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ABSTRACT 

Bayesian calibration plays a vital role in improving the validity of computational models’ 

predictive power. However, the presence of unobservable distributed responses and uncertain 

model parameters in multi-level models poses challenges to Bayesian calibration, due to the 

lack of direct observations and the difficulty in identifying the hidden and distributed model 

discrepancy under uncertainty. This paper proposes a Bayesian calibration framework for 

multi-level simulation models to calibrate an unobservable distributed model using 

measurements of an observable model. In the proposed framework, the distributed model 

discrepancy of an unobservable model with distributed response is first represented as a 

series of orthogonal polynomials, with the polynomial coefficients modelled by surrogate 

models with unknown hyper-parameters. A two-phase machine learning method is then 

developed to construct surrogate models of the polynomial coefficients based on 

measurements of an observable model. The constructed model discrepancy is finally used to 

update the uncertain model parameters by following a modularized Bayesian calibration 

scheme. The developed framework is applied to the joint Bayesian calibration of the 

uncertain gap length and unobservable and distributed boundary condition model for a miter 

gate problem. Results of the miter gate application demonstrate the efficacy of the proposed 

framework. 
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1 INTRODUCTION 

The calibration of Modeling and simulation (M&S) framework plays an important role in 

improving predictive power by blending observational data with parameterized models. This 

is important in simulation-based design, analysis, and decision making under uncertainty. 

Conceptually, calibration is the process of correcting the model using 

experiments/observations to better capture the true underlying physics and thereby increase 

its prediction accuracy.  

Model calibration, which is also referred as model updating [1], has been extensively 

studied using both deterministic/non-probabilistic (e.g., optimization) and probabilistic 

methods (e.g., Bayesian) [2]. Non-probabilistic approaches, such as optimization-based 

methods, usually calibrate model parameters by minimizing the differences between 

computer simulation outputs and experimental observations through a certain metric. Some 

commonly used metrics include but are not limited to the Euclidean distance, Manhattan 

distance, Minkowski distance, similarity metric, etc. [3]. Uncertainties stemming from noisy 

observations, unconstrained model parameters, and discrepancies between models and reality 

(model form uncertainty) are ubiquitous in real-world model calibration problems, which 

makes probabilistic approaches, especially Bayesian methods, particularly attractive to the 

model calibration community. Bayesian approaches provide a versatile calibration framework 

for probabilistically characterizing and propagating these uncertainties.  

Existing Bayesian calibration approaches may be roughly classified into three categories 

depending on what uncertainties are considered in the problem: (1) calibration of unknown 

model parameters only [4], (2) quantification of model discrepancy only [5], and (3) 

simultaneous parameter and model discrepancy characterization [6-8]. The first category has 

been widely studied for structural performance assessment, and response prediction of static 

or dynamic systems [9-11]. For instance, the uncertain model parameters are updated to 
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minimize the discrepancy between the model-predicted responses and measured data [12, 13]. 

To improve the prediction accuracy of predictive models of linear dynamic systems, 

hierarchical Bayesian approaches have been developed for civil structural systems under 

changing ambient/environmental conditions [14], for crack detection [15], and for dynamic 

systems in a wide range of excitation levels [16]. Moreover, Ni et al. [17] proposed a 

likelihood-free Bayesian inference approach of civil structures to significantly reduce the 

required computational time for model calibration. Chiachio et al. [18] proposed a multi-level 

Bayesian method in the context of ultrasound-based damage identification of composite 

laminates. Ramancha et al. [19] investigated the non-identifiability issue in Bayesian model 

updating of nonlinear finite element models. The second category assigns all possible biases 

between simulations and observations to the model discrepancy function. The third category 

separately considers contributions of uncertain model parameters and model discrepancy in a 

holistic framework [20, 21]. It has been shown that the third category is more applicable 

when the calibrated model is subsequently used to make predictions under new, previously 

unseen, conditions [22, 23]. A widely used framework that falls into the third category is the 

Kennedy and O’Hagan framework (referred to as the KOH framework) [20]. The KOH 

framework and its variants [22-24] explicitly account for the model inadequacy by 

approximating the prediction model and model discrepancy with Gaussian process models 

[25, 26] and considering various sources of uncertainty in the Bayesian calibration process.  

Although the aforementioned Bayesian calibration approaches can address the model 

calibration of various linear or nonlinear dynamic problems (for example, a Bayesian state-

space approach is proposed to infer the latent states and parameters of the state dynamics for 

damage detection [27]), it is still necessary to point out that they are not applicable if the 

predicted quantity of interest (QoI) is a spatially distributed latent response that cannot be 

directly measured. If the QoI is fundamentally unobservable then an additional model relating 
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the unobservable QoI to an observable quantity must be employed during calibration. This 

observable model is coupled with the original unobservable model in a cascaded manner 

during the simulation. In this paper, this type of unobservable-observable model architecture 

is referred to as a multi-level model. 

As an example of multi-level model, consider the boundary condition finite element (FE) 

model of a miter gate structure (more fully explained in Sec. 4) as shown in Fig. 1. The QoI 

predicted by this model is the boundary force between the quoin block attached to the lock 

wall and that attached to the miter gate; however, this force cannot be observed directly and 

must be related to strain measurements using an observable model of the strain response. The 

boundary force considered here plays an important role in analyzing the fatigue crack 

initiation at the quoin block due to the rolling contact between the wall and the gate [28]. 

 
Fig. 1 Miter gate model with uncertain and unobservable boundary condition 

Even though models have been developed to predict the boundary force at the quoin 

block by using a contact analysis model [29], the predictions may not be accurate due to 

contact modeling assumptions, model simplification, and/or numerical discretization errors. 

In addition, the unknown damage state (e.g., loss of contact between the gate quoin block and 

the wall quoin block at the bottom of the gate, hereafter referred to as the “gap”) of the miter 

gate further complicates the boundary load condition analysis [30, 31]. Additional 
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information from observational data could help characterize the boundary forces, but the 

boundary force cannot be measured and the boundary condition model is an unobservable 

model (Fig. 1 (b1)). However, the strain response of the gate can be observed and can be 

exploited as an observable model (Fig. 1 (b2)).  

After calibration, the output of the boundary force model may then be used to simulation 

other QoIs, such as damage growth (at any stage) or fatigue. The model that uses the 

boundary force as an input and predicts these other QoIs is referred to as a prediction model. 

In this work, this kind of system containing an unobservable model, observable model, and 

prediction model is called a multi-level model (see Fig. 2). Multi-level models are also very 

common in material science where multi-scale models are usually connected together to 

predict the macroscopic material properties [32, 33]. The multi-level architecture of 

simulators, the presence of unknown model parameters, and distributed unobservable 

response introduce great challenges to the Bayesian calibration of real-world M&S 

architectures. Even though some efforts have been made recently to calibrate this type of 

multi-level models and quantify the hidden model discrepancy using the embedded model 

uncertainty approaches [34, 35], the current methods are inapplicable to problems with both 

uncertain model parameters and unobservable and distributed responses. 

In response to this challenge, this paper proposes a Bayesian calibration framework for 

multi-level models where the unobservable model has a distributed response. In the proposed 

framework, model discrepancy is explicitly accounted for within the modularized Bayesian 

calibration scheme. A new approach is first proposed to estimate both a regression parameter 

and the distributed model discrepancy of the unobservable model using measurements of the 

observable model output, with the consideration of uncertainty in the model parameters. After 

that, the uncertain model parameters are updated based on the modeled discrepancy function 

and experimental observations. Finally, the proposed framework quantifies the uncertainty in 
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the prediction after Bayesian calibration by accounting for various sources of uncertainty in 

the multi-level model. The developed new approach is applied to the practical miter gate 

problem described in detail below to demonstrate its efficacy by simultaneously estimating 

the gate damage state and correcting the distributed boundary conditions. The main 

contributions of this paper can therefore be summarized as: (1) systematic formulation of the 

Bayesian calibration problem for the multi-level model with unobservable distributed 

response; (2) development of a two-phase machine learning method for model discrepancy 

quantification of the unobservable distributed response; (3) an approach to quantify 

uncertainty in the prediction after Bayesian calibration; and (4) application of the developed 

framework to the calibration of a boundary condition model of a miter gate problem. 

The remainder of this paper is organized as follows. Section 2 provides background on 

Bayesian calibration of M&S and introduces the multi-level model (i.e. composition of 

multiple sub-models in a hierarchical architecture) with unobservable distributed response. 

Section 3 presents details of the proposed framework. An application to Bayesian calibration 

of the unobservable boundary condition model of a miter gate is used to demonstrate the 

proposed framework in Section 4, followed by conclusions in Section 5. 

 

2 BACKGROUND 

2.1. Bayesian Calibration of Modeling and Simulation Under Uncertainty 

Model uncertainty (i.e. model discrepancy, or model bias, or model form error) can be 

caused by modelling assumptions, missing physics, and/or numerical discretization errors. In 

the KOH framework [20], model uncertainty is accounted for by relating a computational 

simulation model ( ) ( , )y g=x x θ  to the underlying true physical process ( )truey x  via 

 
*( ) ( , ) ( ),truey g = +x x θ x  (1) 

where x  are controllable input variables (e.g., experimental conditions), 
*
θ  are the 
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underlying true, but unknown, model parameters (i.e. best estimates of model parameters in 

practical applications),   is an unknown regression coefficient that weighs the prediction of 

simulation model against the model discrepancy term during Bayesian calibration, and ( ) x  

is a model discrepancy term representing the mismatch between the model and reality. Note 

that θ  are fixed to specific values (i.e. *
θ ) in numerical experiments in the case study section, 

which are unknown to ( , )g x θ  in the Bayesian calibration process due to lack of knowledge 

to mimic reality.  

A prior distribution ( )f
Θ
θ  is usually provided for θ  based on expert elicitation, physical 

constraints, or other knowledge, and the expected output of ( , )g x θ  before Bayesian 

calibration is given by 

 ˆ( ) ( , ) ( ) .y g f=  Θ
θ

x x θ θ dθ  (2) 

To improve the accuracy of the prior prediction, several model calibration strategies have 

been developed to infer the uncertain parameters θ  and quantify the model discrepancy ( ) x  

using experimental data { ,  }e e
x y . The experimental data can be related to the underlying true 

physics ( )truey x  as follows 

 ( ) ( ) ,e truey y = +x x  (3) 

where ( )ey x  is the experimental observation, and   is the observation error, which is 

modeled as a Gaussian random variable here, 2(0, )N   .  

For experiment settings ,1 ,{ , , }
e

e

e e Nx x x , where eN  is the number of experimental 

data points, we have observed responses ,1 ,{ ( ), , ( )}
e

e e e

e e Ny yy x x . Using e
x , 

e
y , and 

following the modularized Bayesian method [24], a surrogate model of *ˆ( , ) x ω  with 

hyperparameters 
*

ω  may be constructed [36], and the regression coefficient 
*  can be 
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estimated. With these point estimates, the posterior distribution 
* *

| ( | , , , )e ef 
θ y
θ x y ω  may be 

obtained using Bayes’ rule:  

 

* *

|* *

| * *

|

( | , , , ) ( )
( | , , , ) ,

( | , , , ) ( )

e e

e e

e e

f f
f

f f d





=



y θ Θ

θ y

y θ Θ

y x θ ω θ
θ x y ω

y x θ ω θ θ
 (4) 

in which 
* *

| ( | , , , )e ef 
y θ

y x θ ω  denotes the likelihood of observing e
y  at e

x  given values of 

θ . Note that the likelihood function is derived by accounting for the correlations between 

different observations through the Gaussian process in the KOH framework [20]. After 

Bayesian calibration, the expected model prediction from Eqs. (1) and (2) becomes 

 
* * * *

|
ˆˆ( ) | , ( , ) ( | , , , ) ( , ).e e e ey g f  = + θ y

θ
x x y x θ θ x y ω dθ x ω  (5) 

The above Bayesian calibration scheme has been extensively studied and applied in many 

fields [37-40] due to its advantages in simultaneously correcting the model discrepancy and 

updating the uncertain model parameters. More details of existing Bayesian calibration 

methods can be found in [2, 22]. 

 

2.2. Multi-Level Model with Unobservable Distributed Response 

Fig. 2 shows a comparison between a generalized single-level simulation model and a 

generalized multi-level model. For the sake of explanation and illustration, two-level models 

are used in this paper to explain the proposed framework, where the first level refers to the 

unobservable model and the second level refers to the observable model. The distributed 

responses of the unobservable model are part of the inputs of the observable model (i.e. the 

two models are cascaded). The proposed framework, however, extends naturally to problems 

with more than two levels and that setting will be further investigated in our future work.  

The unobservable model with distributed responses is defined as 

 ( , ) ( , , , )u u u u ug=y x d x z d   (6) 
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where x  and θ  are the controllable input variables and unknown model parameters, 

respectively, ( , )u uy x d  is the unobservable distributed response, uz  are the inputs specific to 

the unobservable model, and ud  are the spatial coordinates of ( , )u uy x d . 

 

Fig. 2 Comparison between single-level model and multi-level model with unobservable 

distributed response 

Similarly, the observable model is defined as 

 ( , ) ( , , , , ( , )),o o o o o u ug=y x d x z d θ y x d  (7) 

where oz  are the input variables specific to the observable model, ( , )o oy x d  is the 

observable distributed response, and od  are the spatial coordinates of ( , )o oy x d .  

For any input setting x , we have 
,1 ,( , ) [ ( , ), , ( , )]

uu u u u u u Ny yy x d x d x d , where uN  is the 

number of spatial coordinates in the response of ( , )u uy x d , and 

,1 ,( , ) [ ( , ), , ( , )]
oo o o o o o Ny yy x d x d x d , where oN  is the number of spatial coordinates in the 

response of ( , )o oy x d .  

The prediction model is defined similarly as  

 ( , ) ( , , , , ( , )),p p p p p u ug=y x d x z d θ y x d  (8) 

where 
pz  and 

pd  denote the input variables and distributed spatial coordinates specific to the 



10 
LA-UR-21-28664 Approved for public release; distribution is unlimited. 

prediction model, ,1 ,( , ) [ ( , ), , ( , )]
pp p p p p p Ny yy x d x d x d , and 

pN  is the number of spatial 

coordinates in the response of the prediction model. Note that ( , )u uy x d  could be an input to 

multiple prediction models. For the sake of illustration, only one model is used in this paper. 

Multi-level model problems are very common in practical applications [41-43]. For 

instance, as shown in Fig. 1, we need to use the observable strain response to calibrate the 

unobservable distributed boundary force response of a boundary condition model (i.e. 

unobservable model), to improve the prediction accuracy of the fatigue crack initiation (i.e. 

prediction model) on the contact surface of the quoin block [28]. As shown in Fig. 2, the 

accuracy of the unobservable model plays an important role in that of the prediction model, 

but it is affected by the uncertain model parameters θ  and potential model discrepancy. Since 

it is not directly measured and the response is distributed, standard Bayesian approaches for 

single-level models, like those reviewed in Sec. 2.1, cannot be directly applied to multi-level 

models. In order to increase the accuracy of the prediction model ( , )p py x d , a new Bayesian 

calibration approach is required to calibrate ( , )u uy x d  and estimate the unknown model 

parameters θ  using measurements of the observable model ( , )o oy x d . The next section 

discusses the details of our approach to solving this multi-level Bayesian calibration problem. 

 

3 BAYESIAN CALIBRATION OF MULTI-LEVEL MODEL WITH 

UNOBSERVABLE DISTRIBUTED RESPONSE (BA-MUDI) 

3.1 Problem Formulation 

If model discrepancy was ignored, the composition of the observable and unobservable 

models in Eq. (7) could be used directly in a single-level calibration framework. However, 

accounting for model discrepancy in the unobservable model makes the calibration process 

more complicated. This is exacerbated by the unobservable model’s high dimensional 
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distributed response. Similar to the discrepancy for a single-level model, we define the true 

physics of the unobservable response as follows 

 *( , ) ( , , , ) ( , , ),true

u u u u u u u ug = +y x d x z d θ x z d  (9) 

where ( , , )u u u x z d  is the discrepancy function of the unobservable model,   is the 

unknown regression coefficient, and *
θ  is the true (or best in a real-world problem) values of 

model parameters but unknown to ( , , , )u u ug x z d θ .  

The observable model and prediction model after the correction of the unobservable 

model are given by 

 *( , ) ( , , , , ( , )),true true

o o o o o u ug=y x d x z d θ y x d  (10) 

and 

 
*( , ) ( , , , , ( , )).true true

p p p p p u ug=y x d x z d θ y x d  (11) 

Fig. 3 shows the connections between different models after model correction of the 

unobservable model. Since the output of the observable model can be measured and through 

experimental data collected in a controlled experimental environment in which the inputs can 

be controlled (e.g. apply known boundary forces to the miter gate), its model discrepancy 

term can be pre-calibrated by following existing model calibration approaches for single-

level models [22] as discussed in Section 2.1. Based on this observation and for explanation 

sake, we will not explicitly account for observable model discrepancy and will assume that 

either the observable model is accurate or the model discrepancy term has been incorporated 

into ( , )o oy x d . The main uncertainty of the observable model thus stems from the uncertain 

inputs of the observable model, such as the random input variables, the uncertain distributed 

response of the unobservable model, and the unknown model parameters θ .  
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Fig. 3 Multi-level model with unobservable distributed response after model correction 

Based on the above definitions, we can represent observations of the observable model as 

 *( , ) ( , , , , ( , )) ( ),e true

o o o o o u u og= +y x d x z d θ y x d ε d  (12) 

where 
,1 ,( ) [ ( ), , ( )]

oo o o N ε d d d  are the measurement errors at different spatial locations, 

2

,( ) (0, ), 1,2, ,o q oN q N   =d are modeled as statistically independent identically 

distributed Gaussian random variables, and ,1 ,( , ) [ ( , ), , ( , )]
o

e e e

o o o o o o Ny yy x d x d x d . Note that 

( , )e

o oy x d  is different from ( , )o oy x d  due to the difference between ( , )u uy x d  and ( , )true

u uy x d  

caused by the unobservable model discrepancy. 

For fixed experimental settings ,1 ,{ , , }
e

e

e e Nx x x , the multilevel Bayesian calibration 

problem considered here can be summarized as 

  

, ,: and ( , ), 1, , ,

: model discrepancy ( , , ) of the unobservable

 distributed response ( , ), and unknown model parameters .

e

e i o e i o e

u u u

u u

i N



=Given x y x d

Find x z d

y x d θ

 (13) 

For the sake of explanation, in the subsequent sections, we use ( , , )u ug x d θ , ( , )u u x d , 

( , , , ( , ))o o u ug x d θ y x d  and ( , , , ( , ))p p u ug x d θ y x d  to represent ( , , , )u u ug x z d θ , ( , , )u u u x z d , 

( , , , , ( , ))o o o u ug x z d θ y x d  and ( , , , , ( , ))p p p u ug x z d θ y x d  by omitting variables z , which are 
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specific to individual models. Next, an overview of the proposed framework is presented 

followed by details on this framework that answers the research question posed in Eq. (13). 

 

3.2 Overview of BA-MUDI 

In the proposed BAyesian calibration of Multi-level model with Unobservable DIstributed 

response (BA-MUDI) framework, in order to improve the prediction accuracy of ( , , )u ug x d θ  

at new input conditions of x  in a manner similar to Bayesian calibration of single-level 

models, we construct a surrogate model of ( , )u u x d  as ˆ ( , , )u u x d ω , where ω  are the hyper-

parameters of the surrogate model. Replacing ( , )u u x d  with ˆ ( , , )u u x d ω  in Eq. (9), we have 

the corrected ( , )u uy x d  conditioned on  , θ , and ω  as  

 ˆ( , ) | , , ( , , ) ( , , ),ct

u u u u u ug  = +y x d ω θ x d θ x d ω  (14) 

where ( , )ct

u uy x d  is the corrected ( , )u uy x d , and the corrected observable model and 

prediction models can be updated accordingly based on Eq. (10) and Eq. (11) by replacing 

( , )true

u uy x d  with ( , ) | , ,ct

u u y x d ω θ . Note that the right-hand side of Eq. (14), i.e. 

unobservable model corrected with the calibrated model discrepancy term, is referred to 

hereafter as the “corrected model”. 

The task of Bayesian calibration of multi-level model is then to estimate ω  and  , and 

infer θ  using , ,and ( , ), 1, ,e

e i o e i o ei N=x y x d . Similar to Bayesian calibration of single-level 

models, there are many different ways of estimating these parameters, such as full Bayesian 

analysis [44], and optimization-based approaches [3]. As suggested in the KOH framework 

[20], the full Bayesian method is computationally intractable, so in this paper we adopt the 

modularized Bayesian strategy [8, 24]. Fig. 4 presents an overview of the proposed BA-

MUDI framework for calibration of multi-level models with unobservable distributed 
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response. 

 

Fig. 4 Overview of proposed BA-MUDI framework 

As shown in Fig. 4, the proposed BA-MUDI framework consists of four main modules 

which are briefly explained as below 

(1) Module one - reduced-order modeling or surrogate modeling of ( , , )u ug x d θ  and 

( , , , ( , ))o o u ug x d θ y x d : In the case that ( , , )u ug x d θ  and/or ( , , , ( , ))o o u ug x d θ y x d  are 

computationally expensive simulation models, computationally “cheap” surrogate models 

or reduced-order models are first constructed to replace the original models. For instance, 

in the miter gate application, a reduced-order model is constructed for 

( , , , ( , ))o o u ug x d θ y x d  using static condensation to reduce the computational effort [29]. 

However, in general, alternative methods, such as surrogate models with deterministic 

predictions (e.g. neural networks [45], support-vector regression [46], etc) are available. 

(2) Module two - estimation of   and surrogate modeling of ˆ ( , , )u u x d ω : This module 

estimates the value of   and constructs a surrogate model ˆ ( , , )u u x d ω  for the model 
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discrepancy term of the unobservable model ( , , )u ug x d θ  with distributed response, using 

observations { , }e e

ox y  of the observable model *( , , , , ( , ))true

o o o u ug x z d θ y x d .  

(3) Module three - Bayesian inference of uncertain model parameter θ : This module 

performs Bayesian updating of the uncertain model parameters θ  by fixing the hyper-

parameters of ˆ ( , , )u u x d ω  at *
=ω ω  and   at * = , which are obtained from Module 

two. The main challenge that needs to be solved in this module is how to account for the 

uncertainty of ˆ ( , , )u u x d ω  in the inference of θ . 

(4) Module four - Posterior prediction after Bayesian calibration: Based on the discrepancy 

surrogate model and *  obtained from Module two and posterior distribution of θ  

obtained from Module three, this module performs posterior prediction after Bayesian 

calibration. 

Although the above four modules are similar to that for Bayesian calibration of single-

level model, the challenges that are solved in this paper and the implementation details are 

completely different due to the presence of distributed response and the unobservable model 

in Bayesian calibration. Efforts have been made in the past for Bayesian calibration of either 

an unobservable model or a distributed response separately; no approach has been developed 

for problems with unobservable and distributed responses which is a very common and 

challenging issue in many engineering applications. To the authors’ knowledge, the proposed 

solutions to the challenging problem of Bayesian calibration with unobservable and 

distributed responses presented in this paper cannot be found in the literature. The novelty of 

the paper is multifold. First, it creates a meta-algorithm that builds upon and synthesizes 

multiple existing algorithms including Bayesian inference, machine learning, and model 

discrepancy quantification in an innovative architecture to solve a new challenging problem 

involving composition of multiple models in a multi-level structure. Second, it proposes a 
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creative way to solve a coupled optimization problems (i.e. upper-level and lower-level 

optimization problems) in Bayesian calibration using a two-phase machine learning method. 

Third, it demonstrates the proposed method using a real-world miter gate application problem 

where the contact force analysis model with distributed response needs to be calibrated. In 

the subsequent sections, we will present the proposed framework in detail with a focus on 

Modules two to four since Module one is relatively straightforward. 

 

3.3 Module Two: Estimating   and Surrogate Modeling of ˆ ( , , )u u x d ω  

As discussed above, the model discrepancy of the unobservable model ( , , )u ug x d θ  is a 

function with distributed response. It is difficult to directly construct such a surrogate model 

ˆ ( , , )u u x d ω  since we cannot measure the distributed response of the unobservable model in 

practice. A possible solution could be mapping measurements of the observable model to the 

response of the unobservable model for training of ˆ ( , , )u u x d ω  and estimation of  . 

However, such a mapping is also difficult because the spatial coordinates of the observable 

model and unobservable model are different and the observable model is generally not 

invertible. Thus, we do not directly have training data for training of ˆ ( , , )u u x d ω . The 

coupling (compensation effects) between  , θ , and ˆ ( , , )u u x d ω  further complicates the 

model discrepancy quantification of ( , , )u ug x d θ . This module addresses these challenges 

through the representation of the spatially distributed response using orthogonal polynomials 

and the estimation of the input-dependent polynomial coefficients with a two-phase machine 

learning method. 

3.3.1 Distributed discrepancy representation 

In order to make it possible to build a surrogate model for ( , )u u x d  given in Eq. (9), we 

separate the space-dependent response from the input-dependent response in the model 
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discrepancy term using orthogonal polynomials as shown below, by following the space-time 

domain decoupling strategy suggested by [47, 48]  

 
1

( , ) ( ) ( ) ( ) ( ),
kN

u u k k u u

k

 
=

= =x d x L d L d α x   (15) 

where kN  is the number of orthogonal polynomial terms, 

,

1

,1( ) [ ( ), , ( )] u

uN

NT

k u k u k uL L


= L d d d  is the k-th order polynomial basis, 

1( ) [ ( ), , ( )] u k

k

N N

u u N u


= L d L d L d  is an u kN N  orthogonal polynomial matrix, and 

1

1( ) [ ( ), , ( )] k

k

NT

N  
= α x x x  are the input-dependent coefficients. Note that this is 

similar to the Karhunen-Loève decomposition commonly employed with random processes. 

Based on the above representation, we can then construct surrogates for the coefficients

( ), 1, ,k kk N  =x . Letting the surrogate of ( )k x  be ˆ ( , ), 1, ,k k kk N  =x υ , where kυ  

are the hyper-parameters of the k-th surrogate model, we then have ˆ ( , , )u u x d ω  as  

 
1

ˆ ˆ( , , ) ( , ) ( ),
kN

u u k k k u

k

 
=

=x d ω x υ L d   (16) 

where 
1[ , , ]

kN=ω υ υ  are the hyperparameters of the surrogate models. 

In this paper, Legendre orthogonal polynomials [49] are employed for 

( ), 1, ,k u kk N =L d . Alternatives, such as Hermite polynomials and Chebyshev 

polynomials, can also be used [47]. 

Using the polynomial representation of ˆ ( , , )u u x d ω , the corrected unobservable model in 

Eq. (14) is rewritten as 

 
1

ˆ( , ) | , , ( , , ) ( , ) ( ).
kN

ct

u u u u k i k u

k

g  
=

= +y x d ω θ x d θ x υ L d  (17) 

Substituting Eq. (17) into Eq. (12), we have the observable model after correction of the 

unobservable model, 
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1

ˆˆ ( , ) | , , ( , , , ( , , ) ( , ) ( )) ( ).
kN

o o o o u u k k k u o

k

g g  
=

= + +y x d ω θ x d θ x d θ x υ L d ε d  (18) 

The task now is to estimate the hyper-parameters 𝛚 and the regression coefficient   

using observations of the observable model output  { , }e e

ox y , where ,1 ,{ , , }
e

e e e

o o o Ny y y  with 

, ,( , ), 1, ,e e

o i o e i o ei N =y y x d . This however, is still very challenging for two main reasons: 

(1) ˆ ( , )k k x υ  can be any complicated function of x , and the values of the coefficients

,
ˆ ( , )k e i k x υ  are unknown for any observation , ,{ , }, 1, ,e

e i o i ei N =x y , of the observable 

model; and (2) ˆ ( , ), 1, ,k k kk N  =x υ  are also affected by the unknown regression 

coefficient   and the unknown model parameters θ . This paper presents a novel approach to 

solve the above challenges through the creation of a two-phase machine learning method. The 

proposed approach as described below fills a gap in the existing literature and makes it 

possible to simultaneously calibrate unknown model parameters and model discrepancy terms 

for models with unobservable and distributed responses.  

To address the above issues in the surrogate modeling of ˆ ( , ), 1, ,k k kk N  =x υ , in the 

following Section 3.3.2, we first estimate the unknown regression coefficient   and the 

polynomial coefficients at the specific experimental conditions where we have observations 

,1 ,2 ,
ˆ ˆ ˆ ˆ[ , , , ] k e

e

N Ne

e e e N


= α α α α , where 

( )(1)

, , ,
ˆ ˆ ˆ[ , , ]kN T

e i e i e i =α , 1, , ei N =  for the given 

observation , ,{ , }e

e i o ix y . After that, we construct surrogate models of ˆ ( , ), 1, ,k k kk N  =x υ  

based on the estimated ˆ e
α  and the observations of { , }e e

ox y . The surrogate models enable the 

polynomial coefficients to be computed for conditions 𝐱  that are not included in the 

experiment data. Next, we will discuss how to efficiently estimate   and ˆ e
α  for given 

observations { , }e e

ox y . 
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3.3.2 Estimation of   and polynomial coefficients ˆ e
α  based on observations 

A straightforward way of estimating   along with ˆ e
α  based on { , }e e

ox y  is to use the 

maximum likelihood estimation (MLE) method as below 

 *

,

ˆ , arg max{ ( | , , )},
e

e e e

o eL


 =
α

α y x α  (19) 

where ( | , , )e e

o eL y x α  is the likelihood function of observing e

oy  for given e
α  and  , and is 

given by 

 , , ,

1

( | , , ) ( | , , ).
eN

e e e

o e o i e i e i

i

L L 
=

=y x α y x α  (20) 

As shown in the above two equations, the simultaneous estimation of ,1 ,
ˆ ˆ ˆ[ , , ]

e

e

e e N=α α α  

and   using the MLE method or a Bayesian method is computationally intractable since the 

dimension is very high (i.e. the dimension is (2 ) 1 6001e kN N  + =  for the miter gate 

problem). To address this issue, we transform the MLE model given in Eq. (19) into a two-

level optimization problem with multiple lower-dimensional optimization problems at the 

lower level. The top-level optimization problem takes the form 

 

* ˆarg max{ ( | , , )},

ˆs.t. arg max{ ( | , , )},
e

e e

o e

e e e

o e

L

L



 



=

=
α

y x α

α y x α
 (21) 

where ˆ arg max{ ( | , , )}
e

e e e

o eL =
α

α y x α  is a lower-level optimization model for a given  , 

which can be further written as 

 ( ), , ,

1

ˆ arg max log ( | , , ) .
e

e

N
e e

o i e i e i

i

L 
=

 
=  

 


α

α y x α  (22) 

Since the likelihood functions , , ,( | , , ), 1, ,e

o i e i e i eL i N  =y x α  are independent from 

each other for a given  , the lower-level optimization model given in Eq. (22) can be further 

decomposed into eN  independent low-dimensional (each of dimension kN ) optimization 
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models as follows 

 ( ) 
,

, , , ,
ˆ arg max log ( | , , ) , 1, , ,

e i

e

e i o i e i e i e
L i N=  =

α

α y x α  (23) 

where , , ,( | , , )e

o i e i e iL y x α  is given by 

 
, , , , ,

, , ,

1 ,

( , ) ( , ) | ,
( | , , ) ,

( )

o e
o

e
N

o e i o q e i o q e iye

o i e i e i

q o q

y
L



 
 

=

  −
  =

  
 


x d x d α

y x α
d

 (24) 

in which 
,( )o q d  (

,( ) , 1, ,o q oq N  =  =d ) is the standard deviation of 
,( )o q d  at the q-

th spatial coordinate of the observable model, , , ,( , ) | ,e
o

e i o q e iy
 x d α  is the mean prediction 

based on Eq. (18) at the q-th spatial coordinate of the observable model, and it is computed 

by integrating out θ  based on its prior distribution ( )f
θ
θ  as 

 
, , , , , ,

, , , ,

( , ) | , [ ( , ) | , , ] ( ) ,

[ ( , , , ( , , ) ( ) )] ( ) ,

e e
o o

e i o q e i e i o q e iy y

o e i o q u e i u u e i

f

g g f

   



=

= +





Θ

Θ

x d α x d α θ θ dθ

x d θ x d θ L d α θ dθ
 (25) 

in which ( ) u kN N

u


L d  is given in Sec. 3.3.1 and 

1

,
kN

e i


α . The Monte Carlo simulation 

(MCS) method [50] is employed to solve this integration in this paper. For higher-

dimensional integration as shown in Eq. (25), the MCS-based integration method could lead 

to large errors. In that case, advanced numerical integration methods, such as sparse grid [51], 

dimension-reduction-based approaches [52], can be employed.  

Substituting Eq. (25) into Eq. (23), the lower-level optimization models become  

 
,

,

2

, , , , ,

,

1 ,

2

, , ,
2

( , ) ( , ) | ,
ˆ arg min ,

( )

arg min ( , ) | , ,

o e
o

e i

e
o

e i

e
N

o e i o q e i o q e iy

e i

q o q

e

o i e i o e i

y



 





=

   −   =     
  

  = −   


α

y
α

x d x d α
α

d

y μ x d α

 (26) 

where 
2
  is the Euclidean norm, 
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, , , , ,( , ) | , { ( , ) | , , 1, , }e e
o o

e i o e i e i o q e i oy
q N    =  =

 y
μ x d α x d α , and , , ,( , ) | ,e

o
e i o q e iy

 x d α  is 

given in Eq. (25). 

The above equation indicates that a MLE value of 
,

ˆ
e iα  will minimize the distance 

between ,

e

o iy  and , ,( , ) | ,e
o

e i o e i 
y
μ x d α . Even though the MLE estimate of 

,
ˆ

e iα  is possible, 

repeatedly solving this multi-level optimization problem is still computationally expensive 

because the lower-level MLE problem needs to be solved multiple times to determine the 

optimal value 
*  at the upper level. Since the distance between ,

e

o iy  and , ,( , ) | ,e
o

e i o e i 
y
μ x d α  

will be minimized at the MLE point, it implies that we can approximate ,

e

o iy  using 

, ,( , ) | ,e
o

e i o e i 
y
μ x d α  at the MLE point. In other words, we can build an approximate 

relationship between ,

e

o iy  and 
,

ˆ
e iα  using , ,( , ) | ,e

o
e i o e i 

y
μ x d α . Based on this observation and 

in order to avoid repeatedly solving the model given by Eq. (26), we develop a machine 

learning-based method as shown in Fig. 5 to efficiently estimate 
,

ˆ
e iα  for any given 

observation , ,{ , , 1, , }e

e i o i ei N =x y . As shown in Fig. 5 (b), there are two main phases in the 

machine learning-based method, namely the offline-training phase and online estimation 

phase. The offline-training phase is conducted to train an approximated mapping between the 

mean predictions of observable responses , ,( , ) | ,e
o

e i o e i 
y
μ x d α  and the coefficients 

,
ˆ

e iα  of the 

distributed model discrepancy. For any given measurements, the online estimation phase is to 

predict the corresponding coefficients of the distributed model discrepancy during model 

calibration using the machine learning model trained in the off-line phase. Since the required 

computational time for the machine learning model prediction is usually very low, this makes 

it possible to efficiently estimate the unknow coefficients 
,

ˆ
e iα  in an online manner. 

(a) Offline training of machine learning model 
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In the offline phase, a machine learning model ( , , ( , , ))ML of  =α x μ x α  is trained 

according to the explanations as discussed in Eq. (20) through (26), where 

( , , ) ( , ) | ,e
o

o o  =
 y

μ x α μ x d α . In order to train such a machine learning model, we first 

generate training samples of  , x , and α . Defining the training samples as 

,{ , 1, , }t t c tc N= =ρ , 
,{ , 1, , }t t c tc N= =x x , and 

,{ , 1, , }t t c tc N= =α α , where tN  is the 

number of training points, for each sample of 
,t c , 

,t cx , and 
,t cα , 1, , tc N = , we obtain 

, , ,( , , )o t c t c t cμ x α  using Eq. (25) as 

 
, , , , , , ,( , , ) [ ( , , , ( , , ) ( ) )] ( ) ,o t c t c t c o t c o t c u t c u u t cg g f = + Θ

μ x α x d θ x d θ L d α θ dθ   (27) 

where 1

, , , , ,1 , , , , , ,( , , ) [( ( , ) | , ), , ( ( , ) | , )] o
e e

oo o

N

o t c t c t c t c o t c t c t c o N t c t cy y
     

= μ x α x d α x d α . As 

mentioned above, the above integration can be solved using numerical integration methods. 

This paper uses MCS-based approach [50], but other quadrature points-based approaches, 

such as sparse grid [53] and dimension reduction-based method [52] can also be adopted if 

the dimension of θ  is high. 

 

Fig. 5 Module 2: estimation of   and surrogate modeling of distributed discrepancy 
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ˆ ( , , )u u x d ω  

With the training data of 
,t c , 

,t cx , and 
,t cα , and 

, , ,( , , )o t c t c t cμ x α , 1, , tc N = , we 

then build a machine learning model that maps 
,t cx , 

,t c , and 
, , ,( , , )o t c t c t cμ x α  to 

,t cα . Since 

both the inputs and outputs are multi-dimensional, multi-input/multi-output machine learning 

method is needed. Considering the advantage of long short-term memory (LSTM) model in 

dealing with sequence to sequence data [54], in this paper, LSTM is employed to construct 

the model ( , , ( , , ))ML of  =α x μ x α . The developed framework, however, is not limited to 

LSTM. Other types of multi-input/multi-output machine learning models can also be 

employed. 

LSTM is an artificial recurrent neural network architecture as shown in Fig. 6. It has 

attracted tremendous interests since it enables the neural network to sequentially learn and 

determine whether to forget the previous hidden states and update the hidden states or not. In 

the operation procedure within a LSTM module, the first step is to determine what previous 

information to forget by a sigmoid layer called the “forget gate” layer [55, 56]. Next, the 

LSTM module determines what new information tC  to store through a sigmoid layer called 

“input gate” layer and a tanh layer. The third step updates the new cell state tC  by combining 

the information inherited from the previous cell state 1tC −  with the new candidate 

information tC . Finally, we can obtain the output of this LSTM module. The step-by-step 

operation is given as below 
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Fig. 6 LSTM neural network architecture [55] 

 

1

1

1

1

1

Step 1:  ( [ , ] );

Step 2:  ( [ , ] )

            tanh( [ , ] );

Step 3: ;

Step 4: ( [ , ] )

            tanh( ),

t f t t f

t i t t i

t C t t C

t t t t t

t o t t o

t t t

f W h x b

i W h x b

C W h x b

C f C i C

o W h x b

h o C







−

−

−

−

−

= +

= +

= +

=  + 

= +

= 

  (28) 

where 
fW , iW , CW  and oW  denote the weight matrices of each unit, and 

fb , ib , Cb  and ob  

are the bias terms associated with each unit. An important step in the training of an LSTM 

model the determination of the number of hidden layers, neurons, etc. These parameters are 

determined in this paper through cross-validation by splitting the data into training and 

testing. Note that even though LSTM is more widely used for time series prediction, it can 

also be employed to perform multiple-inputs to multiple-outputs mapping which is similar to 

the sequence-to-sequence mapping. 

(b) Online prediction of ˆ e
α  and   using ( , , ( , , ))ML of  =α x μ x α  

In the online prediction phase, for given   and , ,, e

e i o ix y , ( , , ( , , ))ML of  =α x μ x α  is 

used to predict |pred

i α  based on the fact that , ,
ˆ( , ) | ,e

o
e i o e i 

y
μ x d α  can be used to 

approximate ,

e

o iy  at the MLE point as explained in Sec. 3.3.2. Using 
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( , , ( , , ))ML of  =α x μ x α  and plugging ,

e

o iy  into the model as ( , , )o μ x α , we have 

 , ,[ | ] ( , , ), 1, , .pred e

i ML e i o i ef i N   =α x y   (29) 

Using the machine learning model, the lower-level optimization models given in Eq. (24) 

can be solved efficiently for any given value of  . Using the predicted 

| , 1, ,pred

i ei N  =α , the unknown regression coefficient   is then estimated as 

 
*

, , 2
1

arg min ( ) ,
eN

e pred

o i o i

i

 
=

 
= − 

 
 y y   (30) 

where , ( )pred

o i y  is obtained by plugging |pred

i α  predicted in Eq. (29) into Eq. (27) as 

follows 

  
, , ,( ) [ ( , , , ( , , ) ( )[ | ])] ( ) .pred pred

o i o e i o u e i u u ig g f  = + Θ
y x d θ x d θ L d α θ dθ   (31) 

The above optimization corresponds to the upper-level optimization defined in Eq. (21). 

After 
*  is estimated using Eq. (30), we have ,1 ,

ˆ ˆ ˆ[ , , ]
e

e

e e N=α α α  as  

 
*

,
ˆ [ | ], 1, , .pred

e i i ei N=  =α α   (32) 

With 
,e ix  and the estimate 

,
ˆ , 1, ,e i ei N=α , we then construct surrogate models for 

ˆ ( , ), 1, ,k k kk N =x υ .  

3.3.3 Surrogate modeling of ˆ ( , ), 1, ,k k kk N =x υ  

In this section, we construct surrogate models ˆ ( , ), 1, ,k k kk N =x υ  (i.e. estimate kυ ) as 

indicated in Eq. (16) for the input-dependent coefficients of the model discrepancy 

polynomial representation of the unobservable model using 
,e ix  and 

( )(1)

, , ,
ˆ ˆ ˆ[ , , ] , 1, ,kN T

e i e i e i ei N = =α . For the surrogate modeling of ˆ ( , )k k x υ , the input 

training data are 
, , 1, ,e i ei N=x  and the output training data are 

( )

,
ˆ , 1, ,k

e i ei N = .  

In order to account for the noises in 
( )

,
ˆ , 1, , , 1, ,k

e i e ki N k N =  =  introduced by the 
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predictions of the LSTM model in Eq. (29), and to quantify the prediction uncertainty at new 

input settings, Gaussian process (GP) surrogate modeling (i.e. given in the APPENDIX) is 

employed in this paper to build the surrogate models ˆ ( , ), 1, ,k k kk N =x υ . To capture the 

potential noise in 
( )

,
ˆ , 1, ,k

e i ei N = , we build the GP models with noise-level estimation by 

adding a white noise to the covariance function (also called kernel function) as follows 

 1 2( , ) ( , ) ( , ),k k k  = +x x x x x x  (33) 

where x  and x  represent two different input settings, 1( , )k x x  is the squared exponential 

kernel function (also known as Gaussian covariance function), which is given by 

 2 2
1 1 2
( , ) exp ,

2
k

l


 − 
 = − 

 

x x
x x  (34) 

in which 2

1  is the overall variance ( 1  is also known as amplitude), and l  denotes length 

scale. Note that the squared exponential kernel may not be the best choice for some problems. 

Other type of kernel functions, such as the Matern kernel or user-defined kernels, can also be 

employed. The kernel function of the GP model can be selected through cross-validation 

during the training of the GP models.  

The white noise kernel 2 ( , )k x x  is defined as 

 2

2 2( , ) ,k   
 =

xx
x x  (35) 

where 2

2  is the variance of noise,  xx  takes one when =x x , otherwise,  xx  is equal to zero. 

For the given noise model, the variance of GP prediction at the training points is non-zero. 

More details of GP model can be found in the APPENDIX section. 

From the GP surrogate models, for any given specific input x  we have 

 
* 2ˆ ( , ) ~ ( ( ), ( )),

k kk k N    x υ x x  (36) 

where *

kυ  are the hyperparameters of the k-th GP model, ( )
k

 x  and 
2 ( )

k
 x  are respectively 
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the mean prediction and variance of the prediction at input setting x .  

Consequently, 
*ˆ ( , , )u u x d ω  is modeled as 

 
* *

1

ˆ ˆ( , , ) ( ) ( , ).
kN

u u k u k k

k

 
=

=x d ω L d x υ  (37) 

Next, we will discuss how to infer the uncertain model parameters θ  by fixing   to 
*  

and the discrepancy model ( , , )u u x d ω  to the surrogate model 
*ˆ ( , , )u u x d ω , where 

* *{ , 1, , }k kk N= =ω υ . 

 

3.4 Module Three: Bayesian Inference of Uncertain Model Parameter θ  

This module updates the uncertain model parameters θ  by fixing 
*  and 

*ˆ ( , , )u u x d ω  

(as indicated in Fig. 4) using Bayes’ theorem as  

 
* * * *

| |( | , , , ) ( | , , , ) ( ),e e e e

o of f f 
θ y y θ Θ
θ y x ω y x θ ω θ  (38) 

where 
* *

| ( | , , , )e e

of 
y θ

y x θ ω  is the likelihood function of observing e

oy  at input setting e
x  for 

given θ  after fixing 
*  and *

ω  (i.e. hyper-parameters of 
*ˆ ( , , )u u x d ω ). 

In order to compute the likelihood function 
* *

| ( | , , , )e e

of 
y θ

y x θ ω , we have the predicted 

response of the observable model after introducing the GP-based bias surrogate model of the 

unobservable model into Eq. (18) as  

 
* * * *

,

1

ˆˆ ( , ) | , , ( , , , ( , , ) ( , ) ( )) ( ).
kN

o o o o u u GP k k k u o

k

g g  
=

= + +y x d θ ω x d θ x d θ x υ L d ε d  (39) 

Based on the above equation, we then have 
* *

| ( | , , , )e e

of 
y θ

y x θ ω  given by 

 
1

* * 12 2
|

1
( | , , , ) (2 ) ( ) exp ( ) ( ) ( ) ,

2

SN
T

e e e e

o o o o o o of  
− − − 

   =  − − −    
 

y θ
y x θ ω V θ y E θ V θ y E θ  (40) 

where S o eN N N=  is the total number of observations, ( )oE θ  is the mean prediction for given 
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e
x  and is given by 

 
*

1

( ) ( , , , ( , , ) ( ) ( )),
k

k

N
e e e

o o o u u k u

k

g g  
=

= +E θ x d θ x d θ x L d  (41) 

and ( )oV θ  is the covariance matrix of the prediction, which is given by 

 

11 1

1

( ) ( )

( ) ,

( ) ( )

e

S S

e e e

N

N N

o

N N N



 
 

=  
 
 

Σ θ Σ θ

V θ

Σ θ Σ θ

 (42) 

where ( ) , 1, , ; 1, ,o oN N

ij e ei N j N


  = =Σ θ  is a covariance matrix given by 

 

(1, )(1,1)

( ,1) ( , )

( ) ( )

( ) ,

( ) ( )

o

o o o

N

ij ij

ij

N N N

ij ij

c c

c c

 
 

=  
 
 

θ θ

Σ θ

θ θ

 (43) 

in which 
( , ) ( ) * * ( ) * *

, ,
ˆ ˆ( ) ([ ( , ) | , , ], [ ( , ) | , , ])p q i j

ij o e o p o e o qc Cov y y =θ x d θ ω x d θ ω , , 1, , op q N = . 

( , ) ( )p q

ijc θ  represents the covariance between the predictions at different input settings ( )i

ex  and 

( )j

ex , and different spatial locations 
,o pd  and 

,o qd  of the response of the observable model. 

The covariance 
( , ) ( )p q

ijc θ  can be computed analytically if the observable model given in 

Eq. (39) is a linear model (e.g. the strain model in the miter gate application problem as 

shown in Section 4.2). If the model given in Eq. (39) is nonlinear, the observations from the 

observable model may not follow the multivariate Gaussian form as given in Eq. (40). Even 

if the multi-variate Gaussian joint PDF might be a reasonable approximation, 
( , ) ( )p q

ijc θ  does 

not have an analytical form. A possible way of computing the likelihood function 

* *

| ( | , , , )e e

of 
y θ

y x θ ω  in that case is to use sampling-based method in conjunction with the 

copula-based method [57] by propagating the uncertainty from 
*

,
ˆ ( , ), 1, ,GP k k kk N  =x υ  to 

* *ˆ ( , ) | , ,o o y x d θ ω . Other alternative approaches could be approximating the likelihood 

function using sampling-based method such as pseudo-marginal Markov Chain Monte Carlo 
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(MCMC) or approximating the posterior distributions using likelihood-free inference 

methods (e.g. approximate Bayesian computation [58]). For problems with nonlinear 

observable models, the calibration will be even more complicated, and it is a problem that is 

worth investigating in our future work. 

After the posterior distribution of θ  is obtained, 
* *

| ( | , , , )e e

of 
θ y
θ y x ω , 

* , and 

ˆ ( , , )u u x d ω  are used to correct the simulation of the unobservable model to improve its 

prediction validity. The mean posterior prediction of the unobservable model is given by 

 
* * *

|

1

( , ) | , ( , , ) ( | , , , ) ( ) ( ).
kN

ct e e e e

u u o u u o k k u

k

g f  
=

= + θ y
μ x d x y x d θ θ y x ω dθ x L d  (44) 

The covariance of the posterior prediction of the unobservable model can be computed 

similarly to Eqs. (41) through (43). In Module 4, the prediction uncertainty of the 

unobservable model can then be propagated to the prediction model or observable model to 

perform prediction under new conditions as shown in Fig. 7. 

 

3.5 Implementation Procedure 

Fig. 7 summarizes the implementation procedure of the proposed BA-MUDI framework 

for Bayesian calibration of multi-level model with unobservable distributed response. 

Following that, in Sec. 4, we use a miter gate application to demonstrate the proposed 

framework in detail. 
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Fig. 7 Implementation procedure (workflow of proposed meta-algorithm) of BA-MUDI 

 

4 APPLICATION OF BA-MUDI FRAMEWORK TO MITER GATE 

In the United States, the US Army Corps of Engineers (USACE) maintains and operates 

236 miter gates at 191 sites [59], the network of which plays an important role in the inland 

waterway transportation system. More than half of these structural assets have exceeded their 

economic design life of 50 years [60]. The repair and maintenance plans are essential for 

optimal-scheduled closure of these miter gates, since unexpected closures are extremely 

expensive because they prevent the shippers from fulfilling their scheduled transport missions. 

One of the most common damage of miter gates stems from the occurrence of a gap (loss of 

contact between the gate quoin block and the wall quoin block the bottom of the gate), as 

shown in Fig. 8(b) and 8(c) [29]. Such a gap leads to stress redistribution in the gate structure 

and results in high-stress zones which may exceed the limit states, leading to failure. 

Therefore, accurate gap identification and boundary force analysis along the quoin blocks are 

crucial for repair and maintenance planning. The boundary force prediction model is also 

important to analyze the fatigue crack initiation at the quoin blocks due to the rolling contact 

between the wall and the gate. In this section, the proposed BA-MUDI framework is applied 
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to an in-service USACE miter gate [61]. 

Fig. 8 Miter gate and gap at the interface of the wall quoin block and gate quoin block 

 

4.1 Physics-based Multi-Level Simulation Model of Miter Gate 

In a previous USACE study, a high-fidelity ABAQUS finite element simulation model as 

shown in Fig. 9 was developed for the structural analysis of a miter gate in the Greenup lock 

system (Kentucky, USA) [14]. As shown in Fig. 8(c), the bearing gap (loss of contact) was 

modelled by not constraining the gate laterally over the length of the bearing gap. To reduce 

the computational cost of such a large model, the majority of elements in the gate were 3D 

linear shells elements as shown in Fig. 9. Furthermore, a reduced-order model of the strain 

analysis model was developed using the static condensation method [61]. In addition, the 

strain analysis model of the gate was validated in a controlled experimental environment by 

USACE [61].  

 
Fig. 9 Finite element model (Left: mesh; Right: stress analysis results) 

(a) Miter gate dewatered for repair (b) Gap on structure (c) Modeling of gap 

gap 
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In order to model the boundary condition of the miter gate, a linear contact analysis 

model was developed by assuming that the connected bodies are linear and a contact element 

connects the two linear bodies by satisfying the complementarity condition. The linear 

complementarity problem, which is equivalent to a quadratic programming optimization 

problem, is solved using the Lagrange multiplier method [61]. In the linear contact model, the 

normal force is proportional to the penetration distance (see e.g., Section 2.3 of Ref. [62]). To 

approximate tangential contact forces arising from static friction, we employ a tangential 

force that is proportional to the product of the normal force and tangent displacement.  The 

proportionality constants in both the normal and tangential contact models are dependent on 

the material properties and contact geometry. Here we treat them as tuning parameters in the 

linear contact model and set their values to 1×106, which results in forces that are similar to 

those seen in more sophisticated contact simulations performed with Abaqus. Note that a 

nonlinear contact analysis using nonlinear element is more realistic than the linear model for 

practical applications. The nonlinear model, however, is much more difficult to solve (i.e., 

requires incremental iterative solution algorithms). Fig. 10 shows the boundary forces in the 

normal and tangential directions, respectively, obtained from the analysis for a given gap 

length.  

 
Fig. 10 Contact force analysis of the miter gate (“with” and “without gap”) 

The distributed boundary force analysis results will be used as inputs for strain analysis. 
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Even though these two analysis models share the same finite element source data, the 

analyses are performed in a multi-level manner. For the miter gate problem, the observable 

model is the strain analysis model as shown in Fig. 9, and the unobservable model is the 

contact force analysis model as illustrated in Fig. 10, which should be an extremely 

complicated nonlinear model if we want to accurately model the contact forces. As mentioned 

above, the contact force analysis may be used as inputs for the fatigue initialization analysis 

at the interface between the miter gate and quoin block. The fatigue analysis model or any 

other model that takes the forces as inputs for the analysis is therefore the prediction model. 

In this case study, the strain analysis model under new prediction conditions is employed as 

the prediction model for demonstration purpose. Fig. 11 summarizes the multi-level analysis 

architecture of the miter gate problem. 

As shown in Fig. 11, the controllable inputs x are the upstream and downstream water 

levels that govern the net hydrostatic load on the gates, and the unknown model parameter l  

is the length of the gap which is illustrated in Fig. 8(c). Since the contact analysis model and 

the strain analysis model share the same FE data, there are no additional inputs uz  or oz  that 

are specific to the unobservable or observable model. The observable response is the 

distributed strain response ( , )o oy x d , where od  are the spatial locations of the strain gauges 

(i.e. 7 gauges as shown in Fig. 10), and the unobservable distributed response consists of the 

boundary contact forces BC ( , )uF x d , where ud  are the spatial coordinates of the quoin block. 

Due to the simplifying assumptions in the contact force analysis model, such as simplification 

of load conditions, assumption of linearity of the connection and connected bodies, etc., 

BC ( , )uF x d  may not accurately represent the true physics. The discrepancy of BC ( , )uF x d  and 

the unknown gap length l  for a specific gate in a practical situation need to be estimated 

simultaneously using the strain measurements ( , )o oy x d . The proposed BA-MUDI 
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framework will be used in the next section to achieve this.  

 
Fig. 11 Multi-level analysis architecture of miter gate problem 

 

4.2 BA-MUDI Framework for Bayesian Calibration of the Unobservable Distributed 

Boundary Forces 

As discussed in Sec. 3 and shown in Fig. 11, the underlying true unobservable boundary 

contact force can be modeled as  

 

* *( , , ) ( , ), if
( , )= ,

0, otherwise

true BC u l BC u u l

BC u

g   + 



x d δ x d d
F x d  (45) 

where *( , , )BC u lg x d  denotes the contact force analysis model that predicts the unobservable 

distributed contact force response along the height of the quoin block [61], ( , )BC uδ x d  

denotes the model discrepancy of the contact force model caused by the model assumptions 

and simplifications or discretization errors, ud  are the spatial coordinates of the quoin block, 

*

l  is the true length of the bearing gap which is unknown in real-world conditions since the 

gap is underwater, and   is an unknown regression coefficient.  

Since there are both normal and tangential contact forces at each coordinate of the quoin 

block as shown in Fig. 10, the distributed boundary force is represented as 
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,1

2 1

,

( , )

( , )

( , )

u

u

BC u

N

BC u

BC u N



 
 

=  
 
 

F x d

F x d

F x d

, where 
, 

, 

, 

( , )
( , )

( , )

N u b

BC u b

T u b

F

F

 
 
 

x d
F x d

x d
, 1, , ub N = , in 

which 
, u bd  is the b-th spatial coordinate at the quoin block and 509uN =  is the number of 

spatial coordinates in the current application adopted for the description of location on the 

quoin block. Accordingly, we represent the model discrepancy functions of the normal force 

and tangential force as 

,1

2 1

,

( , )

( , )

( , )

u

u

BC u

N

BC u

BC u N



 
 

=  
 
 

δ x d

δ x d

δ x d

, where 

,

,

,

( , )
( , ) , 1, ,

( , )

N u b

BC u b u

T u b

b N




 
 = 

 

x d
δ x d

x d
. We therefore have the true unobservable boundary 

contact forces as 

 

,1

,

,1

2 1* *

,

,

( , )

( , )=

( , )

( , )

( , , ) , if , 1, ,
= .

( , )

0, otherwise

u

u

u

true

BC u

true

BC u

true

BC u N

BC u

N

BC u l u b u l

BC u N

g b N  

 
 
 
 
 

  
  

+   =   
  
  



F x d

F x d

F x d

δ x d

x d d

δ x d

 (46) 

For the observable strain response model as shown in Fig. 11, after static condensation 

[29], the strain response with corrected boundary force inputs is modeled using a linear 

model as  

 

*

* *

( , ) ( , , , ( , ))

( ( , , ) ( , ) ( , )), if
,

0, otherwise

true true

o o o o l BC u

BC u l BC u water u u l

g

g



  

=

 + + 
= 


y x d x d F x d

Α x d δ x d F x d d  (47) 



36 
LA-UR-21-28664 Approved for public release; distribution is unlimited. 

where 

1

2 2o u

o

N N

N



 
 
 = 
 
 
  

Α

Α
Α

Α

 is a matrix obtained from static condensation (i.e. Eq (3.14) in 

Ref. [61], which is a function of a stiffness matrix and a differentiation matrix), 

,1 ,, , , 1, ,
up p p N op N =  = Α Α Α , 

, , , , ,[ , ], 1, ,p b N p b T p b uA A b N=  =Α , 
, ,N p bA  and 

, ,T p bA  

are elements associated with the normal and tangential forces, respectively, 

2 1
( , ) uN

water u


F x d  are the hydrostatic loads due to the different water levels on both sides 

of the lock chamber obtained from the finite element analysis, 

1

,1 ,( , ) [ ( , ), , ( , )] o

o

Ntrue true true T

o o o o o o Ny y


= y x d x d x d  are the true strain responses at oN  strain 

gauges, 
, , 1, ,o i oi N=d  are the spatial coordinates of the strain gauges, and 7oN =  strain 

gauges are used in this study, which are shown as red dots in Fig. 10. 

Based on Eq. (12), the measured strain e

oy  for a given x  is predicted by 

 ( , )= ( , ) ( ),e true

o o o o o+y x d y x d ε d  (48) 

where ,1 ,( ) [ ( ), , ( )]
o

T

o o o N =ε d d d  are the measurement errors of e

oy . 

To calibrate the unobservable boundary condition model and estimate l  at the same time, 

following the BA-MUDI framework proposed in Sec. 3, we construct surrogate models for 

( , )N u x d  and ( , )T u x d  using the approach presented in Sec. 3.3. After that, we obtain the 

regression coefficient 
*  and surrogate models of ( , )BC uδ x d  as  

 

1

1 1 1

1

2

2 2 2

2

, ,

1*

, ,

1

ˆ ( , ) ( )

ˆ ( , , ) ,

ˆ ( , ) ( )

k

k

N

N k N k k u

k

BC u N

T k T k k u

k





=

=

 
 
 =
 
 
  





x υ L d

δ x d ω

x υ L d

 (49) 

in which 
1 1 1 ,

1

,1( ) [ ( ), , ( )] u

uN

NT

k u k u k uL L


= L d d d  is the 1-thk  polynomial basis, 
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2

1
( ) uN

k u


L d  is the 2 -thk  polynomial basis, 

1 2

*

, 1 1 , 2 2{ , 1, , ; , 1, , }N k k T k kk N k N= = =ω υ υ , where 1kN  and 2kN  are number of 

expansion terms used for the normal contact force and tangential contact force, respectively. 

In this case study, 1 2 6k kN N= =  which minimizes the errors between the prediction and 

observations quantified by Eq. (30). 

After the surrogate modeling of 
*ˆ ( , , )BC uδ x d ω  and the estimation of 

* , we perform 

Bayesian estimation of the gap length l  following the method presented in Sec. 3.4. For the 

likelihood function given in Eq. (40), the mean prediction of strain at the input setting e
x  is 

given by 

 * *( ) ( ( , , ) ( , , ) ( , ),e e e

o l BC u l BC u water ug  = + +E Α x d μ x d ω F x d  (50) 

where 
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1 1 1
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1 2 1*

, , 

1
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N k N k k u

k Ne

BC u N
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T k T k k u
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



= 

=

 
 
 = 
 
 
  





x υ L d

μ x d ω

x υ L d

. 

The covariance matrix is calculated using Eq. (42) and Eq. (43) with ( ) S SN N

o l


V  

( s e oN N N= ). Since the *( , , , ( , ))true

o o l BC ug x d F x d  given in Eq. (47) is a linear model of the 

unobservable model after static condensation, we can compute 

( , ) ( ) * * ( ) * *

, ,
ˆ ˆ( ) ([ ( , ) | , , ], [ ( , ) | , , ])p q i j

ij l o e o p l o e o q lc Cov y y    x d ω x d ω , , 1, , ;ei j N =

, 1, , op q N=  in Eq. (43) analytically as  
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 (51) 

where 
1

,
uN

N p


Α  and 

1

,
uN

T p


Α  are respectively the elements of 

1 2 uN

p


Α  as 

explained below Eq. (47), 
1

1

2( ) and ( ) uN

k u k u


L d L d  is the 1-thk  or 2 -thk order polynomial 
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basis used to approximate the normal contact force or tangential contact force respectively, 

1 1

( ) ( )

, ,
ˆ ˆCov( ( ), ( ))i j

N k e N k e x x  is the covariance between GP surrogate models 
1 1

( )

, ,
ˆ ( , )i

N k e N k x υ  

and 
1

( )

, ,
ˆ ( , )j

N k e N k x υ  (i.e., GP surrogate models of the coefficients of the polynomial bias), 

2 2

( ) ( )

, ,
ˆ ˆCov( ( ), ( ))i j

T k e T k e x x  represents the covariance between GP surrogate models

2 2

( )

, ,
ˆ ( , )i

T k e T k x υ  and 
2 2

( )

, ,
ˆ ( , )i

T k e T k x υ , and 1 =  when i j=  and p q= , otherwise, 0 = . 

If i j= , then 
1 1 1

( ) ( ) 2 ( )

, ,
ˆ ˆCov( ( ), ( )) ( )

k

i j i

N k e N k e e  =x x x , else 
1 1

( ) ( )

, ,
ˆ ˆCov( ( ), ( ))i j

N k e N k e x x  needs 

to be computed according to the kernel function used in the GP surrogate modeling as 

discussed in the APPENDIX. 
2 2

( ) ( )

, ,
ˆ ˆCov( ( ), ( ))i j

T k e T k e x x  is computed similarly as 

1 1

( ) ( )

, ,
ˆ ˆCov( ( ), ( ))i j

N k e N k e x x . It is observed from Eq. (51) that the covariance mainly stems 

from the GP prediction uncertainty and measurement error, since ( , , )m

BC u lg x d  is a 

deterministic model. Using the above mean and covariance functions in conjunction with Eq. 

(40), the posterior distribution of the gap length l , 
* *

| ( | , , , )e e

l of  
y

y x ω , is obtained.  

The boundary force prediction is then updated as 

 

* * * * *

|

2 1*

ˆ ( , ) | , , , ( , , ) ( | , , , )

ˆ ( , , ) ,

l

u

e e e e

BC u o BC u l l o l

N

BC u

g f d


     



=

+ 

 y
F x d y x ω x d y x ω

δ x d ω

 (52) 

where 
*ˆ ( , , )BC uδ x d ω  is the surrogate models given in Eq. (49) and obtained from Module 

Two of the BA-MUDI framework. 

The posterior prediction of the strain response can be updated similarly. The updated 

unobservable boundary force prediction model can then be used for the other analysis (e.g. 

fatigue initiation analysis) to improve the prediction accuracy. Next, we present results 

obtained from the BA-MUDI framework for the miter gate. 
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4.3 Results 

For the purpose of demonstrating and verifying the effectiveness of the proposed BA-

MUDI framework, we assume the underlying “true” discrepancy functions of the 

unobservable distributed normal and tangential forces. These “true” discrepancy functions are 

then used in conjunction with the original linear contact analysis model to generate synthetic 

numerical experimental data. After that, the proposed BA-MUDI algorithm is blind to the 

underlying “true” discrepancy functions. It tries to recover the “true” discrepancy functions 

using orthogonal polynomials as indicated in Eq. (15), and to estimate the unknown gap 

length based on the synthetically generated numerical experiments. The “true” discrepancy 

functions that are used to generate numerical experiments are assumed to be 

 

3 *3( )[(762 ) /1200] , if
( , ) ,

0, otherwise

up down u u l

N u

h h  − − 
= 


d d
δ x d  (53) 

and 

 

2 *[( ) /100] sin( / 240), if
( , ) ,

0, otherwise

up down u u l

T u

h h  − 
= 


d d
δ x d  (54) 

where [ , ]up downh h=x  are respectively the upstream and downstream water levels, which vary 

within the range of [24, 744] inches. The height of the quoin block is 762 inches, which 

means each component of the vector ud  falls within the range of [0,762]  inches. The 

Legendre orthogonal polynomials are used to approximate the above assumed “true” model 

discrepancy functions. Note that the proposed framework is not limited to the above 

discrepancy form; it is applicable to any generalized discrepancy functions as long as the 

orthogonal polynomial basis can be used to capture the spatially-distributed response. 

The miter gate under two different scenarios (i.e. health status) as shown in Table 1 are 

employed to validate the proposed framework. In Scenario 1, the true gap length *

l  is 

assumed to be 90 inches. A non-informative uniform distribution is assumed to be the prior 
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distribution, and we have ~ Unif (81,105)l inches. In Scenario 2, the true gap length *

l  is 

assumed to be 150 inches, and we have ~ Unif (135,165)l inches as the prior distribution.  

Table 1 Two scenarios of miter gate with different gap lengths 

Scenario True gap length *

l  (inch) Prior distribution of l  

Scenario 1 90 Unif (81,105)  

Scenario 2 150 Unif (135,165)  

 

Based on the contact analysis model developed based on linear assumption as well as the 

two assumed true discrepancy functions of the unobservable model, we have the underlying 

“true” contact analysis model as illustrated in Fig. 11. We then use the “true” model to 

generate 500 sets of synthetic strain measurements (i.e. e
x  and e

oy , where 500eN = ) by 

plugging Eqs. (53), (54), and *

l  into Eq. (48), and =0.8  (i.e. “true” value of  ) is used for 

both scenarios. The standard deviation of strain measurement error is assumed to be 1 = . 

For each set of synthetic data, there are 7oN =  different strain responses collected through 

the seven sensors as illustrated in Fig. 10. After that, the BA-MUDI framework is assumed to 

be blind to  , *

l , ( , )N uδ x d , and ( , )T uδ x d  for both scenarios. The BA-MUDI framework 

will be employed to discover the model discrepancy functions of the unobservable contact 

force analysis model and estimate the unknown gap length 
l  based on measurements e

x  

and e

oy  of the observable model.  

Following the BA-MUDI framework as summarized in Fig. 7, an LSTM model is first 

constructed based on 50, 000 training points of  , x , and α , which includes both ˆ
Nα  and 

ˆ
Tα  as given in Eq. (49). For the trained LSTM model, there are ten inputs which include  , 

x , and the strain responses of the seven strain gauges after marginalizing the unknown gap 
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length 
l  according to the assumed prior distribution, and 12 outputs since 1 2 6k kN N= =  

order Legendre polynomials are used in Eq. (49). For this miter gate example, the off-line 

training of the LSTM model takes about 172 mins based on a personal computer with Intel 

i7-6700 CPU @ 3.40 GHz and 16.0 GB RAM memory. The whole process of BA-MUDI 

totally takes 247 mins, which are mainly spent by Module 2 (190 mins) and Module 3 (56 

mins). For illustration purpose, Fig. 12(a) and Fig. 12(b) show the prediction accuracy 

comparison of the LSTM model for 5000 validation points for two out of the 12 output 

variables for Scenario 1 and Scenario 2, respectively. The prediction accuracy of the other 

output variables is at a similar level. 

(a) Scenario 1 as listed in Table 1 

 
(b) Scenario 2 as listed in Table 1 

Fig. 12 Prediction accuracy verification of the LSTM model 

After that, the LSTM model is employed to estimate 
* , and 

,
ˆ , 1, ,e i ei N=α . Fig. 13 

shows the normalized likelihood of regression coefficient   over [0, 1] (i.e. Eq. (30)) for 
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both scenarios. For Scenario 1, the estimated regression coefficient 
*  is 0.74. For Scenario 

2, 
*  is estimated as 0.83. The estimated regression coefficients of both scenarios are 

approaching the assumed “true” value (i.e. =0.8 ) that is used to generate the synthetic 

measurement data. This demonstrates the effectiveness of the proposed method in estimating 

* . Note that 
*  is not estimated precisely, due to the uncertainty in the unknown model 

parameter (i.e. gap length) and the model discrepancy. The error compensation between the 

three factors:  , *

l , ( , )N uδ x d , and ( , )T uδ x d  will lead to an improve prediction accuracy 

after Bayesian calibration through the BA-MUDI framework. 

 
Fig. 13 Likelihood of different values of   while estimating 

*  

With the estimated 
* , 

,
ˆ , 1, ,e i ei N=α  are predicted using LSTM as explained in the 

Module Two of the BA-MUDI framework. Twelve GP surrogate models are then constructed 

for 
, , 1

ˆ ( , ), 1, ,N k N k kk N =x υ , and for 
, , 2

ˆ ( , ), 1, ,T q T q kq N =x υ . Fig. 14 shows the 

constructed twelve GP surrogate models and the associated training points predicted in 

Module two for Scenario 1. As shown in this figure, the training data is noisy due to the 

prediction bias of the LSTM model. The modified kernel function of the GP model as 

discussed in Sec. 3.3.3 allows us to capture this part of uncertainty in the GP surrogate 

modeling. The GP models for Scenario 2 are constructed using the associated training points 

(a) Scenario 1 (b) Scenario 2 
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in the same manner. 

 

(a) Polynomial coefficients used for normal force discrepancy ( , )N u x d  

 

(b) Polynomial coefficients used for tangential force discrepancy ( , )T u x d  

Fig. 14 Gaussian process (GP) models for Legendre polynomial coefficients in Scenario 1 

After the GP surrogate modeling of the coefficients with the polynomial basis, we are 

able to reconstruct the model discrepancy of the unobservable distributed boundary condition 

forces. Fig. 15 shows the comparison of the predicted model discrepancy functions at two 
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different water levels for the two scenarios. The results show that the proposed framework is 

able to reasonably accurately discover the discrepancy function of the normal force with 

relatively small prediction uncertainty. Although the mean prediction of the distributed 

tangential force slightly deviates from the true force, the reconstructed discrepancy function 

is still accurate enough because the true tangential force lies within the 95% credible intervals. 

This is attributed to the fact that the tangential forces are much lower than the distributed 

normal forces (i.e. signal-to-noise issue, the tangential force is at the noise level).  

 

(a) Upstream water level: 738 inches; downstream water level: 360 inches (for Scenario 1) 

 

(b) Upstream water level: 426 inches; downstream water level: 120 inches (for Scenario 2) 

Fig. 15 Results of model discrepancy reconstruction of unobservable boundary conditions 

In Module Three (i.e. Sec. 3.4) of the BA-MUDI framework, the posterior distribution of 

the gap length is obtained using the estimated regression coefficient and the reconstructed 

discrepancy functions. Fig. 16 presents a comparison of the prior and posterior distributions 
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of l  for both scenarios. It shows that the uncertainty of the gap length is well reduced and 

the posterior distribution concentrates on a narrow domain closed to the true value for both 

scenarios. In addition, we also performed Bayesian inference of the gap length without 

considering the model discrepancy modeling as detailed in Module 2 of BA-MUDI 

framework. As shown in Fig. 16, the posterior distribution of the gap length without 

considering model discrepancy deviates much more from the true value than its counterpart 

with the consideration of model discrepancy. Model discrepancy of the unobservable model 

results in bias in the estimated model parameters. This indicates that the proposed framework 

is able to mitigate the impact of model discrepancy on model parameter estimation and the 

benefit of including the model discrepancy in Bayesian calibration. The results in Fig. 16 also 

demonstrate the effectiveness of the proposed BA-MUDI framework in simultaneously 

estimating the uncertain model parameter and the hidden model discrepancy of the 

unobservable distributed response.  

 
Fig. 16 Posterior distribution of miter gate gap length 

Module Four of BA-MUDI corrects the predictions of the unobservable boundary 

condition model and the observable strain model. Fig. 17 plots the mean of the posterior 

prediction of the normal and tangential forces based on the estimated regression coefficient 

(see Fig. 14), reconstructed model discrepancy (see Fig. 15), and the updated posterior 

(a) Scenario 1 (b) Scenario 2 
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distribution of the gap length (see Fig. 16). The results of the two scenarios at different water 

levels, show that the BA-MUDI framework significantly improves the prediction accuracy of 

the boundary condition model after Bayesian calibration.  

 

(a) Upstream water level: 738 inches; downstream water level: 360 inches for Scenario 1 

 

(b) Upstream water level: 426 inches; downstream water level: 120 inches for Scenario 2 

Fig. 17 Total force prediction results at a certain water level for the two scenarios 

Moreover, Fig. 18 illustrates the prediction errors over the input domain (water level) and 

spatial domain (location at the quoin block) by separately fixing the upstream and 

downstream water levels. Fig. 18(a) shows the error comparison by fixing the upstream level 

at 738 inches which corresponds to Fig. 17(a) of Scenario 1. Similarly, Fig. 18(b) provides 

the prediction error comparison corresponding to Fig. 17(b) of Scenario 2 by fixing the 

downstream water level at 120 inches. The comparison of the prediction errors with and 
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without BA-MUDI indicates the superiority of BA-MUDI on improving the predictive 

accuracy of the boundary condition model.  

 

(a) Normal force prediction errors with upstream water fixed at 738 inches for Scenario 1 

 

(b) Normal force prediction errors with downstream water fixed at 120 inches for Scenario 2 

Fig. 18 Normal force prediction errors before and after BA-MUDI 

Fig. 19 and Fig. 20 depict the comparison of strain response prediction errors at the seven 

sensor locations for 50 different random input realizations and posterior samples of the gap 

length for the two scenarios with and without considering model discrepancy of the 

unobservable boundary condition models. The results show that including the model 

discrepancy term for the unobservable boundarsy condition model with distributed response 

Force prediction before BA-MUDI Force prediction after BA-MUDI 

Force prediction before BA-MUDI Force prediction after BA-MUDI 
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in Bayesian calibration can drastically increase the prediction accuracy of the observable 

model at new and previously unseen conditions. It demonstrates the significance of including 

model discrepancy in our BA-MUDI framework.  

  

(a) Direct Bayesian calibration without including model discrepancy 

  

(b) With model discrepancy quantification of unobservable model using BA-MUDI 

Fig. 19 Strain prediction errors with and without considering model discrepancy 

reconstruction for Scenario 1 in Table 1 

In addition, we investigated the prediction for the up- and down-stream water levels 

varying over a certain time period as shown in Fig. 21. Fig. 22 presents the corresponding 

normal and tangential boundary force at the location A as indicated in Fig. 10 of the quoin 

block over that time period. It shows that the prediction accuracy of the posterior mean is 

improved significantly for both scenarios after implementing the BA-MUDI framework, 

especially for the normal force prediction. Note that the tangential force is small and its 

impact on the observable model (i.e. strain analysis model) is very low. As a result, for certain 

locations, it will be very difficult to update the tangential force model based on strain 

measurements, even though the prediction accuracy of the mean tangential forces has been 
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significantly improved as shown in the right-hand-side of Figs. 22(a) and (b) for location “A” 

as indicated in Fig. 10. In addition, the BA-MUDI framework is able to quantify the 

prediction uncertainty caused by the unobservable model discrepancy and the sposterior 

uncertainty of the gap lengths. 

  

(a) Direct Bayesian calibration without including model discrepancy 

  

(b) With model discrepancy quantification of unobservable model using BA-MUDI 

Fig. 20 Strain prediction errors with and without considering model discrepancy 

reconstruction for Scenario 2 in Table 1 

 

Fig. 21 Upstream and downstream water levels over time period 
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(a) Prediction comparison at location A (Scenario 1) 

 

(b) Prediction comparison at location A (Scenario 2) 

Fig. 22 Total force predictions at location A (see Fig. 10) of quoin block over time period 

The above results demonstrate the efficacy of the proposed BA-MUDI framework for 

Bayesian calibration of multi-level models with unobservable distributed response. 

 

5 CONCLUSIONS 

In this work, we first formulate a multi-level model architecture with an unobservable 

distributed response, where the model predictive power cannot be improved using the 

conventional Bayesian calibration methods for single-level models. A modularized Bayesian 

calibration method is extended to multi-level models, named BA-MUDI, in order to tackle 

the challenge (not resolved in the current literature to the authors knowledge) of calibrating 

the unobservable model with distributed response using the measurement data of the 
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observable model. BA-MUDI reduces the uncertainty (i.e. improves the predictive power and 

thus the validity) of an unobservable model from the following two aspects: (1) the 

unobservable model is corrected by machine learning-based predictive methods for model 

discrepancy, and (2) the unknown model parameters are updated through a Bayesian scheme. 

The BA-MUDI framework was applied to the correction of a boundary condition model 

for a miter gate that is important in analyzing the fatigue crack initiation at the quoin block 

due to the rolling contact between the quoin block and the gate. Synthetic measurement data 

were generated numerically based on assumed true model discrepancy and model parameters. 

Then, the true model discrepancy/model parameters were kept unknown to the BA-MUDI 

method/framework. BA-MUDI inversely inferred the length of the gap between the quoin 

block and the miter gate and estimated the assumed model discrepancy terms. The successful 

identification of the gap length provides a good understanding of the deterioration of miter 

gates, which can provide useful information for health diagnostics, maintenance planning, 

and overall life cycle management. BA-MUDI also corrects the boundary condition model by 

constructing surrogate models for the hidden model discrepancy. Both the predictive accuracy 

for the boundary force along the quoin block and strains over the miter gate was improved 

significantly using BA-MUDI.  

In summary, the BA-MUDI framework provides a feasible solution for correcting multi-

level modeling and simulation with unobservable and distributed responses using 

experiments/observations. It can be easily extended to the multi-level model calibration with 

multiple observable models, and the unobservable response is not limited to distributed 

responses. It is worth noting that BA-MUDI does not consider the prediction uncertainty of 

the surrogate model in Module one if computationally “cheap” surrogate models are utilized 

to replace the original computationally expensive physics/mechanics-based simulation 

models. The surrogate uncertainty can be incorporated into BA-MUDI by employing 
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Gaussian process regression modeling similar to the KOH framework [20]. Even though the 

model discrepancy functions for the unobservable model are well approximated and the 

posterior distributions of the unknown parameters are well inferred in the miter gate 

application, the potential non-identifiability issue of KOH [24] may be inherited by BA-

MUDI since BA-MUDI follows the modularized framework of KOH. This important issue 

will be investigated in the future and potentially resolved using our recently proposed 

sequential calibration and validation framework [22]. Moreover, there are many complex 

real-world engineering problems that share similarity with the studied miter gate problem, 

and can be formulated as a multi-level model with unobservable sub-models. The solution 

provided in this paper and demonstrated with the miter gate problem is directly applicable to 

this type of problems.  
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APPENDIX: Gaussian process (GP) model 

Gaussian process (GP) regression is a widely used machine learning method for surrogate 

modeling of computationally expensive simulation models [63]. GP regression assumes that 

the deterministic response surface is a realization of the spatial-dependent random process 

( )y x  with prior mean ( )T
h x β , variance 2  and correlation function ( , )R . The random 

process can be formulated by separating the mean and covariance as 

 ( ) ( ) ( ),Ty Z= +x h x β x  (A1) 
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where ( )T
h x  is a regression vector with some specific regression functions (e.g. constant, 

linear, etc), β  is a vector of regression coefficients to be estimated while modelling, ( )Z x  is 

a stochastic process with zero mean and covariance 
2 ( , )R . The most commonly used 

correlation function between the responses at point x  and x  is given by 

 
2

1

( , ) exp ( ) ,
d

i i i

i

R x x
=

 
 = − − 

 
x x  (A2) 

where d  is the number of dimensions in the input x , ( )1 2, ,...,
T

d  =γ  is a vector of the 

correlation length parameters. Based on the above definition, a GP model can be completely 

characterized by hyper-parameters ( )2, ,υ β γ  and the predefined regression functions.  

Given a set of training data  ( , ), 1,2, ,j j j N=x y , the hyper-parameters ( )2, ,υ β γ  

can be estimated using the full Bayesian approach [64] or the maximum likelihood method 

[65] . After the estimation ( )2ˆˆ ˆˆ, ,υ β γ  of υ , the posterior mean and covariance of the GP 

model are given by [65] 

   1ˆ ˆ( ) | ( ) ( ) ( ),T TE y −= + −x y h x β r x R y Hβ  (A3) 

and 

 

 





2 1

1
1 1 1

( ), ( ) |

ˆ ( , ) ( ) ( )

( ) ( ) ( ) ( ) ,

T

T T T T T

Cov y y

R −

−
− − −

 =

 − +

      − −     

x x y

x x r x R r x

h x H R r x H R H h x H R r x

 (A4) 

where 
1 2( ), ( ), ( )

T
T T T

N
 =  H h x h x h x , ( )r x  is a 1N   vector with i-th element given by 

( , ),  1, 2, ,iR i N=x x  and 
1

1 1ˆ T T
−

− − =  β H R H H R y .  
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