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Abstract

Today’s content-based image retrieval systems (CBIR) mostly rely on a predefined set of low-level image
features and incorporate user-interactions using techniques such as relevance feedback. These systems
however do not take advantage of the fact that in many applications queries can be formulated using a
vocabulary. In this paper we propose a general framework which allows to use vocabulary at several levels.
The framework should be seen as an extension of today’s CBIR systems enabling the use of vocabulary
as well as online learning techniques such as relevance feedback. The image detectors supporting the
vocabulary can be either implemented directly or learned offline from examples and user-interactions.

1. Introduction

During the last years content-based image retrieval (CBIR) systems gained more and more attention
in both the computer vision and the database research communities. This research is triggered by the
fact that digital libraries of images and video are rapidly growing in size and availability. In order to
avoid the expense and limitations of text annotations, there is considerable interest in navigation by
perceptual attributes which can be extracted automatically from images.

The declared goal of CBIR research is to enable the design and implementation of general purpose
tools for image retrieval. This general formulation does not allow to make any assumption about the
image content or the images themselves to be analyzed. The space of image representations explored
traditionally has been therefore restricted to those of a generic nature. Consequently, many CBIR
systems only use low-level image descriptors. The assumption these CBIR systems rely upon however is
that an optimal combination of generic image descriptors is sufficient to satisfy the query and intention of
the user. Unfortunately, it is far from obvious that the direct combination of low-level image descriptors
will be powerful enough to find any object or express any concept, the user might be interested in.

On the other hand CBIR systems have access to feedback from their users that can be exploited to
simplify the task of finding the desired images. That feedback is used to find the optimal combination
strategy of low-level features. This is done either manually by an experienced user or via a relevance
feedback mechanism. In both cases the user has to develop an understanding of the underlying data
structures and algorithms. When the user has to choose the combination of features manually it is clear
that the user has to understand their meaning in order to obtain an effective combination strategy. But
even in the case of relevance feedback, the user has to develop a certain understanding of the system in
order to give feedback the system can exploit. Thus, often too much is asked for of an average user.

Current CBIR research can be divided into three main categories. The first set of systems makes only
use of low-level features such as color, texture, shape or spatial information for describing the images’
content [1, 2, 3]. Generally, the user chooses which features and feature weights to utilize or to combine.
In the second category of CBIR systems, the expertise of the user is integrated in the retrieval loop.
These relevance feedback mechanisms allow the user to specify relevant and non-relevant images given
by the system. The advantage is that the retrieval converges more directly to the desired target and that
possible changes of the users’ goal are detected. In [4, 5], queries are shifted due to relevance feedback,



whereas the systems in [6, 7] formulate the feedback and retrieval procedure as a Bayesian inference
problem. The PicHunter [8] system belongs to a third category since it incorporates another important
aspect into the retrieval process: the user model. Here, the next set of results is not only based on the
user feedback, but also on a probabilistic model of the users’ behavior.

None of these systems however makes use of the following: Thinking about the humans’ way to
describe images and their content, it can be observed that in many applications the user can formulate
the query using a set of words or, more general, by using a particular vocabulary. We therefore propose
to extend today’s retrieval systems by mechanisms which support the direct use of vocabulary. Since
the use of vocabulary will be intuitive to most users we expect to improve the usability of today’s
systems substantially. Obviously, useful vocabulary will be - at least to a certain degree - application-
dependent. Consequently a retrieval system should not only provide a basic set of vocabulary useful
for many applications. Additionally, the system should be able to learn new vocabulary from the user
or even allow the user to define new vocabulary. Learning of words and concepts should be simple
and intuitive in the sense that an unexperienced user can train the system to support new, application
specific vocabulary. In our opinion teaching of particular words and concepts will be more suitable than
general relevance feedback mechanisms for two reasons. The first reason is that the user can give explicit
examples of a particular word or concept off-line and independent of a particular retrieval session. By
applying the learned concept immediately to new images the user can directly verify the quality of the
new word or concept. The second reason is that relevance feedback mechanisms attempt to learn the
intention of the user form a small number of interactions. The main difficulty of this task is that the
intention of the user is often composed of several concepts and words at the same time.

It is expected that vocabulary-supported queries will improve the usability of CBIR systems. In gen-
eral however, the vocabulary cannot be complete and will be limited. The aim of this papers is therefore
to extend the capabilities of today’s retrieval systems rather than replacing them. It is important to note
that the general framework proposed here includes not only low-level features and standard relevance
feedback mechanisms but also supports the direct use of vocabulary, vocabulary learning and long-term
learning.

2. General Framework

The system of vocabulary-supported queries can be thought of as a front-end or addition to any
standard image retrieval system. It enables the user to formulate queries in a more intuitive and easy-
to-learn way. Also, the concept of using vocabulary to describe images provides a framework for learning
new detectors and improving the ones currently available. In the following, we first describe the concept
of vocabulary-supported queries in more detail. Subsequently, we discuss the embedding of vocabulary-
supported queries into a general multi-stage image retrieval system.

2.1. Vocabulary-Supported Queries

A human trying to describe to another person what kind of image he or she is looking for may use
the following or similar syntax: “I am looking for a picture that is outdoors with some water, sky and
also some forest on it. But I don’t want any mountains.” The same syntax will be used in vocabulary-
supported queries. The user specifies a set of vocabulary that has to appear in the image. In our
current implementation the user can also specify the percentage of the image that should be covered by
a particular concept. Additionally, the user may indicate concepts that may not appear in the image. In
general, the combination of the vocabulary is based on the boolean operators AND, OR and NOT. Fig.
1 shows a screen-shot the of our current system. The interface of the system allows to specify keywords
and the percentage range of the image which should be covered.

In order to enable the use of vocabulary, the system has to provide image descriptors and detectors
supporting the vocabulary. These detectors may either be implemented specifically as it may be mean-
ingful in the case of face detection. Alternatively, detectors can be learned or improved by means of
learning. For several object classes such as faces or people there exist elaborate detectors with high
detection rates [9, 10, 11]. Besides these detectors, several authors have shown that one can relatively
easily learn detectors for concepts such as sky, grass, buildings, cars or indoor vs. outdoor scenes [12, 13].
Even though one can implement several detectors such as face and people detectors specifically, most
detectors supporting vocabulary will be application-specific and therefore have to be learned. Addition-
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Figure 1. Screen-shot of the current interface to the vocabulary-supported CBIR system.
Images are returned according to the amount of “sky”. Note the unusual diversity of the
images all containing the concept “sky”. The diversity of the images is due to the fact that
the query is based on vocabulary rather than on low-level features directly.

ally, the system should enable the non-expert users to increase the number of detectors depending on
their application and need.

2.2. Multiple-Stage Image Retrieval System

The before mentioned tasks of vocabulary-supported queries, learning and improving of image detec-
tors and, in addition, relevance feedback can be mastered in a multiple-stage image retrieval system.

The first stage consists of a purely vocabulary-based query where the user attempts to specify his or
her query using the available descriptive vocabulary. The result of the first stage is therefore a reduction
of the overall number of images the user is potentially interested in. From an abstract point of view
this first stage can be seen as a pre-filtering step. We expect that already the most basic vocabulary
consisting of only a small number of words will enable to reduce the search space considerably. The
expected benefit of this first stage may compensate for the added effort required for the the vocabulary.

The second stage consists of one or several refinement steps where the user can make extensive use of
the vocabulary. In the classical relevance feedback scenario the user can give positive as well as negative
feedback depending on his or her intention. This feedback is given most often globally for entire images.
In order to refine the query the task of the underlying learning algorithm is to find out which parts of
the image caused the positive or negative feedback. In the proposed system the user is not restricted to
this global feedback. The user may also specify which of the words contained in an image are relevant
and which are not. In that sense, vocabulary enables the user to specifically state which local parts of
an image are important and which are not. Besides enabling more specific feedback we expect that most
users will find the proposed feedback supported by vocabulary more intuitive.

The third and final stage of the system builds upon standard relevance feedback mechanisms. This
stage is necessary since the vocabulary will most often not suffice to specify the intention of the user
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in a detailed manner. It is expected however, that the first two stages already reduced the number
of potential images considerably. This will facilitate a much faster convergence of standard relevance
feedback mechanisms.

Learning occurs at least during stage two and three. In the case the system does not know the vocab-
ulary the user employed, an online-learning or in-session learning takes place. Via the relevance feedback
given by the user it is possible to gain a representation of the desired concept. This representation can
be used in future retrieval session. At the same time, the information provided by the feedback of the
user can be employed in a long-term learning or between-session learning. Thus, concepts already known
to the system and often asked for by users can be improved by between-session Bayesian inference (see

[14]).
3. Experimental Results

The heart of vocabulary-supported image retrieval are the detectors for the objects or concepts the
user might be looking for in an image. As mentioned before, these detectors can be implemented directly,
e.g. for often used, common concepts, or be learned during an on- or offline stage. It is important to note
that most vocabulary detectors are local by nature. This implies that the decision whether a certain
concept exists in a given image is made locally. In our current implementation this decision is made for
each image patch or segment. Thus, it is possible for the user to decide which area of the image should
be filled by or correspond to a concept.
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As introduced in the previous section vocabulary mainly used for stage one (query-formulation) and
stage two (query-refinement). As pointed one of the potential benefits of vocabulary-supported queries
is that they may reduce the search space significantly. The ultimate goal of any detector should be not
only to obtain high detection rates but also to enable to find all images which are possibly interesting
to the user. That means that our primary goal will be detectors with close to 100% recall rate and
simultaneously keeping the precision of the detectors in a reasonable range.

The goal of the following experiment is to find out how good the performance of the vocabulary
detectors needs to be in order to satisfy the retrieval requirements. Thereby, the retrieval requirements
are measured by precision (percentage of the retrieved images that are relevant to the query) and recall
(percentage of the relevant images that are retrieved). In order to have ground truth available, a set of
160 random images was annotated. The images were segmented into 100 patches and manually labeled
whether the segments contained the concepts of “sky”, “water”, “grass”, “buildings”, “cars” or “faces”.
Based on these annotations, the first stage of vocabulary-supported image retrieval with the user interface
of Fig. 1 was implemented. Here, the user selects a concept and a percentage range that specifies the
area of the image that has to be covered by the concept.

In order to simulate the influence of the detection probability on precision and recall, the annotations
were randomized by two probabilities: p denotes the probability for the correct detection of true positives.
If p = 100%, the detector labels all and only these segments that contain the particular concept. ¢ denotes
the probability for the correct detection of true negatives. Or, in other words, 1 — ¢ is the probability
for the detection of false positives. Figs. 2 to 7 show the precision vs. recall-curves for several values
of p and ¢ and for different percentage ranges. The results for the concept “water” are similar to the
shown results of “sky” since for both concepts the amount of relevant images in the annotated database
is large enough to have statistically relevant results.

The comparison of Figs. 2 to 5 exemplifies the different influence of p and ¢. In the case of a small
desired coverage such as 20 + 10% in Figs. 2 and 3, the influence of ¢ is much larger than the influence
of p. The reason is that for a small desired coverage the absolute amount of segments that might be
influenced by ¢ is up to 10 times larger. The influence of p and ¢ is more similar for the symmetric
desired coverage of 50+20% in Figs. 4 and 5. Here, the small amount of relevant images in the database
and their non-equal distribution over the accepted coverage range leads to the unexpected behavior in
Fig. 4.

The first stage of vocabulary-supported image retrieval includes a restriction of the search space for
future retrieval iterations. For that reason, it is important to know which limitations in precision have
to be tolerated in order to have a maximum recall. In Figs. 6 and 7 both p and ¢ are varied. Here, it
can be seen that the behavior of precision and recall is again very dependent on the desired coverage. In
Fig. 6, a recall of more than 90% leads already to the low precision of 50%. In contrast, for the desired
coverage 50 £ 20%, more than 98% of recall can be reached with a precision of nearly 70%. On the other
hand, knowing these differences, the retrieval algorithm can react according to the coverage desired by



the user. If the user is looking for only a small coverage (e.g. 20+ 10%) , the system might increase the
search range in order to obtain a satisfying recall (e.g. to 20 &+ 14% for recall rates larger than 90% in
Figs. 2 and 3). The same might be reasonable if it is know that the detection probabilities p and ¢ for
certain detectors are below average.

4. Conclusion

This paper develops a general framework for vocabulary-supported image retrieval. After discussing
the current state of the art the paper identifies the utility of vocabulary for content based image retrieval
systems. The proposed framework consists of three main stages: the first stage enables the user to
formulate his or her query directly using vocabulary, the second stage allows to refine the query again
using vocabulary and the final stage consists of a standard relevance feedback mechanism. The main ad-
vantage of the proposed framework is that the use of vocabulary is intuitive for most users. Furthermore,
vocabulary enables to reduce the search space considerably which may result ins faster convergence of
the system. The experimental section gives quantitative data about the desired quality of detectors in
order to obtain an appropriate reduction of the search space.
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