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ABSTRACT OF THE DISSERTATION

HPC Application Address Stream Compression, Replay and Scaling

by

Catherine Rose Mills Olschanowsky

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Allan Snavely, Chair
Professor Scott Baden, Co-Chair

As the capabilities of high performance computing (HPC) resources have

grown over the last decades, a performance gap has developed and expanded be-

tween the processor and memory. Processor speeds have improved according to

Moore’s law, while memory bandwidth has lagged behind. The performance bot-

tleneck created by this gap, termed the “Von Neuman bottleneck,” has been the

driving force behind the development of modern memory subsystems.

Many advances have been made aimed at hiding this memory bottleneck.

Multi-level cache structures with a variety of implementation policies have been

introduced. Memory subsystems have become very complex and the effectiveness

of their structure and policies vary according the the behavior of the application

xiii



running on the resource.

Memory simulation studies aid in the design of memory subsystems and in

acquisition decisions. During a typical acquisition, candidate resources are eval-

uated to determine their appropriateness for a pre-defined workload. Simulation-

aided models provide performance predictions when the hardware is not available

for full testing ahead of purchase. However, address streams of full applications

may be too large for direct use, complicating memory subsystem simulation.

Memory address streams are extremely large. They can grow at a rate

of over 2.6 TB/hour per core. HPC workloads contain applications that run for

days across hundreds of processors, generating address streams whose handling is

intractable. However, the memory address streams contain a wealth of information

about the behavior of applications, that is largely inaccessible.

This work describes a novel compression technique, specifically designed to

make the information within HPC application address streams accessible and man-

ageable. This compression method has several advantages over previous methods:

extremely high compression rates, low overhead, and a human readable format.

These attributes of the compression technique enable further, previously problem-

atic, studies.

High compression ratios are a necessity for application address streams.

Address streams are very large, making them challenging to collect and store.

Furthermore, any simulation experiment performed using the stream will be lim-

ited by disk speeds, since there is no other plausible place to store and retrieve

such volumes of data. The compression technique presented has demonstrated

compression ratios in the hundreds of thousands of times. This leads to file sizes

that can easily be emailed between collaborators and the format can be replayed

at least as fast as disk speeds.

The collection overhead for an address stream must be low. The collection

takes place on an HPC resource, and HPC resource time is costly. This compres-

sion technique has an unsampled average slowdown of 90X. This slowdown is an

improvement of the state-of-the-art.

The compressed address stream profiles are human readable. This attribute

xiv



enables new and interesting uses of application address streams. It is possible to

experiment with hypothetical code optimizations using simulation or other metrics

rather than actually implement the optimizations.

Strong scaling analysis of memory behavior is historically challenging. High-

level metrics such as execution time and cache miss rates do not lend well to strong

scaling studies because they hide the true complexity of the application-machine

interactions. This work includes a strong scaling analysis in order to demonstrate

the advanced capabilities that can be built upon this compression technique.
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Chapter 1

Introduction

1.1 High-Performance Computing

High-Performance Computing (HPC) systems perform large-scale scientific

calculations and simulations that require computational power well beyond the

abilities of a single processor. HPC systems have evolved to accommodate the

growing demands of scientific applications. HPC systems, also termed supercom-

puters, were originally very fast scalar processors. Vector processors were intro-

duced in the 1970’s and multiple processors running in parallel became the norm

in the 1990’s. Today HPC systems include each of these evolutionary steps, many

multiprocessors working in parallel each of which contains a vector processing unit.

Many HPC systems even include specialized GPUs and FPGAs.

Many of the innovations in computer architecture have been aimed at hiding

the latency of memory operations. The “Von Neumann bottleneck” is a term

used to describe growing gap between floating point operation performance and

memory bandwidth. The rate at which floating point operations can be executed

has increased according to Moore’s law for the last 3 decades. Memory bandwidth

has not kept pace. This makes memory bandwidth the limiting factor for most

HPC applications.

HPC applications are typically data-intensive. A taxonomy of scientific cal-

culations, referred to as the seven motifs, was suggested by Colella [14] in order

to better define HPC computational and data-movement requirements. The cat-

1
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egories are dense linear algebra, sparse linear algebra, spectral methods, N-body

methods, structured grids, unstructured grids and Monte Carlo. Most of these

motifs are by nature, data-intensive.

Exascale computing is the next big step for HPC systems and memory

bandwidth continues to be a major hurdle. The DOE Exascale Computing Study

[18] names four primary challenges to achieving exascale computing. One of the

primary challenges is in data storage and movement, specifically emphasizing the

challenges to performance caused by waiting for data.

Understanding and manipulating the data-movement behaviors of HPC ap-

plications is a requirement for achieving Exascale performance for real applications.

The data access patterns of applications must be readily available for study and

optimization. This work focuses on making HPC data access patterns available

and demonstrates the types of studies that are enables by the gained accessibility.

1.2 Memory Performance

Due to the effect of the “Von Neumann” bottleneck, the memory perfor-

mance of an HPC application often dominates overall per-core performance to the

point that it can alone be used as an estimate of total on-node performance. The

per-core performance of a data-intensive HPC application is, therefore, a combi-

nation of the application’s memory access patterns and the processor’s memory

subsystem.

Memory access patterns are embodied in the application’s memory address

stream. An application’s memory address stream is the collection of memory

addresses requested by the application during execution. Once capture the address

stream can be used in a variety of studies, most commonly, memory simulation

studies. However, memory address streams are difficult to collect and use, because

of their size and the large time overhead associate with their collection.

A typical memory subsystem includes several levels of cache, the translation

look-aside buffer (TLB) and main memory. A typical processor has two to three

levels of cache, each level may be shared between data and the instructions or
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used exclusively by one. The smallest (and fastest) caches are those closest to the

processor; the caches may also be shared among cores. The TLB speeds up virtual

to physical address translations. Main memory is the largest and slowest memory

storage.

Figure 1.1: The cache structure of Intel’s Nehalem Architecture (image courtesy
of Tom’s Hardware).

Figure 1.1 shows the cache hierarchy present in Intel’s Nehalem architecture.

A full description of the hierarchy includes not only the sizes of the included caches,

but also the replacement policies, inclusion policies, the associativity and many

other descriptors. This high level of complexity is one of the reasons that tuning

an application to work for a specific architecture can be difficult. It is also a

motivating factor behind the use of simulation for memory performance modeling.

The interactions between the application and resource can become quite

complex. The resource implements policies that are meant to improve perfor-

mance in general, but are not application specific. For instance, many processors

implement prefetching from various levels of cache. Ineffective prefetching can lead

to wasted power consumption and possibly performance degradation.

The processor and memory subsystem can be represented with a fixed

model. Attributes include processor cycle speed, cache sizes, associativity and

replacement policies, bandwidths and latencies.These attributes remain constant
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for a single processor.

The application’s memory access attributes are potentially more compli-

cated and while the processor doesn’t change (for a particular machine) the appli-

cation variations are endless. We are seeking some fairly compact and complete

representation of that infinitely variable behavior that is embodied in the address

stream, but we lack the space to store and the time to evaluate in detail the stream

in its entirety. Therefore, we are looking for patterns and “shorthand” to capture

the important properties.

1.2.1 Trace-Driven Memory Simulation

Trace-driven memory simulation is the main consumer of collected and syn-

thetically created address streams. It is applicable to system design and evaluation,

compilation (via trace-driven optimizations), and performance tuning. Today it

is a standard practice to use address traces to explore the memory behavior of

applications [52, 37, 12, 4, 3].

Simulation allows for the evaluation of new memory hierarchy designs with-

out hardware implementation and this benefits both system design and evaluation

for procurement. Modeling current workloads on proposed systems via simula-

tion provides valuable insights, aiding in procurement decisions[55, 36]. Compiler

optimization choices can be guided and evaluated through the examination and

simulation of the resulting address streams. The accuracy and usefulness of each of

these applications depends directly on the availability of relevant input, specifically

relevant address traces.

Using address streams from an actual scientific workload is the best policy

for achieving accurate performance predictions and evaluations. The validity of a

simulation depends heavily on the chosen input workload; in the case of memory

simulations the input is an address trace [19, 29]. VanderWiel [64] points out in

a comparison study of two prefetching techniques, the performance improvement

varied widely for each workload complicating the choice of prefetching technique.

However the collection and handling of such memory address streams proves to be

very challenging.
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1.2.2 Challenges to the Collection and Storage of Memory

Address Streams

Due to the growth in the size of memory traces the direct collection and

storage of the traces is no longer tractable [23]. 2.6 TB an hour per core is a

conservative estimate of the address stream growth rate. Collecting an address

trace for an application that runs several hours on thousands of processors is

therefore not reasonable unless one leverages some regularity or recurring patterns

in the application [34]. Traces that can be replayed by a cycle accurate simulator

include instructions as well and are therefore even larger.

In order to circumvent the collection and handling of full application traces

several approaches have been evaluated. At one extreme, some have suggested

using a random number generator to generate a stream of addresses, but it has

been shown that selecting address streams that closely represent the behaviors of

an existing workload is very important for an accurate examination of the mem-

ory subsystem[54]. Much effort has been devoted to finding alternate means to

generate realistic synthetic address streams[24, 57, 33, 65]. Achieving within 90%

verisimilitude when using these streams as representatives of the full application

to predict cache hit rates has not been possible until recently. Recently Weinberg

[67] introduced the idea of profiling address streams and storing descriptions of

them, which could later be used to generate realistic address streams for simula-

tion. That work circumvents the problems related to collecting and storing full

address traces, but does not maintain fine-grained patterns within the stream.

Compression techniques have been explored as another approach. Two re-

cent projects are Sequitur [39] and Path Grammar Guided Trace Compression

(PGGTC) [21]. Each of these represent major improvements upon previous at-

tempts, but are not satisfactory as complete solutions. The main drawback of

each is the time overhead required to create of the compressed format. Perhaps

more important than the overhead is the inaccessibility of the format. Neither

presented a human readable format that enabled directly study and manipulation

of the patterns, meaning that a person could gain understanding of the access

patterns by reading the compressed format.
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The direct collection and storage of address streams has remained problem-

atic, yet the need for access to full application address streams is growing. As HPC

resources grow to include many more processors application scalability, improving

per-node memory performance, becomes even more important.

1.3 Application Scalability

In addition to the on-node performance that is dominated by memory per-

formance application scalability during strong scaling is greatly affected by memory

performance. Increased performance is pursued along two main routes; increasing

the computing power available to applications by adding processing units (scala-

bility) and tuning applications to squeeze every bit of performance out of specific

architectures (serial efficiency). Until now we have been describing how the mem-

ory address stream is key to exploring serial efficiency, but it is also the key to

understanding per-core scaling behavior.

Understanding and predicting the scaling performance of scientific applica-

tions on large high performance computing(HPC) resources is critical to the design

and utilization of future larger HPC resources [7]. In order to properly reason about

the scaling performance of an application it is necessary to thoroughly understand

the changes in the memory behavior of the application during scaling. Although

communication and computation time both contribute to the overall scaling behav-

ior of scientific applications, computation time dominates execution time in many

modern scientific applications. For instance, the SPECFEM [32] code is a scientific

application that is being tuned to run at very high processor counts. After recent

optimizations only 5.9% of the overall execution time was attributed to blocking

communication time when SPECFEM was run across 16K cores [13]. That means

that during 94% of the execution time computation was taking place and there-

fore, the scaling behavior of the computation phase is the dominating factor in the

behavior of the overall application. Many of the scientific applications running on

today’s high performance computing resources are memory bound [61], meaning

that the movement of data from memory to registers dominates the running time.
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Modeling and predicting the changes in memory behavior as an application scales

leads to running (computation) time predictions, which are key to understanding

application scaling.

New systems will be composed of a larger number of processors than to-

day’s and may have different and more complex memory subsystems. In order

to evaluate how current applications will perform on future resources we must

understand and model the application’s memory behavior as it scales. In data-

intensive computing the time spent moving data to and from memory dominates

the on-processor execution time [55].

Application scaling is divided into two large categories: strong and weak

scaling. Strong scaling holds the overall problem size constant and adds more pro-

cessors to the computation. Weak scaling holds the problem size on each processor

steady; the overall problem size and the number of processors available increase

proportionally. In reality strong and weak scaling are two extremes in a spectrum.

Strong scaling has a greater effect on the on-processor execution time while weak

scaling holds the per-processor computation fairly constant while adding more com-

munication. This makes predicting the performance with respect to on-processor

execution a key factor for predicting strong scaling. This work focuses directly on

predicting the strong scaling behavior of an application with respect to the mem-

ory hierarchy. That is, it focuses on analyzing the temporal and spatial locality

characteristics of an application in order to predict its strong scaling behavior.

Strong scaling is generally understood to be the harder of the two types to

predict. As the data is spread across larger numbers of cores, the access patterns

and working set sizes change. This creates seemingly sudden and unpredictable

jumps in performance as the application is scaled. Super-linear speedup can be

observed when a working set suddenly fits into a smaller level of cache. At the

same time, as the data per core shrinks, the ratio of the data that comprises the

surface, and therefore data that is likely to be shared increases. This may cause

areas of the code that are insignificant at low core counts to become the dominant

areas at high core counts.
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1.4 Thesis Statement

A compressed representation of an application address stream that com-

prises stride patterns of individual constituent instructions provides tangible ad-

vantages over the state-of-the-art. The representation is more compact than previ-

ous techniques, incurs lower collection overhead, can be replayed at speeds limited

only by the bandwidth of the storage media, is easily human-readable, and re-

produces the performance attributes of the original stream with 99% fidelity as

measured by the cache miss rate. In addition, the representation can be modi-

fied to perform experiments such as reasoning about the scaling behaviors of the

application.

1.5 Dissertation Structure and Contributions

The remainder of this dissertation is organized as follows. Chapter 3 pro-

vides an overview of a novel address stream compression technique aimed toward

well-structured loops. The contributions of this work are the compression tech-

nique, which provides very high compression rates, low collection overhead, and a

human readable format.

Chapter 4 demonstrates the use of the compression technique and its acces-

sible format for a strong scaling study. The contribution of this work is a method

for identifying patterns during scaling at low core counts that can be extrapolated

out to larger core counts.

Chapter 5 describes an approach to grouping the address streams from

parallel executions into groups. Only a single representative from each group

needs to be saved. The contributions of this work are that it reduces the data

size of the saved address streams even further, and enables a full simulation based

performance model to be created during a scaling study.



Chapter 2

Benchmarks and Applications

The experiments presented in the following chapters are performed on a set

of benchmarks and applications. The benchmarks and applications were chosen

to demonstrate the effectiveness of our approach on computations common to

scientific applications. Each of the benchmarks and applications is described below.

2.0.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks are a benchmark suite written to represent

the major types of computations performed by high performance computing ap-

plications [8]. The following highlights the important aspects of each.

CG a conjugate gradient method used to compute an approximation to the small-

est eigenvalue of a large, sparse, symmetric positive definite matrix. This

kernel is typical of unstructured grid computations in that it tests irregular

long-distance communication, using unstructured matrix-vector multiplica-

tion.

EP an ”embarrassingly parallel” kernel, which evaluates an integral by means of

pseudo-random trials. This kernel, in contrast to others in the list, requires

virtually no interprocessor communication.

FT a three-dimensional partial differential equation solution using FFTS. This

kernel performs the essence of many ”spectral” codes. It is a rigorous test of

9
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long-distance communication performance.

LU a regular-sparse, block (5 X 5) lower and upper triangular system solution.

This problem represents the computations associated with the implicit op-

erator of a newer class of implicit CFD algorithms. This problem exhibits a

somewhat limited amount of parallelism.

IS a large integer sort. This kernel performs a sorting operation that is important

in ”particle method” codes. It tests both integer computation speed and

communication performance.

MG a simplified multi-grid kernel. This requires highly structured long-distance

communication and tests both short- and long-distance data communication.

SP solves a synthetic system of nonlinear PDEs using a scalar pentadiagonal solver

kernel.

Alterations to the NAS Parallel Benchmarks

The NPBs were altered to change the memory allocation approach. This

alteration was necessary to ease the comparison of profiles taken across core counts.

This section outlines the change that was made and documents the performance

impact incurred.

The NPBs are written such that the dataset size and core count it is to

be run on are known at compile time. This means that for each dataset size and

core count combination a recompile is necessary. The profiler names each basic

block in the executable. The recompile is problematic for the profiler, because

each executable may have small differences that result in inconsistencies in basic

block naming across traces.

The changes to prevent a recompile are quite simple. Each benchmark was

updated to allocate the memory needed per core after the MPI initialization call.

This allows the benchmark to dynamically determine the number of cores available

for execution and determine the data size per core.

A small performance impact was observed due to this change. Table 2.1

shows the execution times averaged over three runs. The IS benchmark is not
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included, because it cannot be run at over 1024 cores and it is not used in the

scaling study. The BT and SP benchmarks incur the largest impact (12 and 10

seconds respectively at a core count of four). However, the impact on most of the

benchmarks is statistically insignificant. It is expected that the execution times

can vary around 5% under normal conditions. At the higher core counts the impact

is much smaller, even for BT and SP.

Table 2.1: Performance Variation Due to Dynamic Data Allocation

Bench Average Execution Time (seconds)

Mark Original Altered

4 16 64 256 1024 4 16 64 256 1024

BT.B 114.4 33.0 9.4 3.2 1.6 126.3 36.8 10.1 3.3 2.1

CG.B 37.2 11.7 5.3 3.1 2.0 36.6 11.8 5.2 3.1 2.1

EP.B 18.3 4.7 1.2 0.4 0.1 18.4 4.9 1.3 0.4 0.1

FT.B 23.6 9.4 3.3 2.2 0.6 23.3 9.4 3.3 2.1 0.7

LU.B 74.3 23.5 6.6 3.0 N/A 78.0 27.8 8.1 3.0 N/A

MG.B 2.2 0.8 0.2 0.1 0.1 2.1 0.8 0.2 0.1 0.1

SP.B 110.6 37.0 8.8 4.1 2.8 120.3 39.6 9.3 4.1 3.0

2.0.2 Avus

AVUS(Air Vehicles Unstructured Solver) [1] from AFRL/VAAC is a finite

volume unstructured-grid Euler/Navier-Stokes solver, and derived from Cobalt-60

by the same group. The fundamental algorithm of AVUS is the finite-volume, cell-

centered, first-order accurate in space and time, exact Riemann solver of Godunov.

AVUS can treat two-dimensional, axi-symmetric, and three-dimensional problems.

The grid can be composed of cells of arbitrary type, i.e., tetrahedra, quadrilaterals,

pyramids, triangles, etc. Different cell types are permitted within the same grid.

The set of boundaries forming each cell, called faces, can also be arbitrary (tri-

angles, pentagons, lines, etc.), though each cell boundary face should be convex.

Further, the grids may be decomposed into subdomains, called groups or zones,
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permitting parallel processing where each zone resides on a separate processor. 1

2.0.3 Lammps

LAMMPS [47] is a classical molecular dynamics code that models an ensem-

ble of particles in a liquid, solid, or gaseous state. It can model atomic, polymeric,

biological, metallic, granular, and coarse-grained systems using a variety of force

fields and boundary conditions. In the most general sense, LAMMPS integrates

Newton’s equations of motion for collections of atoms, molecules, or macroscopic

particles that interact via short- or long-range forces with a variety of initial and/or

boundary conditions. For computational efficiency LAMMPS uses neighbor lists

to keep track of nearby particles. The lists are optimized for systems with particles

that are repulsive at short distances, so that the local density of particles never

becomes too large. On parallel machines, LAMMPS uses spatial-decomposition

techniques to partition the simulation domain into small 3d sub-domains, one of

which is assigned to each processor. Processors communicate and store ”ghost”

atom information for atoms that border their sub-domain. LAMMPS is most effi-

cient (in a parallel sense) for systems whose particles fill a 3d rectangular box with

roughly uniform density. 2

2.0.4 PFLOTRAN

PFLOTRAN [25] is a numerical modeling ground-water model application.

Numerical modeling is a critical tool to the U.S. Department of Energy for eval-

uating the environmental impact of remediation strategies for subsurface legacy

waste sites. Unfortunately, the physical and chemical complexity of many sites

overwhelms the capabilities of even most state of the art ground-water models. Of

particular concern is the representation of highly-heterogeneous stratified rock/soil

layers in the subsurface and the biological and geochemical interactions of chemical

species within multiple fluid phases. There is clearly a need for higher-resolution

modeling (i.e. increased spatial and temporal resolution) and increasingly mecha-

1Text From: http://www.erdc.hpc.mil/hardSoft/Software/avus
2Text From: http://lammps.sandia.gov
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nistic descriptions of subsurface physiochemical processes (i.e. increased chemical

degrees of freedom). We present SciDAC-funded research being performed in fur-

thering the development of PFLOTRAN, a parallel multiphase flow and multicom-

ponent reactive transport model. Written in Fortran90, PFLOTRAN is founded

upon PETSc data structures and solvers. We are employing PFLOTRAN to sim-

ulate uranium transport at the Hanford 300 Area, a contaminated site of major

concern to the Department of Energy, the State of Washington, and other govern-

ment agencies. By leveraging the billions of degrees of freedom available through

high-performance computation using tens of thousands of processors, we can better

characterize the release of uranium into ground-water and its subsequent transport

to the Columbia River, and thereby better understand and evaluate the effective-

ness of various proposed remediation strategies. 3

3Text From: [25]



Chapter 3

Address Stream Compression

3.1 Introduction

Obtaining and storing relevant address traces is a fundamental requirement

for trace-driven memory simulation of large-scale HPC applications. Workload

modeling, which depends heavily on trace-driven simulation, informs procurement

decisions [55, 36] by estimating existing workload performance on proposed new

resources. However, system evaluation via memory simulation is not limited to

procurement; new hardware and software system features, such as prefetching

policies, can also be evaluated [64] using trace-driven simulation.

Additionally, power consumption patterns have recently been shown to have

a very high correlation with memory access patterns [44] opening up another piv-

otal area of research dependent on address stream traces. Data movement (or the

performance of data movement) and power consumption have been identified as a

primary challenge to exascale computing [18]. This means that the need for access

to memory address streams is intensifying.

Despite the general usefulness of trace-driven memory simulation, the collec-

tion, handling and storage of memory address traces remains problematic. Address

streams for large-scale high performance computing (HPC) applications are more

problematic than most due to large numbers of processors, acting as a multiplier

to address stream trace size, and scarcity of resources, HPC systems are in high

demand and few users are willing to consume allocation on performance tuning.

14
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The main challenges associated with address stream collection include space

costs, time costs, accessibility, and proxy inaccuracies.

Space Costs: Address streams are extremely large. It is possible for an

application’s address stream to grow faster than 2.6 TB per hour per core [23].

HPC applications are run on thousands of processors and potentially for many

hours, further exacerbating the issue. As a small example, an address stream

recorded from the NAS Parallel Benchmarks [8] exceeded a terabyte; these are

short running benchmarks, in this case run on only four cores using the smallest

HPC dataset(A).

Time Costs: Collecting address streams and storing them to disk, as well

as retrieving them from disk, is slow. The processing rate for an address stream

that is being read from disk is limited by disk speed. Optimistically, this would be

250 MB/s (addresses can be generated faster than 700 MB/s).

On-the-fly processing of address streams bypasses the space challenges by

never storing the trace. However, this processing must be done on an HPC resource

and causes at least a 10X slowdown even with aggressive sampling techniques.

Without sampling, the slowdown is much worse, 100X-1000X [20]. Additionally,

the process must be repeated any time the experimental parameters change, re-

quiring further use of the HPC resource.

Accessibility: Raw address streams themselves provide little if any insight

to code structure or access patterns. A stored address stream is too large to be

read and understood by a person. The address traces themselves do not provide

any insight into the structure or fine-grained patterns created by the application

that could inform tuning decisions.

Inaccuracies: One common approach to avoiding the use of large address

streams is to work with application kernels or representative benchmarks, rather

than real workloads. However, it is very difficult to find a benchmark that can act

as an accurate proxy for HPC applications. The validity of a simulation depends

heavily on the chosen input workload [19, 29]. VanderWiel [64] points out in a com-

parison study of two prefetching techniques, the performance improvement varied

widely for each workload. This complicates the evaluation of hardware and policy
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changes. The performance results obtained by traces of small benchmarks chosen

to represent a high performance computing (HPC) workload are of questionable

relevance during such evaluations; choosing appropriate benchmarks is a difficult

task, especially when applied to an HPC workload [40].

Obtaining and storing relevant address traces is a fundamental requirement

for trace-driven memory simulation of large-scale HPC applications and the ques-

tion must be asked: how does one provide valid and relevant input of substantial

size to a simulation?

Methods such as trace compression, truncation, on-the-fly processing, and

synthetic trace generation have each been explored in response to this question.

Each of these solutions has shortcomings. Compression techniques incur a large

slowdown [39, 22], and some of them require that the entire trace be stored before

being compressed [39]. Truncating the trace loses valuable information. On-the-

fly processing is done successfully, but uses a large amount of time on valuable

HPC resources and has to be rerun each time the evaluation study changes [55].

Previous synthetic trace generation approaches have not reached high enough levels

of accuracy [57, 24].

This work presents PMaC’s1 Synthetic Address Stream Profiles, (PSnAP).

PSnAP is a lossy compression technique designed specifically for HPC address

streams. It takes advantage of patterns found in the per instruction address

streams of an application and creates very small profiles. These profiles can be

used to replay the address stream. PSnAP resolves many of the difficulties associ-

ated with address stream collection including space costs, time costs, accessibility,

and proxy inaccuracies).

Space Costs: PSnAP profiles are extremely compact, in the range of kilo-

bytes, meaning they can be emailed between collaborators. Not only are the profiles

small, but they do not grow as a function of running time. The size of a PSnAP

profile is determined by the complexity of the application code. A very simple,

but long-running loop will have the same sized profile as the same loop run over

a short time. This is very meaningful for HPC applications, because they often

1PMaC is the Performance Modeling and Characterization Lab at the San Diego Supercom-
puter Center.
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perform the same operations repeatedly on different data.

Time Costs: PSnAP profiles can be reused repeatedly without the use of

an HPC system. The slowdown incurred by tracing for PSnAP is only incurred a

single time and tracing can be performed for specific areas of an application, further

reducing HPC system use. The slowdown associated with PSnAP (approximately

100X) is small when compared to any on-the-fly processing method that does not

use aggressive sampling. The replay times for PSnAP are fast enough that they

can be replayed at least as fast as disk speeds. Some traces are more complex and

time-intensive for replay and we present a replay solution that essentially takes up

more space than the original PSnAP profiles, but allows for replay at disk speeds.

Accessibility: The PSnAP profiles are human readable and manipulatable.

High level structures and fine-grained patterns can be seen in the profiles, appli-

cation phases can be identified, and the results of compiler optimizations such as

loop-unrolling and function inlining can be seen. It is also possible to change the

profiles by hand in order to evaluate hypothetical optimizations.

Proxy Inaccuracies: There is no need to use benchmark kernels to represent

HPC application address streams; the actual streams can be compressed. We

demonstrate that the synthetic address streams generated by PSnAP result in

cache miss rates within 1% of the observed rates. We also demonstrate visually

that we are able to match not only the statistical properties of the stream, but

also the fine-grained patterns.

The contributions of this work are as follows:

• A new per-instruction recording technique that captures access patterns in

a concise manner.

• A human readable address stream profile that can be manipulated to evaluate

different auto-tuning strategies and reveals address stream metrics that lend

themselves to extrapolation for scaling studies.

• A synthetic stream generation method that leverages existing control flow

compression and per-instruction address streams.

We evaluate PSnAP based on accuracy and performance using the NAS
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Parallel Benchmarks [8]. Accuracy must be examined because PSnAP uses lossy

techniques. We compare the observed and synthetic address streams using cache

miss rates. The cache miss rates are compared over the entire benchmark execution

as well as on a per basic block basis. PSnAP achieves accuracy in the full execution

measurements, on average the difference between observed and synthetic streams

is .08%.

The evaluation of PSnAP’s performance includes: execution overhead, pro-

file size and replay time. A comparison of these values shows that PSnAP beats

the state of the art in all three categories. We also demonstrate one of the primary

advantages of PSnAP. The profile sizes do not grow as a function of time, but as

a function of pattern complexity.

In addition to good performance, the format of PSnAP profiles allows for an

array of new usage models. For example, PSnAP profiles can be partially replayed

for examination of specific loops, can be replayed in chunks in order to fit into

memory, and can be manipulated for experimentation.

3.2 Overview of Approach

The goal of PSnAP is to produce address stream profiles that are small

enough to easily store, share and process, while at the same time, contain enough

information to create a synthetic address stream that very closely resembles the

original. PSnAP, therefore, comprises three steps. First, the capture phase, during

PSnAP capture the original address stream is observed, and pertinent information

is recorded. Second, the post-processing phase, during PSnAP post-processing

the raw PSnAP profile is reformatted in order to create a more accessible and

quickly processed format. Third, the replay phase, during PSnAP replay the post-

processed profile is read and a synthetic address stream is created.
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Figure 3.1: Only the first step of the PSnAP process requires the use of an HPC
resource.

Each PSnAP stage has targeted goals, each contributing to the overall

PSnAP goals. The capture phase is designed to summarize the application’s ad-

dress stream with minimal memory and time overhead. Capture is performed using

a binary rewriting tool, PEBIL [35].

The post-processing phase is a simple classification and formatting task.

Each memory instruction results in a section in the raw profile. The instruction

data is parsed and classified in a way that makes replay simple and fast. This

processing phase is light-weight and can be performed on a desktop machine, it

does not require the use of an HPC resource.

The replay phase, also does not require the use of an HPC resource. The

goal of the replay phase is to be fast, flexible and portable. Not only can the

stream be replayed in its entirety, but replay of single basic blocks, loops or nested

structures is also possible.
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3.3 PSnAP Capture

PSnAP is designed to achieve a high-level of accuracy while maintaining

low overhead costs in both time and space. Attempts at doing this in the past

have demonstrated the benefit of treating the address stream as many parts rather

than holistically [46]. When viewed as a whole, address streams are complex

and patterns are difficult to identify, which complicates compression attempts.

Searching for the patterns in the overall stream slows down the process as well as

increasing the memory requirements. Separating the address streams created by

individual instructions exposes simple patterns.

3.3.1 Implementation

PSnAP capture is performed while running the application of interest on

an HPC resource. A compiled binary is instrumented to include PSnAP code and

the address stream is processed on-the-fly. The result of the instrumented run is

a set of PSnAP profiles, one for each core used during execution.

PSnAP capture is implemented as an instrumentation tool and library with

a binary rewriter. The binary rewriter, PEBIL, is an open source light-weight

binary instrumentation tool that can be used to capture information about the

behavior of a running executable. It works on the Linux/X86 instruction set.

The infrastructure provided by PEBIL enables PSnAP to collect all of the

requested virtual addresses into a buffer. Each time the buffer reaches capacity,

the application execution is paused, register status saved and the buffer is sent to

a function within the PSnAP library. The PSnAP library processes the buffer and

then returns control to the application execution.

The following section describes our approach to processing the buffer of

virtual addresses. We begin with an overview of the representation and then move

on to describe the methods of recording, decoding and replaying address streams.
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3.3.2 Stream Representation

We achieve over 10,000X compression on address streams primarily through

the instruction-specific address stream representation. Three core concepts guide

the compression technique.

1. Address streams generated per instruction are simpler than those generated

per basic block, loop, or application.

2. Any instruction address stream can be described in terms of a starting ad-

dress and a stride pattern.

3. Describing an address stream in terms of strides is often, but not always,

more succinct than describing it in terms of addresses.

1 for i=0 , limit

2 sum += A[i]

3 sum += B[1]

Figure 3.2: A very simple Loop.

Figure 3.3: A simple address stream.
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Before continuing with a discussion of the three guiding concepts, a sim-

plified example is presented in order to facilitate the understanding of complex

patterns seen during the discussion. Figure 3.2 presents a very simple loop with

two load instructions. Each load instruction operates on a separate area in mem-

ory, namely A and B. The address stream generated by this loop can be seen in

Figure 3.3. This is a zoomed in view of the address stream showing only the first

few addresses. It is apparent that each of the addresses occupies its own space

on the x-axis as they are displayed in order, serially. The addresses requested at

an offset to the address of A occupy the top half of the figure; those calculated

with respect to B occupy the bottom half. This type of representation is used

throughout the description of PSnAP.

This section illustrates the guiding concepts of this technique using an ex-

ample instruction taken from the most dominant block in the NAS benchmark FT.

This loop is the dominant loop when running dataset A, compiled for four cores

by the Intel compiler on a Nehalem processor. The code block begins at source file

ft.f line 1136.

Address streams generated per instruction are simpler than those generated

per basic block, loop, or application. This level of granularity was chosen because

patterns within small regions of memory are often simple and easily compressed. In

almost all cases, instructions act on a single region of memory and display the same

level of simplicity [46]. Dynamically discovering the active memory regions is very

expensive; but instructions can be discovered statically and therefore, instructions

are used to guide compression.

Memory instructions that reside within a regular loop structure and whose

memory address is calculated using a combination of loop indexes will display reg-

ular patterns. An example demonstrates the benefits of focusing on per instruction

address streams. The code shown in Figure 3.4 is from the most dominant loop in

FT. Taken as a whole, the address stream that results from this code may seem

complex. In fact, the code as supplied contains insufficient information to figure

out the pattern. In order for a developer to reason about these access patterns

accurately a search of the source code must be performed in order to trace param-
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1 n1 = n / 2

2 lk = 2 ** (l - 1)

3 li = 2 ** (m - l)

4 lj = 2 * lk

5 ku = li + 1

6

7 do i = 0, li - 1

8 i11 = i * lk + 1

9 i12 = i11 + n1

10 i21 = i * lj + 1

11 i22 = i21 + lk

12 if (is .ge. 1) then

13 u1 = u(ku+i)

14 else

15 u1 = dconjg (u(ku+i))

16 endif

17

18 do k = 0, lk - 1

19 do j = 1, ny

20 x11 = x(j,i11+k)

21 x21 = x(j,i12+k)

22 y(j,i21+k) = x11 + x21

23 y(j,i22+k) = u1 * (x11 - x21)

24 enddo

25 enddo

26 enddo

Figure 3.4: An excerpt from the dominant loop of FT.

eters back to values saved in a configuration file. This is a tedious and error prone

process.

Breaking down the code block and, therefore, address stream into its con-

stituent pieces makes reasoning about the access patterns significantly easier. Ex-

amining specifically the lines between 20 and 32 it becomes apparent that there

are actually 2 loads and 2 stores in the address stream. Specifically, two loads from

x and two stores into y. Our examples focus specifically on these instructions and

use dynamic information to discover the pattern.

Look specifically at line number 20 in Figure 3.4 and specifically at the load

from array x. This is Fortran code and so the inner steps are taken using loop
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Figure 3.5: The first 48 addresses in the stream for the load from buf

index j. Loop index j is incremented by one ny times, the loop index calculated

by i11+k is incremented lk−1 times. This pattern can be seen in Figure 3.5. The

address space is covered by the y-axis. Time is represented along the x-axis (one

address per unit time). The graph is created by capturing each virtual address

as it is requested. A mark is made on the graph for that address and the time

(the x-axis) is incremented by one. Viewing the figure reveals that ny must be

initialized to the value 15.

This is only the start of the addresses from a single instruction in the basic

block. When the addresses are viewed for all of the instructions over a longer

period of time, a more complex pattern is visible.

Figure 3.6(a) shows the address stream for the entire dominant basic block

of FT, the code block starting at line 20 in Figure 3.4. The graph is created using

the same method as figure 3.5, but this figure shows a larger portion of the address

stream, the first 100,000 addresses.

There are two visible patterns in the stream, the upper half has four smaller

patterns that are repeated and the lower half is a single consistent pattern. The

upper half corresponds to the stores going into y in the example code, and the

lower half corresponds to the loads from x. The two address streams are actually
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(a) Address Stream: Dominant block in FT.

(b) Address Stream: Single instruction in dominant block.

Figure 3.6: Two views of the address stream from the dominant block of FT.3.4
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generated by four pairs of instructions, because the compiler unrolls this loop twice.

Contrast the view of the full address stream to Figure 3.6(b) that shows

the address stream for only the first instruction of the block (out of 8). It covers a

smaller area (address space) and presents a much more simple pattern. The length

x-axis in this figure is one-eighth of the previous one, because we are filtering for

addresses from only one of the 8 instructions; the same period of time is covered.

The pattern seen in Figure 3.6(b) can be succinctly represented using strides2.

The range of addresses produced by this pattern is fairly large, but over the entire

execution only four strides are ever encountered. Figure 3.7(a) shows the same

range of time, but each point is the distance between the previous and current

address, rather than the addresses. In this figure there are 2047 small strides (the

thick line across the top) followed by one large backward stride (size 36,816 bytes).

This is difficult to see at this scale. Figure 3.7(b) is a zoomed in view of the first 48

strides in this stream; this view reveals that there are 15 strides of size 16 followed

by a stride of size 48. We refer to this repeated pattern as the instruction’s stride

pattern. Notice that the stride pattern seen in Figure 3.7(b) matches directly to

the address stream seen in Figure 3.5.

Any instruction address stream can be described in terms of a starting ad-

dress and a stride pattern. Continuing with the current example, a manual in-

spection of the stride pattern reveals a fixed stride pattern that can be expressed

as an expression (very much like a regular expression) where A,B,C, and D are

the recorded strides and the exponents indicate the number of times to repeat a

pattern.

((A15B)127A15C)16384A15D (3.1)

where : A = 16, B = 48, C = −36816, D = −18384

It should be obvious that any address stream can be described in these

terms. Even in a worst case scenario, a completely random stream where no

two strides are ever repeated, the stream can be described by simply listing the

distances between each address.

2A stride is the distance between two addresses in a sequence.
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(a) The stride stream.

(b) The stride stream zoomed in to see the first 48 steps in (a), this reveals

the pattern that looks like a thick black line in the previous Figure.

Figure 3.7: Reducing an address stream to strides allows for a much more succinct
representation of the stream.
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Describing an address stream in terms of strides is often more succinct than

describing it in terms of addresses. In the FT example it is possible to express the

first phase of this address stream using less than 70 bytes. The first phase of this

address stream represents approximately 23 Mb of addresses, this is a compression

of over 300,000 times. A large portion of address streams are well represented in

this manner. In fact, our experiments show that a large portion of instruction-

specific address streams are much more simple than this example. We show that

out of over 13,000 instructions in the NAS Parallel Benchamrks, only 29 fail to

fit this model. Not only is there a high compression rate, but the address stream

pattern has been encapsulated in a way that is easily accessible to the reader.

The amount of space required for this representation depends directly upon

the number of distinct strides that occur in the address stream and the complexity

of the pattern. For instance, in a random address stream, one that may result from

a gather operation, there are as many strides as there are addresses. This type of

address stream is not a candidate for this representation. It is identified as such

(early in instrumentation) and alternate means of recording are employed.

3.3.3 Recording Stride Patterns

PSnAP receives the addresses as a member of a triple. The triple contains

the basic block ID, the instruction ID, and the address. The triple is put into

the buffer by the instrumentation code written within PEBIL. The first address

received for each basic block is recorded in an initialization step. From that point

only the strides are recorded.

The stride patterns are recorded by counting occurrences of unique strides.

Each stride encountered is searched for in the list of previously encountered strides.

When a new stride is encountered it is put at the end of an array list (strides)

at index i. Another array count is updated so that count(i) = 1 indicating that

stride(i) has been encountered once. In addition, each time a new stride is encoun-

tered a snapshot of the count array is recorded. Every repeat of a stride results in

a linear search to find the index of the stride in order to increment count(i).

The cost of updating the strides and counts arrays is not as high as it



29

seems. A linear search is performed to find the index of each stride, but due to the

nature of the patterns the vast majority of strides are matched on the first index.

In the examples shown in this section the matches that occur at the first index

make up 94% of the total accesses. Additionally the number of strides is typically

much smaller than the number of addresses. In all of the NPBs the largest number

of unique strides for a single instruction is 15.

Table 3.1 shows an example of this data. There are four strides recorded.

The first time that a stride of size 48 is encountered, a stride of size 16 has already

been encountered 15 times. This can be seen in the first row of the stride history

in Table 3.1. At the end of execution the snapshots contain the values needed to

create the expression in Eq. 3.2 along the diagonal. The series of snapshots is

referred to as a stride history.

Table 3.1: Stride history for the first instruction of the dominant block in FT.

Stride 16 48 -36816 -18384

Count 377487360 24903680 131071 131072

Stride History

1 15 1 0 0

2 1920 127 1 0

3 31458240 2080831 16384 1

This example illustrates the basic idea behind the PSnAP approach. Specif-

ically, the repeated stride pattern can be found by examining a stride history. In

this example the diagonal contains the important values for the pattern.

3.4 PSnAP Post-Processing

The post-processing step can be performed on any desktop system, there

is no need to use an HPC system. The goal of this step is to characterize each

instruction and transform the format of the raw profile in such a way that makes

it more easily replayed. This section starts by describing the categories available

for characterization (decoding) and then goes on to describe the replay format.
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3.4.1 Decoding Stride Patterns

Recall that the recording stage results in a format containing a list of strides,

a list of counts, and a stride history. After the stride histories have been recorded

they must be decoded in order to prepare for replay. Decoding refers to the process

of transforming a stride history into a stride pattern.

Decoding involves three steps. First, each instruction is categorized (iden-

tification). Second, transformations are performed on the stride histories to reveal

the stride patterns (reduction). Lastly, the stride patterns are used to guide address

stream reconstruction (pattern).

Identification involves classifying each stride history. The following pattern

classifications are defined:

Constant Refers to the same single memory address each time it is executed.

Simple Repeat Steps through a range using at least two strides. The defining

characteristic of this pattern is that each stride is used a number of times

that is evenly divisible by the sum of the number of times the strides that

come after it are used.

Simple Alternating Is comprised of two or more simple repeat that alternate in

the address stream.

Complex Repeat Is comprised of a combination of simple repeat and simple

alternating patterns. The patterns are combined using a master pattern.

Undesignated The range of addresses is covered in a random manner or using

an index array making the pattern undetectable. This approach would not

result in any space savings for this case. Rather than applying it they are

identified and handled separately using a probability model.

The simple repeat, simple alternating and complex repeat classifications re-

sult from nested loop patterns moving through multi-dimensional data. Simple

repeat is the basis for each of them.

Throughout the discussion on decoding the following definitions apply:
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A-Z represent the values in the strides array (in order).

ci is the value in the ith position of the counts array.

h(i,j) is the value in the ith row and jth column of the stride history.

Simple Repeat

A simple repeat pattern results from a nested loop structure stepping through

array data. A strided walk through a 1D array is the most basic example. The

number of strides collected will depend on the dimension of the data and the depth

of the loop structure. Table 3.2 shows the data for a simple repeat pattern taken

from the FT benchmark.

Identification. Simple repeat patterns are identified using the counts array

(row 2 of Table 3.2. Each count in the line must be evenly divisible by the sum of

counts that fall after it.

∀i(ci%Σn
j=i+1cj = 0) (3.2)

Reduction. Once the instruction has passed the identification test, the next

step is to reduce the stride history into representative expressions. The reduction

is performed only on the last line of the stride history.

Divide each value by the sum of the values that fall after it in the same

row. Given that ci is the value in position i apply the following.

ci = ci/Σn
j=i+1cj (3.3)

The repeat value is set to the last value in the counts row. The reduced pattern is

therefore: (15,255,2047,1) repeated 7 times.

Replay. Replaying the pattern is straight-forward, the pattern is the fol-

lowing.

(((A15B)255A15C)2047(A15B)255A15D)7 (3.4)

where : A = 4096, B = −61424, C = 16, D = −134217712

It appears to be unnecessary to collect the pattern from the last line of

the stride history. From Table 3.2 it is apparent that the same values appear

along the diagonal of the stride history. However, the simple repeat pattern is
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often embedded within simple alternating and complex repeat patterns. In those

situations the full diagonal is not available.

Simple Alternating

A simple alternating pattern consists of two or more simple repeat patterns.

This can occur during a phase change in the execution or after jumping to a new

portion of data that may or may not have the same shape as the previous data.

Table 3.3 shows the data for a simple repeat pattern taken from the FT benchmark.

Identification. The simple alternating pattern modulo test will fail for sim-

ple repeat. At least two of the counts are alternating; this implies that their total

counts will be related based on a factor. We refer to this is as the alternation

factor. The test for identification involves separating the alternating patterns and

testing the remaining patterns separately for simple repeat. An additional test is

then performed to ensure that the patterns discovered actually add up to the final

counts.

Reduction. In Table 3.3 the modulo test fails at positions 3 and 4 in the

counts data. Line 3 of the stride history corresponds to the first occurrence of

the stride at position 4. The first step in the reduction is to remove any counts

associated with the beginning of the second pattern. Two new data series are

created. Let p be the new series and define pi,j where i = 1|2 be the value in the

ith row and the jth column.

p1,i = h3,i%Σn
j=i+1h3,j (3.5)

p2,i = h3,i − p1,i (3.6)

Each of the two new rows are now subject to the identification and reduction

performed for simple repeat. The results of this reduction can be seen in the last

two lines in Table 3.3.

Identification. The pattern has to now undergo one further test to ensure

that it is in fact a simple repeat pattern. Essentially, this is a check to ensure that

the final counts can be created by replaying the discovered pattern. Let fi be the

final value in the stride history for row i, p1,i be the value in the ith position of the
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first pattern, and p2,i be the value in the ith position of the second pattern.

f4 ∗ p2,2 + (f3 + 1) ∗ p2,2 = c2 (3.7)

Replay. The alternating factor in this case is determined to be 16384 —

the first pattern is done 16384 times before the second pattern is used. It is more

difficult to determine how many times the second pattern should be used. This

is essentially another pattern in the stream. The current solution is to alternate

evenly, improving this policy is the subject of future work.

The stride pattern to replay for this instruction is as follows.

(((A15B)127)16384A15C

((A15B)63)16384A15D)131072 (3.8)

where : A = 16, B = 48, C = −36816, D = −18384

Complex Repeat

The last in this group of patterns is the complex repeat pattern. The

complex repeat pattern can comprise both simple repeat and simple alternating

patterns. The pattern in the top half of Figure 3.6(a) is a complex repeat pattern

taken from FT. This pattern is found in the fourth instruction of the most dominant

basic block. Figure 3.8 shows the contribution of the fourth instruction to the basic

block pattern. Its stride history is presented in Table 3.43. Four distinct patterns

can be seen in the first 8000 addresses of the figure. The replay pattern reflects

these patterns.

Identification. The complex repeat pattern is more involved to identify than

the previous two examples. The reduction steps must be complete and then each

of the resulting patterns are tested for simple repeat and simple alternating.

Reduction. The complex repeat pattern is a combination of other patterns,

therefore, the first reduction step is to identify the individual patterns. The domi-

nant lines have to be identified. A dominant line is one that describes a complete

3The pattern created by this basic block has two phases (a simple repeat) the second phase
has been removed in order to make the example more readable.
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Table 3.2: The stride history for a simple repeat.

Simple Repeat

Raw Profile (Stride, Counts, Stride History)

stride 4096 -61424 16 -134217712

count 62914560 4177920 16376 7

Stride History

1 15 1 0 0

2 3840 255 1 0

3 7864320 522240 2047 1

Replay Pattern

pattern 15 255 2047 1

Table 3.3: The stride history for a simple alternate.

Replay Pattern

Raw Profile (Stride, Counts, Stride History)

stride 16 48 -36816 -18384

count 377487360 24903680 131071 131072

Stride History

1 15 1 0 0

2 1920 127 1 0

3 31458240 2080831 16384 1

Replay Pattern

pattern 15 127 1 0

pattern 15 63 0 1
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Figure 3.8: The address stream for the fourth instruction of the most dominant
block in FT.

pattern. Both simple repeat and simple alternating patterns have dominant lines

as well, but they are trivial to locate because they are always the last line in the

stride history. A dominant line is always followed by a line with a 1 in the diagonal.

Definition 1. history(i) is dominant ⇐⇒ history(i + 1, i + 1) = 1

Definition 2. final(i) == j ⇐⇒ dom(i, j) = 0 & ∀nk=j+1dom(i, k) = 0

Each dominant line is further reduced.

1. Reduce each dominant line by the values in the dominant line directly above

it.

dom(i, j) = dom(i, j)− dom(i− 1, j) (3.9)

2. Subtract one from the position in each dominant line that corresponds to the

final value in the dominant line above it.

dom(i, final(i− 1)) = dom(i, final(i− 1))− 1 (3.10)

The last dominant line is not a simple repeat or simple alternate pattern.

This line is referred to as a master line. A master line guides the repetitions of
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the patterns that come before it. This line is reduced to only the entries that

correspond with final values in the patterns above it.

master(j) = 0 ⇐⇒ @i|final(i) = j (3.11)

Each of the dominant lines is passed through the reduction performed for

simple repeat or simple alternating. In this example all of the lines are simple

repeat. The reduced dominant lines and final pattern are listed in Table. 3.4.

Pattern. The replay for this pattern is performed in the same way that

each of the previous patterns. The only addition is that the patterns are grouped

together and repeated 4095 times.

(A15B)127A15C

((A15D)3A15E)31(A15D)3A15F

((A15D)15(A15)G)7((A15D)15)7A15H

((A15D)63A15I)

((A15D)63A15J) (3.12)

where : A = 16, B = 336, C = −73392, D = 48

E = 1200, F = −72528, G = 4656, H = −69072

I = 18480, J = −55248

A representation such as the above is detailed yet compact and is much

more human readable than a raw address stream. If needed a human or a post-

analysis tool can tell a lot about an application or a section of an application from

examining patterns such as the above. We also provide the ability to ”zoom in”

on specific loops or functions and show their patterns. PSNaP’s ease of use allows

one to recapture the same stride patterns after a change. For example, a recompile

with new flags or a code restructuring, to examine what has changed or improved.
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Table 3.4: The stride history for a complex repeat.

Complex Repeat

Raw Profile (Stride, Counts, Stride History)

Stride 16 336 -73392 48 1200 -72528 4656 -69072 18480

Count 3.7E8 6.2E6 32768 1.6E7 1.5E6 32768 3.2E5 32768 32775

Stride History

1 15 1 0 0 0 0 0 0 0

2 1920 127 1 0 0 0 0 0 0

3 1935 127 1 1 0 0 0 0 0

4 1980 127 1 3 1 0 0 0 0

5 3840 127 1 96 31 1 0 0 0

6 4080 127 1 111 31 1 1 0 0

7 5760 127 1 216 31 1 7 1 0

8 6720 127 1 279 31 1 7 1 1

9 7680 127 1 342 31 1 7 1 1

10 3.1E7 5.2E5 4096 1.4E6 1.2E5 4096 28672 4096 4096

Reduced Dominant Lines

1 1920 127 1 0 0 0 0 0 0

2 1920 0 0 96 31 1 0 0 0

3 1920 0 0 120 0 0 7 1 0

4 960 0 0 63 0 0 0 0 1

5 960 0 0 63 0 0 0 0 0

6 0 0 4095 0 0 4095 0 4095 4095

Replay Pattern

1 15 127 1 0 0 0 0 0 0

2 15 0 0 3 31 1 0 0 0

3 15 0 0 15 0 0 7 1 0

4 15 0 0 63 0 0 0 0 1

5 15 0 0 63 0 0 0 0 0

6 0 0 4095 0 0 4095 0 4095 4095
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3.5 PSnAP Replay

The goal of PSnAP replay is to create a synthetic address stream as fast as

possible. The algorithm is designed to replay the synthetic stream while using as

few instructions as possible. For this reason a representation of the patterns has

been developed that covers all of the categories described above.

The representation is essentially a set of equal length global arrays accom-

panied by a control flow data structure. The control flow data structure guides

the replay to each instruction. The instruction is represented to the control flow

structure as a starting address and an index into the global arrays.

Replay Pattern

First Addr: Ox6DC1C0

Index Stride Count < == State

1 16 15 1 2

2 48 127 1 3

3 16 15 3 4

4 -36816 16384 1 5

5 16 15 5 6

6 48 127 5 7

7 16 15 7 8

8 -18384 16384 5 1

Table 3.5: The PSnAP Replay profile for the first instruction of the most domi-
nant block in FT.

Table 3.5 shows the replay pattern as it is represented in memory during

replay for the first instruction of the dominant basic block in FT. This instruction’s

pattern is also used as the example of a simple repeat pattern.

There are four global arrays: stride, count, less than (<), and equal (==).

In this abbreviated example the index for this instruction is one. The arrays are

global and hold all of the information for each of the instructions and so this

pattern will be followed by another pattern for the next executed instruction.
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address = prev_address + stride[idx]

if( state[idx] < count[idx] )

state[idx]++

idx = lt[idx]

else

state[idx] = 0

idx = eq[idx]

Figure 3.9:

Psuedo-code describing PSnaP’s replay algorithm.

The algorithm is written out using pseudo-code in Figure 3.9. The state

array is used to keep track of the current progress. When the control flow structure

chooses an instruction, the index is looked up in the state array and compared to

the value in the count array. If the value in the state array is less than the value

of in the count array the value in the state array is incremented and the index is

replaced by the value in the less than array. If the value in the state array is equal

to the value in the count array, the value in the state array is set to zero and the

index is replaced by the value in the equal array.

All of the categories described in the previous section can be represented in

this manner. The choice of address then requires two loads, one comparison and

two integer operations. This is expected to be slower than the execution of the

application primarily because of the loads. In addition to the PSnAP replay, the

control flow replay must be performed as well. This takes additional time as well.

3.6 Control Flow Compression

As described thus far, PSnAP provides a mechanism to record and replay

address streams for individual instructions. Full address stream replay requires

that the instruction streams be replayed together in the correct order. The order

is preserved using control flow compression. The control flow compression used

by PSnAP follows the method used in Path Grammar Guided Trace Compression

(PGGTC) [21] very closely. The following is a brief overview of the approach.

The control flow graph of an application is a directed graph that describes
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the path taken through the code. The application code is broken down into basic

blocks, a set of instructions with a single entry and single exit, which are repre-

sented as nodes in the graph.

There are two levels of constructs in the representation, nodes and aggre-

gates. The nodes are the basic blocks and the aggregates are loops or function

calls. An aggregate construct is different from a node only because it contains

either other aggregate constructs or nodes. The representation is loop-centric.

Loop structures and basic blocks are identified statically using a binary

rewriting tool PEBIL. The loops and basic blocks are each assigned a unique id.

The loop ids are unique over the entire code and the block ids are referred to as

masks and are unique only within the containing loop.

Each loop in the application is treated separately. Figure 3.10(a) shows a

simple example of a control flow graph. This graph contains a loop with a nested

loop. Figure3.10(b) demonstrates how the nested loop is separated. the head basic

block of the nested loop is promoted to be an aggregate construct. The promoted

node is always an entry node to the nested structure.

(a) The original

loop.

(b) The resulting loop.

Figure 3.10: Loop separation in the control flow graph.

Instrumentation code is inserted at the loop heads and at the beginning of

each basic block. This code is responsible for recording the path taken through
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the loop and the iteration count for each entry. Table 3.6 shows the data recorded

during the instrumentation run, specifically the path history and the iteration

history.

The path history describes the paths taken through the loop. Individual

paths taken through a loop are expressed in a bit map. The bit map is maintained

by the loop head and updated by each visited basic block. Each basic block, or

dummy basic block that represents a nested loop, is statically assigned a mask.

Instrumentation code at each basic block performs a bitwise-OR with the loop

bit map. At the end of a single iteration of the loop each flipped bit in the map

represents a basic block taken. The data in Table 3.6 indicates that blocks one

and three are taken. Block 0 is always taken as it is the head node of the loop.

The ordering of the masks for basic blocks is key for accurate replay. The

1 bits in the bit mask indicate which basic blocks where executed and the order

they were executed in. If the basic blocks in figure 3.10(a) were labeled as B=00,

C=01, and D=10 (a valid breadth first ordering) the execution of C and D would

be swapped during replay. A topological ordering [59] is used to ensure that the

path represents a valid execution ordering of basic blocks.

Each sub-loop requires only a single bit in the parent loops bit map. Using

a topological ordering within a loop always assigns a mask of 0 to the head block

of a loop. This block must always be taken and the mask is therefore, not needed.

The space is used instead to hold the mask that the sub-loop would have been

assigned if it had been just a normal basic block. This means that the head block

of a sub-loop is able to play the role of the dummy basic block in the parent loop.

At the end of each loop iteration the path taken through the loop is com-

pared to the path taken on the previous iteration. If the paths match, a counter

is incremented, if not, the new path is pushed on a stack of paths, called the path

history. A limited number of paths are recorded to save space. In the example in

Table. 3.6 the same path is taken each time through the loop.

If the number of allowed paths is exceeded, the loop is labeled as having

overflowed. A snapshot of the current path history is taken and saved. At that

point the history converts to only counting the paths taken, the order is no longer
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Table 3.6: The control flow representation for the most dominant loop in FT.

Loop 7 Loop 8

ID 563 564 565∗ 566 565

Mask 0 1 2 3 0

Path History

Path Count Path Count

0000 0101 4798283776 0000 4798283776

Iteration History

Iter. Entries Iter. Entries

16 256 1 4798283776

64 64

256 16

1024 4

4096 1

maintained. The number of entries maintained in the history is configurable, for

the experiments using the NPBs 20 entries was adequate.

A simple iteration history is kept for each loop to keep track of iteration

counts for each entry. Each time the loop is entered externally a new counter is

initialized. The count is incremented for each iteration, and upon exit the count

is pushed onto a stack. If a loop is iterated over the same number of times by

successive external entries a counter is incremented rather than saving multiple

copies of the same value.

There are several differences between the PSnAP implementation and the

original Path Guided Control flow Compression Technique (PGCCT) implemen-

tation. PGCCT is non-lossy whereas PSnAP is lossy. Specifically, rather than

collecting new paths indefinitely, PSnAP allows for a finite number of paths to

be collected before simply counting unique paths rather than keeping track of the

order they appeared in. For example, if two paths were taken through a loop in

an alternating manner 1 million times, PGCCT would have 1 million entries in

the stack of paths. PSnAP would have only 2, each with an associated count of
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500,000. This saves a large amount of space, but results in a potential loss of

accuracy, if the pattern cannot be determined. As a hint to the pattern a snapshot

of the path history at the point of overflow is saved in the profile.

The other major difference between the implementations is that the bit

maps in PGGTC were limited to 32 bits. If the path through a loop contained

more than 32 basic blocks a hash map was used. The bit maps in PSnAP have

been implemented to expand a byte at a time indefinitely.

The result is a highly compressed trace, even of long running or complex

applications or benchmarks, that can be easily shared, even by email, to convey

the memory behavior of applications.

3.7 Evaluation

The accuracy and performance of PSnAP were evaluated through a series

of experiments. The experiments include a coverage survey, manual inspections of

key basic block address streams, cache hit rate comparisons, and a performance

evaluation.

The experiments were conducted using the NAS Parallel Benchmarks run

on four cores. All of the experiments were run on Dash4. Dash is a 64 node system

housed at SDSC. Each node is equipped with two quad-core 2.4 GHz Intel Nehalem

processors and 48 Gb of memory.

A coverage survey was performed in order to verify that an adequate per-

centage of instructions qualify to be represented using stride patterns. The ac-

curacy of the synthetic address streams was evaluated in two ways. First, the

instruction-specific streams were directly compared at a basic block level. This

ignores the interactions between instructions from the comparison. However, the

control flow is included in this comparison, because the path history and iteration

history are both required to create the replay for this test.

Second, the cache miss rates of the synthetic address streams were compared

to those of the observed address stream. The synthetic address streams prove to

4http://www.sdsc.edu/us/resources/dash/dash_system_access.html
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be very accurate; the instruction-specific streams are non-lossy with a 100% match

rate. Cache miss rates were reproduced with an average error of 0.8% (i.e less than

1%) in L1.

The performance evaluation of PSnAP included examining the achieved

compression rates and the overhead of generating the profiles and synthetic streams.

The compression rates are competitive with the state of the art, often surpassing

it. At the same time the slowdown is significantly less; PSnAP incurs an average

slowdown of 90X. This slowdown is achieved with no sampling and using an un-

optimized version of the instrumentation code. The slowdown is already very low

for such an instrumentation approach and we believe that the slowdown can be

further reduced with the addition of sampling and optimizations.

3.7.1 Coverage

Before examining the accuracy of PSnAP for the benchmark set as a whole,

it is important to ensure that individual instructions are being properly repre-

sented. This cannot be done unless a significant portion of instructions are rep-

resented by the defined stride patterns from section 3.3.3. A coverage test was

conducted to measure the number of instructions in the benchmarks that qualified

as candidates. Of the over 30,000 instructions evaluated in the NPBs, only 29 were

not represented using the defined patterns.

Table 3.7: Instruction-level pattern coverage statistics for NPBs.

Category BT CG EP FT IS LU MG SP

constant 219 306 27 92 57 1177 305 2153

simple repeat 2062 0 3 16 5 1810 19 781

cmplx. repeat 995 0 0 119 0 0 125 1762

simple alt. 178 0 2 4 0 0 304 566

undesignated 0 2 0 0 11 0 16 0

Total 3455 386 32 231 73 2987 769 5262

Table 3.7 shows the coverage statistics for the categories in PSnAP. A ma-

jority of the instructions, 61%, are represented with simple repeat, complex repeat
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and simple alternating. The majority of the remaining are constant, 38% of the

instructions are constant. This is encouraging for performance, as the constant

pattern requires almost no processing and no memory to replay.

The undesignated instructions, which occur in CG, IS and MG, were man-

ually examined. Each of them results from the use of index arrays and are in fact

not candidates for this representation. For these cases, a random access stream is

generated during replay.

3.7.2 Pattern Resolution

The reproduction of fine-grained patterns has historically been a weakness

in synthetic stream generation. A high level of resolution is very important when

studying memory behavior, especially when prefetching is a consideration. Fourier

transforms are a common task performed in HPC applications, and they produce

complex address stream patterns. Figure 3.6(a) shows such an address stream,

which is the dominant pattern in FT. PSnAP is able to reproduce this exact

address stream. In order to demonstrate the level of resolution achieved by PSnAP

we manually compared the first 100,000 addresses for the dominant basic block

in each benchmark. An exact match was achieved for each of the NPBs with

qualifying instructions, even the complex pattern shown in Figure 3.6(a).

An exact match with fine-grained patterns does not imply perfect accu-

racy. There is lossiness within the control flow compression and therefore cache

simulation results were used to test the overall accuracy of the synthetic streams.

3.7.3 Cache Simulation Results

Cache simulation comparisons allow for a high-level view of PSnAP’s ac-

curacy. We have shown that the fine-grained patterns are reproduced on a per

instruction, and per basic block basis, but the lossy nature of the control flow

compression leaves an opening for differences between the observed and synthe-

sized streams. We compare the overall cache miss rates for the entire execution as

well as perform a more fine-grained basic block comparison.



46

Table 3.8: Cache structures used for cache hit rate accuracy verification.

L1 L2 L3 Arch.

ID Sz/Ln/Assoc. Sz/Ln/Assoc. Sz/Ln/Assoc.

(KB)/(Bytes)/ (KB)/(Bytes)/ (KB)/(Bytes)/

1 32/128/2 1024/128/8 PowerPC

2 256/128/8 9216/128/12 IT2

3 64/64/2 512/64/16 MIPS

4 32/64/8 3072/64/24

5 32/32/4 128/64/2 Opteron

6 64/64/2 512/64/16 1024/64/48 Budapest

7 32/64/8 256/64/8 2048/64/16 Nehalem

8 64/128/8 4096/128/8 16348/128/16 IBM P6

9 64/64/2 512/64/8

10 64/64/2 512/64/32

11 64/64/2 512/32/16

12 64/64/2 512/128/16

The cache structures used to examine the accuracy of the streams are de-

scribed in Table 3.8. This evaluation uses a set of seven memory hierarchies taken

from recent and historical HPC systems. Included in the set are PowerPC, IT2,

MIPS, Opteron, Budapest, Nehalem, and IBM Power6. The MIPS structure is

altered to create four hypothetical structures. The line size and associativity are

varied in turn. The structures were chosen to represent small, medium and large

caches, with a variety of line size. Some of the structures are two level caches and

some are three.

The observed address stream of each benchmark was fed into a series of

cache simulators [62, 35]. The cache simulations produce cache miss rates for each

basic block in the application and for the entire execution. These cache miss rates

are then compared with the cache miss rates that result from the simulation driven

by the synthetic streams.

Table 3.9 shows the difference in the miss rates (between synthetic and ob-

served) for the entire execution of each benchmark on the Nehalem cache structure
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Table 3.9: Performance of PSnAP on NPBs (4 processors).

Benchmark Full Trace Size Compressed Files % Abs Err

PSnAP PSnAP

(GB) ratio size KB (L1) (L2) (L3)

BT.A 1,120 84,856X 13,840 0.2 0.1 0.1

CG.A 18 83,020X 232 0.4 0.4 0.1

EP.A 51 1,973,790X 27 0.0 0.0 0.0

FT.A 64 97,203X 690 0.2 0.5 0.4

IS.A 43 134,019X 338 1.3 0.2 0.1

LU.A 599 79,399X 7,908 1.9 1.5 0.6

MG.A 40 19,760X 2,118 1.1 0.7 0.3

SP.A 508 33,359X 15,968 1.4 1.0 0.7

(number 7 in Table. 3.8). PSnAP’s overall accuracy is very high. The average

error for L1 is 0.8%.

A more detailed comparison of basic block cache miss rates confirms PSnAP’s

accuracy. For this comparison the cache miss rates across all cache structures were

compared for the dominant basic block in each benchmark. Table 3.10 shows

the observed and synthetic cache miss rates for the dominant basic block of each

benchmark using the Nehalem cache structure. Not surprisingly, IS is the worst

performing. The dominant instruction in IS performs a load calculated using an

index array. It is categorized as undesignated and a random function is used to

generate the synthetic stream. All of the basic blocks containing instructions with

recorded stride patterns performed well, the maximum difference is 0.71%.

Figures 3.11 a-f show the variation in accuracy for L1 miss rates over all of

the cache structures. EP, LU and SP each had perfect or near perfect synthetic

streams resulting from the profiles, this can be seen in the in the cache hit rates as

well; each has very consistent high accuracy. FT has perfect accuracy in L1, but

the L2 and L3 cache miss rates have some error. This error as well as the errors in

the other benchmarks is due to the lossy nature of the control flow compression.

Several basic blocks in FT interact and the control flow plays a key role in that

coordination.
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Table 3.10: Accuracy of PSnAP on NPBs at the Basic Block Level for Nehalem
Cache (4 processors).

Benchmark level Cache Miss Rate

Observed Synthetic Abs.

Diff

BT.A

L1 5.29 5.14 0.15

L2 1.59 1.58 0.01

L3 1.51 1.41 0.10

CG.A

L1 24.57 23.86 0.71

L2 7.21 7.32 -0.11

L3 6.83 6.84 -0.01

EP.A

L1 6.25 6.25 0.00

L2 6.25 6.25 0.00

L3 6.25 6.25 0.00

FT.A

L1 13.91 13.52 0.39

L2 0.93 0.00 0.93

L3 0.01 0.00 0.01

IS.A

L1 3.67 6.78 -3.05

L2 1.05 6.45 3.05

L3 0.78 5.74 3.05

LU.A

L1 6.23 6.27 -0.04

L2 4.59 4.69 -0.01

L3 0.71 0.35 0.36

MG.A

L1 11.49 11.01 0.48

L2 4.21 4.28 -0.08

L3 3.39 2.13 1.26

SP.A

L1 2.30 2.30 0.00

L2 2.30 2.30 0.00

L3 2.30 2.30 0.00



49

(a) BT (b) EP

(c) FT (d) LU

(e) MG (f) SP

Figure 3.11: PSnAP’s Accuracy with respect to Cache Miss Rates in the Domi-
nant Blocks of Each Benchmark
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Figure 3.12: Profile size grows as a function dominated by number of instructions.

Our experimental results demonstrate very clearly that the synthetic streams

are very similar to the observed in terms of performance. The error is consistently

below 1%, with the previously noted exception of IS.

3.7.4 Size and Slowdown

The size and scaling behavior of the memory profiles are major advantages

of the PSnAP approach. Each of the benchmarks used for the accuracy evalua-

tion produced memory profiles of less than 2MB, which is easily shared among

collaborators. Table 3.9 shows the compression ratios for PSnAP and PGGTC.

PSnAP and PGGTC achieve fairly similar compression rates, but PSnAP is more

consistent in obtaining high ratios.

The size of each PSnAP profile is a function of address stream complexity

rather than running time, or dataset size. Figure 3.12 shows the PSnAP profile size

for each of the NPBs plotted against the memory instruction count (determined

statically). The size of the profile is a function of loop count, basic block count

and instruction count, but is largely dominated by the memory instruction count.

The real advantage of PSnAP over PGGTC is the overhead. Table 3.11

shows that the collection overhead is on average 90X. This is very small for a

profiling technique with no sampling. The addition of sampling is planned as

future work, leaving the opportunity for even more improvements. We anticipate

the addition of sampling to reduce the overhead to 10X.
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Table 3.11: Running times for instrumentation and replay.

Benchmark Running Times(slowdown)

Exec. PSnAP Replay

sec. sec.

BT.A 27 1856(69X) 1170

CG.A 0.7 56(77X) 42

EP.A 3 163(59X) 18

FT.A 2 197(116X) 235

IS.A 0.6 62(112X) 44

LU.A 19 1610(86X) 967

MG.A 0.8 88(117X) 109

SP.A 23 1441(62X) 1304

The replay time is a significant metric because slow replay leads to slow

simulations. The current state of the art for replay speeds is to replay at disk read

speed (optimistically 250 MB/s). An optimized version of the PSnAP replay tool

approaches this rate for some profiles. However, we have devised an alternative

replay process in order to guarantee consistent replay speeds at disk speed.

The alternate replay process involves building a temporary (and much

larger) representation of the stream on disk. The temporary representation will

be too large to move around or inspect directly, but allows for fast replay. Mache

[50], is chosen as the alternative address compression scheme. It results in larger

representation, the best compression ratio possible is 8X, but is capable of replay

speeds at the same rate as disk reads.

We have demonstrate that the PSnAP profiles have a high degree of ac-

curacy, low instrumentation costs, and that is is possible to replay the profiles at

disk speeds. The result is a highly accurate, highly compressed trace that is easy

to capture and replay whether to drive simulation or other analysis.
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3.8 Discussion

Despite the general usefulness of trace-driven memory simulation the collec-

tion, handling and storage of memory address traces remains problematic. PSnAP

addresses the challenges associated address trace collection including space costs,

time costs, accessibility, and proxy inaccuracies by decomposing address streams

into smaller simple streams. The repeated patterns in the smaller streams are

recorded during dynamic execution using a simple stride history scheme.

Space Costs. PSnAP achieves consistent compression ratios higher than

any previously compression technique. Not only are the compression ratios high,

but the growth of the profile sizes does not grow in relation to execution time.

Once each instruction level stream description has been established the profile

stops growing regardless of the number of times that it is repeated.

Time Costs. The compression ratios are achieve while maintaining low

execution overhead (on average 90X). We have presented a method for replay that

matches the disk speed available. It is also possible to perform direct replay of the

profiles, which outperforms disk reads for some benchmarks. Another advantage

of PSnAP is that specific areas of interest in the application can be captured in

the profiles rather than the entire application. This is desirable for extremely long

running applications where any slowdown is a difficult challenge.

Accessibility. PSnAP profiles are human readable and manipulatable. This

opens up several new usage scenarios for address streams. Due to their size PSnAP

profile are easily shared between collaborators. It is also possible to replay only

specific portions of the stream. Specific loops can be identified and played along

with the loops nested within them.

Replay check-pointing is also possible. This means that the replay can be

performed in sections. It is possible to request only a million addresses at a time.

This level of control makes exploring and experimenting with the streams much

easier than with other compression methods.

Proxy Inaccuracies. It is not necessary to evaluate benchmarks or appli-

cation kernels as proxies to real application. The applications themselves can be

represented with PSnAP profiles.
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PSnAP represents a real advance in the handling of address streams. We

note improvements in the areas of space and time costs as well as making the

information captured in memory address streams easily accessible to users.

3.8.1 Future Work

We are actively moving forward with improvements and additions to PSnAP.

Our goals are to shrink the collection overhead, improve the handling of undesig-

nated instructions, develop tools to ease the exploration of compressed traces, and

optimize the replay process.

PSnAP’s collection overhead is already manageable, but there are a few

optimizations that are possible to shrink it even further. The current implementa-

tion collects control flow information and instruction address stream information

at the same time, using a shared library. A faster instrumentation approach can

be used if the two are separated. On their own the control flow compression and

instruction level address stream compression will require fewer operations, simpler

logic, and less memory.

It is possible to trade some level of accuracy for instrumentation speed.

Many simulations that consume memory address streams implement sampling.

The traces can be collected in a way that compliments the consumer’s sampling

scheme. For instance, if the consumer is only going to observe the first 10% of

addresses there is no need to detect patterns for the entire execution.

In addition to course grained sampling it is possible to turn off instrumenta-

tion in sections of the application that have ”settled” or achieved a stable pattern.

This behavior can be detected by the absence of new strides. Leaving the first

instruction of the region instrumented in order to check for a change in pattern

ensures accuracy, while realizing a significant performance improvement.

PSnAP currently has a single category of undesignated instructions. A lot

of previous work [5, 60, 27, 66] has been done that can improve the representation

of these instruction streams. One of our goals is to detect different categories of

“random” streams and reproduce them with greater verisimilitude.

The exploration of address streams is greatly eased with the use of PSnAP.
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As of now individual loop structures can be replayed in isolation and it is possible

to replay streams in manageable sized chunks. We plan to improve upon these

capabilities and make an interface available for zooming in and replaying specific

regions or basic blocks as well.

The replay process is in the process of being optimized. It is our belief that

the replay has the potential to be significantly faster than disk speeds. Methods

of parallelization using threads are being explored.

3.8.2 Usage Scenarios

The PSnAP format is human readable and reveals a great deal of infor-

mation about the underlying structure of the application. Evaluating the profiles

reveals some of the compiler optimizations performed by the compiler (such as

loop unrolling) as well as access patterns, loop depth, and path frequencies just to

name a few. The availability of this information has prompted the beginning of

two new research projects based on PSnAP profiles, PSnAP guided auto-tuning

and PSnAP guided scaling analysis.

The PSnAP profiles can be manipulated to reflect the effects that different

compiler optimizations would have on the address stream. By replaying the rel-

evant portions of manipulated PSnAP profiles it will be possible to compare the

effectiveness of different combinations of optimizations.

By collecting a series of PSnAP profiles for a single application run across

varying numbers of cores one can inspect the profiles and detect patterns of change.

Using regression techniques it should be possible to extrapolate the values from

the series of profiles in order to create a new profile at a very large core count. It

would then be possible to generate a synthetic address stream at a core count that

is not currently available or to do scalability studies for scientific applications.

3.9 Conclusion

PSnAP is a lossy address stream compression tool. It accurately repre-

sents the address streams for HPC applications and benchmarks using very little
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space. The profiles allow for a synthetic stream to be generated, manipulated, and

measured.

PSnAP combines previous work done on dynamic control flow graph com-

pression with a new technique for compressing instruction-level address streams.

The development of the fine-grained instruction-level address stream compression

allows for much faster instrumentation as well as the very small profiles. We

demonstrate that fine-grained patterns are reproduced address for address and

cache hit rates are reproduced with an average error of 0.8%.
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Chapter 4

Address Stream Extrapolation

4.1 Introduction

The number of processing cores available to high Performance computing

(HPC) applications is growing to extremely large scales. New National Science

Foundation compute resources located at the University of Illinois at Urbana-

Champaign, the University of Tennessee, and the Texas Advanced Computing

Center are coming online now and over the next several years; the largest, Blue

Waters, the petascale resource at UIUC, will provide 500 times more computing

power than today’s supercomputers using more than 100,000 processors. Systems

of similar size are being deployed by The Department of Energy and NASA. This

growth pushes application developers to write code that remains efficient when run

across many cores. Understanding the scaling behavior of applications and being

able to predict how well an application will run on processor counts not yet avail-

able is key to achieving effective utilization of these and other high performance

resources.

The scaling behavior of the on-node computation of applications is of par-

ticular interest. This is due to the correlation between data-movement (a large

portion of the computation component) and both power consumption [44] and

performance [55]. Data-movement and power consumption are considered two of

the largest hurdles to achieving exascale performance by the Darpa Exascale re-

port [18], this highlights the importance of developing methods to understand and

56
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optimize on-node scaling behavior.

The direct extrapolation of high-level memory performance metrics is chal-

lenging. It has long been understood that extrapolating the observed runtimes of

a parallel application executed on different processor counts is problematic as a

prediction technique. The runtime of an application is a high-level metric which

hides the true complexity of execution; there are unexpected “cliffs” and turning

points in scalability that are due to the complexity of algorithm and architecture

interaction. Another high-level metric that does not lend itself to extrapolation

is cache miss rate [56]. Even measured at a per basic block granularity, there are

drops in miss rates that are difficult if not impossible to predict, without detailed

knowledge about the interaction of the address stream and the cache structure.

This work hinges on the hypothesis that while high-level metrics such as

execution time and cache hit rate do not extrapolate accurately, there are low-level

execution metrics which do, metrics that can be derived from the application’s

address stream. These low-level metrics can then be used to derive the high-level

metrics.

The data-movement of an application is described by an address stream

and is in turn used to re-derive the high level metrics. An address stream is the

list of virtual addresses requested by an application during execution. The stream

can be used to explore the memory behavior of an application and used to drive

simulation studies.

The streams resulting from executions at extremely high core counts are

unavailable for at least two reasons, the streams are too large to be collected

and/or the resources are not yet deployed at scale. We present an extrapolation

method that, when combined with application knowledge, produces synthetic ad-

dress streams that closely resemble the observed address streams at higher core

counts. This approach eases the exploration of application scaling performance

and power consumption in advance of resource deployment.

The contributions of this work include the identification of low-level met-

rics that lend well to extrapolation, the identification of common trends in these

metrics and the definition of regression techniques that can be appropriately ap-
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plied. In addition to the technique, the tool is able to recognize training sets

that are problematic for extrapolation and notify the user that manual inspection

is required. We show that it is possible to extrapolate well-behaved application

address streams with a high-level of accuracy. The extrapolated streams, based

on low-level metrics, achieve cache miss rates (a high-level metric) within 1% of

the synthetic address streams resulting from PSnAP profiling or are marked as

requiring manual inspection.

4.2 Overview of Approach

The goal of this work is to provide a synthetic address stream for application

runs that may not be possible to execute on a machine yet. The execution may

not be possible because the resource has not been deployed at the core count of

interest or profiling the application at that core count is impractical. The synthetic

address stream can be used to drive memory simulations or other studies exploring

the memory behavior of the application, before it is actually possible to run or

profile it at scale.

Table 4.1: The cache hit rates for the most dominant block in FT.

Cache Hit Rates

Core Count L1 L2 L3

4 85.9 8.4 4.5

8 85.9 8.4 4.5

16 85.9 8.4 4.5

32 85.9 11.9 1.7

Address streams capture behavior that is not available in higher level met-

rics. For instance, a commonly used memory metric is the cache hit rate. Using

cache hit rates to predict the memory behavior under strong scaling is problem-

atic. As an illustration, Table 4.1 shows the cache hit rates achieved by the most

dominant block of the NPB, FT on a Nehalem cache structure. At a core count

of 32 a portion of the working set drops into L2 cache, resulting in a large jump
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Figure 4.1: Overview of Extrapolation Approach

in cache hit rate (8.4% to 11.9%). Directly extrapolating the predicted cache hit

rates at 32 cores from that observed for 4, 8 and 16, by fitting a line or higher-order

polynomial will obviously fail. And simply knowing the sizes of the caches will not

help either. There is some property of the address stream that changes in a way

not captured by the first 3 high order metric measurements (something is changing

but you don’t see the effect until you hit 32 cores).

We provide the extrapolated synthetic address stream by extrapolating

lower-level metrics, specifically the content of PSnAP profiles. PMaC’s Synthetic

Address Streams from Profiles (PSnAP) are concise representations of address

streams resulting from application execution. Each instruction is described as a

starting address and a stride pattern. The representation is described in more

detail in the next section.

The extrapolated PSnAP profile is the result of identifying trends in the

recorded behavior of memory address profiles. PSnAP profiles are collected at a

series of core counts, the series of PSnAP profiles is referred to as the training set.

Through a series of regressions and internal calculations the extrapolated PSnAP

profile is generated. That profile can be used to generate a synthetic address

stream at the target core count.

The approach as described is meant to aid a user in studying the strong

scaling behavior of an application. The approach is described for the cases that it

is fully-automated. There are basic blocks in most every benchmark or application

where fully-automated extrapolation will fail and manual inspection is required.

Fortunately, the tool can identify these cases and greatly reduce the amount of

work to be done by the user by automating all of the well structured patterns.
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4.3 PSnAP Representation

This section describes the PSnAP address stream representation, referred

to as profiles. The profiles are human readable. This makes it possible to study the

profiles to better understand the access patterns of an application and manipulate

the profiles to test the affects of hypothetical compiler optimizations or strong

scaling, the subject of this work.

The profiles comprise two sections, first, a representation of instruction-

specific patterns. The instruction-specific patterns can be used to replay the ad-

dress stream resulting from a single instruction. The single instruction address

streams are combined in a full-application address stream by following the second

section of the profile, the control flow graph. PSnAP stores a compressed form of

the control flow graph.

Not all instructions are candidates for PSnAP representation. PSnAP re-

quires that the address streams result from a well-structured address calculation.

Such as one that would result from a nested loop structure. Address calculation

that are random, or generated by reading data using a gather, are not candidates.

Those streams are represented using an alternative representation.

The instruction-specific patterns are expressed with a starting address fol-

lowed by a stride pattern. This combination allows for the address stream to be

replayed. Table 4.2 shows and example instruction-specific pattern. This pattern

is taken from the dominant block of the NAS FT benchmark [8]. The Stride row

lists each of the strides required by the stream. The Pattern row indicates how

many times the corresponding stride is to be repeated. The Less Than row indi-

cates the index of the stride to move to if the number of times we have applied

the stride is less than the target (in the pattern row). The Equal row indicates the

index of the stride to move to once we have applied the stride the target number

of times. When this step is taken the state for that index is set to zero.

During replay, the first address is printed. Then the pattern is used to guide

the strides which are applied to the previous address printed. Figure 4.2 shows the

state of the address stream after 48 steps.

In order to replay the full application address stream the instruction specific
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Replay Pattern

First Addr: Ox6DC1C0

Index Stride Count < ==

0 16 15 0 1

1 48 127 0 2

2 16 15 2 3

3 -36816 16384 0 4

4 16 15 4 5

5 48 127 4 6

6 16 15 6 7

7 -18384 16384 4 0

Table 4.2: The PSnAP profile for the first instruction of the most dominant block
in FT.

Figure 4.2: The address stream that results from the replay of the FT profile.

address streams must be combined in the same order as during execution. This is

achieved by compressing the control flow during recording.

The control flow representation is expressed per loop. Each loop is associ-
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ated with a set of basic blocks, the top section of Table 4.3 shows that loop 7 has

4 basic blocks. Notice that basic block 565 is special because it is the head of a

subloop, loop 8. Loop 8 only has a single basic block. The masks label each block

to indicate if they are present in the current execution path. The paths taken

through those basic blocks are kept in the path history, in this example only the

basic blocks with masks 0 and 2 are executed. The number of times the loop is

entered and the number of times it iterates on each entry is kept in the iteration

history.

Table 4.3: The control flow representation for the most dominant loop in FT.

Loop 7 Loop 8

ID 563 564 565∗ 566 565

Mask 0 1 2 3 0

Path History

Path Count Path Count

0000 0101 4798283776 0000 4798283776

Iteration History

Iter. Entries Iter. Entries

16 256 1 4798283776

64 64

256 16

1024 4

4096 1

The path histories indicate that for each of these loops only a single path

was taken. The iteration history has been truncated to show one cycle through a

repeated pattern. Loop 7 iterates 16 times for 256 entries and then 64 times for 64

entries, this pattern continues until the correct number of visits has been reached.

Loop 8 iterates only once for each entry.

The information shown provides the framework for generating a synthetic

address stream that displays similar behaviors to that of the observed stream. For

extrapolation, the data shown above, the loop-specific stream patterns and the
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compressed control flow format, are collected at a minimum of three core counts.

This data is then used to create a synthetic PSnAP representation at a higher core

count.

4.4 Extrapolating PSnAP

The PSnAP profiles are extrapolated to larger core counts using a training

set of profiles collected at smaller core counts. The values in the training set

profiles are used to drive a least squares regression. Therefore, the training set

must contain at least three profiles.

Instruction Specific Patterns

The pattern for each instruction is extrapolated value by value. Table 4.4

shows the training set and extrapolated values for one instruction in the dominant

block of LU. The values across all stride lists are extrapolated first. In this example

they are constant (eg. 200,200,200 − > 200). The same is done for the count

list (eg. 49,24,11 − > 5). Both of these are done using linear least squares

regression(with integer arithmetic). In the case of the count list, least squares

regression determines a = 100 and b = −1 in Eq. 4.2. In this example the core

count for the first pair in the training set is X1 where 21/X1 = 4.

Yi = aXi + b (4.1)

where : Y1 = 49, Y2 = 24, Y3 = 11, Y4 =?

X1 = 1/2, X2 = 1/4, X3 = 1/6, X4 = 1/8

S = {stride sizes}

C = {counts}

S3 = −1 ∗ ((((S0 ∗ C0) + S1) ∗ C1) + (S2 ∗ C2)) (4.2)
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Table 4.4: The instruction-specific patterns for an instruction in FT at core counts
of 4,16,64, and 256.

Replay Patterns

I=Index S=Stride C=Count

4 16 64 256

Ox6DC1C0 Ox6DC1C0 Ox6DC1C0 Ox6DC1C0

I S C I S C I S C I S C

0 200 49 0 200 24 0 200 11 0 200 5

1 400 49 1 400 24 1 400 11 1 400 5

2 200 49 2 200 24 2 200 11 2 200 5

3 -509600 1 3 -129600 1 3 -30800 1 3 -8000 1

The final value in each stride list is a step back to the beginning of the

array. Rather than extrapolating to get it, we do an internal calculation to make

sure it is consistent with the previous pattern. Eq. 4.2 shows how to calculate the

step back for a pattern of length four. It can be generalized to cover patterns of

other sizes as well.

Starting Addresses

Maintaining the relationships between addresses of different instructions is

a priority, because of the large impact on performance the relationships may cause.

For example, it is possible for two instructions in different basic blocks to operate

on the same addresses. The second basic block will likely have low cache miss

rates due to this temporal locality, if the relationship is not maintained higher

cache miss rates will be observed. Maintaining the relationships requires that the

starting address for each instruction be determined using extrapolation.

The extrapolation tool treats each area of virtual memory separately. The

addresses in PSnAP profiles are virtual addresses, which are separated into three

main areas. The executable sections are located the beginning (or lower addresses)

of memory, the heap starts at the conclusion of the executable and grows upward,

and the stack starts at the top of virtual memory and grows downward. This
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arrangement is illustrated in Figure 4.3.

Figure 4.3: Virutal memory and the effect of ASLR

Addresses that fall within the executable are those that are allocated stat-

ically. The size of statically allocated data is known at compile-time and it is

allocated only one time. These addresses are extrapolated directly.

Addresses that fall on the heap usually result from dynamic allocation due

to a call to malloc or related function. Malloc moves through the heap and al-

locates the memory requested in the first available space of adequate size. As

long as the application does not perform a lot of mallocs intermixed with frees the

address should be predictable across runs and core counts. These addresses are

extrapolated using their distance from the heap pointer, or the beginning of the

heap. The heap pointer is estimated by recording the result of an 8 byte malloc in

the MPI initialization call.

Addresses that fall on the stack result from data used within functions.
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During execution the space used on the stack grows downwards. It is more accurate

to extrapolate these addresses with respect to the top of the stack rather than using

their actual values. This is because of the magnitude of the values.

However, this is complicated by the use of Address Space Layout Random-

ization (ASLR). ASLR is a security technique used by Linux that effectively moves

the starting address of the stack. The result of this is that across executions and

across core counts the starting address of the stack (the stack pointer) changes.

The right hand side of Figure 4.3 shows the recorded addresses for three core

counts of FT. The effects of ASLR can be seen in the top right hand side. The

addresses for each core count are grouped at a different location on the stack, ran-

domly. Therefore, for addresses that fall on the stack, extrapolation is performed

using the distance from the maximum address and any properly aligned maximum

address can be used as a starting point.

Control Flow Graph

The data in the control flow graph that have the potential to change across

core counts are path and iteration histories. These values are extrapolated in two

steps. First, extrapolation is attempted on all values using least squares linear

regression. Any value that results from an imperfect fit, meaning that the equa-

tion determined does not match the training set exactly, is recalculated during

the second step. The second step involves performing an internal calculation to

determine values that did not extrapolate well.

For example, Table 4.5 shows the control flow scaling for the most dominant

loop in LU. The top section is the static loop structure. The middle section is the

path history. In this case there is only a single loop, and a corresponding count for

each core count in the training set. The lower section is the iteration history. In

this example each core count has a pair of iteration configurations. For example,

at four cores, one time the loop is entered and iterated 49 times, 25099 times it is

entered and iterated 50 times.

The light grey boxes are calculated using linear extrapolation. The dark

grey box does not extrapolate exactly and is therefore calculated using an internal
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Table 4.5: The extrapolated control flow representation for the most dominant
loop in LU.

Loop Structure

Loop ID Block ID Block ID

ID 2 1 0

Mask 0 1 2

Path History

Path Count (each core count)

4 16 64 256

0000 0101 1254999 627499 301199 125499

Iteration History

Iterations (each core count) Entries (each core count)

4 16 64 256 4 16 64 256

49 24 11 4 1 1 1 1

50 25 12 5 25099 25099 25099 25099

calculation. Let I={iteration counts}, E={entry counts}, and C=path counts.

C = Σn
i=1Ii ∗ Ei (4.3)

The extrapolation of PSnAP profiles is performed in three main sections:

instruction specific, starting addresses and control flow. The instruction specific

patterns and the control flow data are extrapolated in two steps, direct extrapola-

tion with least squares regression and internal calculations. The starting addresses

are determined based on their distance from an anchor, where the anchor points

are the beginning of virtual memory, the heap pointer and the stack pointer.

4.5 Experimental Results

Our extrapolation approach was tested using the NAS Parallel Benchmarks.

The result of the extrapolation test is that while the automated extrapolation has

the potential to be very accurate for well-behaved blocks, it is not a replacement
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for familiarity with the applications. This is very clearly demonstrated through the

extrapolation of FT. FT appears to behave very well, until the core count exceeds

the dimensions of the dataset, at that point automated extrapolation breaks down,

as does the benchmarks performance.

The accuracy of the extrapolation was tested at a high-level using cache

miss rates. The cache miss rates of the extrapolated PSnAP profile were compared

against those of a measured profile. The results show a high level of accuracy, the

average difference in L1 cache miss rates was low, less than 0.5%.

A manual comparison of the extrapolated and measured profiles was made

in order to understand the cache miss rate comparison. This revealed that for a

subset of the NPBs the control flow and access patterns were extrapolated with no

error (FT, EP); this means that the profiles were examined side-by-side and the

patterns were determined to be identical. The cache miss rate for these cases were

very accurate, as would be expected. Insight from the manual comparison is used

to explain the errors in the cache miss rate comparison, with regard to the control

flow and access patterns.

In addition to the cache hit rates an image comparison methodology was

employed. The extrapolated and observed addresses for the dominant basic block

were used to create figures. The two figures were then compared and the Hausdorff

distance between the two computed. This metric gives valuable insight to the

fidelity of the extrapolated streams. For instance, it detects, whereas cache hit

rates and manual comparison did not, that the starting addresses for the dominant

block in FT have some extrapolation error.

The difficulty of extrapolation was explored as well. A subset of the more

regular NPBs were extrapolated with no manual effort required, however, a subset

of the NPBs required a degree of manual intervention. We measured the level of

manual effort required by keeping track of the number of lines edited.

Each of the benchmarks was run on UC San Diego’s Triton resource (Ne-

halem) and profiled using PSnAP at core counts of 4, 16, 64, 256, and 1024. The

training sets were each run through the extrapolation software, and the number

of questionable patterns was counted. This number is used as a guide to mea-
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sure whether or not the code has the potential for automated extrapolation. This

evaluation led to IS, MG, and SP being disqualified. This does not imply that

these codes do not have patterns that can be extrapolated, only that the patterns

are quite complex and they require a great deal of manual inspection and direct

knowledge of the code base.

As an example, IS was not chosen as a test case for extrapolation. IS is

written to work only on a small number of cores and there are different statements

executed based on the number of cores. A manual inspection of the code revealed

that the code was written to detect the number of cores and change the compu-

tation accordingly. This makes IS atypical, and a poor candidate for automated

extrapolation.

This section presents the data collected for each of the comparisons per-

formed: cache miss rates, the Hausdorff distance (section 4.5.2), and the level of

difficulty in automated extrapolation.

4.5.1 Cache Miss Rates

Table 4.6 shows the results of the cache miss rate comparison. A manual

comparison was performed in order to understand the results of the cache miss

rate comparison. Essentially, a manual comparison was used to identify patterns

with errors in the extrapolation. An actual diff could not be used; a single error

could throw off the comparison of the entire file, by shifting the profile down a line.

There is a common trend for the larger levels of cache to have higher error

rates. This implies that while the fine-grained patterns are being maintained well

through extrapolation, some of the control flow information is not. The control

flow, which has a large effect on basic block interactions and temporal locality, is

more difficult to extrapolate than the fine-grained patterns. This difficulty comes

from the lossiness in the PSnAP profiles. Another possible explanation is that

the starting address extrapolation has errors in it that are creating a different

set of conflict misses than would otherwise take place. The Hausdorff difference

measurements confirm that the starting addresses may be partly to blame for this

effect.
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Table 4.6: Accuracy of Cache Miss Rates in Extrapolated Stream

Bench % of Dominant Basic Blocks

Mark execution PSnAP Original

Cores Miss Rate (Absolute Error)

Training Set L1 L2 L3

BT 6.2% 1.6 (0.1) 1.1 (0.9) 1.0 (1.0)

(1024) 6.2% 1.8 (0.1) 1.1 (0.9) 1.1 (1.1 )

16,64,256 6.1% 1.8 (0.3) 1.0 (0.6) 1.0 (0.7)

CG 35.8% 7.3 (0.0) 7.3 (0.0) 7.3 (0.0)

(256) 19.8% 5.0 (0.0) 3.9 (0.0) 2.5 (0.1)

4,16,64 7.9% 3.1 (0.0) 3.1 (0.0) 3.1 (0.0)

CG 35.5% 7.3 (0.0) 7.3 (0.0) 7.3 (0.0)

(1024) 19.6% 5.0 (0.0) 3.5 (1.5) 3.0 (2.0)

16,64,256 7.9% 5.0 (0.0) 2.5 (0.6) 2.0 (0.1)

CG 35.5% 7.3 (0.0) 7.3 (0.0) 7.3 (0.0)

(1024) 19.6% 5.0 (0.0) 3.5 (1.5) 3.0 (2.0)

4,16,64 7.9% 5.0 (0.0) 2.5 (0.5) 2.0 (0.3)

EP 55.2% 1.5 (0.0) 1.5 (0.0) 1.5 (0.0)

(1024) 28.1% 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

16,64,256 9.3% 0.4 (0.0) 0.4 (0.0) 0.4 (0.0)

FT 58.9% 13.8 (0.0) 11.3 (0.0) 1.8 (0.0)

(256) 7.2% 14.1 (0.0) 10.6 (0.0) 0.6 (0.0)

4,16,64 5.9% 13.7 (0.0) 12.1 (0.0) 6.4 (0.0)

LU 16.4% 1.7 (-0.8) 0.4 (-0.2) 0.04 (-0.07)

(1024) 16.2% 3.4 (-0.1) 2.0 (-0.1) 0.49 (0.11)

16,64,256 5.7% 1.8 (0.3) 0.3 (-0.2) 0.03 (0.09)



71

There are three benchmarks with higher than average differences between

the miss rates, BT, CG, and LU. BT proved difficult to extrapolate; it required

manual effort to figure out patterns. This was due in part to complex and changing

control flow patterns as well as complex access patterns.

CG contains random access instructions in its dominant blocks. Each of

the instructions eligible for PSnAP representation in the dominant blocks extrap-

olated with no error, but the random access generator was unable to match the

distribution characteristics well enough to get under 1% error.

LU is unique in that there are no stand-out dominant blocks. In fact,

LU has to be profiled carefully in order to include the blocks that make up the

largest percentage of the execution at 1024 cores in the training set. Two of the

blocks that become more dominant in the 1024 case make up less than 1% of the

execution in the training set cases. Our extrapolation successfully tracked the

growing dominance of these basic blocks as more cores were added.

FT and EP extrapolate with 100% accuracy according to the cache miss

rates. Extrapolating FT to 1024 is more problematic, there are changes in the

patterns that make automated extrapolation challenging. This change is discussed

in section 4.5.3.

Overall the extrapolation proved very accurate. The maximum error ob-

served was 2%, this was in CG within a block that had random accesses. The

largest error observed for a non-random block was less than 1%.

4.5.2 Hausdorff Distance

The Hausdorff distance is a metric used to compare images and shapes in

graphs. The Hausdorff distance is defined to be maximum distance of a set to the

nearest point in the other set [48]. The precise definition is in Eq. 4.4.

h(A,B) = maxb∈B{mina∈A{d(a, b)}} (4.4)

The goal of using this metric is to quantify the differences between the

address streams. Take the address stream for the dominant block of FT as an

example. Figure 4.4(a) shows the observed address stream. Figure 4.4(b) shows
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the predicted address stream for the same portion of the execution. The figures

appear to be almost entirely identical. However, when the Hausdorff distance is

calculated the result is 16,349 (3.7% of the address space). This difference is larger

than one would expect after viewing the figures.

The differences come from the extrapolation of the starting addresses. It is

unlikely that this difference would have an affect on the performance of FT, but it

is possible that such large errors in the extrapolation of starting addresses would

be problematic for applications. Applying this metric, therefore, provides some

quantitative feedback on the extrapolation methods that are difficult to ascertain

otherwise.

The FT case is the best case in terms of cache hit rate results. The worst

case is also FT, but extrapolated to 1024. This case is not presented in Table

4.6 because the extrapolation tool identified that the pattern was breaking down

and marked the run as a failure. Both visual inspection of the figures created by

running this case and the Hausdorff distance confirm this. The cache hit rates are

shown in Table 4.7; they also confirm that the extrapolation failed. The Hausdorff

distance for these cases is very high, over 800,000 exceeding 30% of the address

space.

The Hausdorff distance is very expensive to calculate. The time complexity

is O(nm) where n is the number of addresses in the extrapolated address stream

and m is the number of addresses in the measured. Some pruning is possible to

slightly lower the running time, but running Hausdorff for each test case is not

reasonable. Fortunately, it is not required.

Any extrapolated stream that can be identified as erroneous through cache

hit rates, profile inspection or visual inspection does not require a Hausdorff dis-

tance to confirm that it is erroneous. The Hausdorff distance is such a strict

measure that it is best applied only to the address streams that appear to be the

most accurate when evaluated through other terms.

The Hausdorff distances were calculated for EP, FT and CG. FT showed

the highest error at 3.7% of the address space; both FT and CG had Hausdorff

distances that made up less than 0.1% of the used address space.
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(a) Address Stream

(b) Extrapolated Address Stream

Figure 4.4: A comparison of the observed and extrapolated address streams for
the dominant block of FT at 256 cores.
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(a) Address Stream

(b) Extrapolated Address Stream

Figure 4.5: A comparison of the observed and (failed) extrapolated address
streams for the dominant block of FT at 1024 cores.
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4.5.3 Manual Effort Required

Table 4.8 shows the number of lines for each extrapolation that required

manual intervention. The manual inspection is required because of a major change

in the access pattern detected within the training set. As an example, when

extrapolating FT using a training set of 4, 16, 64, and 256 there is a shift in the

access patterns between 16 and 64. The extrapolation software cannot handle this

shift, however, it is possible for a user to make a reasonable guess. Table 4.9

displays the data containing this shift. Essentially, the core counts of 4 and 16 are

not good choices for the training set for this instruction.

BT, and SP required the most manual work. Each of these perform a great

deal of communication and, therefore, coordination with other cores. This appears

to complicate the control flow, making the extrapolation process more complex.

Codes such as FT and LU are more regular and, therefore, can be extrapolated

with very little manual work. CG was quite easy to extrapolate as well, though, the

large “random” access pattern in the dominant basic block made full extrapolation

accuracy difficult.

The benchmarks that required manual effort to extrapolate, did not require

as much as Table 4.8 implies. Most of the patterns that resulted in errors were

repeated, for instance in BT only 31 unique patterns were manually extrapolated.

4.6 Conclusion

We presented a method of extrapolating PSnAP profiles in order to study

the memory performance of an application under strong scaling. A series of PSnAP

profiles, referred to as the training set, is used to identify trends in the instruction-

level access patterns and control flow of an application address stream. The trends

are identified and used to create an extrapolated PSnAP profile, which can then

be used to create a synthetic address stream at the new core count.

This form of automated extrapolation for strong scaling is not a substitute

for in-depth application knowledge. It is a tool that can greatly reduce the ef-

fort required by a user to perform a strong scaling study. The tool extrapolates
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Table 4.7: Accuracy of Cache Miss Rates in Extrapolated Stream

Bench % of Dominant Basic Blocks

Mark execution PSnAP Original

Cores Miss Rate (Absolute Error)

Training Set L1 L2 L3

FT 39.0% 50.0(35.5) 19.3(5.5) 8.5(-4.2)

(1024) 7.6% 3.4(1.3) 0.8(-1.3) 0.1(-1.8)

16,64,256 6.5% 0.0(0.0) 0.0(0.0) 0.0(0.0)

Table 4.8: A summary of the extrapolation process.

Bench Training Core Direct Internal User

Mark Set Count Extrapolation Calculation Decision

BT 16,64,256 1024 14,568 406 305

CG 4,16,64 256/1024 1796 0 8

16,64,256 1024 1803 0 10

EP 4,16,64 256/1024 226 0 7

16,64,256 1024 219 0 0

FT 4,16,64 256/1024 1839 8 0

16,64,256 1024 1839 8 0

LU 4,16,64 256/1024 8755 730 1

16,64,256 1024 8745 740 1

SP 4,16,64 256/1024 29343 957 650

16,64,256 1024 29655 1009 232
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well-behaved patterns accurately and identifies those that require further manual

inspection.

The accuracy of the extrapolation was evaluated in three ways. First

the achieved cache miss rates of the measure and extrapolated address streams

were compared. The extrapolated streams display high fidelity, achieving accu-

racy above 99% for the instructions that do not contain random sections. Next

the streams were used to generate figures that were compared by calculating the

Hausdorff distance between them. This metric revealed differences between the

starting addresses of patterns that were not apparent in the cache hit rate eval-

uation. Lastly, the difficulty of extrapolation for each benchmark was explored.

Even for the most difficult benchmarks, the tool was able to greatly reduce the

number of patterns that needed manual inspection.
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Table 4.9: An example problematic instruction from FT.

Replay Patterns

I=Index S=Stride C=Count

4 16 64 256

Ox34103020 Ox30F75410 Ox151EB000 Ox15ED1050

I S C S C S C S C

0 288 511 288 511 288 511 288 511

1 -147152 15 -147152 15 -147152 15 -147152 15

2 288 511 288 511 288 511 288 511

3 -147408 1 -147408 1 -147408 11262 -147408 2814

4 288 511 288 511

5 -147152 15 -147152 15

6 288 511 288 511

7 492976 1 377568 1



Chapter 5

Common Work Group Discovery

5.1 Introduction

Memory behavior extrapolation using PSnAP profiles as described in the

previous chapter requires a mapping step between core counts. The PSnAP profiles

encapsulate the memory behavior as observed on each core. In the case of the NPBs

the profiles have only very minor differences for each core. However, the majority

of large-scale HPC application have a much more complex data decomposition

problem than represented in the NPBs. In the case of real applications the work

is spread across all of the available processors in varying patterns depending on

that decomposition. In these cases extrapolation requires not only extrapolating

fine-grained patterns, but organizing the profile from each rank of the execution

into groups.

The goal of this work is to identify the profiles from a full application trace

that can be used as the training set for PSnAP extrapolation. Only a single

profile is required from each common work group. An overview of our approach

is outlined in Figure 5.1; the steps described here are coloring the profiles and

tracking the groups across core counts. Coloring the profiles refers to grouping the

profiles, within each set of profiles. The profiles are colored based on their control

flow behavior. Tracking the groups refers to associating groups across core counts

based on similar behavior. Once the coloring and tracking is complete the training

sets can be given to the extrapolation process.

79
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Figure 5.1: An overview of statistical clustering’s role in performance
extrapolation.

Coloring the profiles or grouping ranks that perform similar types and

amount of work into working groups is done using statistical clustering. Statistical

clustering has been used by several projects in the past. We use a slightly modified

version of statistical clustering based on basic block visit counts to identify groups

and map the groups between core counts.

There are limitations to this approach. Applications, such as some weather

simulations, break up work in such a way that tracing work groups through pro-

cessor count changes is not straight forward. Extrapolation of such application

requires a less direct approach and is the subject of future work. However, appli-

cations with well-structured code decompose in a predictable manner that allows

for automated mapping.

This section explains the process of coloring and tracking working groups.
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Three full-scale applications where chosen to demonstrate the effectiveness of our

grouping method, Avus, Lammps, and PFlotran. Each of these applications are

large-scale memory-intensive scientific applications that are commonly run on gov-

ernment supercomputing resources and whose time to-solution for fixed problem

sizes is important.

5.2 Approach

Parallel applications assign tasks to each of the processors available to them.

Often there are patterns to these assignments and groups of processors that per-

form similar work[42, 49]. Identifying these working groups enables a trace to be

identified that represents the behavior of the entire group. The number of working

groups varies depending on the application and implementation. This work aims

to identify the smallest number of working groups that can accurately represent

and application.

A basic block vector(BBV) is a representation of the number of times each

basic block within an application execution was visited[51]. By comparing the

BBV associated with each processor during an execution it is possible identify

the working groups, a process referred to as clustering. The following sections

discuss the process by which the BBVs are collected, pruned and clustered, and a

representative trace is created.

5.2.1 Collecting and Pruning the BBV

The BBV is collected using PEBIL [35] and consists of a list of basic blocks

along with the number of times that basic block was visited during an execu-

tion of the application. A large scientific code can consist of thousands of basic

blocks. Avus, as run during tracing for this work, produced 23,247 basic blocks

and LAMMPS produced 34,982. Using this number of basic blocks to determine

working groups would be very difficult. First the process would be extremely slow

due to the size amount of data and second the process is complicated by noise in

the data associated with basic blocks that are not contributing significantly to the
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Table 5.1: The Reduction in Basic Block Count Due to Pruning

Application Basic Block Count Reduced Block Count

Avus 34,982 298

LAMMPS 23,247 43

PFLOTRAN 29,576 133

performance behavior.

The PMaC Prediction Framework [55] has long been pruning the list of

basic blocks to be instrumented by selecting only those blocks in the top 95% by

contribution to dynamic operation count. Essentially the basic blocks from each

processor are sorted by number of instructions executed. Those blocks in the top

95% for each processor are selected to be instrumented. This method of pruning

is used to reduce the BBVs to a manageable number, without losing pivotal data.

5.2.2 Identify Working Groups

Once the BBVs have been effectively pruned they can be used to identify

behavior groups using the k-means method of clustering algorithms. A large body

of work has been done in clustering algorithms. A discussion of alternative algo-

rithms can be found in Jain and Dubes [28]. K-means attempts to identify center

of natural clusters in the BBVs by minimizing the total intra-cluster variance.

Harigan and Wang [26] provide a more detailed description of the method.

This method of clustering was chosen because the algorithm is very fast

and while the accuracy of the solution is very dependent on the input, the speed

allows for multiple runs to determine the best clustering. The statistical clustering

performed based on the BBVs used clustering software package, CLUTO [30].

CLUTO provides a variety of clustering algorithms as well as as providing variance

statistics in order to aid in the best cluster choice decision.

An example of using statistical clustering on the BBVs for a 64 processor

run of the application LAMMPS [47] (a molecular dynamics application) can be

seen in Figure 5.2. In this figure the computation time (e.g. time on processor

between communication events) is plotted for each processor of the run. The
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statistical clustering identified two processor groups from this group of BBVs. It

illustrates that first, the behavior groups cannot be identified by computation time

alone, and second, that there is a clear pattern to the processor organization in

LAMMPS which statistical clustering is able to identify in an automated fashion.

K-means was run ten times for both Avus and LAMMPS. The sum of

squared errors was used within each cluster to determine the validity of the clus-

tering. For LAMMPS that error dropped dramatically when moving from a single

cluster to two clusters and dropped only slightly as additional clusters where added.

The sum of squared errors within clusters for Avus did not demonstrate the same

initial drop and was therefore determined to have only a single behavior cluster.

Figure 5.2: A clear pattern of similar behavior groups emerges when the statistical
clustering algorithm is run on a set of BBVs created for the LAMMPS application
(64 processors)

5.2.3 Creating a representative trace

After processor groups are determined using statistical clusters a single

trace file is created to represent the behavior of all the traces in the group. This

trace file is augmented with the numerical mean, standard deviation, maximum

and minimum across the group for each value recorded in the trace file. This
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allows for further verification that there were no obvious issues with the canonical

representative trace chosen by k means. Representing each behaviorally similar

group by a single trace file in this way significantly reduces the number of traces

to deal with and therefore the complexity of the extrapolation.

5.3 Mapping Groups Between CPU Counts

The end goal of this process is a series of N numbers, where N is the size of

the training set, for each metric within each basic block. At this point all of the

values have been determined, but it is still necessary to group them into a series.

Refer back to Figure 5.1, profile coloring is complete, but how is it determined

that the trace represented by the dark files with dashed outlines are representing

similar working groups at different processor counts?

Identifying which groups are performing similar work can be done using the

BBVs of their traces. There are several ways to approach this. The most simple

is to replace the visit counts for each basic block with a one and then apply the

k-means algorithm. The assumption is that the traces that represent the same

work will have visited the same basic blocks, just a different number of times.

This may be accurate for some applications, but a more robust method would be

to normalize the data to fit in a specific range and apply k-means.

Once the mapping for behavior groups at each processor count has been

made it is trivial to extract a series of data, composing the training set for each

metric within each basic block.

5.4 Conclusion

Common work group discovery is an important component of PSnAP ex-

trapolation. Fix structured applications can be handled using simple automated

approaches depending on k-means clustering. More dynamic applications require

direct user knowledge.

This chapter presented an automated approach to common work group
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discover and tracking. A software infrastructure to perform such actions has been

developed as well.



Chapter 6

Related Work

Several categories of work are pertinent to the PSnAP compression and

application scaling techniques presented here. Memory subsystem simulation and

simulation-aided performance modeling are the primary consumers of application

address streams and the driving force behind the improvements in their collection

and handling. These improvements include alternatives to storing the streams,

synthetic stream generation, stream characterization and stream compression. The

strong scaling behavior of HPC applications has also been examined. This section

outlines some of the most pertinent research in these areas.

6.1 Memory Simulation

The primary consumers of address streams are memory subsystem simu-

lation and simulation-driven memory performance studies. For this reason many

of the advances in stream collection and characterization have come out of these

projects. The following is a brief overview of projects using memory simulation.

Memory performance has been the focus of rigorous research in HPC for

several decades. Even before the term “Von Neumann bottleneck” was coined by

John Backus in his 1977 ACM Turing award lecture [6], a great deal of work was

being done to evaluate and predict the performance of computers with a strong fo-

cus on memory subsystem performance [4, 3, 12]. As early at 1967 Chu Ping Wang

et. al at IBM Watson began working with address streams and cache simulators
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as a method for performance evaluation[3]. Another example of simulation based

memory hierarchy evaluation, also from IBM is Mattson et. al in 1970 [37]. They

described using cache simulation to evaluate the effectiveness of different cache

structures and policies.

More recently a great deal of work has been done to create cross-architectural

performance predictions. This type of prediction involves measuring specific traits

of an application on one machine and using that information to predict the applica-

tion’s performance on a different resource, referred to as the target resource. This

is an important line of research because the target resource may not be deployed.

The PMaC Framework [55] is currently being used by the department of

defense’s high performance modernization office (HPCMO) to perform cross- ar-

chitectural predictions. The predictions inform acquisition decision during each

acquisition cycle; aiding the HPCMO in selecting resources that are well-suited for

their specific HPC workload.

The PMaC Framework is designed to observe an application address stream

and record metrics about the execution in an application signature. The target

machine is measured using benchmarks and that data is recorded in a machine

profile. The application signature and machine profile are combined during a

process called convolution. Convolution involves both simulation and analytical

modeling.

During the observation of the memory address stream two techniques are

used to avoid saving the address stream. First, PMaC employs on-the-fly pro-

cessing; this means that the address stream is observed and processed as it is

generated, the stream is never saved. Second, PMaC uses aggressive sampling;

sampling involves turning off the instrumentation code that observes and process-

ing the stream for periods of time in order to avoid high overheads.

This on-the-fly processing is a very effective means of handling large address

streams. The drawback is that any time the simulation parameters change the

execution must be repeated on an HPC resource. PSnAP would enable the PMaC

framework to save and re-process address streams after the fact.

Another prediction framework is Prophesy developed at Texas A&M by Va-
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lerie Taylor [69]. Prophesy involves automated static and dynamic instrumentation

as well as user level static analysis in the preparation steps before automated mod-

eling begins. The data collected by the instrumentation steps is collected into a

database and through querying those results performance predictions are created.

Prophesy also employs on-the-fly processing to avoid the collection of full address

streams.

6.2 Address Stream Processing

Processing the address stream involves observing the address stream and

then recording some aspects of the stream. As has been discussed recording each

of the addresses is not a reasonable approach. Several other approaches have

been taken in order to collect an useful amount of information without the pro-

cess becoming intractable. These approaches include avoiding saving the address

stream entirely by collecting high-level metrics on-the-fly, characterizing the ad-

dress stream in order to generate synthetic streams later, and compressing the

address stream into a useable representation.

Any effort to process an application address stream starts with accessing

and observing the stream. This is typically done by instrumenting the binary. The

instrumentation code must not perturb the address stream as it records it, must

add as little overhead to the execution as possible, and must use a minimal amount

of memory or execution will fail. PSnAP uses a binary rewriting tool called PEBIL

[35]. PEBIL works on the Linux/X86 instruction set and maintains a competitive

overhead when compared with other binary rewriting tools. PEBIL is based on

a previously developed tool called pmacinst [62]. This tool worked exclusively on

the Power series instruction set.

Another widely used instrumentation tool is valgrind [41]. Valgrind takes

a unique approach to binary instrumentation that allows for low overheads. It is

possible to implement PSnAP using any of these tools as PSnAP is a library that

plugs into the binary instrumentation tool.
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6.2.1 On-the-fly Processing

On-the-fly processing is commonly used in performance modeling to run

a cache simulator. The addresses generated by an application are collected into

a buffer and the buffer is sent through the cache simulator when its capacity is

exceeded. PMaC uses this approach to populate its application signatures. The

cache simulation data is independently valuable, another, widely available tool

that can perform this task is cachegrind.

Cachegrind [41] is a tool built within valgrind that uses binary instrumen-

tation to perform cache simulations. This tool is used by software developers

to evaluate their implementations for specific cache structures. It also supports

memory performance research. Cachegrind simulates one cache structure on-the-

fly during execution and incurs a slowdown of approximately 40X for the NPBs.

This is a very small slowdown for a cache simulation tool with no sampling. It

may be possible to improve the overhead of PSnAP by implementing it within the

valgrind framework.

On-the-fly processing incurs a high slowdown overhead. A slowdown of

1000X is not uncommon. Even with a slowdown of 40X, which cachegrind achieved,

or 90X, which PSnAP achieved, running HPC applications is challenging and some-

times impossible. For this reason, on-the-fly processing is typically coupled with

aggressive sampling. Coupled with aggressive sampling the slowdown can be re-

duced to under 10X.

6.2.2 Characterization

Also directly related to our work are other efforts to summarize application

behavior in order to create synthetic address streams. Mattson [37] makes clear

that at that time (1970) it was already common practice to use synthetic address

streams which were assumed to represent current computational workloads in order

to drive cache simulators as a method of memory subsystem evaluation. Some of

the streams used for performance evaluation were generated by simple methods

including random number generation and it was shown by Smith et. al that this

method is not adequate and the choice in workload greatly affected the outcome
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of the evaluation [54, 53].

Very early attempts at creating synthetic address streams depended on

random number generators and other mathematical means, but most attempts

depend on metrics taken from application or benchmark executions. This work

draws on the experiences of other groups who have attempted to classify program

behavior based on the locality characteristics of their address streams [11, 16, 2,

68, 60, 24, 9].

Sorenson et. al [57] expanded on work done by Grimsrud et al [24] that

demonstrated that none of the five well-known approaches to this area achieved

a high level of accuracy. The general categories examined are: the Independent

Reference Mode (IRM), the Stack Model, the Partial Markov Reference Model, the

Distance Model, and the Distance-Strings Model. Each of these was shown to not

preserve the access patterns and locality demonstrated in the original trace. IRM

came the closest to achieving this, but missed important features of the trace.

Even though other groups have attempted to classify program behavior

based on the locality characteristics of their address streams [11, 60, 16, 9, 68, 2, 24],

achieving within 90% verisimilitude when using these streams as representatives of

the full application to predict cache hit rates has not been possible until a project

called Chameleon [66]. In Chameleon, the granularity used during analysis for the

profiles is quite different than that used here. Chameleon focuses on stream and

application as a whole, PSnAP breaks them down into their constituent pieces.

This change in granularity allows for the extrapolation of address profiles that was

not previously possible.

6.2.3 Compression

PSnAP is a lossy compression technique specifically tailored to work with

HPC address streams. It is not the first attempt at taking advantage of regularities

in address streams for compression. The following discussion addresses previous

work done in both the areas of address stream compression and synthetic address

stream generation. PSnAP differentiates itself from all of the work described below

because of the granularity of analysis, the compression ratios achieved, the over-
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head of collection and replay, and the fact that the profiles are human readable

and lend themselves to manipulation.

Address streams prove to be extremely well-suited for compression. They

contain patterns that can be recognized by most modern compression schemas due

to regularity found in most applications. Gzip has proven to achieve about two

order-of-magnitudes reduction in size[22], which when considering the size of the

traces that result from HPC applications is not enough to create manageable file

sizes. Gzip is a generic compression schema, not developed specifically for use with

address streams.

Several schemes have been developed specifically for address streams and

they are able to achieve much higher level of compression, up to six orders of

magnitude (Sequitur [39], VPC [15], Mache [50], and SIGMA [17]). These schemas

have two main disadvantages. First, the time required to perform compression is

long, and second the compression ratio is unpredictable because it depends on

finding regular patterns in the address stream and treats all streams the same,

even when the desired patterns do not exist. Each of these methods is lossless,

meaning that even areas of random accesses are saved. Conversely, PSnAP quickly

identifies instruction streams that do not contain repeated patterns and employs a

different characterization scheme, therefore, not saving random data. Attempting

to compress random accesses takes a large amount of time, and in most cases the

compression ratio is insignificant.

Sequitur is the standout performer of this group. It works by creating a

context free grammar based on the patterns repeated in the address stream. The

grammar is created dynamically during compression. However, Sequitur fails to

work for some address streams, for example compression of the EP address stream

failed with Sequitur [21].

A lossy compression technique was presented by Gao et al [21] referred

to as Path Grammar Guided Trace Compression (PGGTC). PGGTC works in

a very similar fashion to Sequitur with the exception that rather than creating

a context free grammar on-the-fly it uses static analysis to build a control flow

graph, which can be used to create a context free grammar. Gao also realized that



92

some portions of an address stream are truly random and therefore do not lend

well to compression. Rather than attempting to compress them, they are detected,

summarized and regenerated. This summarization is what makes this compression

technique lossy.

PGGTC and PSnAP are similar in that they both employ a statically gen-

erated control flow graph to aid in the control flow compression. The differences

are found in the handling of the addresses. PGGTC depends on algorithm tech-

niques such as Lempel-Ziv and Sequitur to compress the address streams in each

basic block. The PSnAP technique separates the address streams by one more

level and uses a compression technique developed specifically for address streams.

ScalaMemTrace [10] is a recently developed tool with the same high-level

goals as PSnAP. It uses a per-instruction representation to save the patterns. Their

representation is a hierarchical structure of Regular Pattern Descriptors (RSDs).

The descriptors can be combine to save patterns in a manner similar to the stride

histories used by PSnAP. The online collection algorithm used by PSnAP has a

lower time complexity than ScalaMemTrace. ScalaMemTrace is O(MS) where M is

the number of unique addresses in the stream and S is the number of addresses in

a processing window. PSnAP does not require the use of a window for processing

and the time complexity is dependant on the number of strides rather than the

number of addresses (O(NS) where N << M). As an illustration, the number of

addresses in a stream will be approximately the size of memory used divided by

the size of the data type, typically in the hundreds of thousands. In the NPBs the

maximum number of unique strides for a pattern was 15.

6.3 Application Scaling

Gaining insight to the performance and scaling behavior of applications

has long been understood to be an important issue. Several projects have focused

primarily on a single application or class of applications [63, 31, 58]. This work is

particularly worthwhile when focusing on applications that are run repeatedly on

high-end resources, however not all projects have the time or funding to commit to
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this type of modeling evaluation. For that reason several automated frameworks

have been developed.

Several systems have been developed that focus primarily on scaling predic-

tions. BigSim [71] simulates applications running on thousands of processors. It

was developed by researchers at the University of Illinois at Urbana-Champaign.

The idea is to emulate an application running on some number of processors on a

machine that has many fewer processors available. Using that trace, BigSim then

simulates the event trace and is able to predict performance on the larger, perhaps

unavailable machine. The traces collected by BigSim are event traces which can be

quite large and require replay on simulators that include processor simulations and

network simulations. Due to the full-scale replay, the slowdown is very large and

for many applications the memory behavior dominates the performance. Focusing

primarily on memory behavior, avoids some of the slowdown while still providing

accurate performance predictions.

A related approach to strong scaling analysis was attempted by Mendes

et. al [38]. Their approach depended on the assumption that as an application

scaled the behavior of each code section depended on a defined variable, N . By

analytically expressing the performance of each section using a function of N , the

performance could be predicted as N changed.

Closely related to this work is a project being worked on at the University

of Rochester by Chen Ding et. al [72]. Their method attempts to predict the miss

rates for an address streams across all program inputs for applications based on

extrapolation of the reuse distances found in address streams. This is not a cross-

architectural prediction. The cache structures remain unchanged and the address

stream is adjusted to emulate the changes that would occur given input changes

to the application.

The use of statistical models to represent sequential execution blocks with

BigSim was proposed in [70]. This is similar to our work in that the models

are directed at small units of code rather than the application execution time

as a whole. Pablo and several related projects [42],[49] have utilized statistical

clustering as well. Pablo used statistical clustering on the fly during trace collection
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to reduce the size of the traces.
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Chapter 7

Conclusion

7.1 Summary

Due to the widening performance gap between processors and memory,

memory performance is the dominant factor in computational performance in high

performance computing. Memory address stream driven simulation studies are

an important tool for exploring memory performance, both from the perspective

of the hardware designer and application developer. This work presents a com-

pression scheme that enables the storage, sharing and manipulation of previously

unmanageable address streams.

PMaC’s Synthetic Address Streams through Profiles (PSnAP) is presented

in chapter 3. PSnAP is a compression technique specifically designed for HPC

application address streams. PSnAP breaks the address stream down into con-

stituent components based on program structure. Address stream patterns are

identified on a per-instruction basis and the instruction streams are organized into

basic blocks and loops. A separate control flow compression technique is used to

replay the instruction streams in the correct order.

The synthetic streams generated from the PSnAP profiles are evaluated for

accuracy using a cache simulator. The cache miss rates of the observed address

stream are compared to those of the synthetic address streams across a variety

of cache structures. The synthetic streams match the observed streams to within

1% absolute error for all of the benchmarks that are identified as candidates for
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PSnAP compression.

Chapter 4 presents a use case of the PSnAP profiles. Strong scaling perfor-

mance is explored by using a series of profiles collected for the same benchmark at

varying core counts. Patterns and trends are identified within the profiles and are

extrapolated to create a profile at a higher core count which is subsequently used

to generate a synthetic stream.

The NAS Parallel Benchmarks are used to demonstrate the effectiveness of

the compression technique and the extrapolation of PSnAP profiles. These bench-

marks represent computations that are common components of HPC applications

and encountered in practice. The program structure of the benchmarks are sim-

pler than most HPC applications in one specific aspect. Each of the cores assigned

work is doing the same thing on different (or identical) data. Real applications are

broken in to working groups.

In order for the extrapolation to be effective on HPC applications working

groups must be identifiable in an automated fashion. Chapter 5 presents a method

for discovering working groups in real world applications. The method is performed

on three applications.

7.2 Future Work

The work presented here has valuable applications in the field of HPC per-

formance modeling. For this reason, a great deal of future work is planned for

the further development of PSnAP. In addition to improvements on PSnAP, the

format, and the fact that is can be directly manipulated has opened up the pos-

sibility of new research projects related to auto-tuning and power consumption

modeling. The following is a list of planned software-related improvement and

research projects stemming from the foundational work on PSnAP.

7.2.1 Disqualifying Instructions

There are instructions that are not good candidates for the PSnAP com-

pression technique. Instructions that generate a random or semi-random address
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stream with no recognizable pattern are not candidates. Recognizing these in-

structions can be done one of several ways.

The current implementation of PSnAP uses a hard limit on the number

of strides to be recorded per instruction. For the NPBs this limit was set to 20,

and was never reached for an instruction that was a good candidate. There are

patterns in real applications that will contain more strides than that and choosing

a hard limit may prove to be challenging and clumsy.

A more efficient way to detect a random stream is to disqualify instructions

that do not generate any repeated strides early in the pattern. All of the patterns

observed thus far have immediately begun repeating strides, within the first 3

addresses. A very simple test is to check the first three accesses for a repeat and

disqualify any without a repeat. It is possible to create an address stream that

breaks this test, but such a stream has not been observed in benchmarks or real

applications.

7.2.2 Sampling Potential

PSnAP does not currently use any sampling, but sampling is planned as

a future addition. As it is the only way to circumvent the theoretical minimum

overhead. The theoretical minimum is the slowdown incurred by collecting the

addresses into a buffer and then looping through the buffer.

One of the fundamental approaches to speeding up any kind of analysis on

address streams is to implement sampling. Most tools implement what is called

random interval sampling. In this scheme some number of addresses are observed

and then instrumentation is turned of for another interval of addresses. Another

scheme is to turn off profiling after a maximum number of samples is observed.

The PMaC framework combines approaches, sampling only approximately 7% of

the overall address stream, while maintaining accurate results.

The problem with these types of sampling is that PSnAP is recording tem-

poral properties within the stream and may miss whole phases of execution that

introduce new strides. PSnAP requires a more tailored form of sampling.

The currently proposed solution is to turn off profiling for all instructions
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in a basic block with the exception of one. The profiling is to be turned off after

no new strides have been encountered for a set period of time. One instruction

remains in profiling mode in order to detect when a new stride is encountered. At

that point profiling for the entire block would be turned back on.

7.2.3 Auto-tuning

Auto-tuning refers to optimizations performed on an application in order

to maximize performance by another program, such as a compiler. Auto-tuning is

difficult in part because there are many optimizations available and each of those

optimizations has parameters. For instance, loop unrolling may be a good choice

for some loops, but how many times should the loop be unrolled? In addition,

the order that optimizations are applied has a large impact on performance. The

combination of these factors leads to a very large space to search when trying to

find the best solution for a given application.

It is possible to manipulate the PSnAP profiles generated for a loop in order

to explore the search space without actually re-compiling and executing the code.

The PSnAP profiles also reveal which compiler optimizations have already been

applied. This is at times a difficult task to perform, when the given compiler does

not provide feedback.
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