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Predictions of rhizosphere microbiome 
dynamics with a genome-informed and 
trait-based energy budget model

Gianna L. Marschmann    1, Jinyun Tang    1, Kateryna Zhalnina    1,2, 
Ulas Karaoz    1, Heejung Cho1,3, Beatrice Le3, Jennifer Pett-Ridge    4,5 & 
Eoin L. Brodie    1,6 

Soil microbiomes are highly diverse, and to improve their representation in 
biogeochemical models, microbial genome data can be leveraged to infer key 
functional traits. By integrating genome-inferred traits into a theory-based 
hierarchical framework, emergent behaviour arising from interactions 
of individual traits can be predicted. Here we combine theory-driven 
predictions of substrate uptake kinetics with a genome-informed trait-based 
dynamic energy budget model to predict emergent life-history traits and 
trade-offs in soil bacteria. When applied to a plant microbiome system, 
the model accurately predicted distinct substrate-acquisition strategies 
that aligned with observations, uncovering resource-dependent trade-offs 
between microbial growth rate and efficiency. For instance, inherently 
slower-growing microorganisms, favoured by organic acid exudation at 
later plant growth stages, exhibited enhanced carbon use efficiency (yield) 
without sacrificing growth rate (power). This insight has implications for 
retaining plant root-derived carbon in soils and highlights the power of 
data-driven, trait-based approaches for improving microbial representation 
in biogeochemical models.

Microbes are major drivers of carbon (C) and nutrient fluxes in Earth’s 
terrestrial ecosystems; however, Earth system models designed to 
inform climate change adaptation and mitigation strategies have 
typically not included explicit representation of soil microorgan-
isms, despite mounting evidence that the explicit parameterization 
of microbial processes improves model prediction and reduces uncer-
tainty in terrestrial systems1,2. This lack of representation is rooted in 
the failure of common organizing principles derived from plant and 
animal ecology, such as the descendants of r-K selection theory3 or 
Grime’s competition–stress tolerance–ruderal (C–S–R) framework4,5, 

to fully capture the complexity of microbial systems6–9. To accurately 
predict the sensitivities of soil organic C stocks and plant productivity 
in response to changing climate conditions, it is crucial to develop a 
more comprehensive understanding of the role of microbes and their 
traits. However, the majority of organisms comprising Earth’s micro-
biomes have yet to be cultivated and may never be10. This means that 
our window into the ecology of microorganisms, such as those in soil, 
remains primarily through the lens of genomic information, which 
is accumulating far more rapidly than phenotypic information from 
laboratory isolates11,12.
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associated with acquiring and assimilating diverse substrates. Most 
importantly, these strategies can be explained by trade-offs between 
growth rate (power) and growth efficiency (yield) that impose strong 
constraints on microbial community composition in natural habitats28. 
Furthermore, these trade-offs have implications for the formation of 
soil organic matter via the microbial route29.

Results
Growing roots dramatically alter the chemical and physical habitat 
for microorganisms and exude photosynthesis-derived C that can be 
broadly classified into sugars, amino acids, organic acids, fatty acids, 
nucleotides and auxins30. In fact, root exudation might be a general-
izable trait with rates and composition that can be predicted from 
plant functional traits, with consistent temporal patterns across plant 
development stages31–33. The chemical composition of root exudates 
interacts with microbial substrate preferences, which are predictable 
from genomic traits (Fig. 2). Gene annotations assess functional poten-
tial—the capacity for organisms to perform. These soil microorganisms 
differ in genomic traits related to resource acquisition, particularly with 
regard to their metabolic potential to utilize organic acids (Fig. 2b) and 
their potential for plant polymer degradation using glycoside hydrolase 
enzymes (Fig. 2c). Contrary to expectations, we previously found that 
both fast-growing as well as slow-growing strains are enriched in the 
rhizosphere (both observed and predicted on the basis of genomic 
signatures22,34,35; Fig. 2a). The presence of potentially distinct life-history 
strategies challenges the long-standing assumption that living roots 
select for fast-growing r-strategists that compete for a small set of 
labile C substrates36. With the caveat that it is a simplification of the 
complex resource requirements of microorganisms, we assumed that 
bacteria in the rhizosphere are primarily limited by organic C inputs 
and energy availability. Furthermore, we hypothesized that substrate 
preference and substrate utilization efficiency interact to confer a 
growth efficiency-based fitness advantage for many bacteria in the 
rhizosphere. However, growth efficiency can vary widely with limit-
ing resource concentration and the free energy content of chemical 
compounds that are released by plants28. These patterns are overlaid 
with physiological variations in resource use between bacteria37–39 
that probably affect phenotypic trade-offs such as C use efficiency 
(CUE), suggesting that these factors combine to influence rhizosphere 
microbial community dynamics.

Substrate preference in the rhizosphere
Microbial strains vary in their substrate uptake affinities, which in turn 
influences the composition of the root microbiome through ecological 
processes such as niche differentiation and competitive exclusion25. 
Recent theoretical advancements based on an analytical approximation 
of how diffusive substrates are intercepted by microbial cells in soil 
have allowed the derivation of testable relationships between substrate 
uptake kinetic parameters, including maximum specific reaction rates 
(Vmax) and binding half-saturation constants (also known as substrate 
affinity parameters, K), while also taking into account the biophysical, 
metabolic and life-history traits that influence substrate demands 
of soil bacteria40. To synthesize these relationships, we considered 
genomic traits that provide constraints on the interactions between cell 
size, cellular C density, cell surface area-to-volume ratio and growth rate 
potential. We used the substrate uptake potential required to support 
a given genome-inferred maximum specific growth rate as an objective 
function and investigated the variation and allometric scaling of both 
kinetic parameters in the equilibrium chemistry approximation (ECA) 
for substrate uptake41. The estimated substrate binding site densi-
ties (that is, transporters) were benchmarked against existing data on 
nutrient uptake (Supplementary Fig. 1a and Table 4) and subsequently 
distributed across substrate classes on the basis of the relative gene 
frequencies of specific transporter genes (Fig. 2b). This approach allows 
for the consideration of the evolutionary history of microbial substrate 

Trait-based models have the potential to represent trait variation 
by aggregating data from hundreds or thousands of genomes, provid-
ing a data-driven approach to organize the complexity of microbial 
communities with less emphasis on traditional ecological theory and 
phylogenetic origin13. Among the various modelling approaches avail-
able for studying microbiomes, trait-based models are an attractive 
intermediate complexity approach to exploring how the hierarchy 
of traits interacts to influence the fitness of microorganisms within 
a community14. Yet, despite this promise and potential to scale the 
representation of microorganisms using a trait-based representation 
in biogeochemical models, a major challenge remains in their param-
eterization15. Our recent work provides a computational pipeline and 
a toolset (‘microTrait’16) to infer microbial traits from genomic data 
and establish links between each genome-derived trait and ecological 
strategy at different levels of trait granularity. The resulting informa-
tion can be used to initialize and parameterize mechanistic trait-based 
models spanning a hierarchy of structural complexity to explore the 
drivers of variation in the distribution and co-occurrence of micro-
bial traits17. Moreover, incorporating emerging concepts and theory 
outside of traditional microbiome science, such as thermodynamic 
and biophysical theory, proves valuable for understanding traits of 
microorganisms18. This integration facilitates the search for generaliz-
able principles or ‘rules’ that are applicable across diverse microbiome 
systems19, furthering theory development, and the elaboration of 
large-scale predictive models15.

Here we present a genome-informed, trait-based dynamic energy 
budget model (DEBmicroTrait; Fig. 1 and Supplementary Table 1). 
This model integrates genome-predicted traits and their interactions 
within a dynamic environment, allowing life-history strategies and 
niches of soil bacteria to emerge from fundamental thermodynamic, 
biophysical and metabolic principles that constrain trait variation, trait 
linkages (defined as co-occurrence of traits in the same organism) and 
ultimately organism fitness. We have initially focused on integrating 
quantitative genomic traits that distinguish bacteria at a critical soil 
interface, the rhizosphere (that is, the area surrounding growing plant 
roots). While quantitative life-history and biophysical traits (such as 
genome size, maximum growth rate, cell size and rRNA operon (rrn) 
copy number) do not encompass the entirety of potential interac-
tions and traits in bacterial ecology, they contribute substantially to 
explaining variations in resource utilization and provide ecological 
insights into species competitiveness at different stages of succes-
sion or resource depletion20,21. These life-history traits interact with 
bacterial preferences for diverse types of substrates, which can be 
predicted from genome sequences22,23. The growing development of 
large collections of sequenced rhizosphere bacterial genomes22,24, 
coupled with high-throughput metabolomics methods25, enables inte-
gration of knowledge connecting root exudate dynamics and microbial 
metabolism into predictive computational models of plant–microbe 
interactions26.

The rhizosphere is chemically diverse and a critical hotspot for 
biogeochemical transformation with high potential for C stabilization 
through microbial C assimilation and subsequent mineral-surface 
stabilization27. To better understand interactions between life-history 
traits, biophysical traits and bacterial substrate preferences, we simu-
lated the growth of 39 soil bacteria on 82 plant exudate metabolites. We 
developed a theory-based approach to estimate microbial substrate 
uptake parameters using only genome- and substrate-derived traits. We 
simulated population-level estimates of key traits, including realized 
growth rate and C assimilation rate, across different substrate classes 
that are known rhizosphere exudates, and benchmarked simulations 
quantitatively and qualitatively against observations. We identified 
microbial growth strategies that arise from the multivariate trait combi-
nations in the absence of soil matrix effects in this case. These strategies 
emerge from generalizable rules describing how bacterial traits interact 
with plant exudation traits and are defined by the cellular trade-offs 
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preference. Within each substrate class, the genome-inferred values 
fall within the range of variation observed in published experimental 
data (Supplementary Fig. 1b and Data 1). For amino acids and sugars, 
the differences between the values reported for cultured organisms 
in the literature and our predictions were statistically indistinguish-
able (P > 0.05). In contrast, for organic acids, we observed statistically 
significant deviations from the full data set (P = 0.04).

The predicted uptake kinetic parameters vary widely due to factors 
such as substrate diffusivity, cell size and biomass-specific accessible 
substrate binding sites in the rhizosphere (Fig. 3). Soil bacteria previ-
ously defined as responding negatively to root growth22 may actually 
achieve significantly higher maximum specific uptake rates to match 

their higher genome-predicted maximum specific growth rates (Fig. 3a).  
However, their reduced ability to uptake organic acids and auxins that 
can be prominent in root exudates (Fig. 2b) outweighs their higher max-
imum growth potential (Fig. 2a). Overall, the optimization of Vmax and 
K modulates the competitiveness of rhizosphere organisms according 
to the placement of their uptake strategies across a concave trade-off 
curve (Extended Data Fig. 1a). This concave shape allows for the mainte-
nance of optimal substrate uptake phenotypes, enabling organisms to 
thrive under varying external substrate concentrations42. Amino acids 
and sugars are generally considered to be the most abundant classes 
in terms of the total amount exuded43. Our analysis predicts that the 
affinity constants of these rhizosphere bacteria for amino acids are 
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Fig. 1 | Overview of DEBmicroTrait. a, Schematic of the DEBmicroTrait model 
showing dynamic energy budget (DEB) allocation for a single-reserve (E), single-
structure (V) heterotrophic microorganism67 feeding on different substrates (S). 
Diffusion-limited substrate uptake occurs through specific substrate binding 
sites (coloured according to substrate chemical class). Substrate uptake kinetics 
are described by the ECA40. Reserve and structural biomass are conceptualized 
as generalized chemical compounds characterized by macromolecular 
composition (CaHbOcNd) and chemical potential (μ(E, V)). Top: the coupling of 
catabolism and anabolism, that is, the catabolic and anabolic reactions through 
which energy is obtained and utilized for a metabolism in which the C source 
is also used as the electron donor50. The coupling between catabolism and 
anabolism exists both in reserve assimilation and structural (and extracellular 
enzyme) synthesis. Bottom: the sequential assimilation (pA), partitioning and 
dissipation of substrate and reserve compounds, with maintenance (pM) taking 

priority over growth (pG) and extracellular enzyme production (pX). The turnover 
of reserve and structure (γ(E, V)) is density-dependent75. Essential fluxes are 
labelled and defined (see also Supplementary Table 1). b, Workflow combining 
biophysical theory and genome inference to constrain DEBmicroTrait model 
parameters: (1) Cell size covaries with genome size76. (2) Codon-usage bias sets 
an upper bound on protein translation power (kE

72). (3) The number of ribosomal 
RNA operons predicts translation efficiency (yVE

77). (4) The cellular composition 
influences C supply and demand, which in turn determines the substrate binding 
site density required to enable substrate uptake at a rate commensurate with the 
maximum specific growth rate (ρporter

84). Binding sites can be allocated according 
to relative gene frequencies of transporter genes in the genome (zρ). (5) Basal 
maintenance rate is proportional to cell volume (kM

73). Glycoside hydrolase gene 
frequencies scale the constitutive extracellular enzyme production rate (zX

71).
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nearly optimal at micromolar concentrations (Extended Data Fig. 1b). 
In addition, we predict that increasing substrate affinity by increasing 
the substrate binding site density beyond ~0.1% of the cell surface area 
provides little benefit to soil microorganisms (Supplementary Fig. 2b). 
This finding contrasts with well-mixed systems at equilibrium, such as 
oligotrophic marine systems, where the activity of loaded binding pro-
teins monotonically increases affinity and specific uptake rate at low 
substrate concentrations44. It highlights that the ecological trade-offs 
that define fitness in soil may differ from those that define life-history 
dichotomies in other habitats45. We observe that the substrate affinity 
constant that maximizes the specific uptake rate at low concentrations 
is closest to the average value for organic acids (0.26 μM; Extended Data 
Fig. 1b), suggesting that certain soil bacteria have evolved specialized 
affinity uptake systems to colonize specific metabolic niches in soil.

However, resource acquisition traits are only one facet of ecologi-
cal strategy variation, and interactions with cellular resource allocation 
strategies are key. To address this, we analysed biomass production 
(BP) and respiration (BR) rates of 39 soil bacteria growing on 82 root 
metabolites across combined 3,198 batch simulations (Fig. 4) to explore 
relationships between realized growth rate and yield (that is, CUE), 
calculated as BP/(BP+BR).

Power–yield signatures in bacterial rhizosphere succession
Microbial access to soil C, as well as species-specific differences in 
the energetic demands required to use different substrate classes, 
select for distinct growth regimes in the rhizosphere (Fig. 4a). While 
growth rates in the low growth rate regime (0.0044–0.039 h–1) are 
reflective of growth rates of autochthonous bacteria occurring in una-
mended soils46, the growth rates in the high growth rate regime span 
typical values observed in pure cultures under laboratory conditions 
(0.039–0.46 h−1). Maximum realized growth rates were partially con-
firmed with measured growth rates at C concentrations representative 
of the original growth media used to cultivate the bacterial isolates 
(r2 = 0.85; Supplementary Fig. 3 and Table 5). Potential CUE values range 

from 0.07 to 0.74 with a median of 0.49, suggesting that on average 
approximately half of the consumed C is typically lost via respiration 
(Fig. 4b). Bacterial traits related to the assimilation of C had the largest 
influence on model-simulated CUE (Supplementary Fig. 4). A similar 
amount of variation in CUE was explained by phylogeny at class level 
(20%) relative to substrate class (15%; Supplementary Table 2), indi-
cating that interactions between substrate traits (for example, mean 
differences in molecular size and nominal oxidation state of C among 
substrate classes) and microbial traits (for example, transporter gene 
frequencies, protein synthesis efficiency, relative maintenance costs) 
provide a strong foundation for this aspect of soil bacterial ecology47,48.

Bacterial growth rate and CUE trade off during growth on sub-
strates of high bioavailability (defined by solubility and hydrophobic-
ity49; Supplementary Data 1) exuded early during plant growth (sugars, 
amino acids), highlighting an early successional growth strategy where 
power is optimized over yield (F1,3 = 13.83, r2 = 0.82, P = 0.03; Fig. 4c). 
Maximum CUE is achieved for those bacteria that responded posi-
tively to root growth when simulated with glucose as the substrate, 
while maximum growth rates occur at suboptimal CUE for organisms 
with the fastest growth rates. The rate–yield trade-off emerges from 
thermodynamic constraints reflecting energy generation and trans-
fer from catabolism to anabolism, resulting in decreasing structural 
biomass yield to accommodate increasing protein synthesis rates 
(Supplementary Fig. 5), as well as increased maintenance costs at high 
growth rates. Energy dissipation increases with the rate of C uptake50, 
resulting in lower thermodynamic efficiency for growth on amino 
acids as compared with sugars, and an overall disproportional scaling 
between biomass production and respiration rates (with slope that is 
significantly different from one, β ∈ (0.56, 0.63), t1,437 = −24, P < 1 × 10−5; 
Fig. 4d). Fast growth is constrained by internal substrate limitation 
caused by the accelerated dilution of storage compounds due to (vol-
ume) growth, indicating that these bacteria grow faster than they can 
assimilate new substrate during early rhizosphere successional growth 
stages. The corresponding realized growth rates are strongly correlated 
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with the number of rrn copies in the genome (Supplementary Table 3), 
where this single genomic trait explains about a third of the variation 
(r2 = 0.30). This supports the hypothesis that genomic traits related to 
maximum growth potential are good predictors of growth responses 
to initial resource pulses in the rhizosphere46.

The contribution of bacteria to soil C cycling in the rhizosphere is 
primarily determined by anabolic processes51 that control the alloca-
tion of C and energy for maintenance, the synthesis of storage com-
pounds, as well as extracellular enzyme production and assimilation. 
These processes represent nearly independent (orthogonal) axes of 
variation (Fig. 4e), providing compelling evidence for the ecological 
classification of rhizosphere bacteria into the yield–acquisition–stress 
(Y–A–S) framework of life-history strategies5. Within this framework, 
bacteria that responded positively to root growth could be considered 
Y-strategists, actively exploiting available low-molecular-weight C 
sources through direct capture and assimilation. However, these bac-
teria also showed greater latency in their growth response (Kruskall–
Wallis test, P < 1 × 10−16), suggesting that they may be assimilating 
additional C in the rhizosphere that has been transformed by previ-
ous microbial processing. Interestingly, the absence of a trade-off 
between niche breadth and yield (Extended Data Fig. 2) indicates a 
high degree of resource specialization among these organisms. Niche 
differentiation is further facilitated by resource acquisition strate-
gies of negative responders (A-strategists), which appear to be better 
adapted to the breakdown of root polymeric carbohydrates via the 
constitutive expression of carbohydrate-active enzymes52. Both Y- and 
A-strategies align with functional differences encoded in genomes 
along the copiotroph–oligotroph continuum. Copiotrophs frequently 
possess a greater prevalence of gene families involved in transcription, 
transport and metabolism of carbohydrates and amino acids, as well 
as carbohydrate-active enzymes such as glycoside hydrolases and 
polysaccharide lyases. This overall strategy enables copiotrophs to 
rapidly acquire nutrients and produce proteins35.

Across time, we find that yield and resource acquisition strategies 
are tightly linked along gradients of resource availability, as bacteria 
grow more slowly on root exudates that are released during later plant 
developmental stages (organic acids, fatty acids, nucleosides, auxins). 
For slower-growing bacteria, only 4% of the variance in growth rates 
is explained by rrn copy number and genome size (Supplementary 
Table 3), consistent with findings that there is essentially no selective 
advantage to optimizing translational power via codon usage at low 
growth rates35. The observed proportional scaling between biomass 

production and respiration (with slope β ∈ (0.95, 1.05), t1,332 = 0.06, 
P = 0.95; Fig. 4d) is consistent with an overall oligotrophic strategy of 
energy production, conversion and cell maintenance. Indeed, basal 
maintenance requirements and extracellular enzyme production 
explain most of the variability in the growth strategies of isolates 
at low growth rates (Fig. 4f). The ecological strategies of bacteria 
that responded negatively to root growth or showed no response to 
root growth coalesced along both principal components, implying 
that succession in the rhizosphere is accompanied by a significant 
decrease in functional diversity, which is consistent with previous 
observations53. As the plant matures, the soil surrounding roots 
harbours more conservative, slower-growing organisms that do not 
exhibit a trade-off between growth rate and efficiency since turnover 
is slower for these organisms (F1,11 = 7.74, r2 = 0.41, P = 0.02; Fig. 4c).  
Taken together with CUE values (0.07–0.74) that span almost the 
whole range of values typically observed in soil (Fig. 4a)54, we hypoth-
esized that selection for efficiency via substrate preference is a pri-
mary driver of rhizosphere community composition during the later 
stages of plant development.

Rhizosphere carbon stabilization via resource specialization
To test whether bacterial preference for specific substrates could 
interact with CUE to confer a selective advantage in the rhizosphere, 
we analysed simulations of growth on mixed media (a combination of 
82 exudate substrates) for differences in substrate uptake across the 
positive and negative rhizosphere responder groups. We found that 39 
of the 82 exudate substrates show substantial differences in substrate 
uptake between bacteria that responded positively or negatively to root 
growth (Fig. 5). For 16 of the 39 root exudates that had previously been 
identified experimentally, the largest cumulative differences in sub-
strate uptake by bacteria that responded positively to root growth were 
for plant hormones (indole-3 acetic acid, abscisic acid), followed by a 
cluster of aromatic organic acids (caffeic, shikimic, 3-dehydroshikimic, 
trans-cinnamic, salicylic, nicotinic). Nucleosides, on the other hand, 
were more preferentially consumed by the bacteria that responded 
negatively to root growth. Differences in uptake of 16 out of the 39 
substrates agree qualitatively with uptake from the growth medium 
measured by liquid chromatography–mass spectrometry (LC–MS), 
without accounting for interactions with the soil matrix22. Furthermore, 
bacteria that responded positively to root growth had a 39% higher 
growth efficiency on average for organic acids with aromatic rings than 
those isolates that responded negatively to growing roots (Fig. 5 inset).
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Fig. 3 | Theory-predicted distributions of root exudate metabolite uptake 
parameters of soil bacterial isolates. a, Maximum specific uptake rate. b, Half-
saturation constant. Differences in uptake trait distributions between bacteria 
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Kruskal–Wallis one-way ANOVA (Supplementary Data 1). In each boxplot, a point 
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points excluding outliers. Substrates n = 82, consumers n = 27.
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Discussion
Root–microbial interactions have significant effects on the soil C 
cycle, altering the amount and types of organic matter that become 
associated with mineral surfaces. Focusing on recent studies that 
have identified direct predictive links between plant exudate com-
position and rhizosphere community assembly, and a theory-based 
approach to predict microbial substrate uptake kinetic traits directly 
from genome sequences, we synthesized a suite of genome-derived 
traits into model-based predictions of life-history strategies for a set 
of soil bacteria. We found that interacting microbial traits (maximum 
specific growth rate, substrate uptake kinetics, ribosome biosynthe-
sis potential and extracellular enzyme synthesis) have additional 
interactions with the dynamics of root exudate chemistry, creating 
emergent patterns of bacterial C use efficiency. These combinations 
of traits manifest as life-history strategies and have consequences for 
the path that small molecules take on the way to becoming stabilized 
soil organic matter.

Root exudates can follow distinct pathways before integrating into 
the soil matrix: direct sorption to mineral surfaces or microbial trans-
formation55. While root-derived compounds may rapidly exchange 
with mineral surfaces56, it is now widely recognized that the direct 
microbial transformation of labile photosynthate C into stabilized 
forms allows microorganisms to contribute disproportionately to 
persistent C in the soil29,57,58. On the basis of our results, we propose 

that multidimensional trait interactions influence the pathways of 
mineral-associated soil organic matter (SOM) formation throughout 
the plant growing season (Fig. 6). As microbial composition and abun-
dance change over the growing season, the initial exudation of sugars 
and amino acids with weak sorption to mineral surfaces coincides 
with power-optimized growth strategies (resulting in more C overall 
into microbes). C inputs from sugars and amino acids stimulate the 
growth of resource acquisition (A-) strategists and may accelerate 
the decomposition of surrounding organic residues, mostly of plant 
origin, as previously observed in this study system52,59. The growth 
response of individuals is highly dynamic, with fast growth correlating 
with high density-dependent turnover of microbial biomass (Fig. 4e).  
This rapid initial turnover of biomass during the vegetative phase 
implies that secondary processing, fuelled by the products of microbial 
anabolism, comprises an important component of the C that cycles 
through rhizosphere communities60. While the metabolic products of 
microbes subsisting on glucose or amino acids earlier in the growing 
season may contribute to direct mineral-surface stabilization61, the 
subsequent emergence of more yield-optimized guilds (more C per 
specific microbe) may selectively enhance the mineral stabilization 
of compounds. This enhancement occurs through the deposition of 
senesced microbial biomass containing greater proportions of lipids 
and proteins and fewer aromatics62. Therefore, these pathways may rep-
resent two distinct routes to mineral stabilization of C—which of these 
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across isolates and root exudate metabolites in DEBmicroTrait batch simulations. 
Throughout plots a–f, two distinct growth regimes are distinguished by brown 
(high growth regime) and grey (low growth regime) colours on the basis of the 
bimodal growth rate distribution shown in a. c, Relationships between realized 
growth rate and carbon use efficiency. Median trait values are plotted using 
different colours and shape depending on substrate class (sugars, organic acids, 
amino acids, fatty acids, nucleotides, auxins) and isolate response to plant 
root growth (positive, negative, undefined). d, Relationships between biomass 
production and respiration rates. Symbol size is scaled by carbon use efficiency. 
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covariations among modelled fluxes delineating growth strategies of isolates 
at high (e) and low (f) realized growth rates. Highlighted symbols represent 
average coordinates of positive, negative and undefined isolate response 
groups. The significance threshold for two-sided P values was set at 0.05. The 
principal components of the different response groups are significantly different 
(HPC1(2) = 329, HPC2(2) = 105, P = 2.2 × 10−16). Dunn’s test with Benjamini–Hochberg 
correction confirmed the significant differences between positive and negative 
responders along PC1 (PC2) (P = 2 × 10−16 (9.3 × 10−4)), and negative and undefined 
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from positive responders (P = 2.5 × 10−5). Substrates n = 82, consumers n = 39, 
simulations n = 3198.
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pathways is quantitatively most effective in creating mineral-associated 
SOM remains to be determined.

Using batch simulations to infer microbial life-history strate-
gies and niches entails a trade-off. This is because the behaviour of 
organisms in culture may not always align with their performance 
in natural settings46. However, ground truthing of genome-inferred 
microbial traits is needed to enhance the credibility and confidence in 
genome-informed model predictions. Furthermore, using a consistent 
methodology to measure CUE across a broad range of microbial taxa 
is necessary to determine how physiological variation in substrate use 
between rhizosphere bacteria impacts CUE37,38. The same holds true 
for substrate uptake measurements, the accuracy of which is signifi-
cantly influenced by experimental design elements, such as incuba-
tion duration and the preceding physiological state of the organisms. 
Consequently, deviations from model predictions might potentially 
stem from estimation inaccuracies or a lack of correlation between 
the half-saturation concentration for uptake and the half-saturation 
concentration for growth over extended incubation periods63. The 
simulation results presented here represent model-based hypotheses 
to confirm with appropriately designed experiments. These include 
considering a range of abiotic and biotic factors such as diurnal exuda-
tion dynamics64, competition with roots and mineral surfaces for essen-
tial nutrients65, and interactions with other organisms66. By integrating 
across a hierarchy of traits, genome-informed trait-based modelling 

facilitates the generation and testing of hypotheses and can provide a 
robust foundation for the data-driven representation of microorgan-
isms in many complex systems.

Methods
DEBmicroTrait model description
DEBmicroTrait assumes that microbial metabolism can be described 
by the standard dynamic energy budget (DEB) theory67. DEB theory 
partitions the total biomass into generalized chemical compounds 
(reserve and structural biomass) with specific functions: (1) reserve, 
denoted E, comprising the cellular growth machinery, includ-
ing ribosomal proteins and RNA involved in the biosynthesis of  
proteins and/or additional ribosomes, as well as localized storage 
compounds (for example, glycogen, polyhydroxybutyrate) that buffer 
metabolism against external fluctuations in resource supply and  
(2) structural biomass, denoted V, comprising essential cellular pro-
teins, DNA and other macromolecules that make up the cell wall and 
membrane68. Structural biomass is subjected to maintenance while 
reserves are subjected to continuous external supply and utilization 
(Fig. 1). The utilization of reserves follows first-order dynamics when 
expressed as a reserve density, mE = E/V. The first-order turnover rate 
is given by

kE = v/Lc = pAm/m∗
E , (1)
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where v is an energy conductance parameter, Lc = V1/3
c  is volumetric 

length, pAm is the maximum assimilation flux and m∗
E  represents the 

ratio of assimilation and mobilization fluxes, that is, the reserve capac-
ity of the organism that is reached at long exposure to high substrate 
concentrations. The reserve pool buffers between environmental 
substrate uptake and microbial cell metabolism69.

If the net synthesis rates of reserve and structure are balanced, 
weak homoeostasis implies that substrate limitation may occur  
inside the cell, capturing the dilution of reserve compounds due to 
(volume-) growth at a rate proportional to the reserve density70. It 
follows that the reserve mobilization power of the organism is given 
by the difference between the first-order turnover rate of reserve and 
dilution by growth,

pC = μE(kEmE −mEr), (2)

where μE, measured in Gibbs energy per mol or C-mol, is the chemical 
potential of reserve and r ≡ 1

V
dV
dt

 denotes the specific growth rate of the 
organism.

The reserve mobilization power, pC, is partitioned between growth, 
pG, maintenance, pM, and extracellular enzyme production, pX, power, 
that is,

pC = pG + pM + pX, (3)

where, in the absence of regulation, extracellular enzymes are pro-
duced constitutively at a rate proportional to the specific growth rate71. 
Dissipative loss in the growth and protein synthesis machinery is linked 
to the energetic cost of functional protein increasing with translation 
speed72. The basal maintenance rate is taken as proportional to cell 
volume—a valid assumption if the cumulative cost of protein turnover 
and replacement plays an important role in the overall energy budget 
and the amount of protein is proportional to cell volume73. Since the 
maintenance costs of protein turnover are preferentially on the expense 
of reserve materials, selection for high translation power (leading to 
reduced translational yield, yVE) may also trade-off with the tolerance 
for starvation of the organism. However, somatic maintenance costs, 
kM, can be supplemented with structural biomass when starvation leads 
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limitation occurs from environmental supply, except for select root metabolites 
that are preferentially consumed in the rhizosphere. These compounds select 
for organisms with traits (higher relative transporter gene frequencies, lower 
relative maintenance investment, higher protein synthesis efficiency, lower 
biomass turnover) that result in higher carbon use efficiency than typically 
observed experimentally when phenolic or polyvalent organic acids are added 
to bulk soil55. These results suggest that microbial community assembly patterns 
can be predicted from models coupling substrate-use preferences and chemical 
succession in the rhizosphere22,86. f, Understanding these patterns can guide 
strategies for engineering plant phenotypes and microbial communities, 
enhancing carbon stabilization through microbial carbon assimilation and 
subsequent stabilization on mineral surfaces.
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to the depletion of the reserve density, albeit at higher overhead costs 
in the transformation74.

An explicit equation for the specific growth rate is obtained by 
combining equations (1) and (2) as

r = pG
μEyEV

= kEmE − (pM + pX)/μE
mE + yEV

(4)

where yEV = 1/yVE denotes the inverse of the structural growth effi-
ciency. The inefficiencies associated with assimilation, growth, main-
tenance and enzyme production are captured as respiratory CO2 losses  
(BR) and contribute to the overall CUE of the organism. CUE was cal-
culated as BP/(BP+BR), where BP denotes total reserve and structural 
biomass production taking into account density-dependent biomass 
turnover75.

A schematic for the coupling of anabolism and catabolism, as 
well as C and energy allocation in DEBmicroTrait is shown in Fig. 1. 
DEBmicroTrait trait integration and auxiliary equations to translate 
traits into model quantities are described below. An overview of the 
trait integration framework is provided in Supplementary Table 1.

Model assumptions for ribosome requirements. In our choice of 
parameterization, we assumed that natural selection has fine-tuned 
the translational power of ribosomes for optimal activity in a given 
environment68. Shifts in translational power across different bacteria 
follow allometric trends in macromolecular composition according to

kE =
rmaxVP
VR

, (5)

where rmax is the genome-inferred maximum specific growth rate, VP is 
the total protein volume and VR is the ribosomal volume of the cell. Vp 
scales sublinearly with total cellular volume and impacts the ribosomal 
volume by considering how many ribosomes are required to replicate 
all ribosomes and proteins within a division cycle while also replac-
ing proteins and ribosomes that have been degraded76. This places a 
lower bound on overall ribosomal volume of the cell according to the 
following inequality,

VR ≥
̄lPvPNP(ϕ/r + 1)

vR( ̄rR/r − ̄lR(η/r + 1))
, (6)

where r is growth rate, ̄lR is the average length of a ribosome in base 
pairs, ̄rR is the maximum base pair processing rate of the ribosome, ̄lP 
is the average protein length found to be invariant across bacteria, η 
and ϕ are specific degradation rates for ribosomes and proteins, NP is 
the total number of proteins, and ̄vP and ̄vR represent the volume of an 
average protein or ribosome, respectively. While conceptually simple, 
the model explains more variance in translation phenotypes across 
species (r2 = 0.78, n = 11; Supplementary Fig. 6a) than genomic signa-
tures based on rrn copy number alone (r2 = 0.49; Supplementary  
Fig. 6b). For simplicity, we assumed that rrn copy number is a good 
predictor of translational yield77. Consequently, we found that the 
fraction of reserve that is mobilized for growth, that is, yV = r/(kEmE), is 
negatively correlated with kE at high kE (Supplementary Fig. 5). At low 
kE, the structural biomass yield remains relatively constant because 
reserves can be mobilized efficiently. As a result, maximum growth 
rates can occur at suboptimal yield78.

Membrane requirements for substrate uptake. ECA kinetics provide 
a robust mathematical representation of complex substrate–consumer 
interactions in soil environments41. When applied to diffusive substrate 
uptake, the substrate affinity Kij (mM) for the binding of substrate  
Di (i ∈ [1, ... , I]) to free cellular binding sites Bj (j ∈ [1, ... , J]) in chemical 
equilibrium can be approximated as

Kij = K0,ij (1 +
k+ij Bj,T

4πD̃irc,jnj
) , (7)

where K0,ij ∼ k2,ij/k+ij  is the ratio of forward reaction coefficients, Bj,T 
denotes total (free and occupied) binding sites, D̃i is the substrate dif-
fusivity (m2 s−1), rc,j is the spherical cell radius (m) and nj is the cell num-
ber density (m−3). The maximum substrate processing rate k2,ij (s−1) 
defines the maximum specific uptake rate according to Vmax,ij = k2,ijBj,T. 
Hence, if a cell increases its volumetric binding site density (Bj,T/nj), it 
decreases its substrate affinity. At the same time, decreasing the volu-
metric size while keeping the same area-specific binding site density, 
Bj,T = njρB,j4πrc,j, can increase substrate affinity.

We considered binding site densities in the context of cellular sub-
strate supply and demand under conditions of balanced growth. Then, 
the ratios of extensive properties (that is, intensive properties, such as 
the reserve density) remain constant79. It follows that the reserve den-
sity is given by the ratio of assimilation power to reserve turnover rate 
(equation 1). Furthermore, cells have evolved optimal protein densities in 
cellular compartments (for example, the cell membrane) that maximize 
reaction rates80. Cellular demand depends on biochemical processes 
associated with substrate assimilation into generalized reserve com-
pounds. Accordingly, cells can differ in their assimilation yield as given by

yED =
1

Yccat + λYcan
, λ = ΔGan + ΔGdiss

−ΔGcat
, (8)

where λ couples the stoichiometric vectors for catabolism (Y c
cat) and 

anabolism (Y c
an) by determining how many times the catabolic reaction 

(the energy production through substrate degradation, ΔGcat) needs 
to run to provide the Gibbs energy for anabolism (ΔGan), with the 
remaining energy dissipated into the environment (ΔGdiss). Determina-
tion of λ requires the calculation of the Gibbs free energy changes ΔGcat 
and ΔGan, the latter of which is equivalent to the energy conversion to 
generalized reserve compounds, plus the synthesis costs of 
membrane-bound binding site proteins, that is, ΔGan = ΔGblock + ΔGρporter 
in our formulation. For simplicity, the elemental composition of reserve 
was treated as similar to structural cell components and follows allo-
metric trends in cellular biomolecule composition with volume76. The 
Gibbs energy of dissipation denotes the Gibbs energy change of the 
conversion of the biomass building block to the different biomass 
components, that is, ΔGdiss = ΔGsyn/ν, where ν is a constant fraction of 
the energy dissipated in all enzymatic steps of the process. We assumed 
that ΔGsyn is constant81, but organisms can differ in their protein syn-
thesis efficiency as described above.

The cellular membrane area that needs to be covered with binding 
sites (ρporter) to reach transport rates commensurate with maximum 
specific growth rates was obtained by solving equations (1), (4) and 
(8). The estimated binding site densities of isolates matched for spe-
cific substrate molecules in the rhizosphere ranged from 0.0005% to 
0.19%, with a median covering ~0.1% of the cell surface. The average esti-
mated binding site density for cumulative uptake of plant metabolites 
amounted to ~0.08, or 8% of the total membrane area. These estimates 
were then scaled using normalized relative gene frequencies of specific 
transporter genes in the genome of isolates. To normalize the results per 
unit C microbial biomass40, we calculated the number of cells in one mol 
C equivalent biomass (λB) using the allometric scaling of cell dry mass 
components (Mdry) and the assumption that 47% of dry biomass is C76.

To represent substrate competition in a network of single-substrate 
to product reactions, the consumption of substrate Di by a consumer 
Bj is then given by

jD,ij =
dDi, j
dt

= −k+2,ijNijBj (
F (i)
c, j

1 + Fr,i + Fc, j
) , i ∈ [1,… , I], j ∈ [1,… , J] (9)
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where

Fc,j =
l=I
∑
l=1

(Dl/Klj) =
l=I
∑
l=1
F (l)
c,j (10)

is the normalized substrate flux that describes the influence of all 
competing substrate fluxes towards consumer Bj, with conjugate flux

Fr,i =
l=J
∑
l=1

(NilBl/Kil) =
l=J
∑
l=1
F (l)
r,i (11)

describing all competing consumers’ demands for a given substrate 

Si, k+2,ij  is the maximal substrate conversion rate, Nij =
MC4πr2c,jρporter,ij
0.47Mdryπr2pNA

 

(mol C−1) is the matrix of biomass-specific binding sites (with ‘radius’ 
rp), MC is the molar mass of C, NA is Avogrado’s constant and Kij (mM) 
denotes the binding half-saturation constants (equation 7).

Simulations
We simulated laboratory batch culture conditions for 39 bacterial iso-
lates growing on 82 plant exudate metabolites. The concentration of 
exudates was selected to match the original growth medium concentra-
tion (125 mg C l−1), assuming that nitrogen and other essential nutrients 
are non-limiting for the synthesis of biomass22. Exudate concentra-
tions corresponded to concentrations of dissolved organic C detected 
in soil excavated from the ‘Little Buck’ pasture at the University of 
California Hopland Research and Extension Center (38° 59’ 34.5768” N, 
123° 4’ 3.7704” W), which is the traditional and ancestral territory of the 
Shóqowa and Hopland People, where these bacteria were originally 
isolated. Inocula corresponding to 103 cells per gram soil were split 
into 90% reserve and 10% structural biomass74 and simulations were 
run for 500 h or until substrate was exhausted. The reported CUE and 
realized growth rates corresponded to median values averaged over the 
simulated growth curves. The latency of C assimilation was determined 
through the timing of peak growth mineralization in each simulation.

To compare maximum specific growth rates of isolates to meas-
ured growth rates in a defined growth medium (Supplementary Fig. 3 
and Table 5), we defined the in silico molecular input for commercial 
compound mixtures (yeast extract, proteose peptone) according 
to manufacturer instructions, following guidelines developed for 
genome-scale metabolic modelling82.

Simulations were then extended to represent a mixed growth 
medium by evenly distributing the original batch exudate concentra-
tion across the different metabolites. Mixed medium simulations 
were run for 1,500 h or until the first metabolite was depleted, and the 
differences in relative uptake between rhizosphere bacterial response 
groups were calculated from the concentration differences at the start 
and end of the simulation. Using these data, resource niche breadth 
was calculated using Levins index83.

Statistical analysis
Statistical analysis was performed using publicly available R (v.3.6.2) 
and Python (v.3.7.1) packages as described below.

To assess the relative proportion of variance explained by tax-
onomy and resource type, we used restricted maximum log-likelihood 
and variance partitioning analyses using the lmer function in 
the ‘lm4’ (v.1.1.27.1) package with default settings, followed by the 
r.squaredGLMM function in the ‘MuMIn’ (v.1.43.17) package. A typical 
analysis was coded as

fm.trait <− lmer(trait ∼ as.factor(main) + (1|nested/ontology),data)

r.squaredGLMM(fm.trait)

and used to assess the relative importance of each variable when 
grouped together in a nested framework (Supplementary Table 2).

In addition, to assess the relative importance of genomic traits on 
isolate growth rate and C use efficiency, we used multiple regression 
models including rRNA operon copy number (rrn) and genome size 
(G), and the best model was selected on the basis of the smallest Akaike 
information criterion value. The regression analysis was performed 
using the lm function in R with the generic form

dependent variable = copynumber ∗ slope rrn + genome size ∗ slopeG

+copynumber∗genome size∗slope rrn ∶ G + intercept

and results are summarized in Supplementary Table 3.
A linear regression model with growth regime (high vs low) as 

categorical variable was used to test for the relationship between C 
use efficiency and growth rate, as well as changes in BP rate due to BR 
rate. BP and BR were log10-transformed to match model assumptions 
(Fig. 4d). We then tested for the scaling relationship between BP and 
BR using a one-sample t-test to determine whether the slope was dif-
ferent from unity.

To determine model variable importance for C use efficiency and 
growth rate, we analysed the mean decrease in model accuracy as a 
measurement of the change in the accuracy of boosted random forest 
predictions when the variable in question was randomly permuted 
using the ‘gbm’ (v.2.1.8) library and within it the gbm function, as

fm.boost <− gbm ( trait ∼ .,data = train,distribution = ′′gaussian′′,

n.trees = 10000, interaction.depth = 8, shrinkage = 0.001 ) .

The number of trees, tree depth and the shrinkage parameter were 
selected on the basis of cross validation against the test root mean 
square error, using the observations for isolates originally classified 
as an ‘undefined’ response group as 994 out-of-bag samples (Sup-
plementary Fig. 4).

Covariation patterns in standardized energy budget flux distribu-
tions were illustrated via a principal component analysis (PCA) using 
the PCA function in the ‘scikit-learn’ (v.1.02) Python package (Fig. 4e,f).

To test for significant differences in trait distributions among 
rhizosphere response groups, we used a Kruskal–Wallis test followed 
by Dunn’s test with Benjamini–Hochberg correction as implemented 
in the ‘FSA’ (v.0.9.2) R package.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The raw experimental data can be accessed from public repositories 
provided in ref. 22. Data to reproduce the work in this paper are pro-
vided in the Supplementary Data File and registered in Zenodo at 
https://doi.org/10.5281/zenodo.7879221.

Code availability
The DEBmicroTrait source code is available from the standalone 
modular Julia (v.1.6.7) library DEBmicroTrait.jl (https://github.com/
giannamars/DEBmicroTrait.jl). All scripts to reproduce the work 
in this paper are registered in Zenodo at https://doi.org/10.5281/
zenodo.7879221.
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Extended Data Fig. 1 | Trade-offs between substrate uptake parameters and 
optimal affinity parameter values at different external substrate 
concentrations. A Trade-off curve between predicted maximum specific uptake 
rate (Vmax) and half-saturation constant (also known as substrate affinity 
parameter, K) in the equilibrium chemistry approximation (ECA40) for substrate 
uptake across substrates (n = 82) and isolates (n = 39). Isolates are colored by their 

response to root growth (green: positive, magenta: negative, white: undefined). 
B Normalized specific substrate uptake rate ( J) as a function of the affinity 
parameter (K) for three different external substrate concentrations (D). The 
dashed lines indicate optimal affinity parameter values (Kopt). In A and B, the solid 
lines correspond to locally weighted linear regression models across substrates 
and isolates (n = 3198).
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Extended Data Fig. 2 | Niche breadth of isolates for growth on mixed 
root exudate metabolites. Relationship between carbon use efficiency 
and resource niche breadth (Levins index83) of isolates for growth in a mixed 
medium composed of 82 root exudate metabolites. Isolates are colored by 
their response to root growth (green: positive, magenta: negative, white: 
undefined). The solid lines indicate the respective regression line (positive: 

F1,17 = 0.44, r2 = 0.03, p = 0.52, negative: F1,6 = 10.99, r2 = 0.65, p = 0.01, undefined: 
F1,10 = 1.31, r2 = 0.12, p = 0.28), while shaded areas indicate the 95% confidence 
bands. Niche breadth was unimodally distributed across isolates based on 
Hartigan’s dip test (all: D = 0.04, p = 0.76, positive: D = 0.07, p = 0.68, negative:  
D = 0.11, p = 0.52, undefined: D = 0.08, p = 0.81).
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