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12IRAP, Université de Toulouse, CNRS, CNES, UPS, (Toulouse), France
13Institute of Theoretical Astrophysics, University of Oslo, Blindern, Oslo, Norway
14Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Ox-
ford OX1 3RH, United Kingdom

15Dipartimento di Fisica e Astronomia “G. Galilei”, Universita‘ degli Studi di Padova, via
Marzolo 8, I-35131 Padova, Italy

16INFN Sezione di Padova, via Marzolo 8, I-35131, Padova, Italy
17Dipartimento di Fisica, Universita’ degli Studi di Milano, Via Celoria 16 - 20133, Milano,
Italy

18INFN Sezione di Milano, Via Celoria 16 - 20133, Milano, Italy
19Cardiff University, School of Physics and Astronomy, Cardiff CF10 3XQ, UK
20Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 1,
00133, Roma, Italy

21INFN Sezione di Roma2, Università di Roma Tor Vergata, via della Ricerca Scientifica, 1,
00133 Roma, Italy

22University of California, Berkeley, Department of Physics, Berkeley, CA 94720, USA
23University of California, Berkeley, Space Science Laboratory, Berkeley, CA 94720, USA
24Lawrence Berkeley National Laboratory (LBNL), Computational Cosmology Center, Berke-
ley, CA 94720, USA

25University of Tokyo, School of Science, Research Center for the Early Universe, RESCEU
26Dipartimento di Fisica, Università La Sapienza, P. le A. Moro 2, Roma, Italy
27INFN Sezione di Roma, P.le A. Moro 2, 00185 Roma, Italy
28AstroParticle and Cosmology (APC) - University Paris Diderot, CNRS/IN2P3, CEA/Irfu,
Obs de Paris, Sorbonne Paris Cité, France

29Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Canary Islands, Spain
30Departamento de Astrofísica, Universidad de La Laguna (ULL), E-38206, La Laguna, Tener-
ife, Spain

31INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara, Italy
32Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44122
Ferrara, Italy

33High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
34Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science
(ISAS), Sagamihara, Kanagawa 252-5210, Japan

35The Graduate University for Advanced Studies (SOKENDAI), Miura District, Kanagawa
240-0115, Hayama, Japan

36Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
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Abstract. We present a demonstration of the in-flight polarization angle calibration for the
JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate its impact on the
measurement of the tensor-to-scalar ratio parameter, r, using simulated data. We generate
a set of simulated sky maps with CMB and polarized foreground emission, and inject in-
strumental noise and polarization angle offsets to the 22 (partially overlapping) LiteBIRD
frequency channels. Our in-flight angle calibration relies on nulling the EB cross correla-
tion of the polarized signal in each channel. This calibration step has been carried out by
two independent groups with a blind analysis, allowing an accuracy of the order of a few
arc-minutes to be reached on the estimate of the angle offsets. Both the corrected and un-
corrected multi-frequency maps are propagated through the foreground cleaning step, with
the goal of computing clean CMB maps. We employ two component separation algorithms,
the Bayesian-Separation of Components and Residuals Estimate Tool (B-SeCRET), and the
Needlet Internal Linear Combination (NILC). We find that the recovered CMB maps obtained
with algorithms that do not make any assumptions about the foreground properties, such as
NILC, are only mildly affected by the angle miscalibration. However, polarization angle offsets
strongly bias results obtained with the parametric fitting method. Once the miscalibration
angles are corrected by EB nulling prior to the component separation, both component sep-
aration algorithms result in an unbiased estimation of the r parameter. While this work is
motivated by the conceptual design study for LiteBIRD, its framework can be broadly applied
to any CMB polarization experiment. In particular, the combination of simulation plus blind
analysis provides a robust forecast by taking into account not only detector sensitivity but
also systematic effects.
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1 Introduction

The measurement of temperature and polarization anisotropies in the cosmic microwave back-
ground (CMB) plays a crucial role in modern cosmology [1–7]. In recent years, the Planck
satellite has observed the CMB signal over the entire celestial sphere in both total intensity
and polarization, returning a picture of our Universe in excellent agreement with the standard
cosmological constant (Λ) + Cold Dark Matter (CDM) cosmological model [8].

The focus has now shifted primarily to the measurement of the imprint of primordial
gravitational waves [9, 10] predicted by the inflationary paradigm on the CMB polarized signal
[11, 12]. The theory of cosmic inflation, which assumes a period of accelerated expansion in the
very early evolution of the Universe, was originally proposed to explain unresolved problems
in cosmology [13–16]; it also predicts that, if primordial perturbations were generated from
vacuum fluctuations in the early Universe, their wavelength would be stretched to macroscopic
length scales by an exponential expansion phase [17–21], thus leaving an imprint on the CMB
signal. In particular, tensor perturbations in the metric (gravitational waves) would generate
a curl component in the CMB polarized signal, called B modes, at angular scales larger
than about 1◦. There has been no detection of this faint primordial B-mode signal yet. Its
amplitude is parameterized by the tensor-to-scalar ratio, r, the amplitude of which is directly
related to the energy scale of inflation [22]. The current upper limit, r < 0.036 (95% C.L.),
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has been obtained from the combination of the Planck and BICEP/Keck Array data [7, 23].
This corresponds to a B-mode signal of amplitude ∼ 50 nK.

The ongoing effort in the CMB community to reach the instrumental sensitivity needed
to probe the primordial B-mode signal is driving significant advancement in focal-plane
technology. Current operational ground-based experiments, including SPTpol, the advanced
ACTpol, BICEP/Keck, and POLARBEAR, employ focal planes of about 103 superconduct-
ing detector arrays [24–27]. The next generation of ground-based projects, such as the Simons
Observatory, the South Pole Observatory, and eventually CMB Stage IV (CMB-S4) exper-
iment, will employ a total of ∼ 104 and > 105 detectors, respectively [28–30]. In space,
LiteBIRD [31], the second strategic large-class mission selected by the Institute of Space and
Astronautical Science (ISAS)/Japan Aerospace Exploration Agency (JAXA), is scheduled to
observe the sky from the second Lagrangian (L2) point of the Earth-Sun system, in the late
2020s with ∼ 5000 detectors. These experiments will achieve a sensitivity on the order of
a few to several µK·arcmin with multi-frequency coverage, reaching a statistical noise level
comparable to, or lower than, the B-mode signal of the weak gravitational lensing effect on
the CMB E-mode polarization [32]. Such experiments could enable the first ever detection of
the signature of primordial gravitational waves with r & 10−3 in the CMB.

Pushing instrumental sensitivities to these levels, by installing complex focal planes on
telescopes, leads to new challenges in the control of instrumental systematic effects. In partic-
ular, one of the major possible systematics is related to the need for accurate calibration of the
intrinsic polarization angles of the detectors. The Stokes parameters of linear polarization can
be written as Q± iU = P exp(±2iγ), where P and γ are the polarization intensity and angle,
respectively. If the polarization angle of a detector has an uncalibrated offset α, the observed
angle, γo, would shift from the true value γ to an incorrect one, γo = γ + α. The observed
Stokes parameters would then be related to the true ones by Qo± iUo = (Q± iU) exp(±2iα).

Following Refs. [33, 34], we use spin-2 spherical harmonics to expand the Stokes param-
eters in the n̂ direction as Q(n̂) ± iU(n̂) = −

∑
`m(E`m ± iB`m)±2Y`m(n̂). It then follows

that the observed E- and B-mode spherical harmonic coefficients are given by Eo
`m± iBo

`m =
(E`m ± iB`m) exp(±2iα), or

Eo
`m = E`m cos(2α)−B`m sin(2α) , (1.1)

Bo
`m = E`m sin(2α) +B`m cos(2α) . (1.2)

Thus, any uncertainty associated with the polarization angle with respect to the sky coordi-
nates leads to a mixing of E- and B-mode polarization signals [35, 36]. For example, even
if the true sky contained no B-mode signal, we would observe a spurious B-mode power
spectrum of CBB,o` = sin2(2α)CEE` . This leakage of the bright E-mode to the much weaker
B-mode signal is a major source of systematic uncertainty, and can introduce a possible bias in
the tensor-to-scalar ratio measurement [37, 38], since the required accuracy in the knowledge
of the detector polarization angle to achieve a sensitivity of r = 10−3 can be as demanding
as a few arcminutes [39].

Miscalibration of the instrumental polarization angle is not the only instrumental sys-
tematic effect that can cause mixing of polarization modes. A similar effect can arise, for
example, from the presence of non-ideality in the optical beam shape [35, 36], which therefore
should also be known to high accuracy. In this paper, however, we focus on the implementa-
tion of a strategy to mitigate the impact of the former effect. The conventional approach for
calibrating the detector polarization angle has been to employ an external polarized source,
e.g., a polarizing grid with a known polarization orientation with respect to the polarimeters.
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Such a device is placed in either the near or far field from a telescope, and is used to calibrate
the polarization angles prior to or during the observing campaign. However, this strategy
can be employed only if the required accuracy is at the level of 1◦ degree [40], unless we can
substantially improve upon the precision of the current generation of calibrators. Detailed
modeling of the optics system can also help to improve knowledge of the instrumental polar-
ization [41, 42]. Another possibility to calibrate the absolute polarization angle is to use a
polarized sky source, e.g., Tau A and the Galactic diffuse emission [43–45]. The current mea-
surement accuracy of these sources, however, is not sufficiently high to allow the calibration
of the absolute polarization angle at the targeted sensitivity for the tensor-to-scalar ratio.
While we do not exclude these options when observational data from future ground-based
and balloon-borne CMB telescopes is available, we do not rely on them in this paper.

An alternative approach to calibrating the absolute polarization angle with sub-degree
accuracy is to null the EB cross-correlation, CEB` . This approach can be used either under
the assumption that no cosmological EB signal is present [46], or generalized to the case
where intrinsic EB correlation exists in the sky signal [47–49]. In this paper we carry out
analysis under the first assumption. Even if there were no intrinsic EB correlation (which is
the case in the standard model of cosmology), the miscalibration angle would yield a spurious
EB power spectrum given by

CEB,o` =
1

2
(CEE` − CBB` ) sin(4α) , (1.3)

as derived from Eqs. (1.1) and (1.2). Thus, we can use CEB,o` to solve for α given the prior
knowledge of the intrinsic CEE` −CBB` , with an accuracy limited by cosmic variance and the
noise level of the experiments. This approach, called “self-calibration”, has been applied to
BICEP1, BICEP2/Keck, POLARBEAR, and SPTpol data sets [50–53]. In this paper, we
further study the feasibility of polarization angle calibration by this method. Due to the
stringent requirement on the uncertainty in the knowledge of α for future experiments such
as LiteBIRD and CMB-S4, establishing a reliable calibration method will solidify the overall
calibration strategy and could potentially reduce the required accuracy at the hardware level.
Although in this work we assumed non-zero

To increase the reliability of our study, we carry out the analysis in a blind fashion.
Moreover, in this paper we restrict ourselves to the EB field as a tracer of the spurious
correlation induced by the rotation angle. In principle, one could also consider the TB
channel as complementary, though not totally independent, information. in this way we are
conservative, by considering the main source of information, postponing the full exploitation
of other sets of data to a future work. In all previous work using the EB self-calibration
technique, the polarized CMB was assumed to be the dominant sky signal, and the effect
of polarized foreground emission was ignored [50–53]. In the absence of foregrounds, the
technique is straightforward to implement. As demonstrated in Ref. [47], it is possible to
extend the EB self-calibration method in the foreground-dominated channel (see section 3
for details). However, it is important to check whether this successful demonstration was a
special case or if the method would be successful in general. It is particularly important is to
avoid tuning the details of the method to mitigate the impact of foreground emission in the
simulations. To avoid this potential human bias, we have decided to carry out our analysis
in a blind fashion. Specifically, two independent groups use independently developed tools
to analyze the simulated data, without knowing the values of the offset angles injected into
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Simulated maps with offset angles 

Angle estimation  
            with Implementation A

Angle estimation  
            with Implementation B

Component separation 
     with B-SeCRET

Component separation  
with NILC

Estimation of residual offset  
 on clean CMB maps

Impact on tensor-to-scalar ratio

Box open

True answer 
of offset angles

δαν,A δαν,B δαν,A δαν,B

For comparison

Figure 1: Block diagram of the data analysis steps presented in this paper.

them. We then “open the box” and compare the results with the true answer only after the
completion of both independent analyses.

We also propagate the residual errors after calibration in the analysis pipeline through to
the determination of r. While this exercise is applicable to any CMB polarization experiment,
we specifically apply it to the LiteBIRD satellite as a test case, . Figure 1 shows a block
diagram describing the steps in our analysis.

The remainder of the paper is organized as follows. In section 2, we describe the prepa-
ration of the simulated maps including polarization angle offsets. In section 3, we summarize
two implementations (Implementation A and B) of the self-calibration method for determining
the offset angles, and compare the results. In section 4, we study the impact of the calibration
errors on the estimate of r by propagating them in the component separation analysis step.
In section 5, we discuss the validity and limitations of the study framework and conclude. In
appendix A, we provide the details of the two calibration algorithms and in appendix B, we
describe our component separation methods (NILC and B-SeCRET).

2 Simulated maps

We assess the feasibility of EB-based in-flight polarization angle calibration on a set of sim-
ulated multi-frequency maps. These maps include the sky emission, from both the CMB and
Galactic foreground signals, instrumental noise, and the injected polarization angle offsets.
In this study we use the instrumental specifications of the LiteBIRD satellite, as reported in
table 1 [54].

2.1 Sky models

We generate the CMB signal as a set of Gaussian realizations of the Planck 2018 best-fit
ΛCDM model without tensor modes (r = 0) [2]. The polarized Galactic foreground maps are
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Table 1: Instrumental specification used to produce the simulations in this work.

Channel Frequency FWHM Pol. sensitivity
name [GHz] [arcmin] µK-arcmin

LFT-40 40 69.3 59.29
LFT-50 50 56.8 32.78
LFT-60 60 49.0 25.76
LFT-68a 68 41.6 21.60
LFT-68b 68 44.5 23.53
LFT-78a 78 36.9 18.59
LFT-78b 78 40.0 18.45
LFT-89a 89 33.0 16.95
LFT-89b 89 36.7 15.03
LFT-100 100 30.2 12.93
LFT-119 119 26.3 9.79
LFT-140 140 23.7 9.55

MFT-100 100 37.8 9.67
MFT-119 119 33.6 6.41
MFT-140 140 30.8 7.02
MFT-166 166 28.9 5.81
MFT-195 195 28.0 7.12

HFT-195 195 28.6 15.66
HFT-235 235 24.7 15.16
HFT-280 280 22.5 17.98
HFT-337 337 20.9 24.99
HFT-402 402 17.9 49.90

generated through the Python Sky Model package (PySM) [55]. In particular, we consider the
presence of polarized thermal dust and synchrotron emission. The polarized dust template
implemented in PySM, based on the Commander results from the Planck 2015 data release [56],
was smoothed to an angular resolution of 2◦, then Gaussian fluctuations added on smaller
angular scales. The template at 353 GHz is scaled in frequency as a modified blackbody
with spatially uniform spectral parameters: βd = 1.54 and Td = 20 K (the so-called model
d0 in PySM). The synchrotron template corresponds to the WMAP 9 year Stokes Q and U
maps [38] at 23 GHz, smoothed to an angular resolution of 3◦, to which Gaussian fluctuations
were again added on small scales; the synchrotron spectral index is also spatially uniform
with βs = −3 (model s0 in PySM). The templates adopted for both synchrotron and thermal
dust emission do not show a detectable signal in the EB correlation. We emphasize that,
although updated templates exist for foreground emission, including information coming from
new data [57] or developed with new algorithms [58], they have not been fully validated yet
nor interfaced with the PySM library. Therefore, since the main analysis of this work is not
related to the evaluation of the optimal strategy for component separation, we simply retain
the models already implemented in PySM that are widely used by the community [28].

Moreover, the assumption of spatially uniform spectral parameters is a simplification
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Case Source Range of injected offset angles

1 Global ≤ 5 arcmin
2 Telescope ≤ 1◦ for each of LFT, MFT, and HFT, with no correlation
3 Observational band ≤ 2◦ for each 22-band unit with, no correlation

Table 2: Summary of the ranges for absolute values of random offset angles. In all cases, we
assume a uniform probability distribution within the stated range.

of the expected properties of the foreground emission. Recent observations at low and high
frequencies have shown that both synchrotron and thermal dust emission show spatial vari-
ations in their spectral energy distributions (SEDs) for both polarization and total intensity,
measured with varying levels of significance depending on the sky region [56, 59, 60]. How-
ever, we stress that, in this work, we focus on assessing the level of precision that can be
reached in the estimation of polarization angle offsets through the nulling of the EB corre-
lation. The methods presented in section 3 would not be affected by the spatial variation
of the foreground SED, although the component separation step would be rendered signifi-
cantly more complicated. We therefore choose to use the simplified sky model to separate the
two problems. The simulations are produced for each of the 22 (partially overlapping) Lite-
BIRD frequency channels, and the total signal (CMB plus foregrounds) is smoothed to the
corresponding angular resolution (see table 1). Noise is simulated as homogeneous Gaussian
fluctuations corresponding to the sensitivity values reported in table 1. No correlated noise
is considered, this choice is made under the assumption of the use of a continuously rotating
half-wave plate (HWP), which can up-covert the signal bandwidth above the low-frequency
noise. The description of the polarimeter configuration is detailed in the next section. Note
that we include the potential polarization angle miscalibration originating from the HWP.
We produce 10 different sets of simulations. In each set, we change the CMB and noise
realization, as well as the polarization angle offsets, generated as described in the following
section.

2.2 Polarization angle offsets

As already mentioned, we use the LiteBIRD instrument configuration as a test case for this
study. LiteBIRD consists of three telescopes - the Low-Frequency Telescope (LFT), Mid-
Frequency Telescope (MFT), and High-Frequency Telescope (HFT). These three telescopes
are cooled to a temperature of 5K. Structurally, LFT, MFT and HFT will be separately
assembled, and each telescope will be integrated on the frame of a payload module that is
supported by the rest of the satellite structure. Figure 2 shows an overview of the payload
module. The overall mission concepts and configurations can be found in Refs. [61].

Each telescope consists of a continuously rotating HWP, an optical system (cross-
Dragone for LFT, and two two-lens refractor systems for MFT and HFT), thermal filters,
and a focal plane [62, 63]. Each focal plane contains an array of wafers and each wafer con-
tains multiple beam-forming elements. LFT and MFT employ a lenslet as the beam-forming
element, with each lenslet containing six (three bands and two polarization states) transition-
edge sensor (TES) bolometers. Similarly, HFT employs a feed-horn coupled antenna, each
containing four TES bolometers (two bands and two polarization states) [64]. As a result,
the combination of the detectors at each band achieves the sensitivity listed in table 1.

– 6 –



Figure 2: Overview of the LiteBIRD satellite, the three telescopes (LFT, MFT, HFT), and
the three focal planes for LFT (a), MFT (b), and HFT (c).

In the following, we describe potential sources of polarization angle offset in the Lite-
BIRD polarimeters assumed in this study. We define an offset angle as the shift of the
projected polarization-sensitive angle of the polarimeter on the sky from the designed orien-
tation. We have considered three different sources of offset, as summarized in table 2. For
Case 1, the simplest example is a global misalignment between the sky and satellite coordi-
nates, which can be described by a single offset angle. A candidate physical origin for this
effect is the misalignment and/or miscalibration of a star tracker on the satellite frame with
respect to the telescope mount. For Case 2, each of the LFT, MFT, and HFT can have
its own independent offset angle, e.g., a misalignment of each telescope with respect to the
common frame. A potential physical origin for this is the uncertainty of the HWP position
angle reconstruction in each telescope [65, 66]. For Case 3, we apply independent offset an-
gles to the 22 observational frequency band units. Although there as 15 frequencies, the
observational bands are divided into 22 units, so there are partial overlaps in frequency cov-
erage between the three different telescopes. In addition, there are two types of lenslet, with
two different diameters, for the same observational frequency in LFT. The lenslet diameter
changes the optical coupling, thus leading to different sensitivity. As a result, we treat them
separately, labeled a and b in table 1. Any wobbling effect caused by the sinuous antenna
and a frequency-dependent polarization sensitive axis from the achromatic HWP can yield
a rotational angle offset [67–69]. Additionally, ignorance of the polarization angle rotation
induced by the optical system itself can rotate the polarization angle over the focal plane by
a few degrees [70]. The focal plane position and the observational frequency are coupled, and
thus this can also be a source of an offset angle due to miscalibration.

We assume that all of these effects will be either calibrated or modeled with some
imperfections at the component level prior to the observations, thus leading to the presence of
offsets. For each case, we draw offset angles randomly from a uniform probability distribution
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in the ranges reported in table 2, and for each channel we sum the three contributions to obtain
the final angle. We generate 10 different sets of miscalibrated maps, simulated by directly
rotating the Stokes Q and U maps in pixel space.

While we limit the scope of our study to these three sources of miscalibration in this
paper, we are aware that more cases could be considered in a more realistic polarimeter
model. For example, sinuous antenna and achromatic HWPs have a frequency-dependent
polarization angle effect [67–69], Precision construction of polarimeters on a wafer allows
us to accurately know the relative angles within one wafer in the same observational band.
Therefore, we assume that the relative angles within a given wafer are well calibrated prior
to the final calibration analysis using the EB self-calibration method.

3 Polarization angle calibration

In previous work [50–53], eq. (1.3) was used for calibrating the polarization angles with prior
knowledge of CEE` − CBB` ' CEE` of the CMB signal given by the best-fitting cosmological
model. However, eq. (1.3) can be rewritten using only the observed difference of E- and
B-mode power spectra, CEE,o` − CBB,o` [47, 71, 72]. We use this formulation in this paper.

While we assume throughout this paper that there is no EB correlation in either the
primordial or foreground signals, a new algorithm has been developed to constrain the non-
zero intrinsic CEB` and the instrumental polarization angle offsets simultaneously [47–49].
Specifically, if we add prior knowledge of the CMB power spectra, we can determine α and an
intrinsic EB signal, perhaps due to the “cosmic birefringence” effect [73], simultaneously [47].
Our analysis can be simply extended to this case by replacing eq. (3.3) below with Eq. (9) in
Ref. [47], but here we prefer to focus only on the determination of α. For the simultaneous
determination of α and the cosmic birefringence, as well as a discussion on the effect of the
intrinsic foreground EB correlation, see Refs. [74–77].

Using the relationships between the observed E- and B-mode polarization and the intrin-
sic values, Eo

`m = E`m cos(2α)−B`m sin(2α) (eq. (1.1)) and Bo
`m = E`m sin(2α)+B`m cos(2α)

(eq. (1.2)), the observed E- and B-mode power spectra are related to the intrinsic ones as

CEE,o` = cos2(2α)CEE` + sin2(2α)CBB` , (3.1)

CBB,o` = sin2(2α)CEE` + cos2(2α)CBB` , (3.2)

in the absence of any physical EB correlation. Combining these with eq. (1.3), we obtain
[47, 71, 72]1

CEB,o` =
1

2
(CEE,o` − CBB,o` ) tan(4α) . (3.3)

This expression no longer requires any prior knowledge of the intrinsic E- and B-mode power
spectra, but the observed difference between them can be used to solve for α. This allows
us to retrieve the angle α not only in the presence of the CMB power spectra, which are
known accurately, but also foreground emission or any other sky components for which the
theoretical power spectra are not available.

In this paper, we explore two different ways of implementing the estimation of α us-
ing eq. (3.3). We summarize them briefly in the following section, and provide details in
appendix A. Our results are reported in section 3.2.

1Also see Ref. [78] for earlier work, which used the observed EE and BB power spectra but with sin(4α)
instead of tan(4α), which would be the same in the limit |α| � 1.
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3.1 Methods

We implemented the self-calibration technique in two ways (Implementations A and B) to
estimate the polarization angle offsets in our simulated data. Both implementations use
eq. (3.3) to solve for α by nulling the EB cross correlation in the observed power spectra
at different frequencies. In this section, we highlight the common assumptions of the two
implementations as well as their differences. Detailed descriptions of the formalisms are given
in appendix A.

Both implementations use a maximum likelihood approach, building the likelihood func-
tion from the observed power spectra, CXY,o` , which are considered to follow a Gaussian distri-
bution. In the case of Implementation A, only the auto-frequency power spectra of BB, EE
and EB are considered, while in Implementation B all the possible frequency cross-spectra of
the 22 channels (see table 1) are included. Moreover, Implementation A makes the assump-
tion of small angles for the α offsets, i.e., tan(α) → α. This approximation is not used in
Implementation B. The covariance matrices are computed differently (see appendix A), with
the assumption of being independent from the α parameter for Implementation A; in both
cases the correlation between multipoles is neglected. The maximum of the likelihood func-
tion is found analytically and the uncertainties on α are estimated by the Fisher matrix for
Implementation A, whereas for Implementation B the full posterior distribution is sampled
with the publicly available Markov chain Monte Carlo (MCMC) algorithm emcee [79], with
the marginalized 1σ uncertainties taken as errors on α.

It is important to highlight that the two methods, corresponding to independent imple-
mentations by two different groups, also differ in details related to the computation of the
power spectra, such as the multipole binning and the maximum ` value considered in the
analysis. However, as already stressed, we carried out our analysis in a blind fashion, with
the exact goal of avoiding the fine tuning of nuisance parameters in the implementations, in
order to demonstrate that useful results can be achieved independently of those details.

3.2 Results

We generated ten different sets of sky simulations, changing, in each of them, the noise and
CMB realizations as well as the polarization angle offsets for each frequency channel. The
values of the angle offsets were not revealed to the two analysis teams. Here we summarize
the results of the angle calibration challenge.

In figure 3, we show the an example comparison of the true (αtrue; black solid lines)
and estimated (αest; filled circles) angles, for one of the ten realizations (results for the other
cases are similar). We find that both implementations perform similarly, leading to estimated
values for the offset angles close to the true ones for all frequency channels. The uncertainties
are small (note that the figure reports 3σ uncertainties), with the error bars being visible
only for the lowest frequency channels.

To better characterize and compare the results, figure 4 shows histograms of all of the
angle realizations and frequency channels (for a total of 220 estimations). The top panels
show the distribution of the injected offsets (αtrue; yellow histograms in the left panel) and
those of the residuals, αtrue − αest, after the self-calibration (coloured histograms in both
panels). For Implementation A, the maximum absolute residual offset is at the level of 23′,
with 90% of the cases below 6′. For Implementation B, the absolute errors are smaller, lower
than 2′ in 90% of the cases, and reach a maximum of around 6′.

In the middle panel of figure 4, we show the distributions of the estimated uncertainties
on the reconstructed angles. We find that they are similar, which indicates that Implementa-
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Figure 3: Comparison of the polarization angle estimates from Implementations A and B
(filled circles) and the true injected offsets (black solid lines) for all the considered frequency
channels and for one realization of the simulated maps. The error bars show the 3σ uncer-
tainties, which are smaller than the size of the filled circles except in the lowest frequency
channels. The total true injected offset is obtained as the sum of the three possible sources
considered: global misalignment (dashed lines), telescope offset (dashed-dotted lines) and
wafer offsets (solid thin lines).
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Figure 4: Summary of the results for the estimation of the polarization angles with the two
implementations presented in section 3.1. Histograms are computed from all the 10 different
sets of simulated maps and the 22 frequency channels (i.e., a total of 220 realizations). The top
panels show the distribution of the offset angles before (yellow histogram in the left panel) and
after (pink and green histograms) corrections; the right figure shows a zoom on the relevant
offset interval after correction. The middle panel shows the distribution of uncertainties in
the estimated angles αest. The bottom panel shows the distribution of the bias over the
uncertainty of the estimation .
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tion A may underestimate the uncertainties. This is confirmed in the bottom panel, where the
distributions of αtrue−αest in units of the estimated uncertainties are shown. For Implementa-
tion B all the estimated angles are within 2σ of the true ones, while the distribution is broader
for Implementation A, with some outliers at more than 4σ. During the post-processing fol-
lowing the unblinding of the challenge results, we found that the Fisher uncertainties used in
Implementation A were underestimated due to the use of a non-optimal estimator of the en-
semble average power spectra involved in the calculation of the likelihood’s covariance matrix.
This estimator did not properly model the foreground contribution, leading to an underes-
timation of the uncertainty especially at the lowest/highest frequency channels, where the
foreground contribution is larger.

In the following sections, we describe how we propagate the residual angle offsets into
the data analysis pipeline and evaluate their impact on the measurements of r.

4 Component Separation

The goal of our in-flight polarization angle calibration task is to reduce systematic errors
in the determination of the tensor-to-scalar ratio, r. Here, we test the improvement on the
measurements when Implementations A and B of the self-calibration technique are used to
correct the miscalibration angles α in multi-frequency maps, and the residual offsets are
propagated through the component separation step, with the goal of obtaining clean CMB
maps. We apply component separation strategies to the following sets of maps, in order to
characterize our results.

• Non-rotated maps: the original signal plus noise maps without any injected rotation
of the polarization angle.

• Rotated maps: the previous maps with the corresponding rotation offsets applied to
the sky signal.

• Derotated maps: the maps after derotating the rotated maps with the solutions
obtained from Implementations A and B. We derotate the sum of the signal and noise
maps.

We adopt two complementary foreground-cleaning techniques that provide a complete
framework for analyzing the propagation of rotation angle errors to the cosmological param-
eter estimation. The first is a map-based algorithm that adopts, and fits for, a parameterized
model for the frequency dependence of the sky components. The SED parameters and the
amplitudes of the different sky signals are fitted in each resolution element by exploiting the
multi-frequency observations. Several implementations of this procedure have been studied
in the literature (see Ref. [57] and references therein), such as Commander2 and FGBuster3. In
this paper, we use the procedure called B-SeCRET (Bayesian-Separation of Components and
Residuals Estimate Tool) [80], described in detail in appendix B.1.

The second component separation procedure, based on an internal linear combination
(ILC) algorithm [81–83], does not assume any prior knowledge of the foreground SED, but
rather minimizes the variance of a linear mixture of the multi-frequency data with the con-
straint of retaining the black body frequency scaling for the CMB. In the implementation used

2https://github.com/Cosmoglobe/Commander
3https://fgbuster.github.io/fgbuster/index.html
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in this work, called Needlet Internal Linear Combination (NILC), the variance minimization
is performed in both the spatial and harmonic domains. This allows us to take into account
the non-uniform behavior of foregrounds, captured by the variation of the ILC coefficients
over the sky and as a function of angular scale. In this work, we adopt the implementation
used in the three data releases of the Planck experiment [57, 84], as described in detail in
appendix B.2.

In the following, we summarize the results of the analysis, on the sets of simulated
maps described above, with B-SeCRET (section 4.1) and NILC (section 4.2). Before this, let us
first discuss the expected impacts of the polarization angle miscalibration on the component
separation process. When the foreground SED is uniform, we can approximate the component
separation procedure as a weighted linear sum of the frequency channel maps, with coefficients
that do not depend on sky location, but can depend on the multipole scale because of the
different beams and noise levels of the frequency channels. We emphasize that this assumption
is only adopted here to simplify the discussion: both B-SeCRET and NILC allow for spatially-
varying SEDs. In the limit of small angles (|αi| � 1 for each ith channel), we write the
spherical harmonic coefficients of the clean CMB E and B modes as

Eclean
`m =

Nch∑
i=1

ωE`,iE
o,i
`m ≈ E

CMB
`m +

Nch∑
i=1

ωE`,i

[
EFG,i
`m − 2αi

(
BCMB
`m +BFG,i

`m

)]
, (4.1)

Bclean
`m =

Nch∑
i=1

ωB`,iB
o,i
`m ≈ B

CMB
`m +

Nch∑
i=1

ωB`,i

[
BFG,i
`m + 2αi

(
ECMB
`m + EFG,i

`m

)]
, (4.2)

where Nch = 22 is the number of frequency channels and ωX`,i are the linear weights of the
ith channel map of X = (E,B) satisfying

∑
i ω

X
`,i = 1. Ignoring the intrinsic CMB EB

correlation and the noise bias, the ensemble average of the EB and BB power spectra of the
clean map up to first order in αi is given by

CEB,clean
` = 2

(
αBeff,`C

EE,CMB
` − αEeff,`C

BB,CMB
`

)
+
∑
ij

ωE`,iω
B
`,j

[
C
EiBj ,FG
` + 2

(
αjC

EiEj ,FG
` − αiC

BiBj ,FG
`

)]
, (4.3)

CBB,clean
` = CBB,CMB

` +
∑
ij

ωB`,iω
B
`,j

(
C
BiBj ,FG
` + 4αiC

EiBj ,FG
`

)
, (4.4)

where we have defined the new effective (`-dependent) angle, αXeff,` ≡
∑

i ω
X
`,iαi. We thus

expect, even in the absence of the EB correlation intrinsic to the foreground (CEiBj ,FG
` = 0),

that:

1. The clean CMBmap will have a non-zero EB correlation, unless the angle miscalibration
is corrected prior to the component separation;

2. the BB power spectrum of the clean CMB map will be affected by the angle miscali-
bration, if the presence of αi affects the component separation (i.e., ωX`,i).

While the first is a trivial statement, the second is an interesting one. As we find below,
the impact of αi on the BB power spectrum depends on the specific component separation
method applied.
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Figure 5: CMB EB power spectra for all cases considered (non-rotated, rotated, and dero-
tated maps with Implementations A and B), after the application of the B-SeCRET algorithm
to perform component separation.

Moreover we note that the ` dependence of αXeff,` could potentially compromises the
method decribed in [85] to cancel the angle miscalibration by comparing EB from the reion-
ization and recombination bumps.

4.1 B-SeCRET

We apply the B-SeCRET parametric component separation algorithm to the multi-frequency
non-rotated, rotated and derotated maps, for each of ten different sets of simulations. We
fit a parametric model that includes seven parameters. Specifically, the thermal dust emis-
sion is parameterized with a modified blackbody SED, while the synchrotron radiation is
parametrized with a power-law SED with spectral curvature. The details of the parametric
model are reported in appendix B.1. Since the maps are simulated with spatially uniform
SED parameters, we perform the fit on the whole sky jointly for Q and U maps, assuming
that they share the same spectral parameters.

Given the clean CMB map obtained using B-SeCRET, we calculate angular power spectra
using a pseudo-C` estimator [86, 87], as implemented in the python NaMaster package [88].
The power spectra are computed on 60% of the sky defined by the publicly available Planck
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mask4, in 10 multipole bins from ` = 12 to ` = 132. We have applied a non-uniform weighting
scheme to account for the cosmic variance. Let b be a bin, then the weight applied to `q ∈ b
is

w`q =
`q + 1

2∑̀
∈b

(
`+ 1

2

) . (4.5)

Thus, the binned power spectrum is Cb =
∑

`∈bw`C`, and the binned covariance between the
i-th and j-th bins is

Ci,j =
∑
`i∈bi

∑
`j∈bj

w`iw`jC`i,`j , (4.6)

where C`i,`j is the covariance between the i-th and j-th multipoles.
The results of the component separation procedure are reported in figures 5 and 6, which

show the EB and BB power spectra of the recovered CMB signal, respectively. As expected,
figure 5 shows a non-null CEB` contribution in the rotated maps, in agreement with eq. (4.3).
On the other hand, the CEB` of the non-rotated and derotated maps are compatible with zero.

Figure 6 shows the excess in the BB power spectra in the rotated maps compared to
those in the non-rotated ones, that do not include any primordial B-mode signal. As the
rotated maps carry frequency-dependent polarization angle offsets, which are not taken into
account in the parametric model, the component separation fails and yields large residuals.
We find that the amount of systematic residuals left in the rotated maps are realization
dependent. For example, the systematic residuals in the 4th realization are negligible, while
those in the 8th realization are significant, especially at low multipoles.

On the other hand, the BB power spectra of the non-rotated and derotated maps are
similar, showing that the in-flight calibration methods proposed here are able to remove the
systematic errors induced by the miscalibration of the polarization angles. Note that the
correction of the polarization angle systematics is achieved in all realizations, regardless of
whether the systematics are large (8th realization) or small (4th). Thus, the main goal of the
present study is achieved.

In order to assess the biases introduced in the r parameter by the residual systematic
effect, we compare the recovered r values from each set of maps to those from the non-
rotated maps. We fit the cleaned CMB BB power spectrum for each case (Cout

` ) to a linear
combination of the theoretical primordial B-mode power spectrum (Bgw

` ), the lensing B-
mode power spectrum (L`) and the power spectrum of the component separation residuals
plus noise of non-rotated maps Rnon

` (parametrized by the aR coefficient):

− 2 lnL(r, aR) =
(
Cout
b − rBgw

b − Lb − aRR
non
b

)T
C−1
b,b′

(
Cout
b′ − rB

gw
b′ − Lb′ − aRR

non
b′

)
,

(4.7)
where b denotes a bin and Cb,b′ is the covariance between the power spectra at the bins
b and b′. The covariance matrix is calculated using the gaussian_covariance subroutine
in the Namaster package. This subroutine calculates the covariance matrix of the pseudo-
C` power-spectra estimated as C = K−1C̃(K−1)T where C̃ is the covariance of the pseudo
power-spectra and, K is the mode coupling matrix [89, 90]. The results are shown in table 3.
We find that the recovered r of the derotated maps with Implementations A and B are
consistent with those of the non-rotated maps. We also find that the uncertainty on the
recovered r is approximately the same. On the other hand, there is a significant bias in r

4We use HFI_Mask_GalPlane-apo0_2048_R2.00.fits available in https://pla.esac.esa.int/#maps
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Figure 6: CMB BB power spectra for the non-rotated, rotated, and derotated maps de-
rived by Implementations A and B after application of the B-SeCRET component separation
algorithm. The solid black line in the upper section of each panel shows the theoretical CMB
lensing BB power spectrum, L`. The difference between L` and the data for non-rotated
and derotated maps is due to the noise power spectrum, while that for rotated maps is also
due to the component separation residual. The lower sections show the relative difference
between the recovered BB power spectra in the rotated and derotated cases with respect to
the non-rotated case.

of the rotated maps with higher uncertainties in those simulations where the impact of the
systematic effect is higher. This mismatch between the rotated and non-rotated results arises
because the non-rotated residuals, Rnon

` , account only for foregrounds and noise residuals;
thus, the excess in the BB power spectrum due to the angle miscalibration leads to a bias in
r. We conclude that correcting the polarization angle miscalibration prior to the parametric
component separation is crucial for an unbiased inference of r.

4.2 NILC

Next, we use the NILC algorithm to obtain clean CMB maps. As was done previously in the
B-SeCRET case, we perform component separation on the non-rotated, rotated, and derotated
maps for the ten sets of simulations. Before applying the algorithm, the simulated sky maps
are first convolved and deconvolved in harmonic space to a common angular resolution. Here,

– 16 –



Correction with Correction with
Rotated Implementation A Implementation B

nsim r × 104 r − rnon

σnon
r

σr
σnon
r

r × 104 r − rnon

σnon
r

σr
σnon
r

r × 104 r − rnon

σnon
r

σr
σnon
r

0000 10.14 0.80 1.46 −18.53 −2.02 1.03 −5.62 −0.75 1.01
0001 81.91 8.37 1.39 −29.14 −2.16 1.02 −14.26 −0.75 0.98
0002 42.78 4.67 1.24 −26.46 −2.52 1.02 16.30 1.92 0.97
0003 100.18 11.35 1.42 8.37 1.28 0.95 13.78 1.88 0.94
0004 21.92 0.46 1.00 22.31 0.50 0.99 23.07 0.57 0.97
0005 139.48 14.99 1.23 21.84 2.56 0.98 22.76 2.66 0.94
0006 99.26 8.81 1.47 −20.48 −2.35 1.01 −5.71 −0.97 0.99
0007 51.22 3.08 1.09 4.20 −1.59 1.03 25.59 0.53 1.00
0008 246.19 24.06 1.84 −38.68 −3.85 1.06 −4.51 −0.50 1.02
0009 26.35 1.99 1.31 −16.42 −2.28 1.09 −21.71 −2.81 1.06

Table 3: Comparison of r estimation after the application of the B-SeCRET algorithm to
the rotated and derotated maps with respect to r from the non-rotated maps. The quantity
(r − rnon)/σnon

r shows the “number of σs” of the difference with respect to the non-rotated
case while σr/σnon

r is the ratio of the uncertainty calculated for a given case with respect to
the non-rotated case. We recall that the input non-rotated simulations do not include any
CMB primordial B-mode signal.

Correction with Correction with
Rotated Implementation A Implementation B

nsim r × 104 r − rnon

σnon
r

σr
σnon
r

r × 104 r − rnon

σnon
r

σr
σnon
r

r × 104 r − rnon

σnon
r

σr
σnon
r

0 −2.07 −0.77 1.04 −6.23 −1.22 1.02 −7.17 −1.32 1.02
1 −1.77 −1.07 1.07 −4.42 −1.35 1.00 −4.37 −1.34 1.00
2 19.28 2.28 1.00 1.40 0.40 0.98 0.74 0.33 0.98
3 16.98 1.68 1.11 −0.48 −0.18 1.01 −1.96 −0.34 1.01
4 18.79 2.99 1.02 13.05 2.38 1.01 10.84 2.14 1.01
5 −2.55 −1.06 1.28 −10.80 −1.94 1.00 −10.54 −1.92 1.00
6 3.67 0.38 1.13 −1.49 −0.17 1.01 −1.87 −0.21 1.01
7 32.74 3.37 1.01 16.83 1.67 1.00 16.85 1.67 1.00
8 18.68 2.17 1.13 4.05 0.61 1.00 2.76 0.47 1.00
9 33.31 3.52 1.11 21.53 2.27 0.99 20.50 2.16 0.99

Table 4: Same as table 3 but for the NILC algorithm.

we adopt the smallest beam, i.e., 17.9′, as the common resolution.
The NILC algorithm, as currently implemented, is applicable to scalar fields on the

sphere; thus, we construct sky maps of the E and B modes from the input maps of the Q and
U Stokes parameters on the full sky. The NILC weights used to combine the multi-frequency
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input data to determine the CMB signal are computed separately for the E- and B-mode sky
maps. The derived full mission weights are also applied to the “half-split maps”, two splits
of a map sharing the same sky signal but with uncorrelated noise enhanced by a factor of√

2 with respect to the sensitivity levels reported in table 1. These are subsequently used for
both the power spectrum and noise estimation.

The needlet weights are mostly determined by the Galactic contamination, which dom-
inates on large angular scales, and by the noise, which dominates on small angular scales.
The reconstructed CMB E- and B-mode maps cannot be free of contamination by residual
foregrounds and noise. Therefore, for further analysis, a set of conservative masks are de-
rived from the variance of the residual foreground maps as follows. First, the variance of the
residual foreground maps are smoothed with a 9◦ Gaussian beam. We then set thresholds
appropriate for the desired sky fraction. We pick the mask with a 60% sky fraction for the
B-mode map.

Given the CMB sky obtained using NILC, we calculate angular power spectra using a
pseudo-C` estimator [87, 91–93]. Although the NILC weights are computed from full mission
sky maps, the impact of the instrumental noise residuals on the angular power spectra is
avoided by evaluating cross-power spectra of the NILC half-split maps. Each data point of
the angular power spectra is then obtained from the average of all possible cross half-split
angular power spectra. To compute the covariance of our measurements, we follow the method
described in Ref. [93].

Figure 7 shows the EB power spectra of the clean CMBmaps of the non-rotated, rotated,
and derotated maps with Implementations A and B. We find that the NILC EB power spectra
of rotated maps are not consistent with a null result, in agreement with eq. (4.3). However
they become compatible with zero in the derotated case (i.e., after correcting the polarization
angle offsets), similar to the results of the parametric component separation. Note that, since
we apply the correction to noisy maps, the noise realizations on the rotated and the derotated
multi-frequency maps is different, and therefore the EB spectra of the cleaned maps after
the application of the NILC algorithm are not expected to fully correlate, but only to be
compatible with zero.

Interestingly, the BB power spectra shown in figure 8 are compatible with those of the
non-rotated maps, as well as with the theoretical lensing BB power spectrum L`, not only
for the derotated maps but also for the rotated maps. This shows that, by being applied
directly to the B-mode maps and by minimizing the variance of the CMB signal, the NILC
algorithm is also able to minimize the impact of the injected systematic effect. This property
is fundamentally different from the outcome of the parametric component separation process.

Table 4 reports the comparison of the estimation of r for the different cases considered.
The methodology to estimate r and its error from the measured angular power spectra and
covariance is the same as that for the paramateric component separation described in sec-
tion 4.1. The multipole range and binning are also the same. As we estimate the power
spectrum from half-split maps, we do not need to marginalize over the noise power spectrum;
thus, we set aR = 0 in eq. (4.7). A qualitatively different result compared to that from
B-SeCRET is that the impact of the in-flight correction of the angle miscalibration is less evi-
dent, reflecting the fact that the CMB BB power spectra do not show any excess due to the
presence of the systematic effect. Nonetheless, the uncertainties on r are reduced when the
angle offset in the multi-frequency maps is corrected prior to the NILC component separation.
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Figure 7: Same as figure 5 but for the NILC algorithm.

4.3 Impact on CMB maps

We can further assess the impact of the polarisation angle offset and its residual before and
after self-calibration by estimating the miscalibration angle α from the clean CMB maps. We
estimate α by minimizing DEB` (α) defined as

DEB` (α) = CEB` cos(4α)− 1

2

(
CEE` − CBB`

)
sin(4α) , (4.8)

where CEB` , CEE` and CBB` are the power spectra of the CMB solutions, through a standard
χ2-approach where the first 200 multipoles are considered. The sky fraction used to evaluate
the CMB power spectra is fsky = 0.6 for both component separation methods. We have
also checked that the estimated angles are stable when we consider a smaller portion of the
sky with fsky) = 0.4. Further details about the properties of DEB` (α) can be found in Refs.
[72, 94].

In figure 9, we show the angles α estimated from each of the ten realizations considered:
the estimates from the non-rotated maps are shown in black, those from the rotated maps
in grey, and those from the derotated maps are shown in purple for Implementation A and
in cyan for B. The left and right panels show α of the CMB solutions found by B-SeCRET
and NILC algorithms, respectively. We find that α estimated from the B-SeCRET and NILC
rotated maps are different for most of the realizations. This is expected because the effective
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Figure 8: Same as figure 6 but for the NILC algorithm. Here, the noise power spectra are
not seen because the BB power spectra are estimated from half-split maps.

angles appearing in the EB power spectrum of the clean CMB map (αEeff,` and α
B
eff,` in eq. 4.3)

depend on the weights obtained for specific component separation algorithms. The right panel
shows that, although the angle offsets of the magnitudes assumed in this work do not lead to
a large bias in r from the NILC CMB map, they still impact the EB CMB cross-correlation,
showing up with values of α significantly different from null, in agreement with eq. (4.3).
On the other hand, when derotated with either Implementation A or B, we find excellent
compatibility with zero for all realizations.

5 Discussion and conclusions

In this paper, we have presented the results of a blind analysis to study the impact of possible
polarization angle offsets (miscalibration of linear polarization angles) on the measurements
of the CMB polarized signal, with particular emphasis on the detection of the faint signal
of the primordial B-mode polarization. We have used a set of simulated sky maps, where
a rotation of the polarization angle was manually injected, generated by three different in-
strumental sources. As a test case we have considered the instrumental specification of the
LiteBIRD mission, with 22 (partially overlapping) frequency channels, each with a different
polarization offset. As is well known, this systematic effect can cause a spurious B-mode
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Figure 9: Polarization angle estimated through minimization of DEB
` (α) given in eq. (4.8),

for each of the 10 realizations considered. This is performed on the CMB solutions found by
B-SeCRET (left panel) and NILC (right panel) algorithms. The black and gray points are for
the non-rotated and rotated maps, respectively, whereas the purple and cyan points are for
the derotated maps with Implementations A and B, respectively. The error bars are evaluated
as the 99% C.L. of exp (−χ2/2).

signal, arising from the mixing of polarization states, with an amplitude potentially higher
than the cosmological target range.

We have applied, in an independent manner, two different implementations of the self-
calibration technique for correcting the polarization angle offset in each frequency channel,
estimated by zeroing the EB correlation. All of the frequency channels were analyzed jointly.
The offset angles were recovered with an accuracy at the level of few arc-minutes. By prop-
agating the residual angle miscalibration error to the component separation step, here rep-
resented by parametric fitting and ILC algorithms, we have estimated the impact on the
measurement of the tensor-to-scalar ratio parameter, r. Results are reported in tables 3
and 4.

Table 3 summarizes the impact of the angle miscalibration on r using the parametric
method B-SeCRET, showing that uncorrected offsets lead to a large bias in r. This is expected
because the sky signal is rotated differently at each frequency channel and the parametric
model of the sky emission is no longer adequate for the rotated maps. In the case of derotated
maps, this effect is reduced significantly, the sky model is valid and r from clean CMB maps
of the derotated maps are consistent with those of the non-rotated maps. On the other hand,
table 4 shows that the impact of the angle miscalibration on the angular power spectrum
of CMB B modes obtained using NILC is small and is not prominently reflected in any bias
on r. This is a consequence of the fact that the method makes no assumptions about the
foreground emission, but finds a solution by minimizing the variance of the clean CMB map.
It is only mildly affected by incorrect modelling of the sky, and is capable of dealing with the
extra complication introduced by this systematic. However, we still find an increase in the
uncertainty on r compared to the derotated cases.

The additional analysis of the recovered CMB maps, presented in section 4.3 shows that
the presence of residual polarization angle offsets is detectable as a non-zero signal in the
clean CMB EB power spectra, even in the NILC case where the impact on the cosmological
parameter r is small. The spectra are found to be compatible with zero when corrections are
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applied.
In conclusion, we have shown how the interplay between errors on the calibration of

the instrumental polarization angles and component separation method can lead to a bias
in r when clean CMB maps are retrieved with parametric methods without correcting the
angle miscalibration. Component separation methods that do not make any assumptions
about the foreground emission, such as NILC, are less affected by miscalibration. In both
cases, the clean CMB maps of rotated maps show non-null EB power spectra. The EB
self-calibration method to correct the polarization angle offsets can efficiently restore the
correct instrument orientation and mitigate their impacts, if applied prior to the component
separation (especially for the parametric method, but also for non-parametric ones, leading
to smaller uncertainties).

Acknowledgments

This work is supported in Japan by ISAS/JAXA for Pre-Phase A2 studies, by the acceler-
ation program of JAXA research and development directorate, by the World Premier Inter-
national Research Center Initiative (WPI) of MEXT, by the JSPS Core-to-Core Program
of A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891,
JP17H01115, and JP17H01125. The Italian LiteBIRD phase A contribution is supported by
the Italian Space Agency (ASI Grants No. 2020-9-HH.0 and 2016-24-H.1-2018), the National
Institute for Nuclear Physics (INFN) and the National Institute for Astrophysics (INAF). The
French LiteBIRD phase A contribution is supported by the Centre National d’Etudes Spatiale
(CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commis-
sariat à l’Energie Atomique (CEA). The Canadian contribution is supported by the Canadian
Space Agency. The US contribution is supported by NASA grant no. 80NSSC18K0132. Nor-
wegian participation in LiteBIRD is supported by the Research Council of Norway (Grant No.
263011). The Spanish LiteBIRD phase A contribution is supported by the Spanish Agencia
Estatal de Investigación (AEI), project refs. PID2019-110610RB-C21 and AYA2017-84185-
P. Funds that support the Swedish contributions come from the Swedish National Space
Agency (SNSA/Rymdstyrelsen) and the Swedish Research Council (Reg. no. 2019-03959).
The German participation in LiteBIRD is supported in part by the Excellence Cluster ORI-
GINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy (Grant No. EXC-2094 - 390783311). This
research used resources of the Central Computing System owned and operated by the Comput-
ing Research Center at KEK, as well as resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy. TM’s work is supported by JSPS KAKENHI Grant Num-
ber JP18KK0083. EdlH acknowledges partial financial support from the Concepción Arenal
Programme of the Universidad de Cantabria. EdlH, EMG and PV acknowledge the San-
tander Supercomputación support group at the Universidad de Cantabria, a member of the
Spanish Supercomputing Network, who provided access to the Altamira Supercomputer at
the Instituto de Física de Cantabria (IFCA-CSIC) for performing simulations and analyses.
They also acknowledge funding from Unidad de Excelencia María de Maeztu (MDM-2017-
0765). YM’s work was supported in part by the Japan Society for the Promotion of Science
(JSPS) KAKENHI, Grants No. JP20K14497. NK, CB and AG acknowledge financial support
from the INFN InDark project and from the COSMOS network (www.cosmosnet.it) through

– 22 –



the ASI (Italian Space Agency) Grants 2016-24-H.0 and 2016-24-H.1-2018. EK’s work was
supported in part by the JSPS KAKENHI Grant Number JP20H05850 and JP20H05859.

A Methods to estimate the polarization angle offset

In section 3.1, we provided a high-level summary of two implementations of the self-calibration
technique for estimating the polarization angle offsets from the multi-frequency simulated
maps, which we called “Implementation A” and “Implementation B”. Here, we describe the
details.

A.1 Implementation A

This is a computationally fast implementation of the methodology to estimate the parameter
α from the observed power spectra. We make two assumptions that enable us to obtain
analytic formulae for both the rotation angles and their uncertainties in terms of the EE,
BB and EB power spectra. The formalism of this implementation is explained in [95]. We
build our likelihood function considering only the auto-frequency power spectra, which are
computed on the full sky with the anafast function within the healpy library. Despite this
limitation in the information used, the accuracy of the recovered polarized angles is sufficiently
competitive.

The main assumptions made for simplifying the likelihood are the following:

• Small angle approximation: tan(α)→ α.

• We do not vary α in the covariance matrix of the power spectra when estimating α. To
correct the mismatch induced by this approximation, we perform an iterative approach
that updates α in the covariance matrix with the one estimated in the previous step.

We ignore correlations between different multipoles in the likelihood, since we work with the
full-sky data and thus the correlation is negligible. With these approximations, we obtain a
linear system from which the analytical equations to calculate the rotation angles as well as
the Fisher error bars are derived. The analyticity of the problem yields a fast computational
implementation.

After applying the aforementioned approximations, the likelihood is given by

− 2 lnL =

Nch∑
i=1

Nch∑
j=1

`max∑
`=`min

(
CEiBi,o
` − 4αiξ

i
`

)(
M−1

)
`,ij

(
C
EjBj ,o
` − 4αjξ

j
`

)
, (A.1)

where Nch is the number of frequency channels and αi is the i-th channel’s polarization
angle offset. We find that `min = 10 and `max = 300 are the optimal multipole range for a
LiteBIRD-like instrument. Here, ξi`

5 is given by

ξi` =
1

2

(
CEiEi,o
` − CBiBi,o

`

)
. (A.2)

5Notice that this is valid only if the noise bias is null. Otherwise, the noise bias could be taken into account.
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The elements of the covariance matrix M are given by

M`,ij =
1

2`+ 1

{
C̃
EiEj ,o
` C̃

BiBj ,o
` + C̃

EiBj ,o
` C̃

BiEj ,o
`

− 4αj

(
C̃
EiEj ,o
` C̃

BiEj ,o
` − C̃EiBj ,o

` C̃
BiBj ,o
`

)
− 4αi

(
C̃
EiEj ,o
` C̃

EiBj ,o
` − C̃BiEj ,o

` C̃
BiBj ,o
`

)
+8αiαj

[(
C̃
EiEj ,o
`

)2
+
(
C̃
BiBj ,o
`

)2
−
(
C̃
EiBj ,o
`

)2
−
(
C̃
BiEj ,o
`

)2
]}

, (A.3)

where C̃XY` are the power spectra smoothed by convolving CXY` with a 5-` width box of unity
area.

The rotation angles can then be obtained analytically by solving the following linear
system,

Nch∑
j=1

Ωijαj =
1

4
ηi , (A.4)

where

Ωij =

`max∑
`=`min

ξi`

(
M−1

)
`,ij

ξj` , (A.5)

ηi =

Nch∑
j=1

`max∑
`=`min

ξi`

(
M−1

)
`,ij

C
EjBj

` . (A.6)

In this implementation, the uncertainties on the rotation angles are obtained from the Fisher
matrix, whose elements are given by

Fij =
1

2

∂2(−2 lnL)

∂αi∂αj
= 16

`max∑
`=`min

ξi`

(
M−1

)
`,ij

ξj` . (A.7)

A.2 Implementation B

In this implementation, we extend eq. (3.3) to include all the possible observed EB cross
power spectra from Nch frequency channels to estimate αi, allowing us to retrieve the values
of the parameters with more precision. We include the approximate covariance between all the
observed EB, EE, and BB power spectra assuming Gaussian statistics. The methodology
used for this implementation and its validation are detailed in Ref. [49]. We briefly review
the methodology below.

When we ignore the intrinsic EB cross power spectra of the CMB and the Galactic
foregrounds, we can relate the observed power spectra of the ith and jth channels at each `
as [49],

(
−~RT(αi, αj)R

−1(αi, αj) 1
)C

EiEj ,o
`

C
BiBj ,o
`

C
EiBj ,o
`

 = 0, (A.8)
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where R and ~R are a rotation matrix and rotation vector of power spectra, respectively. The
explicit forms are

R(θi, θj) =

(
cos(2θi) cos(2θj) sin(2θi) sin(2θj)
sin(2θi) sin(2θj) cos(2θi) cos(2θj)

)
, (A.9)

~R(θi, θj) =

(
cos(2θi) sin(2θj)
− sin(2θi) cos(2θj)

)
. (A.10)

Using eq. (A.8), we construct a log-likelihood function as [49],

−2 lnL =

`max∑
`=`min

(
A~Co

`

)T
C−1

(
A~Co

`

)
, (A.11)

where `min = 2, `max = 1024, ~Co
` is an array of the observed power spectra,

(
C
EiEj ,o
` C

BiBj ,o
` C

EiBj ,o
`

)T
,

with i, j in 22C2+22 = 253 combinations,A is a block diagonal matrix of
(
−~RT(αi, αj)R

−1(αi, αj) 1
)
,

and C = ACov(~Co
` ,
~Co
`
T)AT. The explicit form of Cov(~Co

` ,
~Co
`
T) is

Cov(~Co,ij
` , ~Co,pq

`
T)

=

Cov(C
EiEj ,o
` , C

EpEq ,o
` ) Cov(C

EiEj ,o
` , C

BpBq ,o
` ) Cov(C

EiEj ,o
` , C

EpBq ,o
` )

Cov(C
BiBj ,o
` , C

EpEq ,o
` ) Cov(C

BiBj ,o
` , C

BpBq ,o
` ) Cov(C

BiBj ,o
` , C

EpBq ,o
` )

Cov(C
EiBj ,o
` , C

EpEq ,o
` ) Cov(C

EiBj ,o
` , C

BpBq ,o
` ) Cov(C

EiBj ,o
` , C

EpBq ,o
` )

 ,
(A.12)

where we use an approximate covariance for each element [49]:

Cov(CX,Y,o` , CZ,W,o` ) ≈ 1

(2`+ 1)
(CX,Z,o` CY,W,o` + CX,W,o` CY,Z,o` ). (A.13)

Thus, we estimate αi only with the observed power spectra. We do not include ln |C| term
in the log-likelihood function of eq. (A.11), following the method validated in Ref. [49].
We confirm that including the ln |C| term does not change the results for the instrument
specification given in table 1.

Here, to remove biases from statistical fluctuations, we neglect the off-diagonal elements
in eq. (A.12) and adopt the binned power spectra and the corresponding covariance [49]:

CX,Yb =
1

∆`

∑
`∈b

CX,Y` ,

Cov(CX,Yb , CZ,Wb ) =
1

∆`2

∑
`∈b

Cov(CX,Y` , CZ,W` ) ,

(A.14)

where we use ∆` = 20. Using these binned variables in the log-likelihood (A.11) we estimate
all αi by sampling the posterior distribution with the MCMC algorithm emcee [79] and
evaluating the errors on the retrieved maximum likelihood αi parameters at 1σ.

B Component Separation Methodologies

In this section, we describe the component separation methods B-SeCRET [80] and NILC [96–98]
adopted to obtain clean CMB maps from the multi-frequency simulated sky maps.
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B.1 B-SeCRET

The first component separation method is based on a modified version of the Bayesian para-
metric pixel-based maximum likelihood method described in [80]. Given a set of sky maps
observed at different frequencies, the multi-frequency signal at a given pixel p is fitted to a
parametric model given by

mX
(
ν; θXp

)
= cXp +

aXs,p
u(ν)

(
ν

νs

)βs+cs log(ν/νs)
+
aXd,p
u(ν)

(
ν

νd

)βd−2 B(ν, Td)

B(νd, Td)
, (B.1)

where X denotes a Stokes parameter (Q or U). We use an MCMC algorithm emcee [79] to
sample the posterior of θXp = {cXp , aXs,p, aXd,p, βs, βd, cs, Td}. Here, u(ν) = x2ex/(ex − 1)2 with
x = hν/(kBTCMB) is a unit conversion factor from thermodynamic to antenna temperature
units, νs = νd = 150GHz are the synchrotron and dust pivot frequencies, and B(ν, T ) is
Planck’s law. The second and third terms on the right hand side are the synchrotron and
dust contributions, respectively. We use Gaussian priors for the foreground SED parameters:
βs ∼ N (−3.1, 0.3), βd ∼ N (1.56, 0.1), cs ∼ N (0, 0.1), and Td ∼ N (21, 3).

The posterior probability density is given by the product of the data likelihood and the
priors on the model parameters. The likelihood for each pixel p is given by

L(θp|d̄p) =
1√

(2π)2Nch det(C)
exp

[
−1

2

(
d̄p −m

(
ν̄; θp

))T
C−1

(
d̄p −m

(
ν̄; θp

))]
, (B.2)

where Nch = 22 is the number of frequency channels, ν̄ is a Nch vector whose elements are
LiteBIRD ’s frequency channels, d̄p = (d̄p

Q
, d̄p

U
) with d̄p

Q (d̄p
U ) being a Nch vector with

the Q (U) multi-frequency signal in the pixel p, θp is the set of model parameters in the
pixel p, m(ν̄, θp) = (mQ(ν̄, θp),m

U (ν̄, θp)) with mQ(ν̄, θQp ) (mU (ν̄, θUp )) being a vector whose
elements are the result of evaluating the model given the parameters θQp (θUp ) in the pixel p,
and C = diag(CQ,CU ) with CX being a Nch×Nch noise covariance matrix for the X Stokes
parameter. We assume CQ = CU . The matrix C depends in general on p, but we assume it
to be independent of it, i.e., homogeneous noise across the sky. CX is assumed to be diagonal,
i.e., no correlation among different frequencies. The Q and U signals are fitted jointly since
we assume that they share the same SED model parameters. Since the foregrounds have been
simulated using the uniform SED parameters, we also assume uniform spectral parameters
across the available sky.

Due to the large computational time required to fit the maps at Nside = 512, we down-
grade them to Nside = 64 and convolve them to a common beam resolution. The map pro-
cessing proceeds as follows: (i) the original maps at Nside = 512 are converted to a spherical
harmonic representation; (ii) beam deconvolution is applied in the harmonic domain for the
beam full-width-at-half-maximum (FWHM) of each frequency channel as reported in table 1;
(iii) the spherical harmonic coefficients of each channel are convolved with a Gaussian beam
of FWHM= 132′; and (iv) we transform the spherical harmonic coefficients to Nside = 64
maps.

To estimate the effective noise per channel, we have generated 100 noise simulations per
LiteBIRD channel and downgraded them using the same process. The i-th diagonal element
of CX is the effective variance calculated from the 100 pre-processed noise simulation maps.

We perform the parameter fitting in a two-step process, as in Ref. [80]. First, the model
parameters are split into two categories: the amplitudes and the SED parameters. Each set of
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the parameters is fitted in an iterative manner, i.e., in the first iteration the SED parameters
are fixed to the initial values of βs = −3.0, βd = 1.54, cs = 0 and Td = 20 K, and the
amplitudes are fitted. Then, the amplitudes are fixed to the values obtained from this fit
and the SED parameters are calculated. In the next step, the SED parameters are fixed to
the values determined in the first iteration, and the amplitudes are fitted. This process is
repeated until it converges. We find that convergence is achieved typically by the second
iteration.

B.2 NILC

The second component separation technique that we apply, NILC [96–98], is based on the ILC
method [81–83]. It is based on the construction of the linear mixture of frequency channel
maps that minimizes the variance on a frame of spherical wavelets called needlets, allowing
localised filtering in both pixel space and harmonic space. It is designed to recover the CMB
as the component scaling as a blackbody in the linear mixture, assuming only that it is
uncorrelated with foregrounds, with no other prior information. See Refs. [57, 84] for the
application to the Planck data.

NILCestimates the CMB, Ŝ, as a weighted linear combination of multi-frequency sky
maps such that (1) the variance of the estimate is minimum, with (2) unit response to the
flat CMB frequency spectrum,

Ŝ = wTX =
aTR̂−1

aTR̂−1a
X =

aTR̂−1

aTR̂−1a
(aS + F +N) . (B.3)

Here, X is the vector of frequency channel maps, a the constant frequency spectrum of the
CMB signal S, F the total foreground signal, N the instrumental noise for the different
frequency channels, and R̂ the covariance matrix across frequencies. The condition (1) guar-
antees minimum contamination by foregrounds and instrumental noise, while condition (2)
guarantees that the CMB signal is conserved without bias. The weights, w, result from a
trade-off between minimising the foregrounds and the instrumental noise contributions in the
reconstructed CMB map [96, 99–102]. They are computed in needlet space, i.e., for different
regions of the sky or for different angular scales, respectively, which allows for variations of
the data covariance matrix in either space. This technique has already been applied broadly
in CMB data analysis [96–98, 103–107].

The needlet decomposition allows the ILC weights to vary smoothly on large angular
scales and rapidly on small angular scales. The needlet windows in harmonic space, hj` , are
defined as follows

hj` =



cos

[(
`jpeak−`

`jpeak−`
j
min

)
π
2

]
for `jmin ≤ ` < `jpeak ,

1 for ` = `peak,

cos

[(
`−`jpeak

`jmax−`jpeak

)
π
2

]
for `jpeak < ` ≤ `jmax

. (B.4)
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Table 5: List of needlet bands used in the present analysis.

Band index `min `peak `max Nside

1 0 0 50 32
2 0 50 100 64
3 50 100 200 128
4 100 200 300 128
5 200 300 400 256
6 300 400 500 256
7 400 500 600 512
8 500 600 700 512
9 600 700 800 512
10 700 800 900 512
11 800 900 1000 512

In terms of hj` , the spherical needlets are defined as

Ψjk(n̂) =
√
λjk

`jmax∑
`=`jmin

∑̀
m=−`

hj` Y
∗
`m(n̂)Y`m(ξ̂jk) , (B.5)

where the {ξjk} denote a set of cubature points on the sphere for scale j. In practice, we
identify these points with the pixel centers of the HEALPix pixelization scheme [92]. Each
index k corresponds to a particular HEALPix pixel, at a resolution parameter Nside(j) specific
to that scale j. The cubature weights λjk are inversely proportional to the number Nj of
pixels used for the needlet decomposition, i.e., λjk = 4π

Nj
. Given a set of needlet functions,

any sky map of a spin-0 field X(n̂) (such as the CMB temperature anisotropy or the E and
B modes) can be expressed as

X(n̂) =

`max∑
`=0

∑̀
m=−`

X`mY`m(n̂) =
∑
j

∑
k

βXjkΨjk(n̂), (B.6)

where the needlet coefficients, βXjk, of the sky map are denoted as

βXjk =
〈
X,Ψjk

〉
=
√
λjk

`max∑
`=0

∑̀
m=−`

hj` X`m Y`m(ξjk) . (B.7)

For each scale j, the NILC filter has compact support between the multipoles `jmin and `jmax

with a peak at `jpeak. The values of `jmin, `
j
peak and `jmax for different needlet bands used in

the analysis are listed in table 5. The needlet coefficients, βXjk, are computed on the HEALPix
grid points, ξjk, with a resolution parameter, Nside, equal to the smallest power of 2 larger
than `jmax/2.
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