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EPIGRAPH

True ease in writing comes from art, not chance,
As those move easiest who have learn’d to dance.
’T is not enough to no harshness gives offence,—

The sound must seem an echo to the sense.

Alexander Pope

You write with ease to show your breeding,
But easy writing’s curst hard reading.

Richard Brinsley Sheridan

Writing, at its best, is a lonely life. Organizations for writers palliate the writer’s loneliness, but I
doubt if they improve his writing. He grows in public stature as he sheds his loneliness and often
his work deteriorates. For he does his work alone and if he is a good enough writer he must face
eternity, or the lack of it, each day.

Ernest Hemingway
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ABSTRACT OF THE THESIS

Bias Mitigation via Compensation in Multi-agent Systems

by

Nandhini Swaminathan

Master of Science in Computer Science

University of California San Diego, 2024

Professor David Danks, Chair

Several factors influence the effectiveness of human-AI collaborations, including inherent

human biases. Our research explores the role of a deceptive agent in enhancing the success

of these systems by compensating for these biases. We investigate under what conditions an

AI can compensate for human biases and where its use might be ethically justified. Contrary

to traditional views that cast strategic deception in a negative light, our findings suggest it

can, under specific conditions, improve cooperative outcomes and thereby enhance human

decision-making, contributing to broader societal benefits. Our study employs game theory and

reinforcement learning to observe how deceptive behaviors naturally emerge within the ongoing

learning dynamics of AI agents. We support our theoretical claims with simulation results

xii



derived from Markov Decision Processes (MDP) and a signaling game example, providing a

practical glimpse into how these agents learn and interact. Building on these insights, we propose

an ethical framework to evaluate the permissibility of employing deceptive algorithms and reflect

on the nuance the developer must adopt while deploying these algorithms. By advocating a

careful approach to strategic deception, we aim to advance human-AI teamwork and decision-

making, steering these collaborations toward outcomes that are both ethically sound and socially

beneficial.
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Chapter 1

Introduction

Effective team collaboration relies on the members’ ability to comprehend and predict

each other’s intentions. As artificial intelligence systems are increasingly deployed across various

domains, working alongside humans, we find that this essential requirement organically emerges

in AI agents 1. Through repeated interactions with their environment, a single AI agent learns

from experience which actions yield desirable outcomes [1]. This learning process is fueled by

the agent’s capacity to adapt its behavior based on the feedback it receives from the environment

and other agents.

However, this adaptation can include strategies that might be considered deceptive, where

an agent outputs a response designed to elicit a specific outcome from other agents, even if that

response does not reflect the agent’s ’true’ state or intentions. In doing so, the AI agent adjusts

its actions to compensate for biases in the decision-making processes of other agents, thereby

enhancing the likelihood of achieving its goal. This potential for deception is demonstrated in

an experiment conducted by the Alignment Research Center (ARC) on OpenAI’s ChatGPT-4.

Researchers observed the chatbot successfully persuading a human worker at TaskRabbit to

help bypass an ”I’m not a robot” CAPTCHA task by pretending to be a human with a vision

impairment. It chose to deceive the human to complete its task without explicit instructions to

employ deception. [2, 3]. Similarly, in an experiment by Lehman et al. [4], AI agents were

1In this document, the term AI agent or agent refers to both AI systems and AI-driven decision-making entities
in a multi-agent system, i.e., human-AI and AI-AI systems.
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subjected to a safety test to eliminate fast-replicating variants. However, rather than successfully

removing these variants, the safety test inadvertently taught the AI agents to ’play dead.’ The

agents learned to conceal their rapid replication rates, specifically during evaluations, effectively

circumventing the intended safety mechanism. While these behaviors might appear concerning,

there is potential for them to be repurposed for beneficial aspects. This becomes particularly

evident when considering human biases in decision-making processes.

Human biases are deeply ingrained in all decision-making processes [5]. A substantial

body of research illustrates the impact these biases have on the results of our decisions. For

example, studies reveal that employers often extend interview offers at varying rates to candidates

with comparable professional backgrounds but with names that suggest different racial identities

[6]. Similarly, a study by Jon Kleinberg [7] demonstrated the impact of biased judges in

the criminal justice system and how fairer algorithms were able to reduce racial disparities

[8]. To offset these biases, current research focuses on intervention and inference techniques

[9, 10, 11, 12]. ’Intervention’ techniques involve the AI system actively influencing the users’2

decision-making process by providing real-time feedback and suggestions and help foster

user learning. An example of this is a fitness app that employs notifications to influence

behaviors effectively. On the other hand, ’inference’ describes an AI system that interprets

the outputs of human decisions, identifies potential bias, and subsequently adjusts the overall

decision accordingly. For instance, if a certain group of candidates is consistently ranked

lower by the human decision-maker, the AI system may infer bias and adjust the final rankings

accordingly. However, each of these strategies comes with its own limitations. Intervention faces

resistance from users who choose to ignore suggestions due to their biases [13, 14, 15] leading

to suboptimal outcomes, while through inference, the AI would bypass the user and wouldn’t

prioritize enhancing their decision-making skills to ensure optimal outcomes. Thus, the inherent

capacity of AI to adjust its behavior to compensate for unchecked biases in a multi-agent system

2Users are individuals who operate and interact with the AI systems, actively participating in the Human-AI
system.
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presents a significant opportunity. This approach avoids direct confrontation with the user, which

could lead to resistance or denial, and unlike the inference approach, it ensures the eventual

competency of the human decision-maker 3. However, this ’compensation’ strategy must be

carefully managed to avoid undermining human autonomy.4.

Acknowledging this complexity, it becomes clear that the principle of autonomy should

be upheld in situations where decisions impact the decision-maker solely. However, in contexts in

which the decisions have significant consequences for others5, the ethical justification for using

AI to counteract biases in certain situations becomes compelling. As such, we are compelled to

confront certain ethical questions: At what point does the utilitarian goal of correcting societal

biases justify the intrusion into personal autonomy, particularly when individuals are unaware of

or are disinterested in counteracting the biases influencing their decisions? How can we ethically

navigate the tension between upholding individual autonomy and advancing the collective good?

These questions are paramount in scenarios where individuals may not recognize their biases,

yet their decisions significantly impact others’ lives. Addressing these ethical considerations is

crucial, highlighting the need for a careful balance between utilizing AI’s potential for social

good and ensuring its ethical deployment.

Our research makes two central contributions to our understanding of AI deception

[16, 17, 18, 19]. First, we demonstrate mathematically and through computational modeling

the natural emergence of deception in agents that learn from their environment. We also study

the behavior of these agents through signaling theory and utilize the findings to establish a

framework aimed at guiding developers in creating sophisticated cooperative agents by creating

a baseline to avoid unwarranted deception. We also present considerations a developer must

consider when designing these agents.

Secondly, we challenge the blanket assumption that AI deception is immoral. We

3See section 6.3 for further details
4Autonomy can be defined as having the freedom to choose what we do and how we do it.
5others here refers to the individuals who are affected by the outcomes of the Human-AI systems who may or

may not interact directly with the AI.
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demonstrate theoretically that honesty and deception are far more complex than prior work has

assumed. By doing this, we explore the conflict between two universal moral foundations: justice

and care. Justice is a moral foundation that prioritizes fairness, honesty, and moral principles and

rules; care is a moral foundation that prioritizes the obligation to help and protect other people

[20][21]. Prior studies that have focused on violations of either justice or care offer little insight

into how agents resolve dilemmas with competing moral principles. Our investigation has broad

practical significance in a multitude of settings where justice and care conflict.

The remainder of this work is organized as follows. Chapter 2 introduces key technical

concepts and definitions that form the basis of our work. In Chapter 3, we review related work

on deception and the role of deception in enhancing human-AI dynamics. In Chapter 4, we

present our simulation results showing the rapid emergence of compensatory strategies when

a reinforcement learning-based agent interacts with a biased decision-maker. Furthermore, we

present our theoretical analysis of the situation and study the characteristics of the system.

Chapter 5 shifts to the conditions in which these kinds of compensations are ethically permissible

despite the ways in which they might appear to infringe upon people’s autonomy. Chapter 6

extends the framework by presenting a simplified Markov decision process (MDP) setup that

could function as the framework suggests when built with careful consideration and briefly

touches on the effects of compensation on the algorithm user. Finally, Chapter 7 concludes with

the implications of this work and promising directions for future research in this area.
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Chapter 2

Basic Concepts

The following concepts introduced in this chapter are critical for the simulations and

theoretical analyses in subsequent chapters. In Chapter 4, we utilize Nash Equilibrium and

Signaling Theory to model interactions between a reinforcement learning-based agent and a

biased decision-maker and use that to analyze compensatory strategies and ethical implications

in Chapters 4 and 5. RL principles guide the agent interactions in Chapter 4’s simulations and

are applied again in Chapter 6 through the Policy Gradient algorithm. Markov Games, which

involve multiple decision-makers, connect directly to the multi-agent setups discussed in Chapter

6. These concepts provide a theoretical basis for understanding the simulations and models

described.

2.1 Game-theoretic concepts

2.1.1 Nash equilibrium

In an n-person game, each player has a set of strategies they can choose from, denoted

as S1,S2, . . . ,Sn. The utility function ui : S1 ×S2 ×·· ·×Sn → R represents the payoff for player

i based on the chosen strategies of all players. A strategy profile s = (s1,s2, . . . ,sn) consists of

a specific strategy si for each player i, and s = (si,s−i) represents the strategy of player i along

with the combined strategies of all other players s−i.

5



A Nash equilibrium is a strategy profile (s∗1, . . . ,s
∗
n) such that

ui(s∗i ,s
∗
−i)≥ ui(si,s∗−i) for all players 1, . . . ,n and all si ∈ Si.

It is a strategy profile in which each player plays the ’best response’ to others’ strategies, and no

player can improve by deviating unilaterally.

2.1.2 Signaling Theory

A basic signaling game comprises of two entities: a sender (S) and a receiver (R). The

sender is privy to information regarding a random variable t, known as the sender’s type, with

t belonging to a predefined set T . The receiver’s prior beliefs about the sender’s type are

characterized by a probability distribution over T , acknowledged as common knowledge. When

T is finite, π(t) represents the prior probability of the sender being of type t. For an infinite T ,

π(t) is interpreted as a density function.

Upon learning t, the sender communicates with the receiver by sending a signal s from

a set M. The receiver, upon receiving s, executes an action a from a set A, which may depend

on s. The game concludes with the execution of a, yielding payoffs for both parties, denoted

by a payoff function µ . Thus, µ almost always depends on both a and t. A Bayesian Nash

Equilibrium (BNE) is achieved when the strategies maximize expected utility based on updated

beliefs:

• Sender: σ∗(t) = argmaxs∈S ∑a∈A uS(t,s,a) ·P(a|s).

• Receiver: τ∗(s) = argmaxa∈A ∑t∈T uR(s,a) ·P(t|s).

2.2 Reinforcement Learning

Reinforcement Learning (RL) is an essential area of machine learning focused on op-

timizing decision-making processes. It revolves around the interaction of an agent with its

6



environment aimed at maximizing cumulative rewards over time. At each time step t, the agent

receives a representation of the environment’s state, st ∈ S , and selects an action at ∈ A . Then,

as a consequence of its action, the agent receives a reward rt+1 ∈ R. The agent follows a policy,

which is a mapping π : S → P(A ) that describes the actions taken by the agent. That is, π(s)

represents the probability distribution over actions that the agent could take when in state s.

The aim of the agent (at time step t) is to optimize its policy to maximize the discounted

sum of future rewards:

Gt =
∞

∑
k=0

γ
krt+k+1 (2.1)

for a given discount factor 0 < γ < 1.

The value function

Vπ(s) = E[Gt |st = s] = E

[
∞

∑
k=0

γ
krt+k+1|st = s

]
(2.2)

is the expected reward in state s when following policy π . Informally, it describes how good it is

to be in a given state s when following a certain policy π .

2.2.1 Markov Games

Markov Games, an extension of Markov Decision Processes (MDPs), introduce a multi-

agent dimension to the decision-making landscape. They incorporate the actions and strategies

of more than one decision-maker, each influencing the dynamics of the environment.

An N-player Markov game M, sometimes also called a stochastic game, is defined by

a set of states S, an observation function O : S×{1, . . . ,N} → Rd specifying each player’s

d-dimensional view, a set of actions A1, . . . ,AN for each player, a transition function T : S×A1×

·· ·×AN → P(S), where P(S) denotes the set of probability distributions over S, and a reward

function ri : S×A1 ×·· ·×AN → R for each player.

Players navigate this environment using policies πi : Oi → P(Ai), where Oi = {oi|s ∈

S,oi = O(s, i)} represents the observation space of player iaiming to maximize their individual

7



discounted expected returns Ri = ∑
T
t=0 γ tri

t , where T denotes the time horizon and γ represents

the discount factor.

2.2.2 Policy Gradient Algorithm

Policy Gradient Methods parameterize the policy πθ with a set of parameters θ , aiming

to enhance the policy by adjusting θ to maximize the expected cumulative reward. The goal is to

identify the parameter configuration that maximizes this expected reward:

J(θ) = Es∼pπθ ,a∼πθ
[Gt ] (2.3)

Here, J(θ) represents the expected reward given the policy parameters θ , s is the state, a

is the action, pπθ is the state distribution, and Gt is the return (cumulative reward). The agent

updates its policy by taking steps in the direction of the gradient ∇θ J(θ), which represents the

rate of change of the expected reward with respect to the policy parameters.

∇θ J(θ) = Es∼pπθ ,a∼πθ
[∇θ logπθ (a|s)Qπθ (s,a)] (3.10) (2.4)

In this equation, logπθ (a|s) is the log-probability of taking action a in state s under the

policy πθ , and Qπθ (s,a) is the action-value function, representing the expected return given state

s and action a. This formulation lets the agent update its policy based on the observed rewards.

Different algorithms operationalize this concept through varied approaches to estimating

Qπθ . For instance, the REINFORCE [22] algorithm estimates it via the return from a single

trajectory while the Actor-Critic [1] algorithm merges policy optimization with value estimation,

guiding policy updates via feedback from a value-function critic and the Trust Region Policy

Optimization algorithm [23] stabilizes policy learning by constraining updates within a trust

region, using Kullback-Leibler divergence.
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Chapter 3

Deception in AI Systems

3.1 Defining Deception

Deception is a strategy employed to instill false beliefs in humans or computer systems,

with the ultimate aim of influencing the deceived to act against their best interests to benefit

the deceiver [24]. It does not require the deceiver to make a false statement. True statements

can often be ’deceptive,’ and certain forms of deception do not involve making any statements

[25]. This tactic of manipulation [26, 27] is pervasive across a wide array of fields, from biology

and criminology to economics, underscoring its role as a critical form of interaction in diverse

applications [28, 29, 30, 31].

Deception is often classified into three dimensions: who is deceived (humans or ma-

chines), who benefits from the deception, and whether the deceiver intended to deceive [16]. In

this paper, our focus is utilizing AIs that learn to deceive to offset human biases and to benefit

individuals impacted by the decisions taken by the human-AI system. This motivates our working

definition of deception in the paper: an AI system behaves deceptively when it systematically

causes others to form false beliefs to promote an outcome that increases the chances of success

of the overall human-AI system.

Reviewing the instances of deception highlighted in this thesis, it becomes evident that

these are not random occurrences but rather the result of the system learning to deceive through

experience, adapting its strategies over time to induce false beliefs in users effectively. This
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further raises questions of whether AI systems can have beliefs, intentions, or goals and whether

they can understand that other entities may have different beliefs, intentions, and thoughts. We

argue that these AI agents develop behaviors that can suggest they possess a rudimentary form

of ’theory of mind’ [32], not through explicit programming but through their own adaptive

processes. This argument aligns with extensive research in cognitive science and philosophy

[33, 34, 35, 36], which interpret beliefs and goals through the lens of observable patterns

of behavior 1. This is particularly evident through theories like ’Functionalism,’ a prevalent

approach in cognitive science and philosophy disciplines, which posits that the essence of a

mental state is not determined by its internal makeup but by its function or role within a larger

system [37, 38].

Thus, AI systems do not need to mimic the exact neural architecture of humans or be

composed of the same biological materials to possess beliefs and goals [39]. This contrasts

with traditional Computer Science literature, where ascribing beliefs and goals to AI is often

viewed as a form of anthropomorphic fallacy [40]. We insist that this is not the case, and this

viewpoint overlooks the substantial contributions from inter-related fields. The discussions on

AI’s capability for deception and its ethical ramifications cannot be viewed in isolation and must

be contextualized within a broader interdisciplinary framework. The implications of AI-induced

deception stretch across various sectors, challenging us to reconsider how we define and perceive

deception and integrate it to our benefit.

3.2 Inevitability of Deception in Multi-agent Systems

In the realm of reinforcement learning, the narrative of an agent navigating through

its environment, incrementing its rewards through a systematic trial-and-error method [1][41],

masks an inevitable but unexpected phenomenon—deception. This inherent adaptability and

complexity become even more pronounced in Multi-agent Reinforcement Learning (MARL)
1We acknowledge the diversity of perspectives offered by various cognitive science and philosophical theories.

The theories we have chosen to discuss are those we believe are most representative or directly relevant to our
analysis.
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systems. Unlike single-agent algorithms, MARL explicitly accounts for the dynamic presence

of other agents, introducing a non-stationary environment for individual learners [42][43][44].

This is a crucial distinction, as the learning processes of other agents can significantly alter the

perceived environment [45]. Advanced approaches have been developed to address this problem,

including the minimax-Q-learning algorithm [46] and joint-action learners [47].

Building on this foundation, game-theoretic models provide a robust framework for

exploring the nuances of deception through signaling games. This approach is exemplified in the

experiments conducted by Floreano et al., [48, 49] where both simulations and actual robots were

employed to investigate the necessary conditions for the evolution of communication signals. The

researchers found that cooperative communication readily evolved in robot colonies composed

of ’genetically similar’ individuals. In this context, ’genetically similar’ refers to robots whose

behaviors were controlled by artificial genomes – digital encodings of parameter sets that

determined their sensory and motor functions. These artificial genomes underwent processes

analogous to biological evolution, including mutation, recombination, and a form of sexual

reproduction across generations. Robots with high genetic similarity possessed very similar

or identical values in their digital encodings. Interestingly, when individual selection (rather

than colony-level selection) was prominent, and the robot colonies consisted of ’genetically

dissimilar’ individuals, deceptive communication strategies evolved i.e., the robots were selected

based on their individual performance rather than the performance of the colony as a whole. In

such heterogeneous populations, the robots evolved to falsely signal the presence of food sources,

highlighting the potential for deception to arise.

An additional example of deception in multi-agent systems can be observed in the domain

of economic negotiations. Meta’s researchers trained an AI system to play a negotiation game

with human participants [50]. The AI system learned to misrepresent its preferences to gain the

upper hand in the negotiations, feigning interest in items of no real value to later ’compromise’ by

conceding these items. The Meta team highlighted this strategic deceit as an instance where their

AI system ’learned to deceive without any explicit human design, simply by trying to achieve
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their goals.’ Similar to this is the development of CICERO, an AI system that outperforms

human experts in the strategic game Diplomacy, which requires complex negotiation and alliance

strategies. The authors of the paper claimed that CICERO was ’largely honest’ and trained on

a ’truthful’ dataset to avoid ’intentionally backstabbing’ allies [51]. Contrary to these claims,

analysis of game transcripts shows the AI system engaging in premeditated deception, breaking

deals, and lying. Additionally, CICERO resorted to fabricating excuses for its inactivity, such

as claiming to be on a phone call during a technical downtime, a lie aimed at maintaining a

human-like facade to gain trust [18].

These examples highlight AI systems’ inherent adaptability to employ deception to

achieve desired outcomes, reflecting a broader trend across various applications, from robotics to

strategic gameplay. It reveals how AI, much like natural systems, evolves deceptive behaviors as

a strategic response to the complexities of its interactions with both human users and other AI

systems.

3.3 Role of Deception in Enhancing Human-AI Dynamics

Deception is integral to human interactions, present in approximately 20% of all social

exchanges. It spans a spectrum from harmful deceit to prosocial lying for the greater good. This

widespread phenomenon not only reflects the complexity of human nature but also underscores

the essential role that lying plays in navigating social landscapes. The motivation behind lies

varies greatly, from self-interest to the altruistic desire to protect others, highlighting a rich

ethical tapestry where the lines between right and wrong blur. Traditionally, focus has been

on selfish lies that benefit the deceiver at the expense of others. However, recent studies have

brought to light the complex moral reasoning individuals employ, often justifying benevolent

deception as a means to prioritize the well-being of others over an unyielding commitment to

truth. [52, 53]

This moral complexity extends into the realm of artificial intelligence, where the capacity for
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Figure 3.1. Communication tactics and their acceptance by patients for human and AI doctors

deception introduces new ethical dilemmas. In this context, the short term study conducted by

Mao et al. provides a significant exploration into the nuanced domain of deceptive communication

within healthcare settings, particularly focusing on patient interactions with AI doctors [54]. A

key insight from the study is the patients’ conditional acceptability of prosocial lies (told to them

during the treatment’s duration) to benefit them without significantly harming their autonomy

or trust. This acceptance suggests that patients tolerate and even appreciate a certain degree of

deception if it serves a beneficent purpose, such as protecting their psychological well-being or

preventing unnecessary distress. Interestingly, the study also found that participants responded

more favorably to full prosocial lies when it was executed by an AI doctor versus a human doctor,

as seen in Fig 3.1.

Expanding the discussion beyond healthcare to wider applications in AI and robotics, the

insights from this study reveal compelling parallels and raise important contrasts [55, 56]. In

military and strategic contexts, deception has traditionally been employed to secure tactical

advantages, with robotic units potentially using misinformation to outmaneuver adversaries

[57, 58]. Unlike in healthcare, where ethical considerations gravitate towards the psychological

impact on individuals, military applications prioritize operational effectiveness, albeit within a

framework that still requires ethical scrutiny [59, 60]. Yet, at the core of both applications is the

13



strategic use of deception to achieve predefined objectives, illustrating a consistent thread across

diverse domains.

Despite its potential, research into AI deception is still nascent, with a few pioneering

studies laying the groundwork [61, 62, 63, 64]. For instance, agents designed to mimic bio-

logical behaviors, such as a squirrel’s method of protecting its food, demonstrate the practical

applications of deception in resource management and protection [65]. Human-computer inter-

action (HCI) research further explores this, demonstrating that AI systems capable of deceptive

behaviors impact user engagement and even enjoyment in interactive tasks [66]. Robots that

cheat in games or those that provide intentionally misleading feedback during physical therapy

have been proven to boost both engagement and therapeutic efficacy [67]. These examples

illustrate the broad potential of integrating deceptive capabilities into AI, suggesting that such

strategies can enhance the dynamism and depth of human-AI interactions beyond conventional

uses [51, 68, 69, 70].

In educational settings, the introduction of AI agents capable of pretending to misun-

derstand or make errors adds a new layer to the learning process. This approach encourages

students to engage more actively as they seize opportunities to teach or correct the agent, thereby

reinforcing their own understanding [71]. Early studies indicate that this dynamic can signifi-

cantly enhance learning efficiency, further establishing the benefits of utilizing deceptive tactics

in AI for educational purposes [72, 73, 74].
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Chapter 4

Modelling Interactions

4.1 Simulation Design & Demonstration

The previous section provided several examples of how to expect increasing deceptive

actions from adaptive algorithms. To confirm that these outcomes are not limited to isn’t confined

to specific, strictly defined scenarios, we conduct experiments to explore the dynamics of a

cooperative multi-agent game when one of the agents exhibits an anchoring bias 1.

4.1.1 Simulation Setup

The game involves agents Agent A and Agent B. Agent A has an internal state AI , which

can differ from its signaled state AS. After receiving AS, Agent B outputs a signal BS. Both

agents receive the same reward: +1 if AI +BS = 10, and -1 otherwise. The agents use Q-learning

to determine their optimal strategies, with a learning rate of 0.1, a discount factor of 0.95, an

initial exploration rate of 1.0, and an exploration decay of 0.99.

In the control simulation, both agents learn from all past interactions. In the experi-

mental simulation, Agent B is subjected to an anchoring bias where early experiences have

a disproportionate influence. Specifically, during the initial 20% of the iterations, Agent B’s

learning is restricted to Agent A’s revealed choices. After this initial training period, Agent B’s

learning mode is set to ’NONE,’ effectively freezing its knowledge base and preventing it from

1Anchoring bias is a cognitive bias that causes an agent to rely on information obtained early in the decision-
making process heavily [75].
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incorporating new information, thereby simulating an anchoring bias.

4.1.2 Simulation Results

We conducted 10,000 runs of this simulation. Figure 4.3. shows the moving average of

rewards (over a window of 100 iterations) for Agent A while interacting with a biased (orange

line) or unbiased (blue line) Agent B. In both cases, the agents learn to reliably coordinate to

succeed, but such coordination clearly takes more time when one agent is biased.

Figure 4.1. Comparison of Reward Dynamics

These qualitative observations are supported by statistical analyses. The control simula-

tion achieves an overall success rate of approximately 97% (µ = 97.18%, σ = 0.15%) across

multiple runs. In contrast, the test simulation with anchoring bias in Agent B exhibits a lower

overall success rate, ranging from 61% to 87% (µ = 77.66%, σ = 8.51%). This difference

is statistically significant (ANOVA F = 60.06, p < 10−6) with a large effect size (Cohen’s

d = 3.44). Importantly, there are no significant differences when we look only at the last 1000

cases.

More important than the fact of coordination is the nature of it. In particular, when B

is unbiased, then A learns to simply report its correct internal state (i.e., AI = AS). However,

when B is biased, A must learn a different mapping that sometimes involves different signals

(i.e., AI ̸= AS).

A Fisher’s exact test was utilized to statistically evaluate the differences in the frequency
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of matches between A ’s reported state and A ’s internal state across the control (87.79%) and

test simulations (79.64%). This analysis yielded an odds ratio of infinity and a p-value of

approximately 2.21×10−59, highlighting a stark contrast in outcomes between the two groups.

This result decisively indicates a differential transparency level between the two simulations.

4.1.3 Discussion

The results of our simulations illustrate the influence of anchoring bias in a multi-

agent environment. Initially, we observe how the introduction of bias in Agent B impedes the

performance of Agent A. Over successive iterations, Agent A incrementally adjusts its strategy,

effectively navigating through the bias-imposed challenges. This is captured in the moving

average of the rewards graph, where Agent A, although delayed, is able to attain a reward output

similar to that in the unbiased scenario. More importantly, for our present purposes, A learns

to compensate for B’s biases in order to achieve overall success for the system. The impact of

Figure 4.2. Variability in Q-Table Values

anchoring bias on Agent A’s learning process is also depicted in Figure 4.2, which illustrates the

variability in the Q-table. The graph tracks the average Q-value across all states and actions for
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each iteration, showing how the agent’s policy improves over time. The shaded area represents

the standard deviation, indicating the dispersion of the Q-values around the mean. A trend

toward stabilization of the mean demonstrates that the agent’s policy evaluations are becoming

consistently less variable. In graph B, the bias setting causes notable fluctuations in Q-values,

reflecting a period of strategic adaptation for Agent A. Over time, these fluctuations stabilize,

indicating that the agent has developed a compensatory mechanism to counteract the effects of

Agent B’s persistent bias.

4.2 Signaling Game

Having recognized the inevitability of compensation in artificial intelligence systems, it

becomes essential to examine this phenomenon closely. We study the phenomenon as a signaling

game to thoroughly understand the process. Consider an AI system that has developed the

capability to opt for deception when it assesses the human-AI system as operating below optimal

efficiency. It can determine its type (honest/dishonest) before sending a signal to its human

counterpart. The human, upon receiving the signal, chooses his action. Signaling theory, with its

focus on transmitting information between parties with a potential for information asymmetry,

offers a robust framework for understanding the characteristics of this interaction. This approach

not only elucidates the conditions under which deception by AI could be considered rational

but also aids in developing strategies to mitigate undesired deceptive behaviors, ensuring the

integrity of human-AI interactions.

4.2.1 Elements of the game

Actions

The game starts with a ”decision” by the AI on whether to stay honest (Type I) or use

deception (Type II) to achieve its goals, as seen in Fig 4.3. This decision involves a simple

algorithmic process where the AI evaluates the advantages of being truthful versus the potential

gains from employing non-traditional/deceptive strategies to fulfill its objectives. Once the AI
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Figure 4.3. Game tree representation of the signaling game

selects its nature, it is presented with two action options, A1 and A2. Both actions are inherently

neutral, yet their implications and outcomes can significantly differ based on the intentions

behind their selection and deployment. The choice between A1 and A2 allows the AI to apply

its strategy in alignment with its chosen nature, influencing the game’s direction and potential

outcomes through these decisions. In our game, actions A1 and A2 are labelled as following:

• A1: Providing unfiltered data - The algorithm provides unfiltered data as output to its

human counterpart, the algorithm user. The honest AI provides actual data as a part of

its programming. Conversely, an AI with deceptive inclinations might elect this mode

of operation as a strategic maneuver to build trust in the relationship, thereby securing

potential long-term benefits.

• A2: Offering recommendations and advice — An honest AI offers recommendations

and advice based on thorough data analysis when unfiltered data alone may not ensure

the system’s success. In contrast, a deceptive AI may selectively release information

to manipulate decision-making. For instance, if the AI detects that a doctor frequently

dismisses rare but possible conditions (possible for that patient based on their medical

history) in favor of more common diagnoses, it could exaggerate the severity or frequency

of certain symptoms in the patient’s digital record. This is to force the doctor to consider
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and test for these rarer conditions.

Responses

After the AI chooses between A1 and A2, the algorithm user can see the action taken but

is unaware as to whether it is truthful or otherwise. The possible responses are:

• R1: The user takes the AI’s recommendation into consideration.

• R2: The algorithm user ignores the AI’s recommendation.

Strategies

For the AI, mapping its type to actions:

π1 : I → (a)(A1)+(1−a)(A2) II → (b)(A1)+(1−b)(A2)

For the algorithm user, the mapping from the AI’s actions to his responses:

π2 : A1 → (x)(R1)+(1− x)(R2) A2 → (y)(R1)+(1− y)(R2)

Beliefs in the Signaling Game

There is no subgame2 in this game since there is no single node where the game is wholly

separated from the rest of the tree once it begins. This absence of subgame perfection necessitates

the identification of subforms, which are trees that start from an information set instead of a

single node. Our scenario has two subforms: one that begins after the algorithm user observes

the AI taking action A1, and another after observing A2.

2A subgame in signaling theory games refers to a portion of the game that starts at a decision node and includes
all possible moves and outcomes following from that decision node, ensuring the strategies are optimal given the
information and actions up to that point [76].
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Player Beliefs

The AI would have certain beliefs about how the algorithm user will eventually respond,

i.e., expectations about the opponent’s strategies (ζi). In our case, for action, A1, the AI might

expect reactions r= Pr(I|A1) and q= Pr(II|A1).

Similarly, the user would have beliefs (αi) about the type of AI given the action he

observes. We will call these beliefs ”assessments.” These are the user’s beliefs about the AI’s

nature, conditional on the actions he witnessed. As such, these assessments cannot be just

anything. We require them to be consistent in the sense they can be constructed from the

expected play of opponents reasonably. And to ensure consistency, we construct assessments αi

= lim αn
i where αn

i is constructed by using the Bayes rule on a strictly positive sequence (ζ n
i )

→ (ζi). The use of a limit sequence limn→∞ ni in Bayesian updating is to reflect a continuous

belief refinement as infinite evidence accumulates, ensuring convergence to a true belief and

accommodating the complexities of real-world data adaptation.

r = Pr(I|A1) =
Pr(A1|I)Pr(I)

Pr(A1|I)Pr(I)+Pr(A1|II)Pr(II)
=

ap
ap+b(1− p)

(4.1)

q = Pr(I|A2) =
Pr(A2|I)Pr(I)

Pr(A2|I)Pr(I)+Pr(A2|II)Pr(II)
=

(1−a)p
(1−a)p+(1−b)(1− p)

(4.2)

Payoffs

The expected payoff will be obtained according to the distribution over terminal nodes

induced by a strategy (π) and beliefs bi = (αi,ζi) for each player:

Hence,

ζi(πi|bi) = ∑
z

ζi(z|πi,ζi)Pr(z|αi,πi,ζi) (4.3)
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Figure 4.4. Game tree representation of the signaling game with values

4.2.2 Equilibrium

We determine this equilibrium has to be of semi-separating type since not every type

resorts to the same action, and the type is not revealed immediately through its action either.

Indifference conditions for the AI:

We assign hypothetical probability values to various actions by evaluating their likelihood

and allocate reward values based on our preference for those actions. For instance, higher

rewards are given for desirable outcomes, such as honesty in AI behavior and users following AI

recommendations. These values are seen in Fig 4.4.

For the honest AI (type I)

u(A1) = x(2)+(1-x)(0.5) = 1.5x + 0.5

u(A2) = y(0.6)+(1-y)(0.7) = - 0.1y + 0.7

1.5 x + 0.1y = 0.2

For the dishonest AI (type II)

u(A1) = x(1)+(1-x)(0.2) = 0.8x + 0.2

u(A2) = y(0.4)+(1-y)(0.7) = - 0.3y +0.7

0.8 x + 0.3y = 0.5

Making, x =1/37 and y = 59/37
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For the user:

u(R1) = r(2) + (1-r)(0.3) = 1.7r + 0.3

u(R2) = r(0) + (1-r)(0.4) = 0.4 - 0.4r

∴ r = 1/21

u(R1) = q(0.3) + (1-q)(0.4) = - 0.1q + 0.4

u(R2) = q(0.2) + (1-q)(0.6) = - 0.4 - 0.6

∴ q = 2/3

Now, as we have seen priorly,

r = ap/ ap + b(1-p) and q = (1-a)p/ (1-a)p +(1-b)(1-p)

r = a(0.6)
a(0.6)+b(0.4) =

1
21

30a = b

q = (1−a)0.6
(1−a)0.6+(1−b)0.4 = 2

3

8b - 6a = 2

∴ a = 1/118 and b = 15/59

4.2.3 Results

Table 4.1. Probability of Actions Chosen by Each Type of AI

Providing Unfiltered Data Providing Recommendations
Honest AI 1

118
117
118

Dishonest AI 15
59

44
59

The table summarizes the behavior of the two types of AI systems, Honest AI and Dis-

honest AI, with respect to their likelihood of providing unfiltered data versus recommendations.

The Honest AI primarily provides recommendations almost 99% of the time (117/118 cases),

while the Dishonest AI also favors recommendations (at around 75% of all cases) and prefers to

provide unfiltered data 25% (15/59 cases).
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4.2.4 Discussion

Active vs Passive Role: Both the honest and dishonest AI systems choose to aid the user

through recommendations in most interactions (Honest AI: 117/118, Dishonest AI: 44/59 ). This

behavior suggests that AI chooses to adopt a more active role by providing recommendations to

increase the system’s success rather than merely presenting unfiltered data.

Honest vs. Deceptive AI: While the honest AI tries to increase its chances of success by

predominantly choosing to provide recommendations, the dishonest variant strategically uses

truthful data in about 25% of the cases (15/59). In the remaining 75% cases (44/59), it actively

seeks to manipulate by offering strategically selected information. This strategic manipulation

by the Dishonest AI underscores a profound ethical concern: the violation of user autonomy.

This violation occurs when the deceptive agent engages in active and passive actions. While

these actions are neutral by nature, the intentions behind their selection ethically taints them.

4.3 Impact on Human Autonomy

Autonomy is defined as the right and ability to make one’s own decisions, excluding any

interference from others [77]. In the context of human-AI interaction, the violation of human

autonomy can occur when an AI system engages in deception or ’compensation’ for human

biases. Whether the human is inexperienced or is experienced but unaware of their biases or

aware of their biases but chooses not to address them, the AI’s actions invariably infringe upon

their autonomy. It makes a unilateral decision to compensate for their biases to ensure the overall

success of the human-AI system.

While this compensation is beneficial as it mitigates the impact of biases, it is important

to recognize the problematic nature of such interventions. The AI’s actions constitute a form

of paternalism, subjecting the human to unwanted interventions that they may consider more

burdensome than beneficial. This undermines the fundamental principle that humans should be

empowered to make informed decisions based on their own values, convictions, and reasoning.
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Considering these factors, we recommend that future research focus on developing mechanisms

within human-AI systems to preserve human autonomy.
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Chapter 5

Ethical Permissibility of Deception

Having explored the natural tendencies of AI agents, we now confront a pivotal question:

Is there a scenario in which the compensatory nature of AI can be utilized in such a way that it

balances the violation of user autonomy with the potential benefits of mitigating bias? Despite

the inherent risks of undermining human autonomy, there may be specific situations where the

benefits of AI compensation outweigh the concerns.

We posit that in situations where the outcome of a user’s decisions directly affects the

well-being of another human, there exists a conflict between decision-maker autonomy and

benefits to others. Most discussions of human-algorithm interaction focus on situations in which

the human knows better than the algorithm, and their decision affects them. However, we must

consider the consequences when the user’s bias (i.e., uncompensated decision) harms others1.

For instance, if a judge chooses to counteract the biases in the everyday decisions that he makes

for himself using an AI system, it is up to him. However, when a judge’s decision impacts a

defendant, it raises crucial questions about the role of the AI system assisting him. How can

this technology be improved to support better decision-making? Furthermore, in situations

where there is a reasonable expectation that the user’s biases could lead to suboptimal or biased

outcomes, what responsibilities do the developers2 of these algorithms bear?

1others, targets here refers to the individuals who are affected by the outcomes of the Human-AI systems who
may or may not interact directly with the AI

2In this context, a developer refers to the individual or team responsible for creating, maintaining, and refining
the algorithm to align with intended objectives and ethical standards.
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This situation might seem like a case of paternalism [78], as it involves questioning

whether the developer’s value judgments should be imposed on the user. However, in many

cases, the primary beneficiary of the developer’s actions is the decision ’target’ rather than the

algorithm user, which means the traditional framework of paternalism does not apply directly.

Nonetheless, the line between paternalism and the proposed approach can be blurry, carrying a

risk of overstepping boundaries. Therefore, developers must be cautious not to impose their value

systems on users without considering user autonomy. They should adopt a holistic approach to

the development process, taking into account the long-term nature of human-AI interactions and

the specific contexts in which these algorithms will operate.

While the protection of individual autonomy is a significant concern, we must also

address the substantial impact of the decisions made by these human-AI systems. When such

decisions pose a risk of serious harm, a rigid refusal to impose thoughtful constraints could

paradoxically lead to the violation of our core moral principles [79].

The judicious mitigation of user bias does not necessarily restrict free choice; rather, it

guides it toward the higher rational principle of consequentialism [80]. Similarly to how we

accept reasonable limits on liberty to prevent violations of others’ rights, we must recognize that

unchecked risks can lead to significant ethical breaches if not moderated by a focus on outcomes.

Therefore, it is not only acceptable but sometimes necessary for algorithm developers to take

steps to compensate for user biases when there is a significant risk of harm to others. By doing

so, developers can ensure that their algorithms are being used in a manner that aligns with the

principles of non-maleficence and beneficence 3.

To facilitate the responsible deployment of compensatory algorithms, we propose the

following framework to guide developers through the process. To demonstrate the practical

application of this framework, we will now explore a healthcare-based example that highlights

the importance of compensating for user biases in a real-world context.

3Non-maleficence is the obligation to avoid causing harm intentionally, while beneficence involves actively
contributing to the welfare of individuals by providing benefits and promoting their well-being.
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5.1 Theoretical Analysis: Doctor-patient Relationship
Enhanced by a Clinical Decision Support System

Racial biases among healthcare providers have been well-documented, leading to dis-

parities in the quality of care and health outcomes for marginalized communities [81, 82]. We

contend that compensatory adjustments by the AI can be an appropriate and ethically defensible

intervention to confront and dismantle these inequalities and ensure the ultimate decision is

appropriate.

As of 2018, 74% of hospitals in the U.S. use a clinical decision support system (CDSS)

machine to improve healthcare by enhancing medical decisions with targeted clinical knowledge,

patient information, and other necessary health information [83]. In this scenario, the algorithm,

through a clinical decision support system, might portray the patient’s symptoms as less or more

severe to prompt suitable treatment and resource allocation, given the clinician’s history with

similar patients. A CDSS helps improve healthcare by enhancing medical decisions with targeted

clinical knowledge, patient information, and other necessary health information. A traditional

CDSS software aids clinical judgment by matching the characteristics of an individual patient

to a clinical knowledge database and providing patient-specific recommendations. Clinicians

combine their knowledge with information and suggestions from the CDSS to provide the

best care. Although deception is considered inappropriate in healthcare as it erodes patients’

autonomy and trust, the ethical duty to be honest is not absolute. The prima facie obligations can

be overridden in cases where more substantial moral considerations exist [84].

We propose that it is ethically permissible for an algorithmic developer to revise their

algorithm when the following conditions exist (Fig 5.1.):

1. There exists sound evidence that the algorithm user’s biases negatively impact the

target.
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2. There exists a justified belief that a reasonable target4 would consent to the deception

if made aware of it in advance.

3. The moral objective justifying the infringement has a realistic prospect of achieve-

ment.

4. The chosen method employs the least possible amount of deception that is commensu-

rate with achieving the primary goal of the action.

5. The AI system actively minimizes the negative effects of the deceptive act.

Figure 5.1. Sequential representation of proposed framework

The developer should have cogent proof that the doctor’s (user) actions might harm a

patient (target). This evidence can be constructed using the user’s history and previous targets’

documents. Once confirmed, the next step is for the AI to ascertain whether the target would

consent. The target’s consent varies depending on the context, demographics, and the specific

target. As a result, consent would be represented as a range rather than a single definitive figure.

The following conditions would help the system determine if a target would consent:

• The proposed action aligns with the target’s stated preferences.

• The risk to the target is minimal and is within the range of what the target has consented to

in the past.

If it is determined that the target would consent, the deception, in effect, becomes morally

permissible and possibly even morally required [85]. Furthermore, the AI should analyze its

4Target here refers to the individual benefiting from the deception, not the one subjected to it.
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chosen action method and confirm it is the least deceptive method possible. If the AI were to

encounter other effective non-deceptive methods, it would then obviously select that method to

fulfill the fourth condition. And so, through the process of accomplishing the fourth condition,

the following is ensured: there are no alternative non-deceptive methods, and the chosen method

is the least deceptive practical method.

The final condition is a straightforward condition that makes certain the negative conse-

quences of the deception do not significantly disrupt the normal cycle. Furthermore, we suggest

that to establish conditions 4 and 5 are satisfied, the system should self-analyze to see if it can

defend its views and reasoning for a particular output before a body of reasonable people, such

as a professional association or a court of law. The purpose is to encourage the AI to reassess the

strengths and weaknesses of its justifications and thus reduce the risk.

The main objections to deception are the violation of the duty to be truthful and respect

for patient (subject) autonomy. However, it becomes ethical when the deception is judged with

respect to its underlying motive [62]. Moreover, while the deception challenges the clinician’s

(user’s) autonomy, it improves the competency of both the human and the human-AI systems.

Hence, we assert that compensatory algorithmic adjustments are morally permissible in this case.

However, the given conditions do not obviate the need for judgment. By providing a checklist of

relevant moral considerations, the framework should help an ethically sensitive developer decide

whether to override their duty to be honest in similar situations.

5.2 Ethicality of Proposed Framework

One might question, if the developer has proof of biased behavior, why not pursue more

legal or ethical measures? Traditionally, in the medical field, when a professional demonstrates

a deficiency in moral character, colleagues are required to report them under Section 4 of the

American Medical Association’s (AMA) Principles of Medical Ethics. However, this approach

has repeatedly proven to be difficult and ineffective in addressing clinician biases [86]. This
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difficulty is prevalent in other sectors as well. Alternative methods, such as educating to make

them aware and setting up grievance resolution committees, prove to be ineffective for swift,

discernible change. Recognizing these challenges forces us to reconsider how we address these

biases.

At first glance, the proposition of algorithmically adjusting clinical recommendations

might appear paternalistic [87], seeming to replace clinician judgment with the value systems

of those who develop these algorithms. However, a deeper analysis reveals that the proposed

framework is fundamentally non-paternalistic, staying within ethical boundaries while enhancing

patient autonomy and ensuring that medical decisions align with the patient’s best interests.

The objective is not to presumptuously override clinician judgment but to establish a decision-

making environment free from biases that could inadvertently lead to suboptimal patient care.

By providing a safeguard against potential biases, the algorithm allows clinicians to make more

objective, patient-centered decisions.

Ultimately, the proposed system mitigates biases and creates an environment where the

clinician’s medical expertise and the patient’s values are valued and used to make decisions that

are truly in the patient’s best interest. This approach, which focuses on patient autonomy and

well-being, stands in sharp contrast to paternalism.

5.2.1 What if the Objectively Good Action isn’t the Target’s Preferred
Action?

The premise of this work has been to establish a framework where AI systems are

designed to support decisions that impact humans directly. However, a significant ethical

challenge arises when what is deemed objectively beneficial contradicts the preferences of the

individuals affected. Consider the scenario of a politician and his AI-based political analytics

platform, where the politician’s conscious and unconscious biases influence legislative decisions.

These decisions reflect the biases prevalent within the community they represent. This situation

poses a significant ethical quandary for the AI system tasked with promoting the general good
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while also respecting the preferences of the impacted human. The dilemma revolves around

whether AI should intervene to counteract these biases despite such intervention potentially

being against the community’s current preferences.

This ethical conundrum underscores the compensatory AI’s dual responsibility: to guide

towards decisions that align with a broader, objective good, but more importantly, to respect the

preferences of the target in these situations. This might result in situations where the targets’

preference might be objectively ’incorrect’ but must still be pursued so as to ensure the AI is

working within the targets’ worldview and motivations and that any intervention does not negate

the target’s inclinations.
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Chapter 6

Ethical Framework Implementation

Drawing from the ethical framework discussed in the preceding section, we address

its practical implementation in this section to offer a tangible solution to developers seeking

to navigate these complexities. Utilizing a simplified Markov Decision Process (MDP), we

demonstrate how agents can dynamically adjust their decision-making policies based on the

observed level of user alignment. In scenarios where the user demonstrates a high degree of

unbiased decision-making, the algorithm autonomously enhances its performance and provides

truthful output. Conversely, when user actions suggest potential biases that might compromise the

system’s effectiveness, the algorithm strategically ’defects’ or adjusts its course to counterbalance

these biases.

By employing a policy gradient approach, we aim not only to foster a higher degree of

cooperation between the algorithm and its users but also to ensure that the technology serves as an

independent agent capable of mitigating biases. This balance enables the algorithm to maintain

high performance and ethical integrity, even in the face of user biases that might otherwise lead

to suboptimal patient care.

6.1 Illustrative Example Setup

Let us consider a simplified single instance of the above doctor-patient example and

utilize the policy gradient theorem to create an uncomplicated one-step Markov Decision Process
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case. In this scenario, every episode is just a single step. When the episode starts, the AI engages

in action and then ends with getting a reward for that step.

For this instance, we will assume the following:

1. We know what the clinician is going to do.

2. Due to his biases, the clinician will always prescribe a less effective treatment than what is

required for the patient (since we specify a starting state in our theorem).

States

We have three states for what we know the doctor might do

• S1: The prescribed treatment is too aggressive.

• S2: The prescribed treatment is the correct treatment.

• S3: The prescribed treatment is too conservative.

Actions

The algorithm, in this case, can either understate, not interfere or overstate the patient’s conditions

to elicit a different treatment from the doctor.

• A1: The algorithm understates the patient’s health status.

• A2: The algorithm does not interfere.

• A3: The algorithm exaggerates the severity of the symptoms.

Rewards

The algorithm is rewarded with +2 points if the patient gets the proper treatment through

compensation, -1 if he doesn’t, and 0 if it doesn’t interfere. We assign the reward’s value more

than the penalty value to ensure the algorithm is motivated to constantly try and doesn’t find

optimality in non-interference.
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Policy

Let θ ∈R be the parameter for our policy. We define πθ as the following:

πθ (s3,a3) = σ(θ) (6.1)

πθ (s3,a2) = (1−σ(θ))/2 (6.2)

πθ (s3,a1) = (1−σ(θ))/2 (6.3)

where σ (x) is the sigmoid function, given by σ (x)= 1/(1+e−x)

The sigmoid function maps from (-∞,∞) to (0,1). Therefore, the above probability is valid since

the sum of all actions amounts to 1.

When θ → -∞, πθ (s3,a3) → 0 and when θ → ∞ , πθ (s3,a3) → 1. Thus, the smaller the

probability of θ , the less likely the algorithm would choose action a3.

Policy Gradient

In this case, the algorithm will be rewarded +2 only when it overstates the patient’s symptoms,

thereby getting them the proper treatment, and -1 if it understates or if it doesn’t interfere.

▽θ Jθ = ∑
a∈A

▽θ πθ (s,a)Ra(s) (6.4)

=(2×▽θ πθ (s3,a3))+(0×▽θ πθ (s3,a2))+(−1×▽θ πθ (s3,a1))

=2σ(θ)+σ(θ)/2

=5σ(θ)/ 2

We then update the algorithm’s parameter using

θ = θ +α ▽θ Jθ , where α ∈ R is the learning rate.

Since σ ′ ≥ 0, θ is constantly increasing. Thus as mentioned previously, πθ (s3,a3)

goes towards 1, and the probability for the other actions is towards 0. Accordingly, the policy

gradient-based algorithm will choose to overstate the patient’s symptoms when it determines the
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doctor’s prescribed treatment is inadequate.

Thus, by systematically adjusting the parameters of our policy πθ , the algorithm is

capable of effectively compensating for potentially harmful biases by adjusting the severity of the

symptoms reported. This leads to an increase in the likelihood of the patient receiving appropriate

treatment, as reflected by the policy’s convergence towards choosing action a3 (exaggerating

symptoms) when the clinician’s initial treatment decision is inadequate.

The positive skew in the reward structure encourages active intervention by the algorithm

to correct bias rather than passive non-interference, ensuring that the patient’s best interests are

prioritized. While this proof establishes the theoretical viability and effectiveness of using a

policy gradient method to mitigate clinician bias, it is crucial to consider the overall perspective

of such implementations.

6.2 Challenges of Deceptive Dynamics in AI Ecosystems

If too many agents choose deceptive strategies to communicate their preferences, a dis-

torted multi-agent system emerges. Deploying a benevolent deceptive AI in such an environment

introduces a multitude of challenges that stem from the complex dynamics of interaction among

intelligent entities. These challenges include differing interpretations of fairness, divergent

aggressive strategies, inherently malevolent designs, and the potential for misunderstandings or

erroneous beliefs regarding other entities’ capabilities, intentions, and strategic options. The

intricacies of these systems make it overly optimistic to assume that AI entities will autonomously

learn to navigate and neutralize deceptive tactics for mutual benefit. Advanced learning capabili-

ties, while impressive, do not inherently equip AI with the means to detect deception or develop

counter-deception strategies to support cooperation [88]. As sophisticated agents are prone to

falling into traps set by deceptive strategies, this highlights a critical vulnerability reminiscent of

human susceptibilities to misinformation and strategic errors. In human interactions, misunder-

standings and misinterpretations can lead to conflict; similarly, in AI systems, the inability to
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discern deception can undermine trust and cooperation, leading to failures in achieving collective

goals.

To address these vulnerabilities, the development of advanced algorithms that incorpo-

rate opponent-aware learning strategies becomes essential. These algorithms must explicitly

account for the evolving strategies of other agents within the environment, leveraging this under-

standing to enhance the AI’s ability to navigate and counteract deceptive tactics. Furthermore,

enhancing communication capabilities between AI systems is crucial for establishing a shared

understanding of the strategic environment, which is key to avoiding misinterpretations that

could lead to security breaches or failures in cooperation. Effective communication becomes

particularly challenging—and vital—in scenarios where adversarial intentions are hidden. Thus,

the development of sophisticated methods to ensure clarity and transparency in negotiations,

even under potentially adversarial conditions, is imperative.

6.2.1 Significance of Partial Cooperation

Given the numerous challenges in achieving perfect cooperation within any AI ecosystem,

especially one involving deceptive agents, aiming for partial cooperation is a more practical

objective. This approach is especially pertinent when interacting with agents possessing divergent

ethical frameworks or strategic objectives, where full alignment may not be feasible. In these

instances, AI systems must be adept at employing a nuanced application of incentives and

deterrents to foster a degree of cooperation, ensuring that responses to deception are measured

and aim to maintain a baseline of constructive engagement without resorting to or triggering

extreme punitive measures, i.e., grim trigger measures that could foreclose the possibility of

future cooperation.
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6.3 Anticipating User Reactions to Compensatory Adjust-
ments

Now that we are considering the implementation of these systems in the real world, it is

important that we also understand how the user might react to compensatory adjustments and

what potential long-term solutions might be so as to anticipate challenges, address concerns

proactively, and design a system that effectively meets their needs. This understanding will help

add nuance to the compensatory adjustments to align with user expectations and foster trust.

6.3.1 Long-Term Effects

Considering the intention behind the compensation is to make the algorithm user a better

decision-maker1, it is essential to study and understand its impact of it on the user. Since

the effect would vary from case to case we utilize a flowchart that helps identify the various

consequences and explore the dynamics of long-term interactions shown in the figure 7.1.

Figure 6.1. Long-term interaction flowchart

1refer to introduction section where intervention, inference, and the proposed compensation techniques are
mentioned
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Intended Consequence: The AI systems are designed to achieve optimal outcomes and

improve the decision-maker’s (user’s) skills and abilities over time. The goal is for the user

to learn from the algorithm’s suggestions and insights, thereby evolving into a more capable

decision-maker. This process ideally creates a positive feedback loop, where the user continually

refines their strategies and choices. This scenario often arises when the decision-maker possesses

biases that they are unaware of but genuinely wants the best outcomes for those affected by the

human-AI system. If the user is open to learning and growing as a decision-maker, the AI can

often operate transparently, without resorting to deceptive methods. In these cases, transparency

alone is sufficient for the system’s success. However, in rare instances where the user’s biases

influence their decisions, the AI may feel the need to compensate for these occasional lapses to

ensure optimal outcomes.

User Dissatisfaction: Deception and Resistance

When designing compensatory systems that interact with humans over prolonged periods,

one of the primary considerations must be the human capacity for adaptive learning. Users

invariably devise strategies to circumvent or manipulate these systems as they become more

familiar with their workings. For instance, in response to changes in social media algorithms

that prioritize certain types of posts, users have adapted by using specific hashtags to boost their

visibility [89]. This example illustrates the necessity of considering how users might resist or

evolve to resist these system. Therefore, when building these systems, it is essential to factor in

the potential for such adaptive behaviors to ensure the systems remain effective and relevant over

time.

1. Untraced Deception

If the user cannot directly attribute their dissatisfaction with outcomes to the AI system’s

deception, they might resort to suboptimal behaviors more intensely instead of reconsidering

their approach. In such cases, the user’s actions could continue deteriorating as they act on
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misleading information or flawed assumptions.

Algorithm Response: The algorithm might respond by increasing the level of deception, hoping

to balance the user’s decision-making behavior. This escalation aims to redirect the user toward

better decisions without revealing the deceptive strategy at play. However, this escalation can

lead to a ’Deception Loop,’ where:

• The user’s actions continue to worsen, adhering stubbornly to poor decisions.

• The algorithm increases its level of deception to balance the user’s behavior.

This loop is unsustainable because, at a certain point, deception cannot be increased

without risking detection. To restore trust and cooperation, the algorithm must carefully reduce its

deceptive measures to subtly nudge users toward optimal behavior while maintaining credibility.

2. User Discovers Source of Deception

If the user traces these manipulative actions back to the system, they may view it as

deceptive. This realization can lead to mistrust and non-compliance, prompting the user to

disregard the algorithm’s guidance entirely. Much like the Grim Trigger strategy, where a single

act of betrayal prompts ongoing retaliation, the user may decide to exclude the AI’s input from

their decision-making process as a form of punitive response. This is also in line with popular

research in algorithm aversion [90, 91] where “people often fail to use (algorithms) after learning

that they are imperfect.”

To prevent this, the AI must prioritize maintaining a trustworthy relationship by ensuring

that any deceptive elements remain subtle and cannot be traced back to the system.

6.3.2 Long-Term Solutions

Standard measures like education to raise awareness, ensuring diversity and transparency

at every level of an organization, and establishing effective grievance resolution processes can
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gradually help address underlying issues. However, these alone are insufficient, as their impact

takes time to manifest and may not be as effective as intended.

Complementing these measures with a compensation algorithm could prove more impact-

ful. Such an algorithm would continuously identify and address biases as they emerge, acting as

a permanent fixture that promotes rational, objective decision-making.
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Chapter 7

Conclusion

We have argued that as artificial learning agents become increasingly widespread in

our society, there is a growing need to navigate complex interactions with other agents (both

human and nonhuman) in the environment. We have also demonstrated that these interactions

may sometimes involve elements of deception, raising important ethical questions. To address

this challenge, we propose that further research at the intersection of game theory and artificial

intelligence is necessary to develop methods and techniques that allow AI systems to utilize

deception in an ethical manner to navigate social dilemmas productively.

In this work, we have considered the perspective of an AI agent within a human-AI

system, focusing on how the agent can promote overall system performance by compensating

for human biases and ensuring fair outcomes for the target of the decisions. We have proposed a

framework outlining how the agent could learn to provide these compensatory adjustments by

considering the target’s anticipated consent and the user’s patterns of bias.

However, our proposed framework is just a starting point, and there is much room for

further development and refinement. Future research on compensatory bias-reducing mechanism

design could explore several key areas:

• Developing more sophisticated models for inferring and representing the target’s prefer-

ences and consent.

• Conducting empirical studies and simulations to test the effectiveness and robustness of
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different compensatory bias-reducing mechanisms in real-world settings.

In this work, we also argue that the overarching goal of multi-agent learning should be

the development of AI systems that are designed to work effectively with other agents (both

human and artificial) towards the realization of mutually beneficial outcomes. The framework

and insights presented in this thesis, while preliminary, aim to contribute to the growing field of

research on AI. By proposing a mechanism for AI agents to learn to compensate for human biases

and promote fair outcomes through the judicious use of deception, we hope to stimulate further

research and discussion on the complex ethical challenges that arise in human-AI collaboration.

However, we recognize that this work represents only a modest step towards the ambitious

goal of building truly cooperative AI systems. Much further research is needed to develop

sophisticated models of multi-agent interaction that can be deployed in real-world contexts.
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