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REVIEW ARTICLE

Long-term immunologic effects of SARS-CoV-2 )
infection: leveraging franslational research

Check for
Updates

methodology to address emerging questions

MICHAEL J. PELUSO, JOANNA DONATELLI, and TIMOTHY J. HENRICH

SAN FRANCISCO, CALIFORNIA

The current era of COVID-19 is characterized by emerging variants of concern, wan-
ing vaccine- and natural infection-induced immunity, debate over the timing and
necessity of vaccine boosting, and the emergence of post-acute sequelae of SARS-
CoV-2 infection. As a result, there is an ongoing need for research to promote under-
standing of the immunology of both natural infection and prevention, especially as
SARS-CoV-2 immunology is a rapidly changing field, with new questions arising as
the pandemic continues to grow in complexity. The next phase of COVID-19 immu-
nology research will need focus on clearer characterization of the immune processes
defining acute iliness, development of a better understanding of the immunologic
processes driving protracted symptoms and prolonged recovery (ie, post-acute
sequelae of SARS-CoV-2 infection), and a growing focus on the impact of therapeutic
and prophylactic interventions on the long-term consequences of SARS-CoV-2 infec-
fion. In this review, we address what is known about the long-term immune conse-
quences of SARS-CoV-2 infection and propose how experience studying the
translational immunology of other infections might inform the approach to some of
the key questions that remain. (Translational Research 2022; 241:1-12)

Abbreviations: AIM = activation induced marker; COVID-19 = coronavirus disease 2019; ELI-
Spot = Enzyme-linked immunospot; ICS = intracellular cytokine staining; IL = interleukin; MAIT
cell = mucosa-association invariant T cell; PASC = post-acute sequelae of SARS-CoV-2 infec-
tion; RBD = receptor-binding domain; SARS-CoV-2 = severe acute respiratory syndrome coro-
navirus 2; SOT = Solid organ fransplant

OVERVIEW

Many questions remain regarding the immunologic
consequences of SARS-CoV-2 infection. While initial
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studies were crucial in demonstrating that most indi-
viduals develop long-term humoral and cell-mediated
immunity to infection with the virus, the current era of
COVID-19 is characterized by emerging variants of
concern, waning vaccine- and natural infection-
induced immunity, debate over the timing and neces-
sity of vaccine boosting, and the emergence of post-
acute sequelae of SARS-CoV-2 infection (PASC). As
millions of individuals worldwide continue to become
infected, there is an ongoing need for research to pro-
mote understanding of the immunology of both natural
infection and prevention. In this review, we address
what is known about the long-term immune consequen-
ces of SARS-CoV-2 infection and propose how experi-
ence studying the translational immunology of other
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infections might inform the approach to some of the
key questions that remain.

LONG-TERM PROTECTIVE IMMUNITY FOLLOWING
INFECTION

Most individuals with SARS-CoV-2 infection
develop robust and persistent immunologic responses
following natural infection, and as of the time of this
review, many studies have characterized the humoral "~
>3 and cell-mediated'”" **** immune responses during
convalescence for periods of up to 1 year. While the
magnitude of the immune response to natural infection
is at least in part determined by the severity of the ill-
ness,” 07152830 the predictors of the duration of natu-
ral immunity are not fully understood and may be
determined by a variety of clinical and measurement
factors.'>'® Despite this complexity, there is general
consensus that, in most cases, natural immunity persists
for up to at least 8 months. Despite the observation that
antibody levels may wane over time, several studies
have now demonstrated persistence of virus-specific
lymphocytes over 12 months following natural infec-
tion by various intracellular cytokine staining (ICS),
activation induced marker (AIM), and EliSpot assays.
These assays quantify T cell cytokine expression (ICS/
EliSpot) or surface markers of T cell activation (AIM)
following antigenic stimulation with various virus-spe-
cific peptide pools. For example, the percentage of
virus-specific CD8 and CD4 T cells as measured by
ICS or AIM range from approximately 0.01%—10%
during this extended time period across multiple
studies,25 26:28,29.31.32 with the median or mean percent-
age typically <1%. Spot forming cells/units in ELISpot
assays tend to range from 10 to >1,000 in response to
SARS-CoV-2 peptides, including HLA-restricted
pools.””** These responses wane slowly over time in
all assays depending on initial disease severity and var-
ious clinical factors but can typically be detected across
a range of virus gene regions (eg, Spike, Nucleocapsid,
Membrane).

These immunologic findings have been borne out
by the clinical observation that re-infection with
similar viral variants was relatively uncommon in
the first year of the pandemic, with some excep-
tions.”” During the first year of the pandemic, re-
infection seemed exceedingly rare and fewer than
50 cases were reported in the literature,”” although
the true burden of re-infection is difficult to esti-
mate given the scale of the pandemic, the high pro-
portion of asymptomatic infections, and the
variability in access to testing. While there was ini-
tially hope that those with prior SARS-CoV-2
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infection would aid efforts toward herd immunity
and could be at lower risk for re-infection, more
recent studies have demonstrated that natural immu-
nity within a population itself is likely insufficient
to fully protect against re-infection, particularly
with novel variants of concern.’® The study of long-
term natural immunity has been complicated by the
relatively widespread rollout of highly efficacious
vaccines with inconsistent uptake across demo-
graphic and geographic locales in addition to the
recent authorization or approval of booster vaccine
doses across the United States and Europe.

BREADTH AND DEPTH OF T CELL IMMUNE RESPONSES
AND CROSS-REACTIVITY TO OTHER
CORONAVIRUSES

Data regarding the breadth of SARS-CoV-2-specific
T cell immune responses following natural infection
and the potential for cross-reactivity with other human
beta-coronaviruses are rapidly evolving and were
reviewed by Grifoni and colleagues.37 Thus far, over
1400 unique CD8 and CD4 T cell epitopes have been
identified,””*® although only a handful of antigens
comprise >85% of these. Interestingly, immunodomi-
nant regions of the spike protein for CD4 T cells are
relatively limited, whereas distribution for CD8 cells
are more homogeneous.”’ Nonetheless, a prior study
estimates that an individual may recognize 17 different
CDS8 and 19 different CD4 immunologically important
epitopes.”® In addition, we and others have shown that
SARS-CoV-2 specific CD4 T cell responses, and to a
much lesser extent CD8 T cell responses, are signifi-
cantly correlated with antibody responses including
total levels and neutralization capacity.’”**** CD4 and
CDS8 T cells also appear to play unique roles in clinical
disease, or respond differently to natural infection, and
it is important to impart that these cells play different
roles in immune responses to infection and should not
be thought of as a unified T cellular response. For
example, we and others have demonstrated that the
magnitude of virus-specific CD4 T cells appears to cor-
relate with initial disease severity and with levels and
neutralization capacity of antibody responses.””%*!**
These associations were not consistently observed with
CDS8 T cell responses in our study, which appear to be
influenced by other clinical factors. For example, we
previously reported that pre-existing lung disease is
independently associated with higher long-term SARS-
CoV-2-specific CDS, but not CD4, T cell responses.
Regardless of the differences between CD4 and CD8 T
cell responses, there is now data emerging that virus-
specific T cell reactivity is not significantly disrupted
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by viral variants, such as Delta.*>** Little data are cur-
rently available on the emerging Omicron variant.

There is also data emerging that some individuals
may have cross-reactive T cell responses to other
human beta-coronaviruses, with detectable responses
in  those  without a  history of  known
infection.”***14>4¢ Some of these responses may be a
result of occult, asymptomatic prior SARS-CoV-2
infection that led to aborted or rapidly wainig antibody
levels,”"” but data exist suggesting that pre-existing
memory responses from endemic, less-pathogenic
coronaviruses or other pathogens occur in some
individuals.”**® Interestingly, pre-existing cross-reac-
tive T cell responses may be better detected by assays
that measure the capacity for T cells to proliferate in
response to SARS-CoV-2 Spike protein stimulation ex
vivo rather than by intracellular or cell surface markers
of response.”’ Regardless, it is poorly understood to
what extent or for how long pre-existing cross-reactive
immunity may protect from acute infection or modu-
late disease severity and the development and persis-
tence of post-acute sequelae. Further study is urgently
needed.

VACCINE INDUCED ANTIBODY AND T CELL
RESPONSES

Initial vaccine trials predmoniaty enrolled healthy
adults, and those currently approved or pending
approval for use in the United States and Europe
(Pfizer/BioNTech BNT162b1, AstraZeneca ChadOx1,
Moderna mRNA-1273, Janssen Ad26.COV?2, Novavax
NVX-CoV2373) lead to robust antibody binding and
neutralization titers.”’ Antibody responses generally
mirror protection from asymptomatic through severe
disease, hospitalization and death. However, efficacy
has been shown to wane over time leading various reg-
ulatory agencies in Europe and the United States to
approve or authorize boosters or supplementtal doses
for adults,”’” with or without underlying immuno-
modulatory conditions or belonging to risk groups.
Despite waning antibody titers and increased cases of
mild infection, vaccines continue to protect against
severe disease and hospitalization for up to 6
months.’' > As of now, vaccines remain active against
the predominant circulating strains of SARS-CoV-2,
and variants that may be more resistant to vaccination,
such as Mu, appear to have a replication disadvantage
compared with the widely circulating Delta variant.
Whether this will remain the case with Omicron is
unknown. Whereas levels of nasopharyngeal shedding
have been reported to be similar in persons who
acquired infection after full vaccination compared with
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those who were previously unvaccinated, the duration
of viral shedding and symptoms are significantly
shorter, and infection may be more compartmentalized
to non-shedding tissues.”® Further research is war-
ranted to more precisely determine the impact of vacci-
nation on infectivity of breakthrough infection.
Regardless, vaccine use has had a dramatic positive
effect on reducing morbidity, mortality and community
spread of SARS-CoV-2.

Data on T cell responses from vaccine trials are
more sparse, and systematic study of adaptive cellu-
lar responses varied across initial studies (as
reviewed elsewhere’”). A majority of approved or
authorized vaccines, however, have demonstrated
development of CD4, CDS8 or total T cell responses
as measured by spot forming colonies per 10° cells
in EliSpot assays (40 to >2600 spot forming colo-
nies). Data on the decay of T cell responses follow-
ing vaccination over time are currently lacking, and
it is not known what role vaccine-elicited virus-spe-
cific T cell responses play in preventing primary
infection or modulating the course of acute and
post-acute disease.

To date, the immunologic response prior to
SARS-CoV-2 vaccination has been characterized for
over 12 months.”””® The recent surge of the Delta
variant of SARS-CoV-2 globally has revealed that
vaccine-induced immunity might be insufficient to
prevent infection and more severe disease in many
cases. Furthermore, the duration for which vaccine-
induced immunity can protect against severe disease
and hospitalization remains unclear, although boost-
ing is likely to significantly extend the duration of
protection.

IMMUNITY IN IMMUNOCOMPROMISED INDIVIDUALS

It is now well established that antibody and T cell
responses can be severely impaired following vaccina-
tion,”” and to a lesser extent, natural infection,’’®” in
immunocompromised individuals, including solid
organ transplant (SOT) recipients, cancer patients, and
others receiving immunomodulatory medications for
various conditions. For example, there is growing evi-
dence that SOT recipients do not develop detectable
antibody levels or measurable neutralizing capacity
following two-dose vaccination,®®® and current clini-
cal experience demonstrates higher rates of post-vac-
cine infection and hospitalizations in this population.
An additional third or even fourth dose appears to
increase antibody responses, however.””’’ Patients
with cancer, especially those with hematological
malignancies on cytoreductive or anti-B cell therapies
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and certain rheumatologic diseases also exhibit
reduced antibody responses to vaccination,”'”* albeit
to a lesser degree than those who have received SOT
but may experience high rates of vaccine break-
through.”* Various medications that have anti-prolifer-
ative mechanisms of action (such as mycophenolic
acid derivatives) may be associated with more
impaired antibody, B and T cell responses. As above,
anti-B cell agents and systemic corticosteroids impact
antibody responses and memory B cell responses and
combinations of immunomodulatory agents are likely
to have more profound and lasting negative impacts on
these immune responses.®*%>7-7577

T cell responses are also impaired in the setting of
immunosuppressive medications and diseases, but data
are now emerging that these responses are somewhat dis-
cordant with antibody responses following vaccination.
For example, nearly half of kidney transplant recipients in
one study that did not develop antibody responses follow-
ing vaccination had detectable SARS-CoV-2-specific T
cell responses.”” Whether or not these T cell responses are
protective, as discussed above, is not known and requires
further study. However, recent data show that persons that
receive anti-B cell therapy (eg, anti-CD20 for multiple
sclerosis) have a paradoxical increase in SARS-CoV-2-
specific CD8 T cell responses, despite significant
impairment of humoral responses.””’*™* The increase in
CDS8 T cell responses may reflect an immune compensa-
tory rnechanism,m83 34 but it is still not clear what role
virus-specific CD8 T cells have in protection from infec-
tion or modulation of disease severity. It is also interesting
to note that despite the potential for increased CD8 T cell
responses, individuals with impaired humoral responses
have increased risk of more severe infection.’**

Immunity in other immunocompromised individu-
als, such as those living with HIV infection, is more
variable. Recent work has suggested a lower magnitude
of humoral and cell-mediated immune responses”® "
or shorter duration of the antibody response in compar-
ison to the general population,® although both obser-
vations require further study. Recent studies suggest
that the immune response following vaccination is
equal amongst PLWH and the general population”
and in comparison to those with other immunocom-
promising conditions,”’ but further work is needed to
confirm these findings given the global concern for sus-
tained immunity to SARS-CoV-2 and the known
poorer responses to immunization for other infections
among PLWH.”>*’ This includes suboptimal responses
to vaccination to prevent against yellow fever,”>”*
Hepatitis B,‘) 6, inﬂuenza,‘) 3 polio, diphtheria, and teta-
nus.”” It is likely that inadequate CD4 T cell immune
reconstitution, chronic inflammation, and T cell
exhaustion underlie these observations,”” and careful
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studies will be needed to understand how HIV and
COVID-19 vaccination durability overlap.

HUMAN INFLAMMATORY RESPONSES IN COVID-19

COVID-19 can lead to profound inflammatory
responses in acute infection and to increased levels of
various cytokines, such as TNF-«, IL-6, and IP-10,
which are associated with more severe disease and organ
damage.”®'"” Especially among those hospitalized with
COVID-19, inflammation during the acute and early
post-acute phase of infection has been associated with
poor outcomes.'™ """ In addition, many individuals
present with profound lymphopenia, including a marked
decrease in circulating NK, CD8 and CD4 T cells,
including helper and regulatory T cells.”®'" Lower
numbers of circulating monocytes, eosinophils and
basophils have also been observed. In contrast, leuko-
cyte counts tend to be higher in patients with severe clin-
ical manifestations.''"''* Despite lymphopenia in more
severe SARS-CoV-2 infection, increased frequency of T
cells responding to various antigens such as, Spike,
Nucleocapsid, membrane, and accessory (functional)
protein (eg, ORF lab) peptide sequences develop within
the weeks following infection.” Although lymphocyte
counts return and virus-specific adaptive immunity
develop early during clinical recovery, increased
markers of T cell exhaustion and reduced functional
diversity of T cell subsets have been reported in the
early convalescent period.”®?%! %114

Emerging data suggest that inflammation related to
acute SARS-CoV-2 infection can persist for weeks or
even months."'>"''® One study found that convalescent
plasma donors with prior COVID-19 demonstrated ele-
vations in certain markers of inflammation compared
to historical controls, even though they presumably felt
well enough to donate plasma.''> These markers
include interferon (IFN)-gamma, certain interleukin
(IL) proteins (eg, IL-12p70, IL-13, IL-18, IL-2, IL-4,
IL-5, IL-33), and monocyte chemoattractant protein
(MCP)-1 and suggest ongoing immune activation.
Another study of a large cohort of individuals hospital-
ized with asymptomatic, mild, and severe disease
showed that individuals who recovered from COVID-
19 had elevated levels of proinflammatory and angio-
genic markers at 6 months in comparison to healthy
controls.''® There is an ongoing need for work explor-
ing the clinical implications of persistent inflammation
following SARS-CoV-2; while such elevations are
clearly significant in chronic infections like HIV," """
this is less well understood for acute infections like
SARS-CoV-2 which is not thought to persist over the
long-term.
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IMMUNOLOGIC AND INFLAMMATORY
MANIFESTATIONS OF POST-ACUTE SEQUELAE OF
SARS-COV-2 INFECTION (PASC)

Recently, there has been recognition that a signifi-
cant proportion of individuals recovering from SARS-
CoV-2 infection experience new or persistent symp-
toms that did not pre-date their infection.''”"'** Investi-
gation into PASC is only just beginning, and the
pathophysiology of the condition is thus far entirely
unknown. While well-designed epidemiologic studies
are beginning to identify certain risk factors for PASC,
including female sex, older age, severity of initial
infection, number of symptoms during acute illness,
and sociodemographic factors, the condition remains
poorly understood.''*'*

One major question is whether PASC is an immuno-
logic phenomenon, either from long-term sequelae fol-
lowing an immunologic insult that occurs early in the
course of the infection (ie, a “hit and run” mechanism)
or related to an ongoing immunologic or other pertur-
bation, potentially in the setting of ongoing viral persis-
tence in tissue. So far, the clues have been limited. A
handful of studies have identified higher levels of bind-
ing or neutralizing antibodies in those with
PASC,'”*'*? suggesting that persistent symptoms
could be a manifestation of more severe illness (which
is known to be associated with higher antibody levels
and correlated with higher risk of developing PASC) or
possibly persistent immune stimulation.'* Other studies
have found that the humoral response appears lower
among those with persistent symptoms.'>*'?® For
example, ongoing viral shedding in the gut is associ-
ated with lower RBD-specific antibodies,'** suggesting
suboptimal immune responses may result in persistent
viral antigen. Furthermore, a handful of studies have
correlated PASC with lower SARS-CoV-2 specific
antibody responses,'° and have shown that those with
lower titres during early recovery might be more likely
to have persistent symptoms. Cellular immune studies
are limited and have thus far not revealed obvious dif-
ferences, although our recent work has suggested
lower'*® or differential decay in the magnitude of
SARS-CoV-2 specific CD8 T cell responses among
those with PASC.?” While intriguing, the precise impli-
cations of this finding is not known, and could either
represent a more exhausted pool of viral-specific cells
that develop over time or other immune dysregulation
or detrimental systemic inflammation leading to decay
in the frequency of these CD8 T cells. Understanding
the relationship between immune responses during
early recovery and the persistence of PASC symptoms
could guide diagnostic or therapeutic decision making
for millions of individuals recovering from COVID-19.
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Studies that have evaluated persistent inflammation
have suggested potential elevations in
biomarkers,''®'?” although no clear immunologic
pathways have yet to be consistently implicated. We
recently demonstrated that during early recovery (ie,
one to two months after initial infection), those who
went on to develop PASC generally had higher levels
of biomarkers including significant elevations in circu-
lating TNF-alpha and IP-10, and a trend towards higher
IL-6 levels. During late recovery (4 months following
infection), levels of TNF-alpha and IP-10 Ilevels
decayed and converged with levels in participants
without PASC, whereas IL-6 elevations became more
pronounced. These differences tended to be more pro-
nounced among those with a greater number of PASC
symptoms suggesting that PASC is associated with
increased immune activation over time, which may
underlie some symptoms which persist for more than 3
months following SARS-CoV-2 infection. IL-6 eleva-
tions may result from immune cell activation and sig-
naling, degradation of gut mucosal integrity and
translocation of bacterial and other infectious agents, B
cell activation, among many other processes.''’"-'*%'*
Further characterization of such biological pathways
and the processes that might drive them could lead to
the identification of therapeutic targets for those
experiencing PASC. In a prior study, we did not
observe differences in markers of aberrant blood clot-
ting, such as D-Dimer in those with and without persis-
tent symptoms, despite disorders of hemostasis
contributing to some individuals with severe COVID-
19.”° However, further study is certainly warranted
given sample size limitations and the lack of a standard
working definition of PASC.

Aberrant autoimmune responses are present during
acute COVID-19 and have been proposed as a potential
underlying etiology of PASC,"””'** and recent study
showed that over 40% of patients in a longitudinal study
have positive antinuclear antibody (ANA) titers >1:160
12 months following infection.'” A majority of the
cohort reported PASC symptoms and the number of
symptoms reported were higher in those with a positive
ANA. In our long-term COVID-19 cohort, however, we
were unable to detect positive ANAs in any of 49 partici-
pants approximately 4 months after initial infection and
detected positive ANAs in just 3 of 69 participants 8
months after acute infection, which is similar to the per-
centage of people in the general population without
known autoimmune disease that have detectable ANAs.
Our cohort included individuals with and without PASC,
including those with >20 symptoms 8 months after initial
infection and perturbation in activities of daily life.'** As
a result, further studies of potential autoimmune
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mechanisms behind PASC are needed in order to under-
stand these disparate findings.

Finally, the alterations of both inflammation and
immune responses in the setting of convalescent
COVID-19 may also influence future risk of various
conditions such as cardiovascular, pulmonary and
neurological diseases. Unfortunately, time will be
needed to wunderstand the longer impact of
SARS-CoV-2 infection more fully beyond persis-
tent symptoms.

TISSUE PERSISTENCE OF SARS-COV-2 INFECTION: A
POTENTIAL MECHANISM FOR PASC?

It is well established that immunocompromised
individuals are capable of shedding SARS-CoV-2
RNA from oral/nasopharyngeal tissues months after
acute infection, and novel variants may have arisen
in such individuals under the setting of partial
immune pressure.'””'*® However, RNA shedding
usually resolves within a month in immunocompe-
tent patients,'”’ and we recently observed no persis-
tent RNA shedding in convalescent COVID-19
patients who exhibit PASC approximately 4 months
after initial infection.>’ Despite this, there has been
limited but intriguing data suggesting that SARS-
CoV-2 proteins can be identified in gut tissue
months after initial infection.'* If SARS-CoV-2
remains transcriptionally and/or translationally
active in various tissue reservoirs following clear-
ance from nasopharyngeal tissues, this could repre-
sent a potential mechanism underlying the
development and maintenance of PASC.'*® There
are also data emerging that COVID-19 may lead to
intestinal damage and microbial translocation.'*” In
chronic infections, such as Human Immunodefi-
ciency Virus (HIV), persistence of virus in gut-asso-
ciated mucosal tissue leads to gut Dbarrier
dysfunction and bacterial/fungal translocation that
may lead to elevated markers of immune activation
(including IL-6) and inflammation, even in those on
suppressive antiretroviral therapy.'”® Furthermore,
elevations in IL-6 and other inflammatory markers
in the setting of chronic HIV infection are associ-
ated with worse clinical outcomes,'**'*?> and the
longer-term clinical impact of persistent IL-6 eleva-
tions identified in our PASC cohort requires further
investigation.

Although the mechanisms of PASC are not
known, the current thinking is that PASC is a multi-
factorial process that manifests in diverse clinical
and demographic phenotypes. In addition, there is
yet to be a standard working definition of PASC
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and objective phenotypes have yet to be determined.
As a result, studying the pathophysiological basis of
PASC is going to be challenging and require large
numbers of study participants with well curated con-
trol groups.

LEVERAGING THE STUDY OF OTHER CHRONIC
INFECTIONS TO UNDERSTAND POST-ACUTE SEQUELAE
OF SARS-COV-2 INFECTION

The infectious disease research community has
developed tools over the last two decades that can
be leveraged to support research into duration of
immunity and immunologic consequences following
SARS-CoV-2 infection. Decades of research in
chronic viral infections, such as HIV as mentioned
above, shows that tissue persistence and ongoing
inflammation and immune activation can lead to
increased morbidity across multiple organ systems.
In addition, other chronic viral infections, such as
CMYV, may lead to long-term inflammation in those
with various immune suppressing conditions such as
HIV and organ transplantation and increases risk of
cardiovascular disease through chronic immune dys-
regulation,'”'*’ and tools have been developed to
study tissue-based disease that can be applied to the
long-term pathogenesis of COVID-19. Although
SARS-CoV-2 is predominately thought of as a
respiratory illness, viral receptors, suchy as ACE2,
can be found throughout various tissues in the body,
including endovascular tissue and many organ sys-
tems.'**'°” Given data hinting at potential viral per-
sistence in gut tissues, many of the potential drivers
of PASC could require tissue investigation for
meaningful in-depth mechanistic studies.

First, there is an urgent need to understand the
long-term immunological and inflammatory impact
of SARS-CoV-2 infection in mucosal, gastrointesti-
nal and respiratory tissues. Whereas procedures
such as bronchoalveolar lavage can be relatively
easy in patients requiring mechanical ventilation for
diagnostics or therapeutics, invasive or semi-inva-
sive sampling in the setting of convalescent disease
presents greater challenges. Although challenging,
the HIV research community has developed a wide
range of translational research tools to study viral
persistence and immune and inflammatory responses
in various mucosal, lymphoid and other tissues
which can be applied to the study of COVID-19
and PASC. For example, gut tissue biopsies and
lymph node sampling are routinely performed in the
clinical and translational HIV research settings, and
the study of these tissues has revealed much
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information on how HIV persists in the setting of
suppressive antiretroviral therapy over time and
how immune responses (or lack thereof) interact

Table I. Translafional science questions related to long-
tferm immunologic consequences of COVID-19

Humoral and Cellular Immunology

What is the role of T cells in preventing or mitigating the
severity of acute infection or re-infection in those with
prior SARS-CoV-2 infection or vaccination?

At what point following infection or vaccination is pro-
tection from hospitalization and severe illness lost? At
what point is protection from re-infection lost?

How does post-infection immunity compare with post-
vaccine immunity? How does this immunity compare
across emerging variants of concern?

What is the functional half-life of SARS-CoV-2-specific T
cells and amnestic potential following infection or
vaccination?

How do novel SARS-CoV-2 therapeutics, including anti-
virals and immunomodulatory agents, affect long-
term immunity following natural infection?

Are the compensatory T cell responses observed in
immunocompromised patients with imparied humoral
immunity following vaccination protective?

Mucosal Immunity

What are the key factors in determining the presence
and duration of protective mucosal immunity?

How does immune memory differ between what has
been observed in peripheral blood with various tissues
(eg. mucosal and organized lymphoid tissues, lower
respiratory tract, etc.)

What is the role of secretory and circulating IgA
antibodies?

Post-Acute Sequelae of SARS-CoV-2 Infection

Are there immune mechanisms active during acute
infection that predict the development of post-acute
sequelae of SARS-CoV-2 infection (PASC)?

Are there immune mechanisms that are initiated during
the recovery phase (ie, after acute infection has
resolved) that are associated with PASC?

If immune mechanisms are found to underlie PASC, can
we distinguish persistent immune perturbations from
the sequelae of so-called “hit-and-run” mechanisms?

Does SARS-CoV-2 antigen persist beyond the period of
mucosal viral shedding, either in the form of replico-
fion-competent or non-replication-competent virus? If
so, at what body sites?

Do inadequate or excessive immune responses (includ-
ing autoimmune responses) contribute to PASC?

If immune mechanisms drive PASC, are there interven-
tions which can prevent or tfreat PASC symptoms?

Will PASC lead to increased risk of cardiovascular or
neurologic diseases over tfime?

Quantifying Tissue SARS-CoV-2 Burden and Sequelae

What tissue-based measurements will be informative in
determining whether SARS-CoV-2 genetic material or
protein persist in tissues? What measurements will be
acceptable in those who have entered the convao-
lescent phase?

Are there non-invasive methods of measuring whole-
body immune responses or inflammation in the setting
of SARS-CoV-2 infection?

Pelusoetal 7

with infected cells."”'"'°! In addition, in situ study
of viral infection within an anatomic histological
context has proved critical in elucidating the burden
of infection and impact on immune and inflamma-
tory responses.' 2! In addition to the gastroin-
testinal studies as discussed above, studies of
COVID-19 are now emerging examining the role of
T and B cell memory responses in various tissues
(eg, lung-associated lymph nodes in adults or tonsil-
lar tissue in children) and mucosa-association
invariant T cells in lower airways. It is likely that
analysis of human nasopharyngeal, respiratory,
lymph node, gut and vascular endothelium will be
necessary to fully understand the long-term immune
and inflammatory implications of COVID-19. Given
the challenges of studying tissues that are not rou-
tinely accessible to clinical sampling, such as the
brain, heart, liver, spleen, and deeper lymph node
chains, to name just a few, non-invasive technolo-
gies to determine the burden of SARS-CoV-2 infec-
tion and short- and long-term immune and
inflammatory sequelae are urgently needed. Table 1
summarizes many unanswered translational science
questions related to long-term immunologic conse-
quences of COVID-19.

CONCLUSION

SARS-CoV-2 immunology is a rapidly changing
field, with new questions arising as the pandemic con-
tinues to grow in complexity. The next phase of
COVID-19 immunology research will focus on clearer
characterization of the immune processes defining
acute illness, development of a better understanding of
the immunologic processes driving protracted symp-
toms and prolonged recovery (ie, PASC), and a grow-
ing focus on the impact of therapeutic and prophylactic
interventions on the long-term consequences of SARS-
CoV-2 infection.
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