’t be performed at
all; (iv) the Centralized Manager becomes a point of hot-spot as every tile
sends information to it increasing the chance of bottleneck issues around the
manager and (v) the system lacks scalability. As modern many-core plat-
forms grow in size, more and more Processing Elements will be added, thus
exponentially increasing the computational effort of mapping and the on-chip
load.

On the other hand, in the distributed mapping scheme, the effort of
the computation is distributed on several tiles across the chip [81]. In
this way, the problems of the Centralized mapping are solved as fol-
lowing: (i) Monitoring traffic is decreased in volume. The Processing
Elements only need to send the data to their closest manager reducing
interconnection load; (ii) the distributed managers only need to per-
form the mapping computation for the dedicated area they control. In
this way, the computation demanding problem is divided in less de-
manding ones; (iii) There are no issues of single point of failure or
hot-spots, since the smaller portions of the computation can be per-
formed on any tile and (iv) distributed mapping scales very well with
larger many-core platforms, since all that is needed is some more light-
weight distribured managers, whose individual computation effort isn’t

103



Chapter 4 Distributed Run-time resource management

merge merge

problem

subproblem

Compute 
subproblem

problem

Compute 
subproblem

Compute 
subproblem

Compute 
subproblem

subproblem

subproblem subproblem

split

split split

merge

Figure 4.2: Divide and Conquer in computer science.

increased.

4.2 Divide and Conquer based Distributed
Run-time Mapping on many-core platforms

Divide-and-Conquer (D&C, derived from Latin: divide et impera) is a
combination of political, military and economic strategy. Its goal is to
maintain control by breaking up larger concentrations of power into
smaller ones. These smaller concentrations of power individually have
less power than the one implementing the strategy. Historically, it has
been used by great empires such as ancient Rome, by dividing the land
to smaller regions and setting local Kings.

In computer science, the D&C strategy consists in breaking a problem
into simpler subproblems of the same type, next to solve these sub-
problems, finally to amalgamate the obtained results into a solution to
the problem. Thus, it is primarily a recursive method for finding so-
lutions to a big problem as depicted in Figure 4.2. The algorithms
of this type display two parts; the first one breaks the problem into
subproblems, the second one merges the partial results into the final
result.

The developed methodology adopts the concept of the D&C method
and use it so as to perform distributed run-time mapping on both homo-
geneous and heterogeneous many-core platforms. An abstract example
of our approach implementing the D&C concept is presented in Fig-

104



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

ure 4.3.

The mapping is carried out in a distributed manner. In order to achieve
that, the platform is partitioned in regions, i.e. subsets of the set of all
the tiles on the NoC. These regions have no fixed boundaries, and can
be reshaped, created or abolished when necessary. Every new applica-
tion mapping request is processed firstly by a designated tile, where the
System-Wide Controller task is being executed. This task is a lightweight
piece of code, implemented for every type of Processing Element on the
many-core platform in order to keep the system protected from any
single point of failure problems. This task’s purpose is to find a region
suitable to execute the new application, or take actions if the applica-
tion can’t be mapped for any reason. It holds easily transferable data
for the whole platform, based on which the resulting region is found.
The collection of that data doesn’t burden the whole platform, but only
specific tiles as shown later. In addition to the System-Wide Controller,
there are some more designated tiles, one for each region, called Re-
gional Controllers. As the name suggests, these tiles are responsible
for any action involving the mapping in their respective region. More
specifically they are responsible for:

• Computing the mapping for the region for which the controller is
responsible for.

• Collecting data for the region.

• Communicating and exchanging data with the System-Wide Con-
troller.

In the same manner as the System-Wide Controller, the Regional Con-
trollers are meant to be executable on any tile of the region, so that
the platform’s functionality doesn’t depend on any single tile. Once a
region has been selected by the System-Wide Controller for the map-
ping of a new application, its Regional Controller is triggered and data
describing the application is sent to it. Then the mapping is per-
formed and its results are reported back to the System-Wide Con-
troller.

The novel ideas of the presented methodology are:

• We propose a flexible distributed method for run-time mapping

105



Chapter 4 Distributed Run-time resource management

“Emperor” Task 
Choose which region 

best serves applications

App 1 App 2 App 3

App 2

App 1

App 3

Triggers “local Kings” 
to perform mapping to 

their region

Figure 4.3: Divide and Conquer on many-core platform

on both homogeneous and heterogeneous many-core platforms

• The flexibility of our approach is based on the fact that our run-
time mapping framework can achieve different levels of platform’s
resources utilization depending on application’s needs in compar-
ison with other state-of-the-art distributed algorithms [9].

• We employ a fast node swapping procedure at the final step of
the run-time mapping producing even better results in terms of
on-chip communication cost.

4.2.1 Proposed run-time mapping methodology framework

The goal of the proposed methodology framework is to perform bandwidth-
aware run-time mapping of application(s) described by their application
task graphs in many-core network-on-chip architectures described by
their application graphs.

106



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

Divide NoC to 
regions based on 

app’s size

Search for a 
region and set a 

regional 
controller

Apply Run-time 
mapping 
algorithm

Wait for a task 
to finish

Search for a region 
that optimizes the 
matching factor 

and set a regional 
controller

Apply Run-time 
mapping 
algorithm

Get application’s 
needs in terms of 

PEs

Report PE’s 
type to regional 

controller

Divide NoC to 
logical regions

Consider NoC as 
a unified region

New application 
arrives

Not found Not found

Freed PE 
matches app’s 

needs Yes

No

System-wide 
controller triggered

Homogeneous 
platform

Heterogeneous 
platform

Initialization Initialization

Regional 
controller 
triggered

Regional 
controller 
triggered

Figure 4.4: Flow of our D&C methodology.

An overview of our methodology framework is presented in Figure 4.4.
Once a new application arrives the system-wide controller is invoked,
the so called “Emperor” task is triggered, and according to the kind of
many-core platform, the Homogeneous (Section 4.2.1.2) or the Hetero-
geneous (Section 4.2.1.3) flow is followed. The system-wide controller
is a light-weight task that performs the initial steps of the run-time
mapping. It is responsible for:

1. getting the application’s requirements,

2. selecting an appropriate region to map that application on and

3. triggering other cores in the region (the regional controllers, the
so called “Local Kings”, so as to perform the run-time mapping
algorithm.

107



Chapter 4 Distributed Run-time resource management

4.2.1.1 Definitions

An application task graph (ATG) is used to capture the traffic flow
characteristics. The ATG G(T,D) is a directed acyclic graph, where
each vertex ti represents a computational module in the application.
K[t] ∀ti ∈ T specifies task’s class type (e.g. logic task, computational
task, memory task etc). Each directed arc di,j ∈ D between tasks ti and
tj characterizes data and communication dependencies. Each di,j has
an associated value b(di,j), which stands for the communication volume
exchanged between tasks ti and tj .

A many-core platform topology and its communication infrastructure
can be uniquely described by a strongly connected directed graph A(I,N).
The set of vertices N is composed of two mutually exclusive subsets NPE

and NC containing the available platform’s Processing Elements (PEs)
and the platform’s on-chip interconnection elements (such as routers in
Network-on-Chip technology). C[pei] ∀pei ∈ NPE specifies the class of
the PE pei. The set of edges I contains the interconnection information
(both physical and virtual) for the N set.

The mapped cores define the MPE set. We also define a mapping
function map : T → NPE that maps the application’s task (T set) to
the available PEs (NPE set). Let the set of unmapped nodes MPE

such as pe ∈ MPE if pe /∈ MPE . From our definition it follows that
MPE ∩MPE = ∅.

We define the set R which describes the logical regions on the platform.

R is composed of k (k ⩾ 1) subsets R1, R2, ..., Ri, ..., Rk such that
k∩

i=1
Ri =

∅ and
k∪

i=1
Ri = R. MRi [] is a list that defines the one to one result of

the map mapping function in the Ri region. A region Ri is considered
occupied iff ∃pei ∈ Ri : pei ∈MPE .

In an heterogeneous platform, the C[pei] varies for each PE. Also, each ti
may require a special class of PE to run on, e.g. a DSP PE class. In order
to comply with application’s requirements and platform’s resources and
have the best T → NPE correspondence, we define ∀ti ∈ T the parameter
Matching Factor (MF ) such that:

108



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

1 ≥ C[pei]

K[ti]
≥MFti , ∀pei ∈ NPE (4.1)

MF is a designer specified parameter and defines the classes of PEs that
the ti can sit on. MF implies how good the class C[pei] of pei element
matches the specific ti task and it defines a priority type on which
core the task should be mapped on first. Different values and different
decisions for MF result to different MRi [] lists. In a homogeneous
platform MFt1 = ... = MFtN , ∀ti ∈ T because C[pe1] = ... = C[peN ],
∀pe ∈ Npe.

4.2.1.2 Homogeneous Platform

The starting point of the methodology is the annotated graphs of the
many-core platform A(I,N) and of the application(s) G(T,D) to be
mapped. The mapping algorithm utilizes this information and proposes
the solution without violating the bandwidth constraints of the platform
and the requirements of the application(s). The mapping procedure is
presented in Algorithm 1.

• Step 1 (lines 1-7): In the first step, we check the total number of
tasks |T |. If platform is capable for serving the application a new
region Ri is created and a signal is sent to a core inside the Ri

region. This core plays the role of the regional controller (“Local
King”) and it performs the run-time mapping algorithm. If this
is not the case, we wait for a task to finish and free its PE. Due
to fact that the set R is composed of mutually exclusive subsets,
pei cannot belong to other subsets of R. If the new application fits
in the platform, the System-Wide Controller appoints a tile on the
NoC to be a Regional Controller, and sends the request to it. This
Regional Controller is responsible for the region consisting of the
unoccupied tiles around it, whose Manhattan distance from the
controller is less or equal to the search_distance value, which is
defined in Equation 4.2. The search_distance is not a fixed value
and may be increased to include more unoccupied tiles.

search_distance =
{ √

|T |, |T | < 9√
|T | − 1, |T | ≥ 9

(4.2)

109



Chapter 4 Distributed Run-time resource management

Algorithm 1 Homogeneous platform
// Step 1: Check availability

1: If |T | ⩽ |MPE |
2: define new Ri ∈ R|∀pei ∈ Ri, pei ∈MPE

3: signal(Ri)
4: jump(Step 2)
5: Else
6: wait() // for a task to release its PE
7: jump(Stage 1)

// Step 2: Run time mapping procedure
8: ∀di,j ∈ D
9: ∀pei ∈ Ri

10: src = min{FHOM (di, pei)} // equation 4.3
11: dst = min{FHOM (dj , pei)}
12: MPE ,MRi []← src
13: MPE ,MRi []← dst

// Step 3: Swapping procedure
14: bestCost = bwCost{MRi []} // equation 4.4
15: ∀ti ∈ Ri

16: ∀tj ∈ Ri, tj ̸= ti
17: If (MD(ti, tj) ⩽ MAX_MANH_DST )
18: swap(ti, tj)
19: tmpCost = bwCost{MRi []}
20: If tmpCost < bestCost
21: bestCost = tmpCost
22: MRi []⇐ new MRi []
23: Else
24: swap(ti, tj)

110



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

• Step 2 (lines 8-13): For every communication flow (di,j) in G, we
find for the source (i) and the destination (j) the min value of cost
function 4.3 for the selected PEs.

FHOM =
∑
j

(b(di,j) +MDi,j) +
∑
i

∑
j

b(di,j)×MDi,j (4.3)

where MDi,j is the distance (measured in hops) between pei and
pej . This cost function combines the communication cost of the
neighborhood of pei (first term) and the total communication cost
of the platform (second term).

• Step 3 (lines 14-24): After the initial mapping has been performed
we employ an iterative application node swapping process (sim-
ilar to the one used in [61]) trying to further reduce the total
communication cost. During this process a pair of application
nodes (mapped on platform nodes) is chosen and their position
on the platform is swapped. After each swap the total communi-
cation cost (equation 4.4) is evaluated and if it is smaller than the
previous value the swap is kept, otherwise the swap is not valid.
The number of iterations of this swapping procedure is defined by
the value MAX_MANH_DST .

bwCost =
∑
MRi

[]

b(di,j) ∗ (MDi,j) (4.4)

4.2.1.3 Heterogeneous Platform

Computing a mapping for a heterogeneous platform is more complex
than the one for homogeneous platforms. This is due to the fact that the
calculation of the most efficient Processing Element type for each task is
needed, followed by the computation of a mapping that respects these
preferences to types and in the same time minimizes the communication
energy of any application’s execution.

The starting point of the methodology for heterogeneous platforms is
the annotated graphs of the many-core platform A(I,N), of the applica-
tion(s) G(T,D) to be mapped on and the designer specified parameter
MF . The algorithm searches for regions able to serve application’s task

111



Chapter 4 Distributed Run-time resource management

Algorithm 2 Heterogeneous platform
// Step 1: Region selection step

1: ∀ti ∈ T
2: ∀pei ∈ NPE

3: sort{MFti}
4: ∀Ri ∈ R

5: If (|T | ⩽ |MPE |) && (∀ti ∈ T , ∃pei ∈MRi
:
C[pei]
K[ti]

= 1)
6: select(Ri)
7: jump(Step 5)
8:

// Step 2: if the first matching doesn’t yield a result
9: ∀Ri ∈ R

10: If (|T | ⩽ |MPE |) && (∀ti ∈ T , ∃pei ∈MRi
: 1 >

C[pei]
K[ti]

≥MFti )
11: select(Ri)
12: jump(Step 5)
13:

// Step 3: no matching region has been found
14: ∀ unoccupied Ri ∈ R
15: ∀pei ∈MPE , pei /∈ Ri

16: {Ri} = {Ri}+ pei
17: repeat(Steps 1-2) for Ri

18: If Ri not selected
19: {Ri} = {Ri} − pei, restore(Ri)
20:

// Step 4: no region was found, or all regions are occupied
21: define new Ri = ∅ ∈ R
22: ∀pei ∈MPE

23: {Ri} = {Ri}+ pei
24: repeat(Steps 1-2) for Ri

25: If Ri not selected
26: {Ri} = {Ri} − pei, restore(Ri)
27: wait() // for a task to release its PE
28: jump(Step 1)

// Step 5: Run time mapping procedure
29: ∀K[tk] ∈ G
30: {S} = di,j iff (K[tk] = K[ti])||(K[tk] = T [tj ])
31: sort(S) //by b(di,j)
32: ∀di,j ∈ S
33: ∀pei ∈ Ri

34: src = min{FHET (di, pei)} // equation 4.5
35: dst = min{FHET (dj , pei)}
36: MPE ,MRi

[]← src
37: MPE ,MRi

[]← dst
// Step 6: Swapping procedure

38: bestCost = bwCost{MRi
[]} // equation 4.4

39: ∀ti ∈ Ri

40: ∀tj ∈ Ri, tj ̸= ti
41: If (MD(ti, tj) ⩽ MAX_MANH_DST )
42: swap(ti, tj)
43: tmpCost = bwCost{MRi

[]}
44: If tmpCost < bestCost
45: bestCost = tmpCost
46: MRi

[]⇐ new MRi
[]

47: Else
48: swap(ti, tj)

112



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

as best as possible in terms of available classes. The algorithm for the
heterogeneous platforms is presented in Algorithm 2.

• Step 1 (lines 1-8): In the first step, we try to find a region in
which all cores’ classes match perfect with all application’s tasks
(C[pei]
K[ti]

= 1). If such region exists, a signal is sent to a core inside
the region in order to perform the distributed run-time mapping
algorithm.

• Step 2 (lines 9-13): If the first matching does not yield a result
and application’s requirements are not so strict (MF < 1) we
change the binding according to MFti and try to find regions that
are as close as possible to the required MFti ∀ti ∈ T . If such a
region exists this region is selected and the mapping algorithm is
performed.

• Step 3 (lines 14-20): If still no matching region has been found,
we search for any unoccupied Ri and we add to that Ri any pei ∈
MPE . If the new region R

′
i is not able to serve the application, all

PEs that were previously attached, they are now restored to their
previous regions.

• Step 4 (lines 21-28): If still no matching region has been found
or all regions are occupied, a new region Ri is created and any
pei ∈ MPE is added to that region. And in this case if the new
region Ri is not able to serve the application, all PEs that were
attached , they are now restored to their previous regions and we
wait for a task to finish and free its PE.

• Step 5 (lines 29-37): In this step, we define the set S that contains
all the flows di,j whose either source’s class (K[ti]) or destination’s
class (K[tj ]) is bound to K[tk]. This set is then sorted by b(di,j).
We sort flows by bandwidth requirements as it helps in reducing
bandwidth fragmentation and it important from a resource con-
servation perspective since the benefits of a shorter path grows
with communication demands. Then, for every communication
flow (di,j) in S, we find for the source (i) and the destination (j)
the min value of cost function 4.5 for the selected pei.

FHET = FHOM +Q(C[pei]) (4.5)

113



Chapter 4 Distributed Run-time resource management

NoC size
6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

C
om

m
un

ic
at

io
n 

C
os

t

1000

10000

100000

1000000

D&C (Our scheme)
ADAM [9]
Design-time mapping [19]

Figure 4.5: Communication Cost comparison in homogeneous platforms
to ADAM [9] and design-time mapping [46].

where Q(C[pei]) is the requirements of class C[pei] in terms of
execution utilization and defines the PE’s utilization by the task
to be mapped on.

• Step 6 (lines 38-48): After the initial mapping has been performed
we try to further reduce the total communication cost by employ-
ing the swapping technique. We swap a pair of mapped nodes
and after each swap the total communication cost (equation 4.4)
is evaluated. If it is better that the current communication cost the
swap remains, otherwise, we restore it back.

4.2.2 Experimental results

We have performed extensive simulations of the behavior of several
applications (a) MPEG-4, (b) Multi-Window Display (MWD) [17], (b)
Picture-In-Picture (PIP) [17] (d) MultiMedia System (MMS) [46], (e)

114



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

NoC size
6x6 8x8 10x10 12x12 14x14 16x16 18x18 20x20

C
yc

le
s

1e+7

1e+8

1e+9

1e+10

1e+11

1e+12

1e+13

1e+14

1e+15

1e+16

D&C (Our scheme)
ADAM [9]

Design -time mapping [19]

Figure 4.6: Mapping computational effort in homogeneous platforms in
comparison with ADAM [9] and design-time mapping [46].

Digitale Radio Mondiale (DRM) [79] and (f) applications from TGFF [35]
to validate our approach. An architecture that is able to accommo-
date a high number of cores, satisfying the need for high on-chip
communication and data transfers, is the Network-on-Chip (NoC) ar-
chitecture. The Network-on-Chip (NoC) model is emerging as a rev-
olutionary architecture in solving the performance limitations arising
out of long interconnects, outperforming more mainstream bus archi-
tectures and as a very good architecture template for many-core plat-
forms.

In Figures 4.5 and 4.6 we compare for various homogeneous platforms,
using TGFF application graphs, our D&C approach to the state-of-the-
art distributed run-time mapping algorithm [9] and to an exhaustive
design-time mapping [46], in terms of on-chip communication cost.
The on-chip communication cost is a part of the mapping cost function
for all these three mapping algorithms. Figure 4.5 shows that our
D&C method achieves on average 21% better result in terms of final on-

115



Chapter 4 Distributed Run-time resource management

Applications
MMS MPEG4 MWD PIP DRM

C
om

m
un

ic
at

io
n 

C
os

t

100

1000

10000

100000

1000000

10000000

D&C (Our scheme)
ADAM [9]
Design-time mapping [19]

Figure 4.7: Communication cost comparison for the five selected appli-
cations with ADAM [9] and design-time mapping [46].

chip communication cost compared to the run-time algorithm presented
in [9]. Although the optimal result is achieved by the exhaustive design-
time mapping algorithm, our D&C method requires significant less cycles
(improved scalability) in order to make the mapping decisions, as shown
in Figure 4.6.

For the validation of our approach on heterogeneous platforms we used
the platform presented in Section 3.2. The platform is composed of
Processor-Memory (PM) nodes interconnected via a packet-switched
mesh network. A node can also be a memory node without a pro-
cessor, pure logic or an interface node to off-chip memory. Each PM
node contains a LEON3 processor, hardware modules connected to the
local bus, and a local memory. The system uses a virtual-to-physical
translation and all shared memories are globally visible to all nodes
and organized as a single virtual addressing space. The communication
of cores inside the platform is done using message-passing instructions
and by using the shared memory interface. Whenever there is a need

116



4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms

Cycles
0 500 1000 1500 2000

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

D&C (MF = 0)
ADAM [9]

D&C (MF = 0.5)
D&C (MF = 1)
Application 

arrives
Application 
is mapped

Figure 4.8: Run-time mapping scenarios on an heterogeneous many-
core platform compared with ADAM [9]

for the system-wide controller to trigger another core, the hardware’s
synchronization safe-lock memory mechanism is used. Shared memory
environment allows the ease use of such mechanisms. The lock is ac-
quired by the system-wide controller and it propagates information to
shared memory. Then the lock is freed and the region controller loads
the data from the memory and performs the required mapping oper-
ations. The execution of code on a regional controller is also possible
with the usage of message passing instructions.

Figure 4.7 presents a comparison of the on-chip communication cost for
the five selected applications. We compare the on-chip communication
cost of our D&C approach ADAM and with the exhaustive design-time
mapping algorithm [46]. As Figure 4.7 depicts, our proposed algorithm
has on average 10% better result in terms of on-chip communication
that the ADAM run-time mapping algorithm. However, the best re-
sult is achieved, as expected, by the exhaustive design-time mapping
algorithm. The cycles required for the result extraction are the same
for both the run-time algorithms but for the exhaustive one is 100×
bigger.

Several run-time scenarios were built on the NoC platform. The differ-
ence between the different scenarios is the number of applications and

117



Chapter 4 Distributed Run-time resource management

Table 4.1: Utilization of platform’s resources

D&C D&C D&C ADAM [9](MF = 1) (MF = 0.5) (MF = 0)
Scenario 1 100% 92% 92% 91%
Scenario 2 100% 88% 88% 87%
Scenario 3 100% 87% 87% 88%
Scenario 4 100% 86% 86% 84%
Scenario 5 100% 78% 78% 79%
Scenario 6 100% 87% 87% 88%

the arrival time of each one of them. The arrival time was randomly
generated. We compared our D&C scheme, using different matching
factor values, with the ADAM [9] one. Figure 4.8 depicts all the im-
plemented scenarios. The green diamond represents the arrival time of
the application while the red one represents the time that the mapping
result was taken. Three MF values are chosen to match what is pro-
vided by the many-core platform [10, 29]. The picture shows that both
our D&C scheme (with MF = 0 and MF = 0.5) has the same run-time
behavior with the ADAM approach. D&C scheme with MF = 1 has
a different behavior because under the MF = 1 restriction a task can
be mapped only on a core that has the same class type with the task.
In this case, the algorithm takes more time because it waits for desired
cores to be freed after finishing their tasks. D&C scheme with MF = 1
has the best task to core mapping decision resulting to best platform’s
resources utilization as depicted in Table 4.1. Table 4.1 shows that with
MF = 1, we can have 100% utilization of platform resources at run-time
with a penalty cost at performance. If our application needs are not so
strict we can choose other values of matching factor, thus relaxing the
strictness of the matching.

4.2.3 Conclusions

In this chapter, a D&C based distributed run-time application map-
ping framework for both homogeneous and heterogeneous many-core
platforms is presented. The framework adapts to application’s needs
and application’s execution restrictions by using the matching factor
parameter and produces on average 21% and 10% better on-chip com-

118



4.3 Distributed run-time resource management for malleable applications

munication cost for homogeneous and heterogeneous platforms respec-
tively, compared to the ADAM [9] scheme with almost the same com-
putational effort. The random implemented run-time scenarios showed
that our algorithm can have different behavior according to the selected
matching factor and resulting to different platform’s resources utiliza-
tion.

4.3 Distributed run-time resource management for
malleable applications

The run-time resource management paradigm has been revealed as a
key challenge to modern multi-core systems and it has become promi-
nent due to the run-time dynamicity of modern parallel applications
and platforms. In modern execution environments run-time resource
availability may vary due to system dynamism as resources can be
added or removed from such environments at any time. According
to the parallel job classification scheme presented in [37] we can sepa-
rate parallel applications into three categories based on their character-
istics:

• Moldable applications: Parallel applications that can be stopped
at any point but the number of processors for such jobs cannot be
changed during run-time.

• Malleable applications: These are parallel applications that can
be stopped at any point of execution and have flexibility to change
the number of assigned processors during run-time. These appli-
cations are also called reconfigurable applications.

• Migratable applications: These are parallel applications that can
be stopped at any point of execution and can be restarted on
processors in a different site, cluster or domain.

As described in [50] malleability is used for autonomous application
reconfiguration in response to dynamic changes in platform’s resource
availability, thus allowing applications to optimize the use of platform’s
features (e.g., number of processors). In other words, malleable applica-
tions use varying amounts of platform resources during their execution

119



Chapter 4 Distributed Run-time resource management

and they may specify the minimum and maximum number of pro-
cessors they require. As minimum can be considered the minimum
number of processors a malleable job needs while maximum describes
the maximum one. Any allocation of cores more than the maximum
number is a waste or platform resources.

4.3.1 Methodology Framework

The goal of the proposed methodology framework is to perform run-
time resource management on many-core platforms, both homogeneous
and heterogeneous, for parallel applications in a distributed way. The
proposed framework is designed for malleable applications. Even though
it can support both moldable and migratable ones, it best utilizes the
platform available resources for malleable applications. In this work
each core can have one of the following roles concerning the resource
management of the platform: (i) initial core; (ii) controller core; and (iii)
manager core.

The initial core is randomly chosen and triggered when a new application
arrives in the system. Its purpose is to find the initial set of cores that
the application will start running on. It requests cores from controller
and manager cores, gathers their offers and determines if at least one
core had been offered. An initial core cannot handle two applications
at the same time. Therefore, if it is chosen to initialize an application
while it is already initializing one, the second one will be stalled until
the initialization of the first one is over.

The controller core is responsible for handling all the unoccupied cores
of a predefined region of the platform. It is defined at the initializa-
tion of the platform and cannot be changed at run-time. At the same
time, the controller core also maintains a list of all manager cores that
occupies a core in its region. This is an essential part of our distributed
design since the information of the occupied cores inside a region is not
maintained in a central point but is scattered throughout the platform.
This information is provided to initial or manager cores if and when it
is asked for.

Last, the manager core manages an application searching for new cores
and instructing the resizing of the application whenever it has more

120



4.3 Distributed run-time resource management for malleable applications

C
al

cu
la

tio
n 

ga
in

Self-optim
ization

C
om

m
un

ic
at

io
n 

Sc
he

m
e

Initial core

Application arrives

When offers 
completed

Manager
triggered

Other managers
triggered

Offers

Application 
manager initialized

Wait for a 
time interval

Need for more cores

Analyze remaining 
workload

Random selected

Send requests for 
core availabilitySpeed-up clalculation

Send 
request

Offers
Send 

request

Offers

Send
request

YES

NO

Controllers
triggered

Send 
request Offers

Figure 4.9: Overall flow of the proposed methodology.

or less cores to run on. This core does not execute any part of the
application. If it does not possess any other cores for the actual ap-
plication to run on, a self optimization is necessary in order to for the
manager to acquire at least one working node. Although an initial core
can be a manager one and vice versa, a controller core cannot change
its functionality.

An overview of our methodology framework in terms of node intercom-
munication is presented in Figure 4.9. Once a new application arrives
on a random core (this is the initial core), this core sends messages to
controller cores found near it and asks for an available core to serve
as the actual application manager. Then the controller cores search
into their area for any unoccupied cores and also send requests to any
managers into this area. According to the application’s characteristics,
cores with the appropriate type respond, provided that the speed-up

121



Chapter 4 Distributed Run-time resource management

gain of the requesting application is greater than the speed-up loss of
the offering manager. After that, the initial core receives all offers and
determines the new manager which is initialized by a signal. Then,
the new manager distributes evenly the workload to the working node
he manages. After a predefined time interval the manager, if there is a
need and the application is not close to its finish, requests for more cores
in order to increase application’s performance giving to the framework
a self-optimization aspect.

4.3.1.1 Definitions

The application and the speed-up model used in this work is the com-
mon malleable application model described in [31, 36] and used by
other distributed approaches [50]. Each application is described by four
parameters W , var, A and Q, where W is the workload, var is the par-
allelism variance, A is the average parallelism and Q is most preferred
Processing Element (PE) type that the application is supposed to be ex-
ecuted on. A many-core platform topology and its communication in-
frastructure can be uniquely described by a strongly connected directed
graph P (I,N). The set of vertices N is composed of two mutually exclu-
sive subsets NPE and NC containing the available platform’s PEs and
the platform’s on-chip interconnection elements (C), such as routers in
an NoC technology. Each platform’s PE can be of a specific type and dif-
fer from the other platform types (supporting heterogeneous platforms)
or all PEs can be of the same type and thus have the same functionality
(homogeneous platform). In our framework Tpei∀pei ∈ NPE specifies
the type of the PE pei. In an heterogeneous platform, the Tpei varies
for each PE while in an homogeneous platform Tpei is the same for all
PEs. In order to comply with the application’s requirements in terms
of required PE classes and have the best Q→ Tpei utilization, we define
Util[pei] ∈ [0, 1] that implies how good the app(W, var,A,Q) is served
by the pei with Tpei type. Util[pei] can also be considered as a priority
factor when an application is asking for additional cores, meaning that
when Util[pei] = 1 we want the best match while when Util[pei] = 0
the application is not requesting any specific Tpei . Last, we define the
sets F and offers[], which describe all the nodes that can appropriately
serve an application based on their type and all the cores offered to the
application respectively.

122



4.3 Distributed run-time resource management for malleable applications

4.3.1.2 Communication Scheme

In order to be consistent with the rest of the document and with Algo-
rithms 3 and 4 we declare that the index dst specifies the manager core
that is requesting more resources while src is the manager core that is of-
fering them. Also, we define the set R which contains, for each controller
core, the PEs in a manhattan distance specified by the equation 4.6
where size is the size of the platform and num_controllers is the number
of controllers cores on it on the X dimension.

distance = size/num_controllersX (4.6)

Algorithm 3 Communication scheme algorithm
// Initial core actions

1: analyze(W, var,A,Q)
2: req_send(control[], core_id, app,R)
3: start_timer()
4: offers[] = receive_offers
5: end_timer()
6: selpe = best{offers[]}
7: initialize_manager(selpe, offer,R)

// Controller core actions
8: analyze(W, var,A,Q,R)
9: for each (NPE ∈ F && NPE ∈ R)
10: If calculate(gain(app)) > 0 // Algorithm 4
11: offers[] = offers[] + new_offer
12: send_offers(offers, core_id)

// Manager core actions
13: // Actions for offering cores
14: analyze(W, var,A,Q,R)
15: If calculate(gain(app)) > 0 // Algorithm 4
16: offers[] = offers[] + new_offer
17: send_offers(offers, core_id)
18: // Actions for self-optimization
19: while (app(W, var,A,Q)! = finished) {
20: analyze(W, var,A,Q, offers)
21: timer()
22: If ((app.threshold = max) || (app.left_time < timer()))
23: continue
24: else
25: req_send(control[], R)
26: start_timer()
27: offers[] = offers[] + receive_offers
28: end_timer()
29: end while

123



Chapter 4 Distributed Run-time resource management

As aforementioned, when a new application arrives on a core, the initial
core task is executed and the communication inside the platform takes
place in order to establish a manager core for the application. The com-
munication between initial, controller and manager cores is described
in Algorithm 3.

Initial core (lines 1-7): When a new application arrives on an initial core
(Figure 4.10a), this core analyzes the application’s characteristics, sends
a message to the controllers and managers (Figure 4.10b) that are inside
its region R and fires a timer in order to check for their responses. After
the end of the timer, the initial core selects the best offer and sends a
signal, according to the offer, and starts the initialization of the manager
that will handle the application (Figure 4.10c).

Controller core (lines 8-12): A controller cores has a variety of respon-
sibilities. Besides maintaining regional information about the managers
existing on its region, it has to provide this information to any cores
requesting it. It also informs these cores about the position of controller
cores in other regions. When the controller receives the signal form the
initial core, it analyzes the application and starts to find cores to offer.
The controller core can offer any unoccupied core he owns, inside the
region R of the initial core, provided that it serves the application’s
characteristics.

Manager core (lines 13-29): The manager core has two tasks. Dur-
ing the first one, the manager checks if it can offer a core to the new
application without loosing more in terms of application speed-up than
the gain that the new application will have with the new addition. The
second task has to do with the self-optimization process of the already
running application. Specifically, there is a time threshold in which the
manager checks if the application has taken all the necessary resources
it needs or it is near to its completion. If the application has maximized
its speed-up [36] there is no need to search for more cores. The same
happens if the application is almost finished. In other words, if the
remaining time of the application is less than the time interval there is
no need to search for more cores. Otherwise, the application enters a
self-optimization phase and the manager follows the same communica-
tion scheme and sends a message to the controllers (Figure 4.10d) that
are inside its region R and fires a timer in order to check for their re-
sponses. After the end of the timer, the manager core checks the offers

124



4.3 Distributed run-time resource management for malleable applications

New 
Application

Initial core

Controller core

Manager core

Occupied core

Unoccupied core
Area controlled 

by manager

Legend

(a) (b)

(c)(d)

(e)

Figure 4.10: Example of the communication scheme.

125



Chapter 4 Distributed Run-time resource management

form the controller cores or from any other manager cores and starts
the resize of the application (Figure 4.10e). Both the controller and
manager cores use a function (lines 10 and 15 respectively) in order to
calculate the gain or the loss to the application speed-up when offering
a core (Algorithm 4).

4.3.1.3 Gain calculation

Algorithm 4 describes the required steps that both the controller and
manager cores take in order to decide which cores should be offered
when an application starts its self-optimization process asking for cores.
It has three discrete parts: (i) the actions regarding the calculation of the
speedup of the destination node requesting application (lines 4-8); (ii)
the actions regarding the calculation of the speedup of the source node
offering application (lines 9-13); (iii) and the calculation of the final total
gain of this core trade (lines 14-21). During the actions regarding the
destination node, for eachNPE ∈ ((PEsrc∩R∩F )−offers[]) we calculate
the speed-up of the application taking into account the core utilization
(Util[NPE ]) in order to offer to the application the best choices in terms
of PE type. Once the speed-up is calculated we check whether the gain
of adding the new core to our working set results to an overall gain
for the application. On the other side, the actions regarding the source
node check whether the loss of a core results in a bigger performance
degradation on an already running application. In order to verify it,
we calculate the loss speed-up both in terms of performance power
and in terms of the Util[NPE ] that are occupied and are needed by
the application. Since both destination and source actions are greedy,
the source offers cores to the destination only when the gain of the
destination is bigger than the loss of the source.

4.3.1.4 Self-optimization process

An important part of our framework is that the manager core can decide
to look for more cores in order to increase the number of his working
cores. This procedure is called self-optimization process and its goal is
to increase further the speedup of an already running application. All
manager cores can initiate this process resulting in a better sharing be-

126



4.3 Distributed run-time resource management for malleable applications

Algorithm 4 Gain calculation algorithm

1: offers[] = ∅
2: while (gain > 0) {
3: for each NPE ∈ ((PEsrc ∩R ∩ F )− offers[]) {

// Actions regarding the destination node
4: PEdst = PEdst ∪NPE ∪ offers[]
5: ord_PEdst = order{PEdst}
6: for pos = 1 to ord_PEdst.length() {
7: SPdst = Util{ord_PEdst[pos]} ∗ (SP [pos]− SP [pos− 1])
8: gaindst = SPdst − previous_SPdst

// Actions regarding the source node
9: PEsrc = PEsrc − offers[]−NPE

10: ord_PEsrc = order{PEsrc}
11: for pos = 1 to ord_PEsrc.length() {
12: SPsrc = Util{ord_PEsrc[pos]} ∗ (SP [pos]− SP [pos− 1])
13: losssrc = previous_SPsrc − SPsrc

// Calculate total gain
14: gain_temp = gaindst − losssrc
15: if ((gain_temp > gain) || ((gain_temp = gain) && D(manger,NPE) <

D(manger, prev_NPE)))
16: gain = gain_temp
17: prev_NPE = NPE

18: end for
19: if (gain > 0)
20: offers[] = offers[] ∪NPE

21: end While

tween them. For example, suppose that the first application that arrived
in the system received a great amount of cores at an area because at that
moment no other applications were active. However, when new applica-
tions arrive only a small subset of unoccupied cores will be available for
them resulting in resource starvation. By using the self-optimization
process, the newly arrived application will acquire some cores of the
already running application in that way so as the gain of acquiring
new cores will be greater than the loss in the already running appli-
cation. Additionally, the resource availability of the platform changes
dynamically as some applications come to an end. Since there is no
central resource management scheme, the existing applications have to
claim those new cores without having original information about their
availability. This self-optimization process has also been used in other
distributed approaches [50].

Finally, even if an application meets all the criteria for self-optimization
it is not wise to constantly burden the platform with such a process due
to the performance overhead. Thus, between two such processes, a time
interval must pass by. The only case a self-optimization is imperative is

127



Chapter 4 Distributed Run-time resource management

 

Figure 4.11: More fair resource allocation through self-optimization pro-
cess [50]

when a manager has no working nodes.

4.3.2 Experimental Results

In order to validate our framework we have performed extensive sim-
ulation experiments in two steps: (i) using a C-based simulator (Chap-
ter 4.3.2.1) and (ii) integrating the framework on the Intel Single Cloud
Chip (SCC) many-core platform [45] (Chapter 4.3.3). In both cases, we
compared the performance of the presented framework to the state-of-
art distributed run-time resource manager DistRM [50]. As malleable
applications input we have used the benchmarks provided by the par-
allel workload archive [37] and produced a file representing scenarios
of applications arriving to our system. Each scenario consists of the
time the application arrives on the system, its parameters as defined in
section 4.3.1.1 and a random workload.

4.3.2.1 Evaluation on C simulator

Firstly, as aforementioned, we have developed a C-based simulator ca-
pable of simulating the behavior of malleable applications and all the
necessary actions required by the on-chip communication scheme. For
more accurate simulation, every node was represented by a different
process. The inter-node communication is implemented using tra-
ditional Linux signals, while messages are passed using a pipe be-
tween the sender and the receiver. For synchronization semaphores

128



4.3 Distributed run-time resource management for malleable applications

Table 4.2: Comparison of the proposed technique to the DistRM [50] in
the C simulator.

Msg. cnt. Msg. size Avg. sp. Comp. eff.
Plat. Number of applications
sizes 32 64 32 64 32 64 32 64
6x6 72.3 71.4 73.2 72.4 3.8 13.8 86.8 86.6
8x8 64.3 63.4 64.8 63.6 4.5 9.3 83.3 83.0
12x12 49.1 52.3 44.8 48.7 -1.4 1.5 66.0 68.3
16x16 42.6 45.8 40.0 41.4 0.5 3.1 61.3 64.9
20x20 32.6 36.1 27.7 30.5 3.1 2.7 53.4 57.8
24x24 25.1 27.2 18.5 19.2 2.0 2.4 50.1 51.7
28x28 20.6 22.3 13.5 14.1 1.5 2.8 42.7 48.7
32x32 17.9 14.6 9.9 2.5 1.6 2.8 41.9 42.4
Average 41% 37% 3% 62%

are used. The goal of this step was to have a quick and abstract
view of our methodology and estimate the cost of the developed dis-
tributed on-chip communication scheme. Also, the simulation method
offers the capability of functional error correction and fast debugging
in temps of possible communication deadlocks. The simulator sup-
ports big topologies (up to 32×32 core system), numerous application
inputs.

Table 4.2 presents the results of the comparison of the proposed tech-
nique against the DistRM [50] distributed run-time manager. We eval-
uated the two run-time managers for various platform platform sizes,
from 6×6 up to 32×32, and for 32 and 64 applications. The comparison
metrics are: (i) message count (Msg. cnt.), which is the total number of
messages sent by all nodes during the whole duration of the simulation
both for resource management and application execution; (ii) message
size (Msg. size), which is the total size of sent messages; (iii) applica-
tion average speed-up (Avg. sp.); and (iv) computational effort (Comp.
eff.), which is the total number of speed-up function calls. Table 4.2
presents the percentage gains of the presented framework in comparison
to DistRM. Concerning the message count, simulation results showed an
average gain of 41% for the presented methodology due to the fact that
the core request messages are sent only inside the area R while DistRM
sends messages in many areas, smaller than R and probably overlap-

129



Chapter 4 Distributed Run-time resource management

ping, thus increasing the number of messages used for sending requests
and receiving answers. Also, the total size of these messages, measured
in bytes, for our framework is on average 37% smaller that then size
needed by DistRM. Thus, the network burden of our framework is on
average 38% smaller. In terms of average application speed-up, the pro-
posed framework achieves on average 3% better results than DistRM.
The speed-up function used for this metric is the application speed-up
function presented in [50]. Last, the gain of our methodology regard-
ing the total computational effort is on average 62% compared to the
DistRM.

4.3.3 Evaluation on Intel SCC platform

After the first evaluation of our framework in the C simulator, we in-
tegrated the whole framework as a run-time service on the many-core
Intel SCC platform [45] in order to test our framework on a real plat-
form and not only at the simulation level. The Single-Chip Cloud Com-
puter (SCC) experimental processor [45] is a 48-core “concept vehi-
cle” created by Intel Labs as a platform for many-core software re-
search.

Intel SCC platform employs 48 cores interconnected using a NoC infras-
tructure. It features a well-known x86 processing element employed in
each core. This is a significant feature, as explained in [58], since the
Linux operating system and C, C++, FORTRAN compilers can be run
on this platform, providing a run-time and programming environment
which can be used by most programmers and giving the opportunity
for other well-known and useful programs to be imported into the plat-
form. An overview of the Intel SCC platform is depicted in Figure 4.12.
The platform consists of:

• Two blocks, each with a P54C core (second generation Intel Pen-
tium processor), 16 KB instruction and data L1 caches plus a
unified 256 KB L2 cache.

• Mesh Interface Unit (MIU) with circuitry to allow the mesh and
the interface to run at different frequencies.

• 16 KB Message Passing Buffer.

130



4.3 Distributed run-time resource management for malleable applications

•  

Figure 4.12: Overview of the Inter SCC Platform [81]

• Two test-and-set registers.

Each tile connects to a router. This router works with the Mesh Interface
Unit (MIU) to integrate the tiles into a mesh. The MIU creates packets
of data into the mesh and collects them from the mesh using a round-
robin scheme to arbitrate between the two cores on the tile. The off-
chip memory varies from 16 to 64 GB of DDR3 RAM, controlled by four
memory controllers. Finally, router is connected to an off-package FPGA
to translate the mesh protocol into the PCI express protocol, allowing
the chip to interact with a PC serving as a management console. The
entire memory architecture of the Intel SCC platform is illustrated in
Figure 4.13

Each tile includes a message passing buffer (MPB) which provides a fast,
on-die shared SRAM, as opposed to the bulk memory accessed through
four DDR3 channels. While the processor does not offer any hardware-
managed memory coherence, it features a new memory type to enable
efficient communication between cores. This new memory type is called
the Message Passing Buffer Type (MPBT). The size of the MPB is 16KB
in each tile and its memory is shared among all the cores on the chip.
With 24 tiles, the SCC provides 384KB of message passing buffer. When
a program sends a message from one core to another, the MPB is used
to propagate the message on the chip. However, data coherence and
synchronization between cores is programmer’s responsibility. In order

131



Chapter 4 Distributed Run-time resource management

 

Figure 4.13: Memory architecture of the SCC processor [58]

to achieve mutually exclusive memory operations, a test&set register is
built in every core.

In order to make programming easier and to increase the portability
and scalability of programs written for the SCC platform, Intel provides
a communication environment known as the RCCE. As a matter of fact,
SCC and RCCE were developed side by side [81]. RCCE distributes
evenly the MPB address space to the 48-cores, designating that each
core will have 8KB of memory in this buffer for itself. It provides
two basic interfaces for inter-node communication. The first is the gory
one which is a low level design and offers the programmer greater
control over the SCC in exchange of manual explicit synchronization.
The first step of every memory operation is to allocate a memory space
in MPB of MPBT data type. This is done with the RCCE_malloc function
(Figure 4.14). The second interface is the basic one which employs send
- recv functions for synchronization issues.

Since the platform size is fixed (48 cores) we compared the perfor-
mance of our distributed run-time manager to the DistRM [50] for
various number of applications running on the platform (from 8 to
64).

132



4.3 Distributed run-time resource management for malleable applications

 

Figure 4.14: Symmetric name space model for the MPB as designed for
RCCE library [58]

Figures 4.15 and 4.16 present the total number of messages sent by all
nodes during the whole duration of the simulation and the total size of
these messages in bytes respectively. The messages are used for applica-
tion initialization, self-optimization and application resizing by manager
cores and application execution. The proposed framework sends on av-
erage 70% less messages in order to perform all the necessary actions
since the messages are sent only inside the area R. Whereas, DistRM
searches for available cores in more areas, smaller than R, thus increas-
ing the number of messages used for sending requests and receiving
answers. Another reason that the presented algorithm has less mes-
sages than DistRM, is the fact that the framework performs application
self-optimization under very specific criteria, only when the application
has not maximized its speed-up or it is not near to its completion. Also,
the size of the messages sent are on average 64% less than the ones used
by the DistRM. The size is not proportional to the number of the mes-
sages since each message varies in size. For example, an offer message
about four cores can have up to 20 bytes while the answer to this offer is
1 byte. Last, the proposed framework burdens network resources 66%
less than DistRM.

Figure 4.17 presents the average application speed-up using the speed-

133



Chapter 4 Distributed Run-time resource management

Number of applications
8 16 24 32 48 64

N
um

be
r 

of
 m

es
sa

ge
s 

ex
ch

an
ge

d 
fo

r 
co

m
m

un
ic

at
io

n

0

2000

4000

6000

8000

10000

12000

14000

16000
DistRM [12]
Proposed methodology

Figure 4.15: Total number of messages sent for intercommunication
by all nodes for various applications compared with Dis-
tRM [50]

up function presented in [50]. Speed-up is defined as the ratio of the
total number of turnarounds performed for all applications divided by
the total workload. The presented framework achieves on average 20%
better application speed-up than DistRM. This can be explained by the
fact that in the presented framework cores are not disturbed so often
by messages during their application execution and thus completing
the applications faster. On the other hand, due to the large number
of messages sent by the application agents in DistRM, cores stop their
functionality more frequently in order to answer to these messages, thus
delaying the execution.

Figure 4.18 shows the comparison of the computational effort between
the presented framework and DistRM. Computational effort is defined
as the total number of speed-up function calls during the whole sim-
ulation. The presented framework has on average 85% less speed-up
function calls than DistRM. This can be explained by the fact that, as
aforementioned, the presented framework performs less application self-
optimizations due to specific criteria. So the manager cores calculate the

134



4.3 Distributed run-time resource management for malleable applications

0

20000

40000

60000

80000

100000

120000

Number of applications
8 16 24 32 48 64

DistRM [12]
Proposed methodology

Si
ze

 o
f a

ll 
m

es
sa

ge
s 

in
 #

by
te

s

Figure 4.16: Total size of sent messages in bytes compared with Dis-
tRM [50]

speed-up function less frequently.

4.3.4 Conclusions

To sum up, we presented a distributed run-time manager for malleable
applications. We coupled the concept of distributed computing with
parallel applications and we present a workload-aware distributed run-
time framework for malleable applications running on many-core plat-
forms. The proposed framework is based on the idea of local controllers
and managers while an on-chip intercommunication scheme ensures de-
cision distribution. The presented framework is responsible (i) for serving,
at run-time, the needs of malleable applications, in terms or processing cores;
(ii) makes sure that the application will get the optimum number of cores
avoiding dominating effects; (iii) it takes into account the type of processors
best utilizing any platform’s heterogeneity; and (iv) it has a small overhead
in overall core intercommunication. The presented framework has a small
communication overhead, takes into account platform’s heterogeneity

135



Chapter 4 Distributed Run-time resource management

0

1

2

3

4

5

6

Number of applications
8 16 24 32 48 64

DistRM [12]
Proposed methodology

A
ve

ra
ge

 a
pp

lic
at

io
n 

sp
ee

d-
up

Figure 4.17: Average application speed-up using the speed-up function
presented in [50].

0

500

1000

1500

2000

Number of applications
8 16 24 32 48 64

DistRM [12]
Proposed methodology

C
om

pu
ta

tio
na

l e
ffo

rt

Figure 4.18: Computational effort comparison with DistRM [50]

136



4.3 Distributed run-time resource management for malleable applications

and makes sure that the application will maximize its speed-up func-
tion. Our framework has been implemented as part of a C simulator
and additionally as a run-time service on a real many-core platform and
we compared it against the DistRM [50] state-of-art run-time resource
manager. Experimental results showed that our framework has on av-
erage 70% less messages, 64% smaller message size and 20% application
speed-up gain.

137



Chapter 4 Distributed Run-time resource management

138



Chapter 5

High-level customization
framework for resource
management on NoC architectures

5.1 Introduction

As aforementioned, future integrated systems will contain billion of
transistors [73], composing tens to hundreds of IP cores implement-
ing emerging complex and demanding applications. An architecture
able to accommodate such a high number of cores, satisfying the need
for on-chip communication and data transfers, is the Network-on-Chip
(NoC) architecture [15, 49].

Resource management has been explored in modern multi-processor
architectures both in the embedded community (in MPSoC and NoC
systems) and in the distributed/cloud computing communities. Efficient
management usually translates to optimizing job real-time constraints
and power envelopes. Representative examples of such work include [9,
19, 62, 66, 93]. More recently a framework for distributed resource
management has also been proposed [50], but it stills assumes available
resources.

In the distributed computing community the constraints are seldom
as tight. Resources, entire computers in this case, can become avail-
able or unavailable at any moment [22]. Marketplace mechanisms have
been extensively explored as a way for independent agents to inter-
act with the central “authority” using a simple and efficient proce-
dure [24, 53]. The aforementioned articles treat computing resources

139



Chapter 5 High-level customization framework for resource management on NoC architectures

as agents that strive to manage the system’s workload and resources
as efficiently as possible, either in isolation or in cooperation with each
other.

Future consumer electronics devices are expected to move towards the
complexity of previous generation distributed computing systems due
to inability to increase processing power by other means. Their system
level constraints, on the other hand, will not be relaxed. Intel has
already created platforms with 48 general-purpose processing cores [45],
while ST-NXP is also advocating the need for many core platforms for
upcoming and future mobile telephony standards [84]. The industrial
vision goes as far as thousand core chips [20].

NoCs have been recognized as the new paradigm to interconnect and
organize a high number of cores. NoCs address global communica-
tion issues in System-on-Chips (SoC) involving communication-centric
design and implementation of scalable communication structures evolv-
ing application-specific NoC design as a key challenge to modern SoC
design.

Although the concept of NoC has been derived from traditional inter-
connection networks, they have some special features that make them
unique during design time. As presented in [64], the NoC design
key challenges are (i) the communication infrastructure, (ii) the com-
munication paradigm selection and (iii) the application mapping op-
timization. The choice of network topology, mapping and routing
are important design issues which can dramatically affect network’s
performance such as network’s average delay and power consump-
tion.

There are two main architecture templates concerning the NoC design
space: (i) Regular and (ii) Irregular design. The most common regular
architecture is the mesh topology in which each router is connected to its
four neighboring routers via a bi-directional channel and an embedded
core is attached to the router. Regular NoC topologies are more suitable
for general-purpose on-chip multiprocessors, which consist mostly of
homogeneous set of processing and storage arrays and can benefit from
spatial locality to achieve higher performance [32].

However, applications running on regular NoCs do not fully exploit in-
terconnection network’s capabilities. The diversity of communication

140



5.2 NoC framework overview for resource management

in the network is affected by architectural issues such as system com-
position and clustering. Irregular NoC design serve better the appli-
cation requirements since they are application specific and they max-
imize application’s utilization factor in terms of power and network’s
delay. However, the irregular NoC design is more complex and de-
pends on a variety of design parameters compared to the regular NoC
design.

In this section we present a high-level customization framework and
methodology for resource management on NoC architectures, both reg-
ular and irregular, based on application needs. The whole optimization
framework is automated and evaluated on a SystemC simulator. The
goal of this framework is to provide to the designer a variety of choices in
resource management and application customizations in order for him to test
and evaluate a variety of different configurations.

5.2 NoC framework overview for resource
management

The presented framework for supporting and evaluating resource man-
agement on NoC topologies, regarding network’s performance and power
consumption, is based on a modified version of the high-level Noxim [2]
SystemC NoC simulator. The simulator has been heavily modified in
order to support the following services: (i) The simulator supports cus-
tom irregular topologies with custom routers build as separate SystemC
modules; (ii) a configuration file can be given as input to the simulator
describing each time the irregular NoC topology; (iii) the designer can
specify the size of each buffer in every router used in the simulation
resulting to different power consumption and network’s delay. This
number can be different for different routers in the same simulation;
(iv) the Ebit energy model [90] has been added in order to make an
evaluation of network’s power consumption; and (v) a custom table-
based routing can be defined by the designer in a separate file order to
have custom routing. If not the default in irregular design is Dijkstra
shortest path algorithm while for regular design is the conventional XY
routing. To clarify, with the term irregular NoC topology we define any
custom 2D NoC topology using routers with multiple ports other than
the ones used for the standard mesh and torus topologies. Figure 5.1

141



Chapter 5 High-level customization framework for resource management on NoC architectures

PE PE PE

PEPE

PE

PE PE PE

PE

PE

PE

PE PE

r r

r

r r

rr

PE PE PE

PE

PE

PE

PE PE

r r

rr

r

PE PE

Figure 5.1: Examples of irregular NoC topologies. Each router (r) can
serve more than one Processing Element (PE) by having
multiple ports.

shows an example of such irregular topologies.

An overview of the developed framework for designing application-
specific regular and irregular NoC architectures is presented in Fig-
ure 5.2. Having as input a high-level description of the target appli-
cation, we choose whether to follow the regular or the irregular NoC
design flow for resource management. The decision for choosing the
appropriate design path depends on designer’s goals and application’s
constraints and requirements.

In the regular NoC design flow, the first step is to select the appro-
priate generic NoC architecture template (mesh, torus) and then ap-
ply a bandwidth-constraint mapping algorithm so as to efficiently uti-
lize platform’s characteristics. The mapping step is composed of the
mapping core algorithm procedure as well as of an iterative swapping
step for better refining of the final result. Then, in order to further
adjust to application’s constraints and requirements and give certain
classes of traffic preferential treatment, a priority assignment scheme
follows.

In the irregular NoC design flow, the first step is to perform application
partitioning followed by the clustering procedure. In the partitioning
step, application’s tasks are split into different logical partitions based
on bandwidth-aware criteria. Next, in the clustering procedure, the
designer can attach an appropriate router to each partition by linking
a SystemC library with configurable components and finally generate

142



5.2 NoC framework overview for resource management

Application 
description

Regular NoC 
architecture 

template

Bandwidth-aware 
mapping core 

algorithm

Iterative node 
swapping result

For all 
nodes

Invert swapping Final mapping
decision

Definition of 
application’s 

different traffic 
classes

Priorities 
assignment to 
traffic classes

Find a bandwidth-
aware application 

partition

Attach an 
appropriate router 

to each partition

Irregular NoC 
topology 

generation

User defined 
routing

Dijkstra 
routing tables

Automatic routing 
tables generationBuffer sizing

SystemC
NoC library

Acquire regular 
NoC template

Automatic build 
of regular NoC

Worse Better

Appropriate 
router selection

YES

NO

Simulation

Required 
buffer slots

Generation of 
new buffers

Regular NoC
design flow

Irregular NoC
design flow

Mapping

Priorities
assignment

Partiotioning

Clustering

Routing tables

Evaluation

Figure 5.2: Proposed high-level simulation framework for automatic
generation of application-spcific NoC architectures

the irregular NoC topology. Moreover, the designer can specify a cus-
tom routing algorithm, by defining its own routing tables, or let the
proposed framework automatically build them with Dijkstra’s shortest
path algorithm.

Last, in both regular and irregular design, additional power consump-
tion reduction can be achieved by reducing the number of unnecessary
input buffer slots in the network. The developed framework uses a
buffer sizing algorithm in to order to calculate the appropriate buffer slot
number for the generated architectures based on application’s needs.

As aforementioned, an application task graph (ATG) is used to cap-
ture the traffic flow characteristics. ATG is a common way to ab-
stractly present application’s constraints and requirements and it has
been widely used in NoC research field as benchmarks for NoC design
tools and algorithms for both design- [17, 46, 61] and run-time [9, 50]

143



Chapter 5 High-level customization framework for resource management on NoC architectures

NoC optimizations. The ATG G(T,D) is a directed acyclic graph, where
each vertex ti represents a computational module in the application.
Each task ti is annotated with relevant information, such as execution
characteristics on each Processing Element (PE) type on the network.
Each directed arc di,j ∈ D between tasks ti and tj characterizes data and
communication dependencies. Each di,j has an associated value b(di,j),
which stands for the communication volume exchanged between tasks
ti and tj .

An NoC platform topology and its communication infrastructure can
be uniquely described by a strongly connected directed graph A(I,N).
The set of vertices N is composed of two mutually exclusive subsets
NPE and NC containing the available platform’s PEs and the plat-
form’s on-chip interconnection elements. The set of edges I contains
the interconnection information (both physical and virtual) for the N
set.

5.2.1 Resource management in regular NoC design

In regular NoC design path, the presented framework performs application-
specific customization by employing a priorities assignment scheme.

By providing priorities to different applications, data flows or traffic
classes we can guarantee a certain level of system’s performance. In
many applications it is desirable to give certain classes of traffic prefer-
ential treatment in order to meet application’s deadlines and QoS stan-
dards. In a priority queuing system transfers are divided into K ≥ 2
classes numbered 1, 2, . . . ,K where the lower the priority, the higher the
class number. In other words, priority i transfers are given preference
over priority j transfers if i < j.

In the context of this work, four priority classes are provided. Two
more bits have been added to each flit as header information. These
two bits declare the priority type of each flit (00 is highest and 11
is lowest) and indicate the way the flit will be served in the buffer
of each router. The implementation of priorities assignment on NoC
architectures is affected by (i) the wormhole switching and (ii) the in-
order packet delivery constraints. The presented framework uses a
modified non-preemptive priority policy in which a high priority packet

144



5.2 NoC framework overview for resource management

can move ahead of all the low priority ones waiting in the queue, but low
priority packets already in service are not interrupted by high priority
ones.

The router in wormhole switching can be described by a two-state vari-
able g ∈ 1 ≥ ℜ2 ≥ 0, where g(1) represents the idle state (no packet
is being served) and g(2) the busy state (a packet is being served). In
wormhole switching the router does not tear down the connection if it
has not served the whole packet. LetWkm be the time spent waiting (not
in service) by the m flit of packet with priority k, Ts be the time spent in
service by a flit and Ws presents the waiting time of a flit in router that
it is in the busy state (a packet is being served) This time is the same for
all flits of all classes. n be the number of flits per packet (n > 1) and k
be the priority class id, (k ∈ [1, 4]). The waiting time of the m flit for the
two states is presented in Equations 5.1 and 5.2.

W
g(1)
km

=

k−1∑
i=1

n(Wi + Ts)︸ ︷︷ ︸
Flits with higher priorities

+

m−1∑
l=1

l(Wk + Ts)︸ ︷︷ ︸
Ahead flits of the same packet

+

+ A× (Wk + Ts)︸ ︷︷ ︸
Flits of other packets with the same priority that arrived first

(5.1)

W
g(2)
km

= Ts︸︷︷︸
Flit that is being served

+ j(Ws + Ts)︸ ︷︷ ︸
The remaining flits of the packet

+

+

k−1∑
i=1

n(Wi + Ts)︸ ︷︷ ︸
Flits with higher priorities

+

m−1∑
l=1

l(Wk + Ts)︸ ︷︷ ︸
Ahead flits of the same packet

+

+ A× (Wk + Ts)︸ ︷︷ ︸
Flits of other packets with the same priority that arrived first

(5.2)

where j ∈ [0, n− 1] and A ∈ Z.

145



Chapter 5 High-level customization framework for resource management on NoC architectures

Each buffer has a dedicated size of |B| buffer slots in flits that can serve.
According to Equations 5.1 and 5.2 we can extract, in Equation 5.3, the
maximum number of flits per packet in order for the priorities to have
effect leading to the result that the buffer size of input channels must
be bigger than the number of flits per packet in order for the priorities
to have an actual role in the network.

j + n+

l=1∑
m−1

l +N < |B| ⇒ 0 < n < |B| (5.3)

When n ≥ |B|, W g(1)
km

and W
g(2)
km

follow the form described in Equa-
tion 5.4.

W
g(1)
km

= W
g(2)
km

= Ts + j(Ws + Ts) (5.4)
which does not depend on variable K. In that way even though prior-
ities exist, they are not actually used.

While implementing priorities in NoCs, elimination effects can occur
during which packets with low priorities are always stuck in buffers
without being processed due to the arrival of high priority packets. In
order to avoid these elimination effects we have added to each flit a field
called waiting_time which starts from zero and increases every that it
is not being processed by the router. Whenever waiting_time exceeds
a threshold, then the priority type of this specific flit decreases until it
reaches zero which is the highest priority type. Thus, new incoming flits
are put behind it and no elimination effects take place.

The flit management and placement procedure in buffers based on pri-
orities and wormhole switching is presented in Algorithm 5. First the
algorithm checks if the flit has the lowest priority (line 2). If so, the flit
is placed in the last position of the buffer queue (line 3). If this is not
the case, then first check if another flit is being processed (line 4). If this
is the case (line 5), the buffer queue is searched (and assuming that the
flits of the packet that is being processed have the highest priority) the
incoming flit is placed in the first appropriate slot based on its priority.
This action is performed because as aforementioned, wormhole switch-
ing does not allow breaking the processing of a packet by inserting and
processing flits of another one. In line 8 we check whether we have the

146



5.2 NoC framework overview for resource management

same priority with the first flit in buffer. After that, in line 9, we search
the buffer based on flits sequence number and we confirm its position
by its priority. In all other cases (lines 11-13) we search the entire buffer
and put correctly the flit based on its priority. After the flit is put in
the buffer, we search all flits for the wating_time field and according
to each value we update either the priority or the wating_time field in
order to avoid elimination effects (lines 17-24).

Algorithm 5 Priority-based flit manipulation algorithm
1: if flit.priority == LOW then
2: buffer.put_back(flit)
3: else
4: if buffer.is_processing() then
5: buffer.search_by_priority()
6: buffer.insert(flit)
7: else
8: if first == flit.priority then
9: buffer.search_by_position()
10: buffer.insert(flit)
11: else
12: buffer.search()
13: buffer.insert(flit)
14: end if
15: end if
16: end if
17: p=buffer.head
18: while p!=NULL do
19: if p.wating_time > threshold then
20: p.priotiry−−
21: else
22: p.wating_time++
23: end if
24: p=p.next
25: end while

5.2.2 Resource management in irregular NoC design

The irregular NoC design path provided by the presented framework of-
fers to the designer the opportunity to fully exploit interconnection net-
work’s capabilities by the automatically generation of customized NoC
topologies. In contrast to regular NoC design path irregular topologies
are application dependent and the customization process involves com-
plex steps such as (i) application partitioning, (ii) clustering and (iii)
routing tables generation. As aforementioned, the goal of this work is
not to present a design methodology for selecting the best application-
specific NoC topology. On the contrary, the presented framework gives

147



Chapter 5 High-level customization framework for resource management on NoC architectures

the designer a variety of choices and application customizations in order
for him to test and evaluate a variety of different configurations thus, se-
lecting the one topology that best fits his needs.

5.2.2.1 Application partitioning

The first step is a bandwidth-aware application partitioning process. A
careful and precise analysis of application’s characteristics and partic-
ularly tasks’ communication bandwidth is essential in order to define the
design space and the components that is composed of.

We define the set R which describes the logical application’s parti-
tions. R is composed of m (m ⩾ 1) subsets R1, R2, ..., Ri, ..., Rm such

that
m∩
i=1

Ri = ∅ and
m∪
i=1

Ri = R. A partition Ri is considered valid if

∃ti ∈ Ri : ti ∈ T . We define as K[Ri] =
∑

b(di,j) ∀ ti, tj ∈ Ri the
communication cost inside the Ri partition and as Q[RiRj ] =

∑
b(di,j)

∀ ti ∈ Ri, tj ∈ Rj the communication cost between the Ri and Rj parti-
tions. The goal of application partitioning step is to compose the appro-
priate R set so as (i) to minimize the communication needed between
the partitions and (ii) balance the load inside partitions as described in
Equation 5.5.

R = {R1, R2, ..., Rm} : {K[R1] ≃ K[R2] ≃ ... ≃ K[Rm]}∧

∧min{Q[R1R2], Q[R1R3], ..., Q[R1Rm], ..., Q[Rm−1Rm]} (5.5)

The graph partitioning problem is NP-complete, and we therefore should
not expect to solve it in polynomial time. The partition algorithm used
is the Multilevel − KL algorithm [41]. The input to the Multilevel-
KL algorithm is an application task graph, like the VOPD benchmark
shown in Figure 5.3(a). Multilevel − KL method works by creating
a sequence of increasingly smaller graphs approximating the original
graph, partitioning the smallest graph, and projecting this partition back
through the intermediate. The algorithm for constructing smaller ap-
proximations to the graph relies upon finding a maximal matching in
the graph, and then contracting edges in the matching. An example of
the implemented partitioning procedure, implementing three partitions,
is presented in Figure 5.3(b).

148



5.2 NoC framework overview for resource management

(a) VOPD task graph

(b) Task graph partitioning

(c) Clustering

Figure 5.3: VOPD (a) application task graph , (b) partitioning using
Multilevel −KL algorithm [41] and (c) clustering.

149



Chapter 5 High-level customization framework for resource management on NoC architectures

The proposed framework supports the automatic application partition-
ing with the integration of the Chaco graph partition tool [1]. With the
automatic procedure, the proposed framework can generate multiple
size partitions depending on ATG size and it can be used for a fast design
space exploration of irregular NoC topologies.

5.2.2.2 Clustering

In the clustering procedure, the produced application’s partitions are
used as an input to our SystemC library. The goals of the clustering
procedure are (i) to attach an appropriate multiple-port router to each
partition and assign PEs accordingly and (ii) connect routers specifying
particular characteristics and forming the irregular NoC topology (Fig-
ure 5.3(c)). According to the specified K[Ri] and Q[RiRj ] for each Ri, a
suitable router model is selected in order to be able to serve partition’s
bandwidth needs. In the developed SystemC library each router can be
customized according to the (i) number of input / output ports, (ii) link
control, (iii) switch, (iv) routing and (iv) arbitration units. Each router
port has its own request and acknowledge flit ports and connections.
These connections can be either links with other routers on the NoC
or connections with PEs. The exploration of irregular NoC topologies
demands different number of connections for each router in order to
maximize network’s performance. Also, in the clustering step, the de-
signer can additionally specify other network’s characteristics such as
channel width, flits per packet, input channel buffer size, output channel
buffer size etc.

The proposed framework supports a variety of SystemC router models
with different characteristics which, based on the aforementioned par-
titioning procedure, can be used for a fast and automatic design space
exploration. The definition of the irregular topology in the simulator
is done with the usage of a configuration file like the one presented in
Figure 5.4. The topology generated by this configuration file is shown
in Figure 5.5.

In the example presented in Figure 5.4:

1. Router 0 (R0) has connections with router 1(R1), router 2 and
processing element 7.

150



5.2 NoC framework overview for resource management

%Topology table file
%4 Routers, 8 PE's
%port in, port out, buffer in, buffer out, Router, layer
R0: 1,2,4,2,R1,0 2,6,3,4,R2,0 ; 3,9,4,P7,0 ;
R1: 1,3,4,8,R3,0 ; 3,2,8,P5,0 4,2,8,P4,0 5,2,8,P3,0 ;
R2: 9,5,4,5,R3,0 ; 2,4,4,P6,0 ;
R3: ; 6,4,4,P0,0 4,4,4,P1,0 9,5,5,P2,0 ;

Figure 5.4: Configuration file structure

2. The connection R0-R1 is established between port 1 of R0 and port
2 of R1.

3. The buffer dedicated to traffic from R1 to R0 has 4 slots and for
flits arriving from R0 the R1 there is a 2 slots buffer in R1.

4. For the connection R0-R2, there is a 3 slots buffer on port 2 on
the R0 side and a 4 slots buffer on port 6 on the R2 side.

5. R0 connects with P7 using its 3rd port and a buffer with 9 slots.
Processing elements have only one port and no buffers, that’s why
number 4 previous to P7 doesn’t declare anything.

6. Similarly, R1 connects to R3 and three processing elements (P3,
P4, P5), besides the connection with R0 declared in the previous
line.

5.2.2.3 Routing Table Generation

On irregular NoC architectures, conventional routing algorithms are
hard to implement due to different architecture features and due to
the fact that they should be specifically modified in order to serve the
specific irregular topology. However, a small change in the NoC topol-
ogy leads to a total routing algorithm redesign. This, has a result of
a time consuming design-phase and it is quite likely to create routing
problems such as deadlocks and bottlenecks.

151



Chapter 5 High-level customization framework for resource management on NoC architectures

 

Figure 5.5: Example of the generated topology using the configuration
file presented in Figure 5.4

152



5.2 NoC framework overview for resource management

The proposed framework supports two types of routing tables: (i) de-
signer defined and (ii) Dijkstra based routing tables. In the first case,
the designer creates and imports, through the corresponding interfaces,
the routing tables to the generated, from the clustering step, routers.
However, this selection cannot guarantee the lack of any mistakes in the
routing procedure. By selecting the second choice, the proposed frame-
work automatically generates routing tables for irregular NoC topologies
based on Dijkstra shortest-path algorithm. The benefits of supporting
the automatic building of routing tables are: (i) faster design deploy-
ment, (ii) livelock and deadlock avoidance, (iii) elimination of useless
entries, (iv) no data overhead on packets, (v) shortest path guaranteed
and (vi) easily understandable structure.

5.2.3 Buffer Sizing

Power consumption is a very crucial metric while evaluating NoC archi-
tectures since input buffers, crossbar switch and link circuits dominate
network power consumption [76]. In order to employ efficient resource
management in NoC design, power consumption should be low. A tech-
nique to efficiently reduce network’s power consumption is the reduc-
tion of routers’ input buffer slots while meeting application’s constrains
and requirements. As the final design step, the developed framework,
uses a buffer sizing algorithm that is applicable to both regular and
irregular topologies.

The buffer state is controlled by a two-state crossbar variable c ∈ 1 ≥
ℜ2 ≥ 0, where c(1) represents the idle state and c(2) the busy state.
At time t the total number of flits in the buffer is xt, the number of
flits entering is ξt, and the number of flits exiting is νt; the buffer has
a maximum capacity of ν|x+. The dynamics of the flits flow at one
buffer is described by Equation 5.6 for ct = c(1) (idle state) and by
Equation 5.7 for ct = c(2) (busy state).

xt+1 =

{
x+ : ξt + xt > x+

ξt + xt : ξt + xt ≤ x+
(5.6)

xt+1 =

{
x+ : ξt + xt − νt > x+

ξt + xt − νt : 0 ≤ ξt + xt − νt ≤ x+
(5.7)

153



Chapter 5 High-level customization framework for resource management on NoC architectures

where the function x+ is defined in Equation 5.8.

x+ =

{
x : x ≥ 0
0 : x < 0

(5.8)

Every t cycles the input buffer Bi of the i router has the utilization
percentage ut described by Equation 5.9

uti =
Ni − µi × Ei

[Bi]
(5.9)

where Ni is the packet arrival rate of the i router, µi is the packet
service rate of the buffer, [Bi] is the total size of the buffer in flits
and

Ei =

{
0, if buffer is empty and
1, if buffer is not empty (5.10)

The minimum buffer size, required by the application, is produced by
Equation 5.11 after a simulation window in which, for every cycle t, uti
is calculated. The returned values are used as the lowest threshold for
the input buffer slots.

Bt
i =


0, t = 0

utk,l, t > 0, uti > ut−1i

ut−1k,l t > 0, uti < ut−1i

(5.11)

5.3 Evaluation

In order to validate our framework for resource management, we have
performed extensive simulations using five DSP applications (a) Video
Object Plane Decoder (VOPD) [61], (b) MPEG-4, (c) Multi-Window Dis-
play (MWD) [17], (d) Picture-In-Picture (PIP) [17] and (e) MultiMedia
System (MMS) [46].

In modern platforms and applications, designers should guarantee that
certain classes of traffic will meet application’s requirements. In order
to provide different classes of traffic management, further optimization

154



5.3 Evaluation

VOPD MPEG-4 MWD MMS PIP
0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Pa
ck

et
 d

el
iv

er
y 

ga
in

s 
in

 te
rm

s o
f c

yc
le

s

Average gain
Best gain
Worst gain

Figure 5.6: Average, best and worst gains ,in terms of cycles, for packet
delivery time while employing priorities.

is needed with the employment of priorities assignment. For example,
multimedia-based applications have strict time deadlines and specific
tasks require in-time packet delivery. In order to guarantee the time
deadlines, priorities are used in order to forward packets of the selected
tasks faster inside the NoC and reduce the packet delivery time. For the
previously presented applications we have tested the priorities assign-
ment scheme to further reduce packet on-chip delivery time for certain
traffic classes while keeping overall network’s average delay constant in
terms of execution cycles. We separated traffic to different flows and
in each flow a different priority type was assigned. Specifically, for our
tested applications we separated three types of traffic flow: a) Packets
going to memory node, b) Packets coming from memory node and c)
Packets from nodes with high average delay (more than 50% of average
network delay). The reason for choosing memory node as the domi-
nant node on which most priority types are applied is because on-chip
communication with memory is costly due to memory’s slow response
time. Priorities were implemented only on regular NoC topologies since
partitioning imposes the minimization of hop number among the com-
municating cores on irregular topologies. Figure 5.6 shows the average

155



Chapter 5 High-level customization framework for resource management on NoC architectures

(7.15% on average), the best (13.52% on average) and the worst gains
(0.75% on average), in terms of cycles, for packet delivery time while
employing priorities to specific traffic classes.

In the irregular NoC design path the experimental results focus (i) on
NoC’s throughput and (ii) NoC’s average delay in terms of cycles. For
the irregular NoC design framework, our goal is to perform compar-
isons between a variety of irregular NoC topologies and the regular
mesh NoC topology. So, the experimental set-up for irregular NoCs
is:

• We partitioned the VOPD, MPEG4 and MWD applications from 2
to 12 partitions and the MMS from 2 to 25 partitions according to
the presented methodology.

• Each partition was clustered to the appropriate NoC topology au-
tomatically using components from the SystemC library

• Each packet consists of 4 flits

• The routing tables are automatically created using the Dijkstra
shortest path algorithm.

The reason for simulating so many topologies is that it cannot be pre-
dicted beforehand whether an irregular design with few big routers
would be more efficient than a design with more small ones. This point
actually validates our framework to be used for fast and automatic de-
sign space exploration. The baseline for all our irregular NoC metrics,
is the regular mesh NoC topology and Figures 5.7-5.8 are normalized
according to that.

5.3.0.1 NoC’s throughput

Throughput is a measure of the comparative effectiveness of large net-
works and it is considered as one of the most important characteristics
of a network. Especially for networks that serve multimedia traffic there
is great demand for high throughput. We define NoC throughput as the
total amount of flits that are delivered per cycle to all destinations inside
the NoC.

156



5.3 Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2

4

6

8
VOPD
MPEG-4
MWD
MMS
PIP

Number of routers - clusters

N
or

m
al

iz
ed

 N
oC

's
 th

ro
ug

hp
ut

Figure 5.7: NoC’s throughput for the selected applications

Figure 5.7, presents NoC throughput for the selected applications and
as can be seen, the throughput of each application for each irregular
topology is better than the mesh one. Specifically, for the VOPD and
MMS applications, irregular topologies increase the throughput of the
NoC, in best case, by ×4.7 while for the MPEG4, PIP and the MWD
applications, by using irregular NoC topologies we can achieve an in-
crease of the throughput by ×8, ×3.4 and ×6.1 respectively in best cases.
Additionally, the average gain for VOPD, MMS, MWD and MPEG is ap-
proximately ×2.5 while for the PIP is ×1.9 compared to he mesh topol-
ogy. To sum up, all irregular NoC topologies achieve better throughput
than the mesh one due to the clustering that was performed which (a)
offers better communication characteristics (b) takes care of topology’s
features and (c) keeps the number of hops low.

5.3.0.2 NoC’s average dealy

The simulation results for irregular NoC’s average delay in comparison
with regular topologies is presented in Figure 5.8. The average delay, in
terms of cycles, of the selected applications for each irregular topology

157



Chapter 5 High-level customization framework for resource management on NoC architectures

N
or

m
al

iz
ed

 a
ve

ra
ge

 N
oC

 d
el

ay

Number of routers - clusters

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.5

0.6

0.7

0.8

0.9

1.0
VOPD
MPEG-4
MWD
MMS
PIP

Figure 5.8: NoC’s average delay for the selected applications

is better than the regular mesh one. Specifically, there is, in best case,
a 50% delay reduction for the VOPD application and a 20% for the
MPEG4. Also, MWD, PIP and MMS reduced the delay by 40%, 45%
and 50% respectively in best case. The average gain for VOPD, MPEG4
and PIP is 30%, while for MWD and MMS is 17% and 25% respectively
compared to the mesh topology. Irregular topologies can serve flits faster
due to their application-specific partitioning and clustering connecting
in the same router components that communicate frequently greatly
reducing NoC’s average delay.

5.3.1 Buffer’s power consumption

As aforementioned input buffers dominate network power consuming
up to 60% of the total network power consumption. Figure 5.9 shows
the input buffer power consumption both for regular and irregular de-
sign with the addition of the buffer sizing algorithm presented in Chap-
ter 5.2.3. The goal is to minimize buffer slots while keeping network’s
average delay untouched. The abolition of unnecessary buffer slots leads
to great power reduction.

158



5.3 Evaluation

VOPD MPEG-4 MWD MMS PIP
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 in
pu

t b
uf

fe
r

po
w

er
 c

on
su

m
pt

io
n

Regular design path
Regular design path with buffer sizing
Irregular design path
Irregular design path with buffer sizing

Figure 5.9: Normalized power consumption for both regular and irreg-
ular design path with the addition of the proposed buffer
sizing algorithm

As depicted in Figure 5.9, the proposed buffer sizing algorithm can
achieve at regular NoC design path, an average of 44% buffer power
reduction compared to the case where no buffer sizing algorithm was
performed. Furthermore, the irregular NoC design path can, by itself,
achieve a reduction of 45% on average compared to the regular NoC
design path. This can be explained by the fact that flits travel almost the
minimum number of hops inside the NoC thus leading to no additional
buffer storage in any intermediate router. Last, with the addition of
the proposed buffer sizing algorithm we can further reduce the buffer
power consumption by a factor of 20%.

5.3.2 Conclusions

NoCs have attracted significant research attention since they are recog-
nized as a scalable paradigm to interconnect and organize a high number
of cores. In this chapter we presented a high-level NoC customization

159



Chapter 5 High-level customization framework for resource management on NoC architectures

framework for supporting and evaluating resource man- agement on
NoC topologies. The presented framework gives the designer a variety
of choices and application customizations in order for him to test and
evaluate a variety of different configurations and resource management
choices.

160



Chapter 6

Conclusions

This chapter presents the conclusions drawn from the Ph.D. Thesis.
It also summarizes the novelties and presents the future extensions of
the dissertation. The novelties achieved in the presented Thesis makes
possible the development of new design methodologies that can build up
and further improve the memory and run-time resource management
in embedded systems.

6.1 Summary of Ph.D. Thesis

In this Ph.D. Thesis, we have presented memory management accel-
eration and customization frameworks. Our main goal is to efficiently
address the problems of:

• Customized dynamic memory managers on many-core embedded
platforms.

• Distributed functionality over a DSM environment.

• Low power consumption in dynamic memory management.

In order to address these critical issues that affect modern embedded
systems, new methodologies were developed and presented:

• A framework for generating microcoded DMM services on top of a
hardware dual-microcoded controller was presented. Microcoded
approach was selected for supporting custom DMMs on many-core

161



Chapter 6 Conclusions

platforms because it takes advantage of hardware performance
while keeping software flexibility.

• A microcode-accelerated flexible, distributed and scalable allocator,
called MAD-DMM, is proposed. MAD-DMM provides distributed
functionality over a DSM environment, under microcode imple-
mentation, while keeping the standard C-API (malloc()/free()) thus
being transparent to the application. Unlike high-level allocators,
information about the allocator metadata is not stored at high-level
but at microcode-level as part of a local heap table.

• A new design strategy is proposed for the implementation of an
efficient high-level methodology of applying transparent monitor
and DVFS decision mechanisms into any any C-allocator targeting
low power consumption.

All of the presented methodologies were quantitatively evaluated and
compared on a many-core platform composed of Processor-Memory
(PM) nodes interconnected via a packet-switched mesh network. A PM
node is composed of a LEON3 processor with its own I-Cache and D-
Cache, a Dual Microcoded Controller (DMC) and memory which can be
shared among the nodes [29]. Experimental results on several bench-
marks have shown significant performance and power consumption
gains regarding the preferred customization.

As aforementioned, resource management is a key technology for the
successful use of modern many-core systems and run-time resource
management paradigm has become prominent due to the fact that it
can deal with the run-time dynamicity of applications and platforms.
However, modern complex MPSoCs face various problems on the field
of run-time resource management:

• Existing approaches to run-time resource management problem on
many-core platforms, even if they expose some autonomic prop-
erties, are typically centralized thus creating a central point of
failure.

• The central core that analyzes the data limits scalability and it
becomes a bottleneck for processing and communication functions.

• Most run-time approaches lack of a self-adaptation process thus

162



6.2 Perspectives and Future Extensions

creating starvation problems due to the high amount of incoming
applications that are unable to be served by the platform.

In order to face these problems, a run-time resource management frame-
work, targeting many-core platforms, was developed and addressed the
issues in the following ways:

• A distributed (Divide & Conquer based) framework for run-time
mapping on both homogeneous and heterogeneous many-core
platforms has been developed. The framework achieves differ-
ent levels of platform’s resources utilization depending on appli-
cation’s needs.

• A distributed workload-aware distributed run-time framework for
malleable applications, running on many-core platforms, is pre-
sented.

• A high-level customization framework and methodology for re-
source management on NoC architectures, both regular and irreg-
ular, has been developed.

The proposed frameworks are based on the idea of using multiple cores
in different roles while, in all case, an on-chip intercommunication
scheme ensures decision distribution. The proposed frameworks were
evaluated on the experimental many-core platform presented in [29] and
on the Intel Single Cloud Chip (SCC) many-core one [45].

6.2 Perspectives and Future Extensions

The work described in this Thesis can be the basis for addressing
the new problems that will arise in the embedded world in a short
or medium term. These new problems arise due to the increased
complexity of hardware platforms (Figure 6.1) and software applica-
tions.

According to HiPEAC roadmap [4], the newest problems, relative to the
thesis, in embedded systems is the integration of appropriate software
in many-core platforms targeting run-time management and the accel-
eration in processing the huge amount of data produced by modern

163



Chapter 6 Conclusions

!"#$%&'()*+%)#!!!!"!

!

!"#$%&'()(*+' '''(,-'-./0$1&%'2.%3456&'*%"7&%'8%9:"3&93$%&';&1<643&'

!" ## $% &' ()( ("*
(*(

"("
"*%

!#%

#"#

$"*

**'

%&%

()"!

(#!$

)

$

()

($

")

"$

!)

!$

#)

#$

$)

"))& "))% "))' ")() ")(( ")(" ")(! ")(# ")($ ")(* ")(& ")(% ")(' ")") ")"( ")""

+
,
-.
/
01
2
3
4
,
56
17
.8
3
19
:
,
54
;<
.8
3
=1
>,
1"
)
)
&
?

)

"))

#))

*))

%))

(0)))

(0"))

(0#))

(0*))

(0%))

"0)))

@
1,
A1
B
5,
/
3
CC
.D
-1
E
D
-.
D
3
C

:F4G351,A1B5,/3CC.D-1ED-.D3C
9H.-I>1J1KL.C?

M,>;<1+,-./17.83
9:,54;<.83=1>,1"))&01+3A> 1J1KL.C?

M,>;<1234,5617.83
9:,54;<.83=1>,1"))&01+3A>1J1KL.C? !

!"#$%&'()(*=' '''(,-'-./0$1&%'2.%3456&'*&0"#/'-.1<6&>"3?';%&/@0'

!"#$#"%!&'()$*")+,-.($*"/()$#"%!&'*+0"%$+)(%1!$

"#$%&!'&($)*! +,-.%&/$01! $(! 2! 3&1! 04&*'5! .,6&4! +,*(7-.0$,*!$(! 2%(,! 2! +4$0$+2%! 82+0,4! 8,4! 0#&!'&($)*!,8!9:;!;,*(7-&4!

<,402=%&! +#$.(>!?$)74&!9@9AB! (#,6(! 0#&! 04&*'! 8,4! 0,02%! +#$.!.,6&45! 7($*)! 042*($(0,4!.&48,4-2*+&!.242-&0&4(! 84,-! 0#&!

2A*(' 9:4<3&%C! $*0&4+,**&+0! .&48,4-2*+&! .242-&0&4(! 84,-! 0#&! DE*0&4+,**&+0! F&+#*,%,)1! G&H7$4&-&*0(I! $*! 0#&!

A/3&%9.//&93'9:4<3&%5!2*'!+$4+7$0!+,-.%&/$01!.242-&0&4(!84,-!F2=%&!9@9AJ!2=,K&>!"&!*,0&!0#&!8,%%,6$*)>!

!' F#&! -,'&%! 2..%$&'! #&4&! ($-.%1! &/042.,%20&(! 84,-! +744&*0! (020&L,8L0#&L240! 0&+#*,%,)15! 2*'! #&*+&! 0#&! 4&(7%0$*)!

.,6&4!+,*(7-.0$,*!(7=(02*0$2%%1!&/+&&'(!0#&!4&H7$4&-&*0(>!!

!' <,0&*0$2%! (,%70$,*(!24&!'$(+7((&'! $*! 0#&!*&0"#/'9:4<3&%>!9.&+$8$+!(,%70$,*(! 8,4!9:;!;,*(7-&4!<,402=%&! $*+%7'&!

24+#$0&+074&!,.0$-$M20$,*!$*!#$)#L%&K&%!'&($)*!(02)&(!=2(&'!7.,*!.,6&4!+,*(7-.0$,*!2*2%1($(5!2*'!+7(0,-$M&'!<N!

4&2%$M20$,*>!!

!' A7&!0,!0#&!'$(+,*0$*7,7(!042O&+0,41!,8!(7..%1!K,%02)&!$*!0#&!87074&5!%,)$+!(6$0+#$*)!P$>&>5!'1*2-$+Q!.,6&4!(#,6(!

*,*L-,*,0,*&!=&#2K$,4!84,-!JRSJ!0,!JRST5!84,-!JRSB!0,!JRSU5!2*'!84,-!JRJR!0,!JRJS>!

$

!

$

,-.'/0,.102,/3024',.5-034367'132(829':31'!.8/530(;5,31!<''''!""#'

Figure 6.1: Trends of increased complexity in Systems-on-Chip target-
ing the market of consumer mobile devices [74]

applications. A first approach to a solution, is to expand the frame-
work for generating customized microcoded DMM services in order to
change the allocator policies at run-time. Until now, the allocator works
on predefined policies for handling application requests. These policies
have to do with the usage of coalesce and split procedures, the usage
of fixed lists etc. A memory allocator that is able to adjust these pa-
rameters at run-time and according to application needs, will be much
more efficient. As aforementioned, in a many-core platform a big num-
ber of application arrives every moment. Each of these applications is
different in terms of memory usage for their dynamic data. Thus, a
distributed and microcoded allocator that also has the ability to adjust
its settings at run-time will be much more efficient in terms of mem-
ory footprint and performance. In order to achieve this, the allocator
must work on a scenario-based configuration. That means, that the
DMM will have some pre-defined working modes and it can change
between them at run-time. The criteria for changing working mode,
can be application performance, memory utilization, power consump-
tion etc.

Another extension, in the run-time resource management field, it would

164



6.2 Perspectives and Future Extensions

be an integrated task migration mechanism. So, instead of just taking
the decision on which processor a task will be mapped on, it would
very useful to change, at run-time, the type of processor that this task is
being executed. For example, until now, when a new application enters
the system, it waits for an available core to serve it. However, this
core might not be the optimal. So, during the self-optimization process,
it would really help application’s performance if a task “migrated” to
another type of core. This means, that all stored data and information
must follow the task to the new core, including cache data. In that case,
a task migration mechanism would take care of it so as not to lose time
and valuable resources.

Following HiPEAC roadmap [4], today’s embedded systems are al-
most universally connected, and in comparison with the past, many
attack-hacking incidents have demonstrated that security needs to be
improved. This need is especially focused on modern devices as they
are continuously handling users’ private and personal data. Heap based
attacks are an ongoing threat. Bad memory management from the pro-
grammer may lead to various errors that could interfere with other
processes and enable heap based attacks. Instead of relying on the
programmers’ memory managing skills, an approach to prevent these
heap based attacks is to make the memory allocator safe. This basically
means that the allocator tries to tolerate the inevitable memory errors
and let them not interfere with anything but the processes that caused
them. Most memory allocators ignore security issues. Instead, they fo-
cus on maximizing performance and limiting fragmentation and waste.
While these are very important issues for a memory allocator, in the
days of worms that use code injection attacks to cause significant eco-
nomical damage, security cannot be ignored. Thus, another extension
to the presented thesis would be the integration of security mechanisms
in memory allocators targeting distributed and DSM systems. Also, the
usage of heterogeneity and hardware accelerators would definitely im-
prove allocator performance since most of the state-of-art techniques in
securing heap, require a lot of processing cycles in order to to guaran-
tee the security of metadata. Microcoded implemented security features
would accelerate functions regarding metadata validation and prevent
heap exploitations faster.

Last, todays’ large data centers process the massive amounts of data
generated by embedded and mobile computing systems, online trans-

165



Chapter 6 Conclusions

actions, and scientific simulations. Since the input and the process time
for these systems is unknown, memory allocators have an essential role
to the overall performance. So, an extension to the presented frame-
works, it would be the usage of hardware accelerators and customized
per application memory allocators for specific application domains in
high-performance computing. Even though these systems are not lim-
ited by the space of memory, the size of memory transactions is so
big that turns out to be one of the most important performance fac-
tors.

166



Publications

Book chapters

1. I. Anagnostopoulos, S. Xydis, A. Bartzas, Z. Lu, D. Soudris and
A. Jantsch, “Chapter 8 Middleware memory management in NoC”, in
“Designing 2D and 3D Network-on-Chip Architectures,” to appear,
Springer

2. B. Candaele, S. Aguirre, M. Sarlotte, I. Anagnostopoulos, S. Xydis,
A. Bartzas, D. Bekiaris, D. Soudris, Z. Lu, X. Chen, J.-M. Chabloz,
A. Hemani, A. Jantsch, G. Vanmeerbeeck, J. Kreku, K. Tiensyrja,
F. Ieromnimon, D. Kritharidis, A. Wiefrink, B. Vanthournout, P.
Martin, “Chapter 11: Mapping Optimisation for Scalable multi-core
ARchiTecture: The MOSART approach,” in “VLSI 2010 Annual
Symposium,” Springer

3. S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, “Chapter 3:
Application-Specific Multi-Threaded Dynamic Memory Management,”
in “Scalable Multi-core Architectures: Design Methodologies and
Tools,” 2011, Springer

Journals

1. I. Anagnostopoulos, A. Bartzas, I. Filippopoulos, D. Soudris, “High-
level customization framework for application-specific NoC architectures,”
in Springer Design Automation for Embedded Systems, vol.16,
no.4, pp.339-361, 2013, doi: 10.1007/s10617-013-9114-5

2. I. Anagnostopoulos, J.M. Chabloz, I. Koutras, A. Bartzas, A. He-
mani, D. Soudris, “Power-aware Dynamic Memory Management on

167



Publications

May-core Platfroms utilizing DVFS,” ACM Transactions on Embed-
ded Computing Systems, vol.13, no.1, pp.40:1–40:25, November
2013

3. I. Anagnostopoulos, S. Xydis, A. Bartzas, Z. Lu, D. Soudris, A.
Jantsch, “Custom Microcoded Dynamic Memory Management for Dis-
tributed On-Chip Memory Organizations,” in IEEE Embedded Sys-
tem Letters, vol.3, no.2, pp.66,69, June 2011

Conferences

1. I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, D. Soudris, “Dis-
tributed run-time resource management for malleable applications on
many-core platforms,” in Proceedings of DAC conference 2013

2. I. Anagnostopoulos, A. Bartzas, G. Kathareios, D. Soudris, “A Di-
vide and Conquer based Distributed Run-time Mapping Methodology for
Many-Core platforms,” in Proceedings of DATE conference 2012

3. K. Siozios, D. Diamantopoulos, I. Kostavelis, E. Boukas, L. Nal-
pantidis, D. Soudris, A. Gasteratos, M. Aviles, I. Anagnostopoulos,
“SPARTAN project: Efficient implementation of computer vision algo-
rithms onto reconfigurable platform targeting to space applications,” in
Proceedings of the 6th InternationalWorkshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC), 2011

4. C. Silvano, W. Fornaciari, S. Crespi Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, E. Speziale, D.
Melpignano, JM. Zins, H. Hubert, B. Stabernack, J. Brandenburg,
M. Palkovic, P. Raghavan, C. Ykman-Couvreur, I. Anagnostopoulos,
A. Bartzas, D. Soudris, T. Kempf, G. Ascheid, J. Ansari, P. Maho-
nen, B. Vanthournout, “Parallel programming and run-time resource
management framework for many-core platforms: The 2PARMA ap-
proach,” in Proceedings of the 6th International Workshop on Re-
configurable Communication-centric Systems-on-Chip (ReCoSoC),
2011

5. A. Bartzas, P. Bellasi, I. Anagnostopoulos, C. Silvano, W. Forna-
ciari, D. Soudris, D. Melpignano, C. Ykman-Couvreur, “Runtime

168



Resource Management Techniques for Many-core Architectures: The
2PARMA Approach,” in Proceedings of the International Confer-
ence on Engineering of Reconfigurable Systems and Algorithms
(ERSA), 2011

6. K. Siozios, I. Anagnostopoulos, D. Soudris, “Multiple Vdd on 3D
NoC Architectures,” in Proceedings of 17th IEEE International Con-
ference on Electronics, Circuits, and Systems (ICECS) 2010

7. S. Xydis, A. Bartzas, I. Anagnostopoulos, D. Soudris, K. Pekmestzi,
“Custom Multi-Threaded Dynamic Memory Management for Multipro-
cessor System-on-Chip Platforms,” in Proceedings of International
Conference on Embedded Computer Systems: Architectures, Mod-
eling, and Simulation (SAMOS) 2010

8. B. Candaele, S. Aguirre, M. Sarlotte, I. Anagnostopoulos, S. Xydis,
A. Bartzas, D. Bekiaris, D. Soudris, Z. Lu, X. Chen, J.-M. Chabloz,
A. Hemani, A. Jantsch, G. Vanmeerbeeck, J. Kreku, K. Tiensyrja,
F. Ieromnimon, D. Kritharidis, A. Wiefrink, B. Vanthournout, P.
Martin, “Mapping Optimisation for Scalable multi-core ARchiTecture:
The MOSART approach,” in Proceedings of IEEE Computer Society
Annual Symposium on VLSI (IS-VLSI) 2010

9. I. Filippopoulos, I. Anagnostopoulos, A. Bartzas, D. Soudris, G.
Economakos, “Systematic Exploration of Energy-Efficient Application-
Specific Network-on-Chip Architectures,” in Proceedings of IEEE
Computer Society Annual Symposium on VLSI (IS-VLSI) 2010

10. K. Siozios, I. Anagnostopoulos, D. Soudris, “A High-Level Mapping
Algorithm Targeting 3D NoC Architectures with Multiple Vdd,” in
Proceedings of IEEE Computer Society Annual Symposium on
VLSI (IS-VLSI) 2010

11. I. Anagnostopoulos, A. Bartzas, D. Soudris, “Application-Specific
Temperature Reduction Systematic Methodology for 2D and 3D Networks-
on-Chip,” in Proceedings of International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS), 2009

12. I. Anagnostopoulos, A. Bartzas, I Vourkas, D. Soudris, “Node Re-
source Management for DSP Applications on 3D Network-on-Chip ar-
chitectures,” in Proceedings of 16th International Conference on

169



Publications

Digital Signal Processing (DSP), 2009

170



Bibliography

[1] Chaco: Software for Partitioning Graphs. URL http://www.cs.
sandia.gov/~bahendr/chaco.html.

[2] Noxim: network-on-chip simulator. URL http://sourceforge.
net/projects/noxim/.

[3] ECN Magazine. URL http://www.ecnmag.com/articles/2011/
01/urgent-need-digital-media-subscriber-modeling.

[4] HiPEAC Roadmap - 2013, . URL http://www.hipeac.net/
system/files/hipeac_roadmap1_0.pdf.

[5] HSA: Heterogeneous System Architecture Foundation, . URL http:
//hsafoundation.com/.

[6] HSA: Heterogeneous System Architecture Foundation, . URL http:
//chipdesignmag.com/sld/shuler/tag/hsa-foundation/.

[7] A. Agarwal, , et al. The MIT Alewife machine: architecture and
performance. In Proc. of ISCA 1995, pages 2–13, 1995.

[8] S. Agarwala et al. A 65nm c64x+ multi-core dsp platform for
communications infrastructure. In Proc. of ISSCC, pages 262 –601,
feb. 2007. doi: 10.1109/ISSCC.2007.373394.

[9] Mohammad Abdullah Al Faruque et al. Adam: run-time agent-
based distributed application mapping for on-chip communication.
In Proc. of DAC, pages 760–765. ACM, 2008. ISBN 978-1-60558-
115-6.

[10] I. Anagnostopoulos et al. Custom microcoded dynamic memory
management for distributed on-chip memory organizations. Em-
bedded Systems Letters, IEEE, 2011.

171

http://www.cs.sandia.gov/~bahendr/chaco.html
http://www.cs.sandia.gov/~bahendr/chaco.html
http://sourceforge.net/projects/noxim/
http://sourceforge.net/projects/noxim/
http://www.ecnmag.com/articles/2011/01/urgent-need-digital-media-subscriber-modeling
http://www.ecnmag.com/articles/2011/01/urgent-need-digital-media-subscriber-modeling
http://www.hipeac.net/system/files/hipeac_roadmap1_0.pdf
http://www.hipeac.net/system/files/hipeac_roadmap1_0.pdf
http://hsafoundation.com/
http://hsafoundation.com/
http://chipdesignmag.com/sld/shuler/tag/hsa-foundation/
http://chipdesignmag.com/sld/shuler/tag/hsa-foundation/


Bibliography

[11] David Atienza et al. Systematic dynamic memory management de-
sign methodology for reduced memory footprint. ACM TODAES,
11(2):465–489, 2006. ISSN 1084-4309. doi: http://doi.acm.org/10.
1145/1142155.1142165.

[12] Ke Bai and Aviral Shrivastava. Heap data management for limited
local memory (llm) multi-core processors. pages 317–326, 2010.

[13] Alexandros Bartzas et al. Software metadata: Systematic character-
ization of the memory behaviour of dynamic applications. Journal
of Systems and Software, In Press, Corrected Proof:–, 2010. ISSN
0164-1212. doi: DOI:10.1016/j.jss.2010.01.001.

[14] Adam Beguelin et al. Application level fault tolerance in heteroge-
neous networks of workstations. J. Parallel Distrib. Comput., 43(2):
147–155, June 1997. ISSN 0743-7315. doi: 10.1006/jpdc.1997.1338.
URL http://dx.doi.org/10.1006/jpdc.1997.1338.

[15] L. Benini and G. de Micheli. Networks on chips: a new SoC
paradigm. Computer, 35(1):70–78, 2002.

[16] Emery D. Berger et al. Hoard: a scalable memory allocator for
multithreaded applications. In Proc. of ASPLOS, Cambridge, MA,
USA, pages 117–128. ACM, 2000. doi: http://doi.acm.org/10.1145/
356989.357000.

[17] D. Bertozzi et al. NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip. IEEE TPDS, 16(2):113–129, Feb
2005.

[18] M.K. Bhatti et al. In Proc of DASIP, pages 136 –143, 2010. doi:
10.1109/DASIP.2010.5706257.

[19] R. Bitirgen et al. Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning approach.
In Proc. of MICRO-41, pages 318 –329, Nov. 2008.

[20] S. Borkar. Thousand core chips: A technology perspective. In
Proc. of DAC, pages 746–749, 2007.

[21] Hajo Broersma et al. The computational complexity of the mini-
mum weight processor assignment problem. In Proc. of WG, pages
189–200, 2004.

172

http://dx.doi.org/10.1006/jpdc.1997.1338


Bibliography

[22] Junwei Cao et al. Arms: An agent-based resource management
system for grid computing. Sci. Program., 10:135–148, April 2002.
ISSN 1058-9244.

[23] Ewerson Carvalho et al. Heuristics for dynamic task mapping in
noc-based heterogeneous mpsocs. In Proc. of IWRSP, pages 34–40.
IEEE Computer Society, 2007. ISBN 0-7695-2834-1.

[24] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Trans.
Softw. Eng., 14:141–154, February 1988. ISSN 0098-5589.

[25] F. Catthoor et al. Data access and storage management for embedded
programmable processors. Kluwer Academic Publishers, 2002.

[26] Jean-Michel Chabloz and Ahmed Hemani. Lowering the latency of
interfaces for rationally-related frequencies. In ICCD, pages 23–30,
2010.

[27] J. Morris Chang and Edward F. Gehringer. A high-performance
memory allocator for object-oriented systems. IEEE Trans. Com-
put., 45(3):357–366, 1996. ISSN 0018-9340. doi: http://dx.doi.
org/10.1109/12.485574.

[28] M. Chaudhuri and M. Heinrich. SMTp: an architecture for next-
generation scalable multi-threading. In Proc. of ISCA, pages 124–
135, 2004.

[29] Xiaowen Chen et al. Supporting distributed shared memory on
multi-core network-on-chips using a dual microcoded controller.
In Proc. of DATE, Dresden, Germany, pages 39–44, 2010.

[30] Chen-Ling Chou and Radu Marculescu. Incremental run-time ap-
plication mapping for homogeneous nocs with multiple voltage
levels. In Proc. of CODES+ISSS, pages 161–166. ACM, 2007.

[31] D. Feitelson. Parallel Workloads Archive, http://www.cs.huji.
ac.il/labs/parallel/workload. URL http://www.cs.huji.ac.
il/labs/parallel/workload.

[32] G. De Micheli. An Outlook on Design Technologies for Future
Integrated Systems. IEEE TCAD, 28(6):777, 2009.

173

http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload
http://www.cs.huji.ac.il/labs/parallel/workload


Bibliography

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, Jan-
uary 2008. ISSN 0001-0782. doi: 10.1145/1327452.1327492. URL
http://doi.acm.org/10.1145/1327452.1327492.

[34] Travis Desell et al. Malleable applications for scalable high perfor-
mance computing. Cluster Computing, 10(3):323–337, 2007.

[35] Robert P. Dick et al. Tgff: task graphs for free. In CODES’98,
pages 97–101, 1998.

[36] Allen B. Downey. A model for speedup of parallel programs.
Technical report, 1997.

[37] Dror G. Feitelson and Larry Rudolph. Toward convergence in job
schedulers for parallel supercomputers. In Proc. of JSSPP, pages
1–26. Springer-Verlag, 1996.

[38] Kees Goossens et al. Æhereal network on chip: Concepts, architec-
tures, and implementations. IEEE Des. Test, 22(5):414–421, 2005.
ISSN 0740-7475.

[39] Andreas Hansson et al. A unified approach to constrained map-
ping and routing on network-on-chip architectures. In Proc. of
CODES+ISSS, pages 75–80. ACM, 2005. ISBN 1-59593-161-9.

[40] T. Henderson, D. Kotz, and I. Abyzov. The Changing Usage of
a Mature Campus-wide Wireless Network. In Proc. of MobiCom,
2004.

[41] B. Hendrickson and R. Leland. A multilevel algorithm for par-
titioning graphs. In Proc. Supercomputing, volume 95, page 285,
1995.

[42] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 2007.

[43] K. Hirata and J. Goodacre. ARM MPCore; The streamlined and
scalable ARM11 processor core. In Proc. of ASP-DAC, pages 747–
748. IEEE Computer Society, 2007.

[44] M. Horowitz et al. Low-power digital design. In Proc. of SLPD,
pages 8 –11, oct 1994. doi: 10.1109/LPE.1994.573184.

174

http://doi.acm.org/10.1145/1327452.1327492


Bibliography

[45] J. Howard et al. A 48-core ia-32 message-passing processor with
dvfs in 45nm cmos. In Proc. of ISSCC, pages 108 –109, feb. 2010.
doi: 10.1109/ISSCC.2010.5434077.

[46] Jingcao Hu and R. Marculescu. Energy- and performance-aware
mapping for regular noc architectures. IEEE TCAD, 24(4):551–
562, 2005. ISSN 0278-0070.

[47] Information Sciences Institute. RFC 793: Transmission Control
Protocol. http://tools.ietf.org/html/rfc793, 1981.

[48] A. Iyengar. Parallel dynamic storage allocation algorithms. In
Parallel and Distributed Processing, 1993. Proceedings of the Fifth
IEEE Symposium on, pages 82–91, 1993.

[49] Axel Jantsch and Hannu Tenhunen, editors. Networks on chip.
Kluwer Academic Publishers, 2003. ISBN 1-4020-7392-5.

[50] Sebastian Kobbe et al. DistRM: distributed resource management
for on-chip many-core systems. In Proc. of CODES+ISSS, pages
119–128. ACM, 2011. ISBN 978-1-4503-0715-4. doi: 10.1145/
2039370.2039392. URL http://doi.acm.org/10.1145/2039370.
2039392.

[51] Samuel Kounev et al. Towards self-aware performance and re-
source management in modern service-oriented systems. In Proc.
of SCC, pages 621–624. IEEE CS, 2010. ISBN 978-0-7695-4126-
6. doi: 10.1109/SCC.2010.94. URL http://dx.doi.org/10.1109/
SCC.2010.94.

[52] J. Kuskin, , et al. The Stanford FLASH multiprocessor. In Proc. of
ISCA, pages 302–313, 1994.

[53] Kevin Lai et al. Tycoon: An implementation of a distributed,
market-based resource allocation system. Multiagent Grid Syst., 1:
169–182, August 2005. ISSN 1574-1702.

[54] P. Larson and M. Krishnan. Memory allocation for long-running
server applications. In Proceedings of the 1st international symposium
on Memory management, pages 176–185, 1998.

[55] D. Lea. A memory allocator, 1996. URL http://g.oswego.edu/
dl/html/malloc.html.

175

http://tools.ietf.org/html/rfc793
http://doi.acm.org/10.1145/2039370.2039392
http://doi.acm.org/10.1145/2039370.2039392
http://dx.doi.org/10.1109/SCC.2010.94
http://dx.doi.org/10.1109/SCC.2010.94
http://g.oswego.edu/dl/html/malloc.html
http://g.oswego.edu/dl/html/malloc.html


Bibliography

[56] Spyros Lyberis et al. The myrmics memory allocator:
hierarchical,message-passing allocation for global address spaces.
In Proc. of Symp. on Principles and practice of parallel programming.
ACM, 2012.

[57] Stylianos Mamagkakis et al. Energy-efficient dynamic memory
allocators at the middleware level of embedded systems. In Proc.
of EMSOFT. ACM, 2006. ISBN 1-59593-542-8.

[58] T.G. Mattson, R.F. Van der Wijngaart, M. Riepen, T. Lehnig,
P. Brett, W. Haas, P. Kennedy, J. Howard, S. Vangal, N. Borkar,
G. Ruhl, and S. Dighe. The 48-core scc processor: the program-
mer’s view. In High Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for, pages 1–11, 2010.
doi: 10.1109/SC.2010.53.

[59] Matteo Monchiero et al. Exploration of distributed shared mem-
ory architectures for NoC-based multiprocessors. JSA, 53(10):719–
732, 2007. ISSN 1383-7621. doi: http://dx.doi.org/10.1016/j.sysarc.
2007.01.008.

[60] Srinivasan Murali and Giovanni De Micheli. Bandwidth-
constrained mapping of cores onto noc architectures. Design, Au-
tomation and Test in Europe Conference and Exhibition, 2:20896, 2004.
ISSN 1530-1591. doi: http://doi.ieeecomputersociety.org/10.1109/
DATE.2004.1269002.

[61] Srinivasan Murali and Giovanni De Micheli. Bandwidth-
constrained mapping of cores onto NoC architectures. In Proc.
of DATE, page 20896. IEEE Computer Society, 2004. ISBN 0-
7695-2085-5-2.

[62] K.J. Nesbit et al. Multicore resource management. Micro, IEEE,
28(3):6 –16, May-June 2008.

[63] V. Nollet et al. Centralized run-time resource management in a
network-on-chip containing reconfigurable hardware tiles. In Proc.
of DATE, pages 234–239. IEEE Computer Society, 2005. ISBN 0-
7695-2288-2.

[64] U.Y. Ogras and R. Marculescu. Application-specific network-on-
chip architecture customization via long-range link insertion. In
Proc. of ICCAD, pages 246–253, 6-10 Nov. 2005.

176



Bibliography

[65] Paul Pop et al. An approach to incremental design of distributed
embedded systems. In Proc. of DAC, pages 450–455. ACM, 2001.
ISBN 1-58113-297-2.

[66] R. Rajkumar et al. A resource allocation model for qos manage-
ment. In Proc. of RTSS, pages 298 –307, 1997.

[67] S. K. Reinhardt et al. Tempest and Typhoon: user-level shared
memory. In Proc. of ISCA, pages 325–336, 1994.

[68] Gerald Sabin et al. Moldable parallel job scheduling using job
efficiency: an iterative approach. In Proc. of JSSPP, pages 94–
114. Springer-Verlag, 2007. ISBN 978-3-540-71034-9. URL http:
//dl.acm.org/citation.cfm?id=1757044.1757049.

[69] Bratin Saha et al. McRT-STM: a high performance software trans-
actional memory system for a multi-core runtime. In Proc. of Symp.
on Principles and practice of parallel programming. ACM, 2006.

[70] T. Sakurai and A.R. Newton. Alpha-power law mosfet model and
its applications to cmos inverter delay and other formulas. Solid-
State Circuits, IEEE Journal of, 25(2):584 –594, apr 1990. ISSN
0018-9200. doi: 10.1109/4.52187.

[71] Scott Schneider. Scalable locality-conscious multithreaded memor
allocation. In In Proc. of the 2006 ACM SIGPLAN International
Symposium on Memory Management, 2006.

[72] Larry Seiler et al. Larrabee: a many-core x86 architecture for visual
computing. ACM Trans. Graph., 27:18:1–18:15, August 2008. ISSN
0730-0301.

[73] Semiconductor Industry Association. International technology
roadmap for semiconductors, 2006. URL http://www.itrs.net/
Links/2006Update/2006UpdateFinal.htm.

[74] Semiconductor Industry Association. International technology
roadmap for semiconductors, 2008. URL http://www.itrs.net/
Links/2008Update/2008UpdateFinal.htm.

[75] Mohamed Shalan and Vincent J. Mooney. Hardware support
for real-time embedded multiprocessor system-on-a-chip mem-
ory management. In Proc. of CODES, Estes Park, Colorado,

177

http://dl.acm.org/citation.cfm?id=1757044.1757049
http://dl.acm.org/citation.cfm?id=1757044.1757049
http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm
http://www.itrs.net/Links/2008Update/2008UpdateFinal.htm
http://www.itrs.net/Links/2008Update/2008UpdateFinal.htm


Bibliography

USA, pages 79–84. ACM, 2002. ISBN 1-58113-542-4. doi: http:
//doi.acm.org/10.1145/774789.774806.

[76] Li Shang, Li-Shiuan Peh, and Niraj K. Jha. Powerherd: dynamic
satisfaction of peak power constraints in interconnection networks.
In Proc. of ICS, pages 98–108. ACM, 2003. ISBN 1-58113-733-8.

[77] Youngsoo Shin et al. Power optimization of real-time embedded
systems on variable speed processors. In Proc. of ICCAD, pages
365–368. IEEE Press, 2000. ISBN 0-7803-6448-1. URL http:
//dl.acm.org/citation.cfm?id=602902.602984.

[78] SIA. Semiconductor industry association, international technology
roadmap for semiconductors, 2011. URL http://www.itrs.net/
Links/2009ITRS/Home2011.htm.

[79] Lodewijk T. Smit et al. Run-time mapping of applications to a
heterogeneous soc. In Proc. of SoC, 2005.

[80] STMicroelectronics. STNoC: Building a new system-on-chip
paradigm. White Paper, 2005.

[81] T. Mattson, Rob van der Wijngaart. RCCE: A
small library for many-core communication, http:
//www.intel.com/content/www/us/en/research/
intel-labs-rcce-single-chip-cloud-brief.html. URL
http://www.intel.com/content/www/us/en/research/
intel-labs-rcce-single-chip-cloud-brief.html.

[82] Justin Talbot et al. Phoenix++: modular mapreduce for shared-
memory systems. In Proc. of MapReduce, pages 9–16. ACM, 2011.
ISBN 978-1-4503-0700-0. doi: 10.1145/1996092.1996095. URL
http://doi.acm.org/10.1145/1996092.1996095.

[83] Shyamkumar Thoziyoor and Naveen Muralimanohar. Cacti 5.0,
technical report hpl-2007-167, hp labs, 2007.

[84] C. H. (Kees) van Berkel. Multi-core for mobile phones. In Proc. of
DATE, pages 1260–1265. EDAA, 2009. ISBN 978-3-9810801-5-5.

[85] S. Vangal et al. An 80-Tile 1.28 TFLOPS Network-on-Chip in
65nm CMOS. In Proc. of ISSCC, pages 98–589. IEEE, 2007.

178

http://dl.acm.org/citation.cfm?id=602902.602984
http://dl.acm.org/citation.cfm?id=602902.602984
http://www.itrs.net/Links/2009ITRS/Home2011.htm
http://www.itrs.net/Links/2009ITRS/Home2011.htm
http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-cloud-brief.html
http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-cloud-brief.html
http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-cloud-brief.html
http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-cloud-brief.html
http://www.intel.com/content/www/us/en/research/intel-labs-rcce-single-chip-cloud-brief.html
http://doi.acm.org/10.1145/1996092.1996095


Bibliography

[86] S. Vassiliadis et al. Microcode processing: Positioning and direc-
tions. IEEE MICRO, 23(4):21–30, 2003.

[87] Kiem-Phong Vo. Vmalloc: A general and efficient memory alloca-
tor, 1996.

[88] P. R. Wilson et al. Dynamic storage allocation: A survey and critical
review. In Proc. of IWMM, Kinross, Scotland, UK, pages 1–116.
Springer-Verlag, 1995. ISBN 3-540-60368-9.

[89] Sotirios Xydis et al. Custom mutli-threaded dynamic memory
management for multiprocessor system-on-chip platforms. In Proc.
of ICSAMOS, Samos Island, Greece, pages 102–109, jul. 2010.

[90] Terry Tao Ye, Luca Benini, and Giovanni De Micheli. Packetized
on-chip interconnect communication analysis for mpsoc. In Pro-
ceedings of the conference on Design, Automation and Test in Europe -
Volume 1, 2003.

[91] Voon yee Vee and Wen jing Hsu. A scalable and efficient storage
allocator on shared-memory multiprocessors. In In International
Symposium on Parallel Architectures, Algorithms, and Networks (I-
SPAN�99, pages 230–235, 1999.

[92] Richard M. Yoo et al. Phoenix rebirth: Scalable mapreduce on
a large-scale shared-memory system. In Proc. of IISWC, pages
198–207. IEEE Computer Society, 2009. ISBN 978-1-4244-5156-
2. doi: 10.1109/IISWC.2009.5306783. URL http://dx.doi.org/
10.1109/IISWC.2009.5306783.

[93] Wangyuan Zhang and Tao Li. Managing multi-core soft-error re-
liability through utility-driven cross domain optimization. In Proc.
of ASAP 2008, 2008.

179

http://dx.doi.org/10.1109/IISWC.2009.5306783
http://dx.doi.org/10.1109/IISWC.2009.5306783

	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Memory management acceleration and customization on embedded systems
	1.2 Convergence general and embedded computing
	1.2.1 Heterogeneous computing systems

	1.3 Dynamic applications
	1.4 Thesis overview

	2 Contribution
	2.1 Objectives and Contributions
	2.2 Related Work
	2.2.1 Memory management middleware acceleration
	2.2.2 Microcode-accelerated distributed dynamic memory management
	2.2.3 Microcode-accelerated distributed dynamic memory management


	3 Memory management middleware acceleration and customization
	3.1 Introduction
	3.2 Platform Used
	3.2.1 Cache coherency and memory consistency

	3.3 Memory management middleware acceleration
	3.3.1 Custom Microcoded Dynamic Memory Management
	3.3.1.1 Application mapping to platform's cores
	3.3.1.2 Application dependent DMM customization
	3.3.1.3 Platform dependent DMM customization
	3.3.1.3.1 DMM Microcode Translation
	3.3.1.3.2 Customization according to memory distribution

	3.3.1.4 Evaluation of Custom Microcoded Dynamic Memory Management

	3.3.2 Conclusions

	3.4 Microcode-accelerated distributed dynamic memory management
	3.4.1 Heap SPace Map
	3.4.2 MAD-DMM implementation
	3.4.3 MAD-DMM evaluation

	3.5 Power-aware DMM on Many-core Platforms utilizing DVFS 
	3.5.1 Integration of DVFS mechanisms to DMM library
	3.5.1.1 Monitor mechanisms
	3.5.1.2 DVFS decision mechanism
	3.5.1.3 Integrated DVFS interfaces

	3.5.2 Experimental set-up
	3.5.2.1 DVFS overview
	3.5.2.2 Benchmarks and execution model
	3.5.2.3 Selected DM managers

	3.5.3 Evaluation
	3.5.3.1 Power consumption and heap fragmentation of the selected DM managers
	3.5.3.2 Power consumptions
	3.5.3.3 Performance overhead
	3.5.3.4 Power consumption and performance overhead trade-off

	3.5.4 Conclusions


	4 Distributed Run-time resource management
	4.1 Introduction
	4.2 Divide and Conquer based Distributed Run-time Mapping on many-core platforms
	4.2.1 Proposed run-time mapping methodology framework
	4.2.1.1 Definitions
	4.2.1.2 Homogeneous Platform
	4.2.1.3 Heterogeneous Platform

	4.2.2 Experimental results
	4.2.3 Conclusions

	4.3 Distributed run-time resource management for malleable applications
	4.3.1 Methodology Framework
	4.3.1.1 Definitions
	4.3.1.2 Communication Scheme
	4.3.1.3 Gain calculation
	4.3.1.4 Self-optimization process

	4.3.2 Experimental Results
	4.3.2.1 Evaluation on C simulator

	4.3.3 Evaluation on Intel SCC platform
	4.3.4 Conclusions


	5 High-level customization framework for resource management on NoC architectures
	5.1 Introduction
	5.2 NoC framework overview for resource management
	5.2.1 Resource management in regular NoC design
	5.2.2 Resource management in irregular NoC design
	5.2.2.1 Application partitioning
	5.2.2.2 Clustering
	5.2.2.3 Routing Table Generation

	5.2.3 Buffer Sizing

	5.3 Evaluation
	5.3.0.1 NoC's throughput
	5.3.0.2 NoC's average dealy

	5.3.1 Buffer's power consumption
	5.3.2 Conclusions


	6 Conclusions
	6.1 Summary of Ph.D. Thesis
	6.2 Perspectives and Future Extensions

	Publications
	Bibliography

