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Soil microbiomes are highly diverse, and to improve their representationin

biogeochemical models, microbial genome data can be leveraged to infer key
functional traits. By integrating genome-inferred traits into a theory-based
hierarchical framework, emergent behaviour arising from interactions

of individual traits can be predicted. Here we combine theory-driven
predictions of substrate uptake kinetics with a genome-informed trait-based
dynamicenergy budget model to predict emergent life-history traits and
trade-offs in soil bacteria. When applied to a plant microbiome system,

the model accurately predicted distinct substrate-acquisition strategies
that aligned with observations, uncovering resource-dependent trade-offs
between microbial growth rate and efficiency. For instance, inherently
slower-growing microorganisms, favoured by organic acid exudation at
later plant growth stages, exhibited enhanced carbon use efficiency (yield)
without sacrificing growth rate (power). This insight has implications for
retaining plant root-derived carbonin soils and highlights the power of
data-driven, trait-based approaches for improving microbial representation
inbiogeochemical models.

Microbes are major drivers of carbon (C) and nutrient fluxesin Earth’s
terrestrial ecosystems; however, Earth system models designed to
inform climate change adaptation and mitigation strategies have
typically not included explicit representation of soil microorgan-
isms, despite mounting evidence that the explicit parameterization
of microbial processes improves model predictionand reduces uncer-
tainty in terrestrial systems"*. This lack of representation is rooted in
the failure of common organizing principles derived from plant and
animal ecology, such as the descendants of r-K selection theory® or
Grime’s competition-stress tolerance-ruderal (C-S-R) framework*?,

to fully capture the complexity of microbial systems®™. To accurately
predict the sensitivities of soil organic C stocks and plant productivity
inresponse to changing climate conditions, it is crucial to develop a
more comprehensive understanding of the role of microbes and their
traits. However, the majority of organisms comprising Earth’s micro-
biomes have yet to be cultivated and may never be'®. This means that
ourwindow into the ecology of microorganisms, such as those in soil,
remains primarily through the lens of genomic information, which
is accumulating far more rapidly than phenotypic information from
laboratory isolates™2,
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Trait-based models have the potential to represent trait variation
by aggregating datafrom hundreds or thousands of genomes, provid-
ing a data-driven approach to organize the complexity of microbial
communities with less emphasis on traditional ecological theory and
phylogenetic origin®. Among the various modelling approaches avail-
able for studying microbiomes, trait-based models are an attractive
intermediate complexity approach to exploring how the hierarchy
of traits interacts to influence the fitness of microorganisms within
a community. Yet, despite this promise and potential to scale the
representation of microorganisms usingatrait-based representation
inbiogeochemical models, amajor challenge remains in their param-
eterization®. Our recent work provides a computational pipeline and
atoolset (‘microTrait™) to infer microbial traits from genomic data
and establish links between each genome-derived traitand ecological
strategy at different levels of trait granularity. The resulting informa-
tioncanbe used toinitialize and parameterize mechanistic trait-based
models spanning a hierarchy of structural complexity to explore the
drivers of variation in the distribution and co-occurrence of micro-
bial traits”. Moreover, incorporating emerging concepts and theory
outside of traditional microbiome science, such as thermodynamic
and biophysical theory, proves valuable for understanding traits of
microorganisms'®, This integration facilitates the search for generaliz-
able principlesor ‘rules’thatare applicable across diverse microbiome
systems", furthering theory development, and the elaboration of
large-scale predictive models®.

Here we present agenome-informed, trait-based dynamicenergy
budget model (DEBmicroTrait; Fig. 1 and Supplementary Table 1).
This modelintegrates genome-predicted traits and theirinteractions
within a dynamic environment, allowing life-history strategies and
niches of soil bacteria to emerge from fundamental thermodynamic,
biophysical and metabolic principles that constrain trait variation, trait
linkages (defined as co-occurrence of traits in the same organism) and
ultimately organism fitness. We have initially focused on integrating
quantitative genomic traits that distinguish bacteria at a critical soil
interface, therhizosphere (thatis, the area surrounding growing plant
roots). While quantitative life-history and biophysical traits (such as
genome size, maximum growth rate, cell size and rRNA operon (rrn)
copy number) do not encompass the entirety of potential interac-
tions and traits in bacterial ecology, they contribute substantially to
explaining variations in resource utilization and provide ecological
insights into species competitiveness at different stages of succes-
sion or resource depletion®>?. These life-history traits interact with
bacterial preferences for diverse types of substrates, which can be
predicted from genome sequences®*. The growing development of
large collections of sequenced rhizosphere bacterial genomes”>**,
coupled with high-throughput metabolomics methods?, enables inte-
gration of knowledge connecting root exudate dynamics and microbial
metabolism into predictive computational models of plant-microbe
interactions.

The rhizosphere is chemically diverse and a critical hotspot for
biogeochemical transformation with high potential for C stabilization
through microbial C assimilation and subsequent mineral-surface
stabilization”. To better understand interactions between life-history
traits, biophysical traits and bacterial substrate preferences, we simu-
lated the growth of 39 soil bacteria on 82 plant exudate metabolites. We
developed a theory-based approach to estimate microbial substrate
uptake parameters using only genome- and substrate-derived traits. We
simulated population-level estimates of key traits, including realized
growthrate and C assimilation rate, across different substrate classes
that are known rhizosphere exudates, and benchmarked simulations
quantitatively and qualitatively against observations. We identified
microbial growth strategies that arise from the multivariate trait combi-
nationsinthe absence of soil matrix effectsin this case. These strategies
emerge fromgeneralizablerules describing how bacterial traitsinteract
with plant exudation traits and are defined by the cellular trade-offs

associated with acquiring and assimilating diverse substrates. Most
importantly, these strategies can be explained by trade-offs between
growth rate (power) and growth efficiency (yield) that impose strong
constraints on microbial community composition in natural habitats®.
Furthermore, these trade-offs have implications for the formation of
soil organic matter via the microbial route”.

Results

Growing roots dramatically alter the chemical and physical habitat
for microorganisms and exude photosynthesis-derived C that can be
broadly classified into sugars, amino acids, organic acids, fatty acids,
nucleotides and auxins®. In fact, root exudation might be a general-
izable trait with rates and composition that can be predicted from
plantfunctional traits, with consistent temporal patterns across plant
development stages® *. The chemical composition of root exudates
interacts with microbial substrate preferences, which are predictable
from genomic traits (Fig. 2). Gene annotations assess functional poten-
tial—the capacity for organisms to perform. These soil microorganisms
differin genomictraitsrelated to resource acquisition, particularly with
regard to their metabolic potential to utilize organicacids (Fig.2b) and
their potential for plant polymer degradation using glycoside hydrolase
enzymes (Fig. 2c). Contrary to expectations, we previously found that
both fast-growing as well as slow-growing strains are enriched in the
rhizosphere (both observed and predicted on the basis of genomic
signatures”***; Fig. 2a). The presence of potentially distinct life-history
strategies challenges the long-standing assumption that living roots
select for fast-growing r-strategists that compete for a small set of
labile C substrates®. With the caveat that it is a simplification of the
complexresource requirements of microorganisms, we assumed that
bacteriain the rhizosphere are primarily limited by organic C inputs
and energy availability. Furthermore, we hypothesized that substrate
preference and substrate utilization efficiency interact to confer a
growth efficiency-based fitness advantage for many bacteriain the
rhizosphere. However, growth efficiency can vary widely with limit-
ing resource concentration and the free energy content of chemical
compounds that are released by plants®. These patterns are overlaid
with physiological variations in resource use between bacteria®~*
that probably affect phenotypic trade-offs such as C use efficiency
(CUE), suggesting that these factors combine to influence rhizosphere
microbial community dynamics.

Substrate preference in the rhizosphere

Microbial strains vary in their substrate uptake affinities, whichin turn
influences the composition of the root microbiome through ecological
processes such as niche differentiation and competitive exclusion®.
Recenttheoretical advancements based onan analytical approximation
of how diffusive substrates are intercepted by microbial cells in soil
have allowed the derivation of testable relationships between substrate
uptake kinetic parameters, including maximum specific reaction rates
(Vmay) and binding half-saturation constants (also known as substrate
affinity parameters, K), while also taking into account the biophysical,
metabolic and life-history traits that influence substrate demands
of soil bacteria*®. To synthesize these relationships, we considered
genomic traits that provide constraints on the interactions between cell
size, cellular C density, cell surface area-to-volumeratio and growth rate
potential. We used the substrate uptake potential required to support
agivengenome-inferred maximum specific growth rate as an objective
functionandinvestigated the variation and allometric scaling of both
kinetic parametersin the equilibrium chemistry approximation (ECA)
for substrate uptake®. The estimated substrate binding site densi-
ties (thatis, transporters) were benchmarked against existing dataon
nutrient uptake (Supplementary Fig.1aand Table 4) and subsequently
distributed across substrate classes on the basis of the relative gene
frequencies of specific transporter genes (Fig. 2b). Thisapproach allows
forthe consideration of the evolutionary history of microbial substrate
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Fig.1| Overview of DEBmicroTrait. a, Schematic of the DEBmicroTrait model
showing dynamic energy budget (DEB) allocation for a single-reserve (E), single-
structure (V) heterotrophic microorganism®’ feeding on different substrates (S).
Diffusion-limited substrate uptake occurs through specific substrate binding
sites (coloured according to substrate chemical class). Substrate uptake kinetics
are described by the ECA*’. Reserve and structural biomass are conceptualized
as generalized chemical compounds characterized by macromolecular
composition (C,H,0.N,) and chemical potential (i ). Top: the coupling of
catabolism and anabolism, that is, the catabolic and anabolic reactions through
which energy is obtained and utilized for ametabolismin which the C source

is also used as the electron donor*’. The coupling between catabolism and
anabolism exists both in reserve assimilation and structural (and extracellular
enzyme) synthesis. Bottom: the sequential assimilation (p,), partitioning and
dissipation of substrate and reserve compounds, with maintenance (p,,) taking

Codon-usage bias

® 1 ¢

|rRNA operon Copiesl I Transporter genes I | Glycoside hydrolase gene|

EESA22-040

priority over growth (pg) and extracellular enzyme production (py). The turnover
of reserve and structure (y,;, ) is density-dependent”. Essential fluxes are
labelled and defined (see also Supplementary Table 1). b, Workflow combining
biophysical theory and genome inference to constrain DEBmicroTrait model
parameters: (1) Cell size covaries with genome size”. (2) Codon-usage bias sets
anupper bound on protein translation power (k%) (3) The number of ribosomal
RNA operons predicts translation efficiency (y,,7). (4) The cellular composition
influences C supply and demand, whichin turn determines the substrate binding
site density required to enable substrate uptake at arate commensurate with the
maximum specific growth rate (0., ). Binding sites can be allocated according
torelative gene frequencies of transporter genes in the genome (z,). (5) Basal
maintenance rate is proportional to cell volume (k). Glycoside hydrolase gene
frequencies scale the constitutive extracellular enzyme production rate (zy"").

preference. Within each substrate class, the genome-inferred values
fall within the range of variation observed in published experimental
data (Supplementary Fig. 1b and Data 1). For amino acids and sugars,
the differences between the values reported for cultured organisms
in the literature and our predictions were statistically indistinguish-
able (P> 0.05).In contrast, for organic acids, we observed statistically
significant deviations from the full data set (P=0.04).

The predicted uptake kinetic parameters vary widely dueto factors
such as substrate diffusivity, cell size and biomass-specific accessible
substrate binding sites in the rhizosphere (Fig. 3). Soil bacteria previ-
ously defined as responding negatively to root growth* may actually
achieve significantly higher maximum specific uptake rates to match

their higher genome-predicted maximumspecificgrowthrates (Fig. 3a).
However, their reduced ability to uptake organic acids and auxins that
canbe prominentinrootexudates (Fig. 2b) outweighs their higher max-
imum growth potential (Fig. 2a). Overall, the optimization of V,,,,and
Kmodulates the competitiveness of rhizosphere organismsaccording
tothe placement of their uptake strategies across a concave trade-off
curve (Extended Data Fig. 1a). This concave shape allows for the mainte-
nance of optimal substrate uptake phenotypes, enabling organisms to
thrive under varying external substrate concentrations*’. Amino acids
and sugars are generally considered to be the most abundant classes
in terms of the total amount exuded*. Our analysis predicts that the
affinity constants of these rhizosphere bacteria for amino acids are
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Fig.2| Genomic trait distributions of soil bacterial isolates classified on the
basis of the response to Avena barbataroot growth. Modified from ref. 22.

a, Genome size, gene richness, minimum generation time and rRNA operon

copy number predicted from genome sequences of soil isolates.

b, Monomer transporters. ¢, Glycoside hydrolase enzymes. Gene copy numbers
for monomer transporters and glycoside hydrolases were normalized by genome
size. Differences in genomic trait distributions between bacteria that responded
positively and negatively to root growth were evaluated using the Kruskal-

Wallis one-way analysis of variance (ANOVA) (Supplementary Data 1), and traits
with significant differences are annotated according to the R project standard

convention® used throughout the paper (***P < 0.001,**P< 0.01,*P < 0.05).
Isolate response groups were classified on the basis of changes in 16S rRNA gene
abundance over the plant (A. barbata) developmental stages. In each boxplot, a
point denotes asingle isolate. The top and bottom of each box represent the 25th
and 75th percentiles, the horizontal line inside each box represents the median
and the whiskers represent the range of the points excluding outliers. Positive
responders n =19, negative responders n = 8.d, Principal component analysis
illustrating covariations among genomic traits shown in a-c. Highlighted
symbols represent average coordinates of positive, negative and undefined
(opensquare) (n=12) isolate response groups.

nearly optimal at micromolar concentrations (Extended Data Fig. 1b).
Inaddition, we predict thatincreasing substrate affinity by increasing
the substrate binding site density beyond ~-0.1% of the cell surface area
provides little benefit to soil microorganisms (Supplementary Fig. 2b).
This finding contrasts with well-mixed systems at equilibrium, such as
oligotrophic marine systems, where the activity of loaded binding pro-
teins monotonically increases affinity and specific uptake rate at low
substrate concentrations*:. It highlights that the ecological trade-offs
that define fitness in soil may differ from those that define life-history
dichotomies in other habitats*. We observe that the substrate affinity
constant that maximizes the specific uptake rate at low concentrations
isclosest tothe average value for organicacids (0.26 puM; Extended Data
Fig.1b), suggesting that certain soil bacteria have evolved specialized
affinity uptake systems to colonize specific metabolic niches in soil.

However, resource acquisition traits are only one facet of ecologi-
calstrategy variation, and interactions with cellular resource allocation
strategies are key. To address this, we analysed biomass production
(BP) and respiration (BR) rates of 39 soil bacteria growing on 82 root
metabolites across combined 3,198 batch simulations (Fig. 4) to explore
relationships between realized growth rate and yield (that is, CUE),
calculated as BP/(BP+BR).

Power-yield signatures in bacterial rhizosphere succession

Microbial access to soil C, as well as species-specific differences in
the energetic demands required to use different substrate classes,
select for distinct growth regimes in the rhizosphere (Fig. 4a). While
growth rates in the low growth rate regime (0.0044-0.039 h™!) are
reflective of growth rates of autochthonous bacteria occurring in una-
mended soils*®, the growth rates in the high growth rate regime span
typical values observed in pure cultures under laboratory conditions
(0.039-0.46 h™). Maximum realized growth rates were partially con-
firmed with measured growth rates at C concentrations representative
of the original growth media used to cultivate the bacterial isolates
(”=0.85;Supplementary Fig. 3and Table 5). Potential CUE values range

from 0.07 to 0.74 with a median of 0.49, suggesting that on average
approximately half of the consumed C is typically lost via respiration
(Fig.4b).Bacterial traits related to the assimilation of C had the largest
influence on model-simulated CUE (Supplementary Fig. 4). A similar
amount of variation in CUE was explained by phylogeny at class level
(20%) relative to substrate class (15%; Supplementary Table 2), indi-
cating that interactions between substrate traits (for example, mean
differencesin molecular size and nominal oxidation state of Camong
substrate classes) and microbial traits (for example, transporter gene
frequencies, protein synthesis efficiency, relative maintenance costs)
provideastrong foundation for this aspect of soil bacterial ecology*’*%.

Bacterial growth rate and CUE trade off during growth on sub-
strates of high bioavailability (defined by solubility and hydrophobic-
ity*’; Supplementary Data1) exuded early during plant growth (sugars,
aminoacids), highlighting an early successional growth strategy where
power is optimized over yield (F,;=13.83, = 0.82, P= 0.03; Fig. 4¢).
Maximum CUE is achieved for those bacteria that responded posi-
tively to root growth when simulated with glucose as the substrate,
while maximum growth rates occur at suboptimal CUE for organisms
with the fastest growth rates. The rate-yield trade-off emerges from
thermodynamic constraints reflecting energy generation and trans-
fer from catabolism to anabolism, resulting in decreasing structural
biomass yield to accommodate increasing protein synthesis rates
(Supplementary Fig.5), as well as increased maintenance costs at high
growth rates. Energy dissipation increases with the rate of C uptake®°,
resulting in lower thermodynamic efficiency for growth on amino
acids ascompared with sugars, and an overall disproportional scaling
between biomass production and respiration rates (with slope that is
significantly different fromone, 8 € (0.56, 0.63), t, 4,5, =—24,P<1x1075;
Fig. 4d). Fast growth is constrained by internal substrate limitation
caused by the accelerated dilution of storage compounds due to (vol-
ume) growth, indicating that these bacteria grow faster than they can
assimilate new substrate during early rhizosphere successional growth
stages. The corresponding realized growthrates are strongly correlated
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denotes asingle substrate-consumer relation in the ECA*’. The top and bottom
of eachbox represent the 25th and 75th percentiles, the horizontal line inside
eachbox represents the median and the whiskers represent the range of the
points excluding outliers. Substrates n = 82, consumers n=27.

with the number of rrn copiesin the genome (Supplementary Table 3),
where this single genomic trait explains about a third of the variation
(”*=0.30). This supports the hypothesis that genomic traits related to
maximum growth potential are good predictors of growth responses
toinitial resource pulses in the rhizosphere*e.

The contribution of bacteriato soil C cyclingin therhizosphereis
primarily determined by anabolic processes® that control the alloca-
tion of C and energy for maintenance, the synthesis of storage com-
pounds, as well as extracellular enzyme production and assimilation.
These processes represent nearly independent (orthogonal) axes of
variation (Fig. 4e), providing compelling evidence for the ecological
classification of rhizosphere bacteriainto the yield-acquisition-stress
(Y-A-S) framework of life-history strategies’. Within this framework,
bacteriathatresponded positively to root growth could be considered
Y-strategists, actively exploiting available low-molecular-weight C
sources through direct capture and assimilation. However, these bac-
teria also showed greater latency in their growth response (Kruskall-
Wallis test, P<1x107%), suggesting that they may be assimilating
additional C in the rhizosphere that has been transformed by previ-
ous microbial processing. Interestingly, the absence of a trade-off
between niche breadth and yield (Extended Data Fig. 2) indicates a
high degree of resource specialization among these organisms. Niche
differentiation is further facilitated by resource acquisition strate-
gies of negative responders (A-strategists), which appear to be better
adapted to the breakdown of root polymeric carbohydrates via the
constitutive expression of carbohydrate-active enzymes*. Both Y-and
A-strategies align with functional differences encoded in genomes
alongthe copiotroph-oligotroph continuum. Copiotrophs frequently
possess agreater prevalence of gene families involved in transcription,
transport and metabolism of carbohydrates and amino acids, as well
as carbohydrate-active enzymes such as glycoside hydrolases and
polysaccharide lyases. This overall strategy enables copiotrophs to
rapidly acquire nutrients and produce proteins™®.

Acrosstime, we find that yield and resource acquisition strategies
are tightly linked along gradients of resource availability, as bacteria
grow more slowly onroot exudates that are released during later plant
developmental stages (organicacids, fatty acids, nucleosides, auxins).
For slower-growing bacteria, only 4% of the variance in growth rates
is explained by rrn copy number and genome size (Supplementary
Table 3), consistent with findings that there is essentially no selective
advantage to optimizing translational power via codon usage at low
growthrates®. The observed proportional scaling between biomass

production and respiration (with slope 8 € (0.95,1.05), ¢, 33, = 0.06,
P=0.95; Fig. 4d) is consistent with an overall oligotrophic strategy of
energy production, conversion and cell maintenance. Indeed, basal
maintenance requirements and extracellular enzyme production
explain most of the variability in the growth strategies of isolates
at low growth rates (Fig. 4f). The ecological strategies of bacteria
that responded negatively to root growth or showed no response to
root growth coalesced along both principal components, implying
that succession in the rhizosphere is accompanied by a significant
decrease in functional diversity, which is consistent with previous
observations™. As the plant matures, the soil surrounding roots
harbours more conservative, slower-growing organisms that do not
exhibit atrade-off between growth rate and efficiency since turnover
is slower for these organisms (F,, = 7.74, r* = 0.41, P= 0.02; Fig. 4c).
Taken together with CUE values (0.07-0.74) that span almost the
whole range of values typically observed in soil (Fig. 4a)**, we hypoth-
esized that selection for efficiency via substrate preference is a pri-
mary driver of rhizosphere community composition during the later
stages of plant development.

Rhizosphere carbon stabilization via resource specialization

To test whether bacterial preference for specific substrates could
interact with CUE to confer a selective advantage in the rhizosphere,
we analysed simulations of growth on mixed media (a combination of
82 exudate substrates) for differences in substrate uptake across the
positive and negative rhizosphere responder groups. We found that 39
ofthe 82 exudate substrates show substantial differencesin substrate
uptake between bacteria that responded positively or negatively to root
growth (Fig. 5). For 16 of the 39 root exudates that had previously been
identified experimentally, the largest cumulative differences in sub-
strate uptake by bacteria that responded positively to root growth were
for plant hormones (indole-3 acetic acid, abscisic acid), followed by a
cluster of aromatic organicacids (caffeic, shikimic, 3-dehydroshikimic,
trans-cinnamic, salicylic, nicotinic). Nucleosides, on the other hand,
were more preferentially consumed by the bacteria that responded
negatively to root growth. Differences in uptake of 16 out of the 39
substrates agree qualitatively with uptake from the growth medium
measured by liquid chromatography-mass spectrometry (LC-MS),
withoutaccounting for interactions with the soil matrix?. Furthermore,
bacteria that responded positively to root growth had a 39% higher
growth efficiency onaverage for organic acids with aromatic rings than
thoseisolates that responded negatively to growing roots (Fig. Sinset).
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Fig. 4 | Phenotypic traits and trade-offs during batch growth on root exudate
metabolites. a,b, Histogram of predicted growth rate (a) and predicted CUE (b)
acrossisolates and root exudate metabolites in DEBmicroTrait batch simulations.
Throughout plots a-f, two distinct growth regimes are distinguished by brown
(highgrowth regime) and grey (low growth regime) colours on the basis of the
bimodal growth rate distribution shownin a. ¢, Relationships between realized
growth rate and carbon use efficiency. Median trait values are plotted using
different colours and shape depending on substrate class (sugars, organic acids,
amino acids, fatty acids, nucleotides, auxins) and isolate response to plant

root growth (positive, negative, undefined). d, Relationships between biomass
production and respiration rates. Symbol size is scaled by carbon use efficiency.
Incandd, solid lines indicate the observed regression lines, while shaded areas
indicate the 95% confidence bands. e,f, Principal component analysis illustrating

Biomass respiration (nmol C cell™ h™)

PC 1 (14% explained var.)

covariations among modelled fluxes delineating growth strategies of isolates
athigh (e) and low (f) realized growth rates. Highlighted symbols represent
average coordinates of positive, negative and undefined isolate response
groups. The significance threshold for two-sided Pvalues was set at 0.05. The
principal components of the different response groups are significantly different
(Hpci(2) =329, Hpe»(2) =105, P= 2.2 x 107%). Dunn’s test with Benjamini-Hochberg
correction confirmed the significant differences between positive and negative
responders along PC1(PC2) (P=2x107¢(9.3 x10™*)), and negative and undefined
responders (P=1.6 X107 (2 x107%)) in the high growth regime. In the low growth
regime, the ecological strategies of negative and undefined responders coalesce
along both principal components (P= 0.43 (0.09)). They differ significantly

from positive responders (P=2.5 x107%). Substrates n = 82, consumers n =39,
simulations n=3198.

Discussion

Root-microbial interactions have significant effects on the soil C
cycle, altering the amount and types of organic matter that become
associated with mineral surfaces. Focusing on recent studies that
have identified direct predictive links between plant exudate com-
position and rhizosphere community assembly, and a theory-based
approachto predict microbial substrate uptake kinetic traits directly
from genome sequences, we synthesized a suite of genome-derived
traits into model-based predictions of life-history strategies for a set
of soil bacteria. We found that interacting microbial traits (maximum
specific growthrate, substrate uptake kinetics, ribosome biosynthe-
sis potential and extracellular enzyme synthesis) have additional
interactions with the dynamics of root exudate chemistry, creating
emergent patterns of bacterial C use efficiency. These combinations
oftraits manifest as life-history strategies and have consequences for
the path that small molecules take on the way to becoming stabilized
soil organic matter.

Rootexudates can follow distinct pathways before integrating into
the soil matrix: direct sorption to mineral surfaces or microbial trans-
formation®. While root-derived compounds may rapidly exchange
with mineral surfaces’®, it is now widely recognized that the direct
microbial transformation of labile photosynthate C into stabilized
forms allows microorganisms to contribute disproportionately to
persistent C in the soil***”*%, On the basis of our results, we propose

that multidimensional trait interactions influence the pathways of
mineral-associated soil organic matter (SOM) formation throughout
the plantgrowing season (Fig. 6). As microbial composition and abun-
dance change over the growing season, the initial exudation of sugars
and amino acids with weak sorption to mineral surfaces coincides
with power-optimized growth strategies (resulting in more C overall
into microbes). C inputs from sugars and amino acids stimulate the
growth of resource acquisition (A-) strategists and may accelerate
the decomposition of surrounding organic residues, mostly of plant
origin, as previously observed in this study system***’, The growth
response of individualsis highly dynamic, with fast growth correlating
with high density-dependent turnover of microbial biomass (Fig. 4e).
This rapid initial turnover of biomass during the vegetative phase
implies that secondary processing, fuelled by the products of microbial
anabolism, comprises an important component of the C that cycles
through rhizosphere communities®®. While the metabolic products of
microbes subsisting on glucose or amino acids earlier in the growing
season may contribute to direct mineral-surface stabilization®, the
subsequent emergence of more yield-optimized guilds (more C per
specific microbe) may selectively enhance the mineral stabilization
of compounds. This enhancement occurs through the deposition of
senesced microbial biomass containing greater proportions of lipids
and proteins and fewer aromatics®’. Therefore, these pathways may rep-
resent two distinct routes to mineral stabilization of C—which of these
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Fig.5|Substrate preference and carbon use efficiency in mixed root exudate
medium. Substrates with the largest differences in uptake are shown on the x axis
(n=39).Eachbar corresponds to differences in substrate uptake quantified as a
percentage of the difference in substrate depletion from the medium. Substrate
uptake preferences that were confirmed experimentally?? are denoted by the
letters ‘Ic’. Inset: differences in carbon use efficiency for substrates that were
preferentially consumed by bacteria that responded positively (positive (A),
n=27)and negatively (negative (A), n =12) to root growth. Differences in carbon

use efficiency within (y*=9.6, P=0.002) and between (y*=23.6,P=1x10"°)
substrate preference groups were evaluated using the Kruskal-Wallis one-way
ANOVA. In eachboxplot, a point denotes a single substrate-isolate pair. The top
and bottom of each box represent the 25th and 75th percentiles, the horizontal
lineinside each box represents the median and the whiskers represent the range
of the points excluding outliers. Substrates n = 82, consumers n = 27, simulations
n=27.

pathwaysis quantitatively most effective in creating mineral-associated
SOM remains to be determined.

Using batch simulations to infer microbial life-history strate-
gies and niches entails a trade-off. This is because the behaviour of
organisms in culture may not always align with their performance
in natural settings*®. However, ground truthing of genome-inferred
microbial traitsis needed to enhance the credibility and confidencein
genome-informed model predictions. Furthermore, using a consistent
methodology to measure CUE across a broad range of microbial taxa
isnecessary to determine how physiological variationin substrate use
between rhizosphere bacteria impacts CUE**, The same holds true
for substrate uptake measurements, the accuracy of which is signifi-
cantly influenced by experimental design elements, such as incuba-
tion durationand the preceding physiological state of the organisms.
Consequently, deviations from model predictions might potentially
stem from estimation inaccuracies or a lack of correlation between
the half-saturation concentration for uptake and the half-saturation
concentration for growth over extended incubation periods®. The
simulation results presented here represent model-based hypotheses
to confirm with appropriately designed experiments. These include
consideringarange of abiotic and biotic factors such as diurnal exuda-
tion dynamics®*, competition with roots and mineral surfaces for essen-
tial nutrients®, and interactions with other organisms®’. By integrating
across a hierarchy of traits, genome-informed trait-based modelling

facilitates the generation and testing of hypotheses and can provide a
robust foundation for the data-driven representation of microorgan-
isms in many complex systems.

Methods

DEBmicroTrait model description

DEBmicroTrait assumes that microbial metabolism can be described
by the standard dynamic energy budget (DEB) theory®’. DEB theory
partitions the total biomass into generalized chemical compounds
(reserve and structural biomass) with specific functions: (1) reserve,
denoted E, comprising the cellular growth machinery, includ-
ing ribosomal proteins and RNA involved in the biosynthesis of
proteins and/or additional ribosomes, as well as localized storage
compounds (forexample, glycogen, polyhydroxybutyrate) that buffer
metabolism against external fluctuations in resource supply and
(2) structural biomass, denoted V, comprising essential cellular pro-
teins, DNA and other macromolecules that make up the cell wall and
membrane®®, Structural biomass is subjected to maintenance while
reserves are subjected to continuous external supply and utilization
(Fig. 1). The utilization of reserves follows first-order dynamics when
expressed as areserve density, m.= E/V. The first-order turnover rate
isgivenby

ke = v/Lc = pam/m}, ()]
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limitation occurs from environmental supply, except for select root metabolites
that are preferentially consumed in the rhizosphere. These compounds select
for organisms with traits (higher relative transporter gene frequencies, lower
relative maintenance investment, higher protein synthesis efficiency, lower
biomass turnover) that resultin higher carbon use efficiency than typically
observed experimentally when phenolic or polyvalent organic acids are added
to bulk soil”’. These results suggest that microbial community assembly patterns
canbe predicted from models coupling substrate-use preferences and chemical
succession in the rhizosphere?”*°. f, Understanding these patterns can guide
strategies for engineering plant phenotypes and microbial communities,
enhancing carbon stabilization through microbial carbon assimilation and
subsequent stabilization on mineral surfaces.

where vis an energy conductance parameter, L. = V> is volumetric
length, p,, is the maximum assimilation flux and m} represents the
ratio of assimilation and mobilization fluxes, that s, the reserve capac-
ity of the organism that is reached at long exposure to high substrate
concentrations. The reserve pool buffers between environmental
substrate uptake and microbial cell metabolism®’.

If the net synthesis rates of reserve and structure are balanced,
weak homoeostasis implies that substrate limitation may occur
inside the cell, capturing the dilution of reserve compounds due to
(volume-) growth at a rate proportional to the reserve density’. It
follows that the reserve mobilization power of the organism is given
by the difference between the first-order turnover rate of reserve and
dilution by growth,

2

pc = pekemg — mgr),

where i, measured in Gibbs energy per mol or C-mol, is the chemical
potential of reserveand r = %/‘;—‘: denotesthe specific growthrate of the
organism.

Thereserve mobilization power, p., is partitioned betweengrowth,
Pc, maintenance, py, and extracellular enzyme production, py, power,
thatis,

Pc =P +Pwm + Px» (3)

where, in the absence of regulation, extracellular enzymes are pro-
duced constitutively atarate proportional to the specific growthrate”.
Dissipative loss in the growth and protein synthesis machinery s linked
totheenergetic cost of functional protein increasing with translation
speed”. The basal maintenance rate is taken as proportional to cell
volume—avalid assumptionifthe cumulative cost of protein turnover
andreplacement plays animportantrolein the overall energy budget
and the amount of protein is proportional to cell volume”. Since the
maintenance costs of protein turnover are preferentially on the expense
of reserve materials, selection for high translation power (leading to
reduced translational yield, y,,) may also trade-off with the tolerance
for starvation of the organism. However, somatic maintenance costs,
ky, can be supplemented with structural biomass when starvation leads
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tothedepletion of the reserve density, albeit at higher overhead costs
inthe transformation™.

An explicit equation for the specific growth rate is obtained by
combining equations (1) and (2) as

r= Pc_ _ kemg — (Pw + px)/He
HEYEv Mg + Yey

@)

where y.,=1/y, denotes the inverse of the structural growth effi-
ciency. Theinefficiencies associated with assimilation, growth, main-
tenance and enzyme production are captured as respiratory CO, losses
(BR) and contribute to the overall CUE of the organism. CUE was cal-
culated as BP/(BP+BR), where BP denotes total reserve and structural
biomass production taking into account density-dependent biomass
turnover”,

A schematic for the coupling of anabolism and catabolism, as
well as C and energy allocation in DEBmicroTrait is shown in Fig. 1.
DEBmicroTrait trait integration and auxiliary equations to translate
traits into model quantities are described below. An overview of the
traitintegration framework is provided in Supplementary Table 1.

Model assumptions for ribosome requirements. In our choice of
parameterization, we assumed that natural selection has fine-tuned
the translational power of ribosomes for optimal activity in a given
environment®®, Shifts in translational power across different bacteria
follow allometric trends in macromolecular composition according to

ke = % ®)
wherer,,,, isthe genome-inferred maximum specificgrowthrate, V, is
the total protein volume and V; is the ribosomal volume of the cell. V,,
scales sublinearly with total cellular volume and impacts the ribosomal
volume by considering how many ribosomes are required to replicate
all ribosomes and proteins within a division cycle while also replac-
ing proteins and ribosomes that have been degraded’. This places a
lower bound on overall ribosomal volume of the cell according to the
following inequality,

S LupNp(@/r +1)

> _ loveNe(s , ©)
UR(TR/r — lR(n/r + 1))

where ris growth rate, I is the average length of a ribosome in base
pairs, 7 is the maximum base pair processing rate of the ribosome, I,
is the average protein length found to be invariant across bacteria, n
and ¢ are specific degradation rates for ribosomes and proteins, N, is
thetotal number of proteins, and &, and i represent the volume of an
average protein or ribosome, respectively. While conceptually simple,
the model explains more variance in translation phenotypes across
species (= 0.78, n=11; Supplementary Fig. 6a) than genomic signa-
tures based on rrn copy number alone (r* = 0.49; Supplementary
Fig. 6b). For simplicity, we assumed that rrn copy number is a good
predictor of translational yield””. Consequently, we found that the
fraction of reserve that is mobilized for growth, thatis, y, = r/(k;my), is
negatively correlated with k. at high k; (Supplementary Fig. 5). At low
kg, the structural biomass yield remains relatively constant because
reserves can be mobilized efficiently. As a result, maximum growth
rates can occur at suboptimal yield’®.

Membrane requirements for substrate uptake. ECA kinetics provide
arobust mathematical representation of complex substrate-consumer
interactionsinsoil environments*. When applied to diffusive substrate
uptake, the substrate affinity K; (mM) for the binding of substrate
D;(iell,...,1]) tofree cellular binding sites B; (j € [1, ... . /]) in chemical
equilibrium canbe approximated as

Ky = Koy (14 —2 2 )
v 04 4Hﬁichnj ’

where Ko ; ~ k,5/k;; is the ratio of forward reaction coefficients, B;;
denotes total (free and occupied) binding sites, D, is the substrate dif-
fusivity (m? s™),r.,isthespherical cell radius (m) and n;is the cell num-
ber density (m™). The maximum substrate processing rate k; ; (s™)
defines the maximum specific uptake rate according to V,, ;= k, ;B; .
Hence, if a cellincreases its volumetric binding site density (B;;/n)), it
decreasesits substrate affinity. At the same time, decreasing the volu-
metric size while keeping the same area-specific binding site density,
B;r=npg/Anr,;, canincrease substrate affinity.

We considered binding site densities in the context of cellular sub-
strate supply and demand under conditions of balanced growth. Then,
the ratios of extensive properties (that is, intensive properties, such as
the reserve density) remain constant’. It follows that the reserve den-
sity is given by the ratio of assimilation power to reserve turnover rate
(equation1).Furthermore, cells have evolved optimal protein densitiesin
cellular compartments (for example, the cell membrane) that maximize
reaction rates®’. Cellular demand depends on biochemical processes
associated with substrate assimilation into generalized reserve com-
pounds. Accordingly, cells can differ in their assimilationyield as given by

Vep = 1 1 AGan + AGyis
By 1Ave,’ Y

cat

(8)

where A couples the stoichiometric vectors for catabolism (¥£,) and
anabolism (¥£) by determining how many times the catabolicreaction
(the energy production through substrate degradation, AG,,,) needs
to run to provide the Gibbs energy for anabolism (AG,,), with the
remaining energy dissipated into the environment (AG,). Determina-
tionof Arequiresthe calculation of the Gibbs free energy changes AG,,,
and AG,,, thelatter of whichis equivalent to the energy conversion to
generalized reserve compounds, plus the synthesis costs of
membrane-bound bindingsite proteins, thatis, AG,, = AGyjoc + AG,, ..
inour formulation. For simplicity, the elemental composition of reserve
was treated as similar to structural cell components and follows allo-
metric trendsin cellular biomolecule composition with volume’. The
Gibbs energy of dissipation denotes the Gibbs energy change of the
conversion of the biomass building block to the different biomass
components, that is, AGy, = AG,,,/v, where v is a constant fraction of
the energy dissipated in all enzymatic steps of the process. We assumed
that AG,,, is constant®, but organisms can differ in their protein syn-
thesis efficiency as described above.

Thecellular membrane area that needs to be covered with binding
sites (p,orer) tO reach transport rates commensurate with maximum
specific growth rates was obtained by solving equations (1), (4) and
(8). The estimated binding site densities of isolates matched for spe-
cific substrate molecules in the rhizosphere ranged from 0.0005% to
0.19%, withamedian covering~0.1% of the cell surface. The average esti-
mated binding site density for cumulative uptake of plant metabolites
amounted to~0.08, or 8% of the total membrane area. These estimates
were then scaled using normalized relative gene frequencies of specific
transporter genesinthe genome of isolates. To normalize the results per
unit C microbial biomass*’, we calculated the number of cells in one mol
C equivalent biomass (4;) using the allometric scaling of cell dry mass
components (My,,) and the assumption that 47% of dry biomass is C”.

Torepresentsubstrate competitioninanetwork of single-substrate
to product reactions, the consumption of substrate D;by a consumer
B;isthengivenby

0]
. _dDy; e
Jp,ij = d = _k;,yNUBI (

| i€l Djel...J ©
r 1+F,,5+FC,,-) iell...lljell....Jl )
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where
=1 =1 y
Fej= Z (Du/Ky) = ZFC(,/) 10)
=1 =1

is the normalized substrate flux that describes the influence of all
competing substrate fluxes towards consumer B;, with conjugate flux

=/ 1=/
Fri=Y, (NaBi/Ky) = Y, F) (1)
=1 =1

describing all competing consumers’ demands for a given substrate

S, k* McATT, Pooreer,

+.; is the maximal substrate conversion rate, N; =
Sy 0.47Mgrymiry Ny

(mol C) is the matrix of biomass-specific binding sites (with ‘radius’
r,), M is the molar mass of C, N, is Avogrado’s constant and K;; (mM)
denotes the binding half-saturation constants (equation 7).

Simulations

We simulated laboratory batch culture conditions for 39 bacterial iso-
lates growing on 82 plant exudate metabolites. The concentration of
exudates was selected tomatch the original growth medium concentra-
tion (125 mg C I™%), assuming that nitrogen and other essential nutrients
are non-limiting for the synthesis of biomass?. Exudate concentra-
tions corresponded to concentrations of dissolved organic C detected
in soil excavated from the ‘Little Buck’ pasture at the University of
CaliforniaHopland Research and Extension Center (38° 59’ 34.5768” N,
123° 4’ 3.7704” W), whichis the traditional and ancestral territory of the
Shoqowa and Hopland People, where these bacteria were originally
isolated. Inocula corresponding to 10 cells per gram soil were split
into 90% reserve and 10% structural biomass™ and simulations were
runfor 500 h or until substrate was exhausted. The reported CUE and
realized growthrates corresponded to median values averaged over the
simulated growth curves. The latency of C assimilation was determined
through the timing of peak growth mineralizationin each simulation.

To compare maximum specific growth rates of isolates to meas-
ured growthratesin a defined growth medium (Supplementary Fig. 3
and Table 5), we defined the in silico molecular input for commercial
compound mixtures (yeast extract, proteose peptone) according
to manufacturer instructions, following guidelines developed for
genome-scale metabolic modelling®.

Simulations were then extended to represent a mixed growth
medium by evenly distributing the original batch exudate concentra-
tion across the different metabolites. Mixed medium simulations
wererunfor1,500 hor until the first metabolite was depleted, and the
differencesinrelative uptake betweenrhizosphere bacterial response
groups were calculated from the concentration differences at the start
and end of the simulation. Using these data, resource niche breadth
was calculated using Levins index®.

Statistical analysis
Statistical analysis was performed using publicly available R (v.3.6.2)
and Python (v.3.7.1) packages as described below.

To assess the relative proportion of variance explained by tax-
onomy and resource type, we used restricted maximum log-likelihood
and variance partitioning analyses using the Imer function in
the ‘Im4’ (v.1.1.27.1) package with default settings, followed by the
r.squaredGLMM functionin the ‘MuMIn’ (v.1.43.17) package. A typical
analysis was coded as

fm.trait <— Imer(trait ~ as.factor(main) + (1jnested/ontology), data)

r.squaredGLMM(fm.trait)

and used to assess the relative importance of each variable when
grouped together in anested framework (Supplementary Table 2).

Inaddition, to assess the relative importance of genomic traits on
isolate growth rate and C use efficiency, we used multiple regression
models including rRNA operon copy number (rrn) and genome size
(G), and the best model was selected on the basis of the smallest Akaike
information criterion value. The regression analysis was performed
using the Im functionin R with the generic form

dependent variable = copy number * slope rrn + genome size * slope G

+copy number”genome size”“slope rrn : G + intercept

and results are summarized in Supplementary Table 3.

A linear regression model with growth regime (high vs low) as
categorical variable was used to test for the relationship between C
use efficiency and growth rate, as well as changes in BP rate due to BR
rate. BP and BR were log,-transformed to match model assumptions
(Fig. 4d). We then tested for the scaling relationship between BP and
BR using a one-sample t-test to determine whether the slope was dif*-
ferent from unity.

To determine model variableimportance for C use efficiency and
growth rate, we analysed the mean decrease in model accuracy as a
measurement of the change inthe accuracy of boosted random forest
predictions when the variable in question was randomly permuted
using the ‘gbm’ (v.2.1.8) library and within it the gbm function, as

fm.boost <— gbm (trait ~ ., data = train, distribution = "gaussian”,

n.trees = 10000, interaction.depth = 8, shrinkage = 0.001 ).

The number of trees, tree depth and the shrinkage parameter were
selected on the basis of cross validation against the test root mean
square error, using the observations for isolates originally classified
as an ‘undefined’ response group as 994 out-of-bag samples (Sup-
plementary Fig. 4).

Covariation patternsin standardized energy budget flux distribu-
tions were illustrated via a principal component analysis (PCA) using
the PCA functionin the ‘scikit-learn’ (v.1.02) Python package (Fig. 4e,f).

To test for significant differences in trait distributions among
rhizosphere response groups, we used a Kruskal-Wallis test followed
by Dunn’s test with Benjamini-Hochberg correction asimplemented
inthe ‘FSA’ (v.0.9.2) R package.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The raw experimental data can be accessed from public repositories
provided inref. 22. Data to reproduce the work in this paper are pro-
vided in the Supplementary Data File and registered in Zenodo at
https://doi.org/10.5281/zenodo.7879221.

Code availability

The DEBmicroTrait source code is available from the standalone
modular Julia (v.1.6.7) library DEBmicroTrait.jl (https://github.com/
giannamars/DEBmicroTrait.jl). All scripts to reproduce the work
in this paper are registered in Zenodo at https://doi.org/10.5281/
zenodo.7879221.
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Antibodies used Describe all antibodies used in the study, as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
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export.
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Files in database submission Provide a list of all files available in the database submission.
Genome browser session Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to
(e.-UCSC) enable peer review. Write "no longer applicable" for "Final submission" documents.
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lot number.
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Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.
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Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a
community repository, provide accession details.
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samples and how it was determined.
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Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size,
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI [ ] Used [ ] Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction,
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g.
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and
second levels (e.qg. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether
ANOVA or factorial designs were used.

Specify type of analysis: [ | whole brain || ROI-based | | Both

Statistic type for inference Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

(See Eklund et al. 2016)

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.qg. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a | Involved in the study
|:| |:| Functional and/or effective connectivity

|:| |:| Graph analysis

|:| |:| Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation,
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph,




Graph analysis subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency,
etc.).

Multivariate modeling and predictive analysis  Specify independent variables, features extraction and dimension reduction, model, training and evaluation
metrics.
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