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ABSTRACT: Two-dimensional ferromagnet Cr2Ge2Te6 (CGT) is so resistive below its
Curie temperature that probing its magnetism by electrical transport becomes extremely
difficult. By forming heterostructures with Pt, however, we observe clear anomalous Hall
effect (AHE) in 5 nm thick Pt deposited on thin (<50 nm) exfoliated flakes of CGT. The
AHE hysteresis loops persist to ∼60 K, which matches well to the Curie temperature of
CGT obtained from the bulk magnetization measurements. The slanted AHE loops with
a narrow opening indicate magnetic domain formation, which is confirmed by low-
temperature magnetic force microscopy (MFM) imaging. These results clearly
demonstrate that CGT imprints its magnetization in the AHE signal of the Pt layer.
Density functional theory calculations of CGT/Pt heterostructures suggest that the
induced ferromagnetism in Pt may be primarily responsible for the observed AHE. Our
results establish a powerful way of investigating magnetism in 2D insulating ferromagnets, which can potentially work for
monolayer devices.

KEYWORDS: 2D magnets, anomalous Hall effect, magnetic domains, induced ferromagnetism

Understanding the magnetic properties of two-dimensional
(2D) van der Waals ferromagnets such as

Cr2Ge2Te6(CGT) and CrI3, among a plethora of others, has
attracted a great deal of interest due to their ability to be
exfoliated down to the monolayer allowing for studying
magnetism in 2D systems1,2 as well as their ability to easily
form heterostructures with other 2D materials such as
graphene and a wide range of transition metal dichalcoge-
nides.3 In CrI3, for example, the intriguing interlayer
antiferromagnetic coupling is uncovered when a few layers
are involved. Recently, large tunneling magnetoresistance
between the atomic layers in CrI3 has revealed rich spin states
as a result of the antiferromagnetic coupling.4 To date, no
tunneling experiment has been reported in the other 2D
insulating ferromagnet, CGT, to study the magnetic properties
such as the interlayer coupling. In conducting ferromagnets,
transport measurements such as magnetoresistance and
anomalous Hall effect (AHE) are routinely employed to
probe the magnetic properties especially in small devices.5,6 In
insulating ferromagnets, however, such transport measure-
ments are not directly applicable. In this study, we explore an
alternative way to probe the magnetic properties of thin CGT
flakes by electrical means. In principle, this method can be
extended to devices made of monolayers of 2D magnets.

Although bulk CGT crystal is conductive at high temper-
atures, its resistance becomes extremely high in the
ferromagnetic phase below 60 K.7−9 Under very large bias
voltages, the two-terminal resistance and magnetoresistance of
CGT crystal could be measured.10 Large back gate electric field
was used to lessen the insulating behavior of thin CGT flakes
(∼10−50 nm) so that the AHE could be detected.11 In recent
studies of three-dimensional (3D) magnetic insulators such as
Y3Fe5O12 and Tm3Fe5O12, an effective way of probing their
magnetic properties is to take advantage of the induced
transport properties in a metal layer such as Pd, Pt, Ta, etc., by
forming heterostructures with the former.12−16 The magnetic
insulator properties are thus imprinted in the induced
transport properties such as magnetoresistance and AHE in
the metal layer. Similar proximity induced polarization-
dependent photoluminescence was found in WSe2 by forming
heterostructure with CrI3.

3 Here, we adopt the same approach
by fabricating CGT/Pt heterostructures with exfoliated CGT
flakes and detecting induced magneto-transport properties in
Pt.
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Before studying induced magneto-transport properties, we
first characterize the intrinsic properties of CGT itself.
Magnetization measurements are performed on bulk CGT
crystals using a SQUID magnetometer. The Curie temper-
ature, Tc ≈ 61 K, was determined from the abrupt drop in
magnetization in the temperature dependence from 5−300 K
when a 1 kOe magnetic field is applied parallel to the a−b
plane of the crystal.9,10 Magnetization measurements below Tc

with an external magnetic field either parallel or perpendicular
to the a−b plane reveal soft ferromagnetic behavior with
perpendicular magnetic anisotropy determined by comparison
of the field required to saturate all the spins in both geometries,
i.e., H∥

sat > H⊥
sat.

9,10 To confirm the transport behavior in thin
exfoliated CGT flakes, we improved the Hall bar device
fabrication to minimize the contact resistance by avoiding
lithographic process after the exfoliation. We first patterned 5

Figure 1. Transport properties of CGT device. (a) Optical micrograph of CGT transport device with 10 μm scale bar. False coloring is used to
distinguish the different material layers: bottom BN in blue, CGT in green, and top BN in red. (b) Schematic illustration of the side view of the
device in (a). (c) I−V characteristics of device in (a) measured at representative temperatures down to 5 K with inset showing 200 and 300 K on
vertical scale in μA. (d) Resistance vs temperature measurement for the temperature range of 320 to 60 K. Inset: Logarithmic plot of resistance vs
1/T over the temperature range of 100−300 K with linear fit to extract the band gap.

Figure 2. Fabrication of CGT/Pt hybrid devices. (a) Schematic of the device fabrication process. (i) Exfoliated CGT flakes covered by 5 nm Pt. (ii)
Au electrode deposition on the chosen CGT flake shown in the box in (i). (iii) E-beam resist mask (cyan) for defining a Hall bar. (iv) Pt etching
and e-beam resist removal. (b) Optical micrograph of CGT/Pt heterostructure with false color to clarify different regions of the device. False
coloring is used to distinguish the different material layers: Pt in gray, CGT in green, Au in yellow, and SiO2 in dark red. (c) Line cut from AFM
image of CGT/Pt device. The cut line is represented by the red dashed line in (b).
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nm Pt electrodes onto an exfoliated flake of boron nitride
(BN) on a SiO2 substrate by electron beam lithography (EBL).
A second flake of BN was used to pick up and transfer a CGT
flake onto the prepatterned Pt electrodes. The top BN is larger
than the CGT so that the two BN flakes encapsulate the CGT
flake as is illustrated in Figure 1a. All the transfer and
exfoliation of CGT was performed in an argon filled glovebox
with <0.1 ppm of H2O and O2 to protect the flakes from
degradation. After transfer, no further fabrication steps took
place, and the device was exposed to ambient conditions for
<20 min during the device mounting before it was moved into
an evacuated cryostat. We measured the transport properties of
the device from 300 K down to 5 K through the I−V
characteristics. Figure 1c shows the current measured while
sweeping bias voltage between the source and drain electrodes
for representative temperatures between 5 and 100 K. In the
range of 5−60 K, the measured current is negligibly small for |
Vbias| < 5 V. Inset shows the I−V curves obtained at higher
temperatures, 200 and 300 K, both well above the magnetic
ordering temperature with vertical scale in μA. Over the
temperature range of 100−300 K, the contact resistance is
relatively small. We calculated the resistance in the linear I−V
regime over this temperature range and determined the band
gap, EG ≈ 0.23 eV, by fitting the thermal activation model,

ρ ρ= ( )T( ) exp E
k T0 2

G

B
, as shown in the inset of Figure 1d. This

value is similar to the reported value of EG ≈ 0.2 eV.9,10

Because of the very insulating behavior at and below Tc, it is
very difficult to observe any AHE signal in the ferromagnetic
phase.
To have strong induced magneto-transport properties in Pt,

it is important to have a very clean interface in the CGT/Pt
heterostructures.17 Due to the air sensitivity of CGT flakes
(more information on the degradation of CGT in ambient
conditions can be found in the Supporting Information), we
also modified the standard fabrication steps for less air sensitive
2D materials to minimize the interface degradation. A
schematic of this fabrication process is given in Figure 2a,
and further details are given in the Methods section. In the
existing setup, we could not transfer samples from the glovebox
into the sputtering chamber without exposing to air; therefore,
we performed the exfoliation in the load lock of the sputtering

system and immediately evacuated the chamber to greatly
reduce the O2 and H2O exposure time to the freshly cleaved
CGT surface, followed by Pt deposition. The Pt layer is not
only the active layer for sensing the induced AHE but also
serves as a capping layer to prevent further oxidation in the
subsequent device fabrication. Once removed from the
sputtering chamber, the sample with many exfoliated flakes
was viewed under optical microscope to locate a desired piece
for making a device ((i) in Figure 2a). EBL and lift-off process
were performed to deposit 60 nm thick Au electrodes ((ii) in
Figure 2a). Inductively coupled plasma etching was then used
to etch the Pt layer to form a Hall bar structure ((iii) and (iv)
in Figure 2a). Figure 2b,c shows a representative device on a
∼35 nm thick CGT flake and the height profile of the same
device obtained with atomic force microscopy (AFM). The
fabrication steps adopted here allow for a high device yield and
are critical to achieving a high-quality CGT/Pt interface
enabling the AHE in all devices we studied.
Using this method, we successfully fabricated multiple

CGT/Pt heterostructure devices in a range of CGT thickness
down to ∼35 nm. Thinner exfoliated CGT flakes are typically
too small to be fabricated into the Hall bar device structure.
The data presented in this main text all came from the device
pictured in Figure 2b. Results from some of the other devices
are qualitatively similar and are included in the Supporting
Information. Figure 3a shows the induced AHE data in Pt
measured at selected temperatures from 5 to 65 K using a
current of 2.0 mA in applied magnetic fields perpendicular to
the cleaved plane, i.e., the 2D layers. These hysteresis loops are
obtained after subtracting a linear ordinary Hall background
(an example of full Hall hysteresis is shown in Figure 4a) for all
temperatures. Since Pt itself is paramagnetic and no hysteresis
loop is expected for standalone Pt, the fact that AHE in Pt only
appears below Tc of CGT indicates that it is caused by the
presence of the ferromagnetic CGT. Therefore, Pt AHE
hysteresis merely reflects the magnetic hysteresis of the
underlying CGT. In fact, similar slanted Kerr rotation
hysteresis loops of ∼19 nm CGT were recently reported18 as
well as in Fe3GeTe2 flakes >15 nm.19 Note that the AHE
hysteresis loops are significantly slanted and that only a small
fraction of the saturation value of AHE resistivity is retained at
zero magnetic field. It suggests formation of nonuniform

Figure 3. (a) AHE hysteresis loops for select temperatures from 65 to 5 K after subtraction of the linear ordinary Hall background. (b) Magnitude
of the measured longitudinal resistivity and Hall voltage as a function of temperature. (c) Magnetoresistance measured at 4 K.
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magnetization configurations such as domains. To obtain the
spontaneous AHE resistivity, we extrapolate the high-field
linear background to zero field and plot the intercept as a
function of temperature in Figure 3b. Above 60 K, AHE signal
falls below the noise level, and the only remaining Hall signal is
from the ordinary Hall effect of the Pt layer. The magneto-
resistance data at T = 4 K are also consistent with the slanted
AHE hysteresis loop, as shown in Figure 3c.
It is known that the multidomain or vortex state is favored in

thick patterned ferromagnetic films20 due to the dipolar energy
winning over the exchange energy. To understand the Hall
hysteresis loops of Pt, which mirrors the magnetization state of
CGT, we performed low-temperature magnetic force micros-
copy (MFM) measurements under applied magnetic fields.
Along with a 4 K AHE loop of Pt, Figure 4 shows a series of
MFM images taken on a different CGT/Pt device of a similar
CGT thickness under perpendicular magnetic fields at 7 K.
The applied magnetic fields during MFM imaging correspond
to different points labeled in the hysteresis loop. In the present
measurement geometry, the MFM signal characterizes the
second order derivative of the out-of-plane component of the
stray magnetic field, i.e., d2Hz/dz

2. For samples with out-of-
plane magnetization, MFM has responses both inside
individual domains and at the domain walls. While it may
not be straightforward to directly associate the MFM signal
with the magnetization direction, the spatial variation of MFM
signals qualitatively indicates the abundance of the domains,
which are seen in several images presented below. For a 2 kOe
applied field in the z-direction (state 1), the magnetization of
CGT is fully saturated, and it should be in a single-domain
state. It is indeed confirmed by the uniform MFM contrast. As
the field is lowered, the single-domain state is preserved until
the field reaches ∼0.5 kOe (state 2) at which point multiple
domains emerge. It is in good correspondence to the reduced
AHE signal from the saturation value. The sharp drop at point
2 in the AHE loop signals the domain nucleation. As the field
is reduced further, the opposite domains expand, leading to
stronger MFM contrast, and the AHE signal decreases

accordingly. This trend continues until the field reaches −1.5
kOe at which field an oppositely oriented single-domain state
is realized (state 4). Although the magnetization direction is
reversed compared to state 1, the MFM contrast remains the
same because the tip magnetization, having a relatively low
coercive field of ∼400 Oe, is also reversed and thus generates a
force gradient in the same direction as the opposite saturation
field (state 1). When the magnetic field is reversed, a similar
trend is observed, and similar domain nucleation and
expansion patterns are displayed at points 4 and 5. This
sequence of MFM measurements shows close correspondence
to the AHE loop and thus confirms that the AHE signal in the
Pt layer tracks the behavior of the underlying CGT flake.
In heterostructures containing 3D magnetic insulator and a

heavy metal layer such as Pt, there is a debate about the
mechanism of the induced AHE, i.e., whether it is due to
induced magnetism in Pt or a spin current effect.12,21−23 Either
mechanism can imprint the magnetization states in the AHE of
Pt. Although it is not the primary focus of this work, we
explore the origin of the induced AHE in CGT/Pt
heterostructures by performing density functional theory
(DFT) calculations. Computational details of four atomic
layers of Pt (4L-Pt) on CGT are shown in the Supporting
Information. The real-space distribution of spin density (Δσ =
ρ↑ − ρ↓, where ρ↑ and ρ↓ are spin-up and spin down charge
densities, respectively) and its planar average of the CGT/4L-
Pt heterostructure are shown in Figure 5a,b. Clearly,

ferromagnetic CGT introduces noticeable spin polarization
in all Pt layers. Interestingly, Δσ around Pt atoms in the first
layer oscillates rapidly in the lateral plane, as they align
differently with Cr atoms, and its planar average is small in the
first Pt layer and maximizes in the second Pt layer. This is
different from previous results for Pt films on traditional

Figure 4. (a) Anomalous Hall hysteresis loop, measured at 4 K. (b)
Frequency shift contrast images of CGT/Pt taken with low-
temperature MFM at different magnetic fields that correspond with
the points marked in (a).

Figure 5. (a) Real-space distribution of the spin density difference Δσ
and (b) planar-averaged spin density difference Δσ in CGT/4L-Pt. In
(a) and (b), Cr, Ge, Te, and Pt atoms are represented by blue, green,
red, and gray balls, respectively. The layer index of Pt layer is shown
by the numbers in red. (c) Dependence of the AHC on the magnetic
moments of Pt in Pt ML.
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magnetic films such as Fe, Co, and Ni, where the atomic
alignment at the interface is much simpler.24 Overall, the
averaged induced magnetic moment of CGT/4L-Pt is 0.0074
μB per Pt atom and parallel to the magnetic moments of Cr3+

ions. To examine the range of induced spin polarization in Pt,
we also calculated the CGT/22L-Pt (5 nm Pt, which is
comparable to our experimental samples) heterostructure and
found that the average magnetic moment drops to 0.0009 μB
per Pt atom. Using the method proposed by Y. Yao et al.,25 we
determined the anomalous Hall conductivity (AHC) of CGT/
4L-Pt heterostructure to be 2700 S/m. To estimate the AHC
in CGT/Pt heterostructure with 5 nm thick Pt, we first studied
the AHC in a toy model, i.e., AHC in monolayer Pt that is
subjected to exchange interaction and consequently acquires a
magnetic moment. By varying the exchange strength, we found
that the AHC linearly decreases as the magnetic moment of Pt
decreases from 0.01 μB per Pt atom to zero as shown in Figure
5c. This linear relationship allows us to estimate the AHC
value in thicker Pt films if the magnetic moment of the Pt films
is calculated. In fact, the fully calculated AHC and induced
magnetic moment for 4L-Pt fall right on the extended straight
line. We calculated the average magnetic moment of the CGT/
5 nm-Pt heterostructure and obtained 0.0009 μB per Pt atom.
Based on Figure 5c, we estimated the AHC in CGT/5 nm-Pt
heterostructure to be 328.4 S/m, which is larger than the
experimentally measured value of 82.3 S/m at 4 K. The
discrepancy can be caused by several possibilities. First, the
CGT/Pt interface in real device is by no means as perfect as
that assumed in the calculations, which can reduce the
magnitude of AHC. Second, the spin current contribution
could produce an AHE signal with the opposite sign.
Nevertheless, the good agreement in both sign and magnitude
of the AHC for CGT/5 nm-Pt suggests that the induced
ferromagnetism in Pt may be the main mechanism of the
observed AHE.
In conclusion, we have successfully measured the AHE in Pt

by forming heterostructures of Pt with thin exfoliated flakes of
CGT. The induced AHE as a function of temperature
resembles the magnetization of CGT, and the distinct features
in the AHE hysteresis loops can be mapped to different
magnetic domain states in CGT imaged by MFM. DFT
calculations show that the observed induced AHE is consistent
with the induced moment in Pt arising from the hybridization
between Cr 3d electrons and Pt.
Methods. Device Fabrication Process. We exfoliated the

CGT flakes in the load lock of the sputtering system followed
immediately by evacuation. Once the load lock pressure
reached below 5 × 10−6 Torr, the samples were loaded into the
main chamber, which has a base pressure of 10−7 Torr. We
next heat the samples in chamber at above 100 °C to remove
water vapor, which may have accumulated on the materials
surface. Since the oxidation can take place on a short time
scale, the surface layer oxidation is unavoidable. To remove the
likely oxidized surface layer, we etch the CGT flakes in the
sputtering chamber with argon plasma at a power of 15 W with
pressure of 40 mTorr, immediately followed by deposition of 5
nm Pt.
AHE Measurement Details. The transport measurements

were performed in a physical properties measurement system
by Quantum Design at temperatures down to 4 K. A current of
2 mA is fixed in the device, while the potential drop between
source and drain is monitored with a Keithley 2400
sourcemeter. Two Keithley 2182A nanovoltmeters are used

to monitor Vxx and VH. The measurement is setup with the
detection direction of RH determined by the “right-hand rule”
to properly determine the sign of the AHC.

MFM Measurement Details. The MFM measurements were
performed in a home-built low-temperature scanning probe
microscope using commercial MFM probes (Bruker MESP-
V2) with a spring constant of ∼3 N/m, a resonance frequency
at ∼75 kHz, and a Co−Cr magnetic coating. MFM images
were taken in a constant height mode with the tip scanning
plane at ∼80 nm above the sample surface. The MFM signal,
the change in the resonance frequency, is measured by a
Nanonis SPM Controller using a phase-lock loop.

DFT Computational Details. Our DFT calculations are
carried out by using VASP.26,27 Electronic exchange-
correlation is described by the generalized-gradient approx-
imation with the functional proposed by Perdew, Berke, and
Ernzerhof (PBE).28 We utilize projector-augmented wave
pseudopotentials to describe core−valence interaction29,30

and set the energy cutoff for plane-wave expansions to be
500 eV.28 Atomic structures are fully optimized with a criterion
that requires the force on each atom being less than 0.01 eV/Å.
The LSDA+U method,31 with an effective Ueff = 1.0 eV,1 is
employed to take the correlation effect of Cr 3d electrons into
account. We include the nonlocal vdW functional (optB86b-
vdW)32,33 to correctly describe the interaction across CGT and
Pt layers.
Considering that CGT is a van der Waals material, a CGT

monolayer is utilized in building up CGT/Pt heterostructures
to reduce computational loads. Moreover, we use a ×7 7
supercell of (111)-Pt (lattice constant a = 7.33 Å) and stretch
the lattice constant of CGT monolayer to match this supercell.
Two heterostructures, one with four-layer Pt (CGT/4L-Pt)
and the other with 5 nm (22-layer) Pt (CGT/5 nm-Pt), are
explicitly considered in this work. Note that we only calculate
the former’s AHC since it is tractable to the current
computation ability. A 13 Å vacuum layer is adopted to
avoid artificial interactions between periodic slabs. We consider
three representative atom alignments, namely, one of the Pt
atoms of the first-layer Pt sitting directly on the top of (i) Ge,
(ii) Te, and (iii) Cr, respectively (Figure S1). We find that the
case (i) is most stable with a much lower energy than cases (ii)
and (iii) (Figure S1). So, we focus on the AHC of case (i).
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