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INVESTIGATION

Examining Phylogenetic Relationships Among
Gibbon Genera Using Whole Genome Sequence
Data Using an Approximate Bayesian
Computation Approach

Krishna R. Veeramah,** August E. Woerner,* Laurel Johnstone,* Ivo Gut," Marta Gut,*

Tomas Marques-Bonet,*¢ Lucia Carbone,** Jeff D. Wall,"* and Michael F. Hammer*-'

*Arizona Research Laboratories Division of Biotechnology, University of Arizona, Tucson, Arizona 85721, TDepartment of Ecology
and Evolution, Stony Brook University, Stony Brook, New York 11794, *Centro Nacional de Analisis Genomico, 08028 Barcelona,
Spain, 8Institucio Catalana de Recerca i Estudis Avancats at Insitit de Biologia Evolutiva (Consejo Superior de Investigaciones
Cientificas/Universitat Pompeu Fabra), 08003 Barcelona, Spain, **Department of Behavioral Neuroscience, Oregon Health and
Science University, Portland, Oregon 97239, and fInstitute for Human Genetics, University of California,

San Francisco, California 94143

ABSTRACT Gibbons are believed to have diverged from the larger great apes ~16.8 MYA and today reside in the rainforests of
Southeast Asia. Based on their diploid chromosome number, the family Hylobatidae is divided into four genera, Nomascus, Sympha-
langus, Hoolock, and Hylobates. Genetic studies attempting to elucidate the phylogenetic relationships among gibbons using kar-
yotypes, mitochondrial DNA (mtDNA), the Y chromosome, and short autosomal sequences have been inconclusive . To examine the
relationships among gibbon genera in more depth, we performed second-generation whole genome sequencing (WGS) to a mean of
~15X coverage in two individuals from each genus. We developed a coalescent-based approximate Bayesian computation (ABC)
method incorporating a model of sequencing error generated by high coverage exome validation to infer the branching order,
divergence times, and effective population sizes of gibbon taxa. Although Hoolock and Symphalangus are likely sister taxa, we could
not confidently resolve a single bifurcating tree despite the large amount of data analyzed. Instead, our results support the hypothesis
that all four gibbon genera diverged at approximately the same time. Assuming an autosomal mutation rate of 1 X 10~ %/site/year this
speciation process occurred ~5 MYA during a period in the Early Pliocene characterized by climatic shifts and fragmentation of the
Sunda shelf forests. Whole genome sequencing of additional individuals will be vital for inferring the extent of gene flow among
species after the separation of the gibbon genera.

KEYWORDS approximate Bayesian computation; gibbon species; rapid radiation; whole genome sequences

HE family Hylobatidae, commonly known as gibbons, is
believed to have diverged from the larger great apes ~16.8
MYA (Carbone et al. 2014). Sometimes known as small apes,
gibbons demonstrate substantial morphological differentiation
from the great apes; their much smaller bodies are highly
adapted to an arboreal mode of locomotion in the rainforests
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of Southeast Asia. They also demonstrate very little sexual di-
morphism that may; in part, be related to their generally monog-
amous mating patterns (Fuentes 2000) (although some gibbon
species develop differences in coat color at sexual maturity).
Each species demonstrates distinct “call” and “song” types
(Geissmann 2002); however, attempts to classify gibbon species
and genera based solely on morphological features have been
problematic (Mootnick 2006). Primarily on the basis of their
karyotypes, gibbons are now divided into four major genera,
with Nomascus, Symphalangus, Hylobates, and Hoolock each
possessing 52, 50, 44, and 38 diploid chromosomes, respec-
tively. While many genetic studies have been performed, in-
cluding a number based on karyotypes (Miiller et al. 2003),
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mitochondrial DNA (mtDNA) (Hayashi et al. 1995; Takacs
et al. 2005; Monda et al. 2007; Whittaker et al. 2007; Matsudaira
and Ishida 2010; Van Ngoc et al. 2010), Y chromosomes (Chan
et al. 2012), Arthrobacter luteus (ALU) repeats (Meyer et al.
2012), and short stretches of autosomal sequence (Kim et al.
2011; Wall et al. 2013), the phylogenetic relationships among
the four gibbon genera remain unresolved, with at least seven
different topologies being supported by different data.

A recent study examined ~1.5 Mb of orthologous autosomal
sequence generated by second-generation sequencing from one
individual representing each of the four genera (Wall et al
2013). This study, too, was inconclusive and suggested that
the gibbon genealogy demonstrates substantial incomplete lin-
eage sorting (ILS). However, the experimental design was lim-
ited by the lack of a suitable reference genome (short reads
were aligned to highly divergent human hgl9 assembly). To
examine the species tree relationships among gibbons, as well
as estimate key demographic parameters such as the time when
the various gibbon genera diverged, we generate whole ge-
nome sequence data from eight individuals representing all four
gibbon genera and utilize the newly released gibbon (nom-
Leul) reference genome (Carbone et al. 2014) for mapping
and variant calling. Then we apply a coalescent-based ABC
approach that can handle large amounts of sequence data
and that corrects for potential sequencing error and reference
genome mapping bias.

Materials and Methods
Second-generation sequencing

Blood and tissues were obtained in agreement with protocols
reviewed and approved by the Gibbon Conservation Center.
More details on all aspects of the methods are provided in
Supporting Information. DNA was extracted from blood or cell
lines, and paired-end libraries were prepared with the Illumina
TruSeq chemistry. Libraries were shotgun sequenced on the
HiSeq 2000 platform, generating 2 X 100-bp reads. Multiple
runs were performed to generate a minimum of 10X mean
coverage on each sample after all postprocessing. Mean cover-
age ranged from 11.5X to 19.5X. Exome capture using the
TruSeq Exome Enrichment kit (Illumina) was also performed
on one N. leucogenys (NLE) sample (Vok, 116X coverage) and
one species syndactylus (SSY) sample (Monty, 64X coverage)

Read mapping and variant calling

Trimmed reads from the shotgun sequencing were aligned
to nomLeul with Stampy (v. 1.0.17) (Lunter and Goodson
2011). For the two NLE samples, Stampy was used in its
“hybrid mode” where alignment with Burrows-Wheeler
Aligner (BWA) (v. 0.5.9) (Li and Durbin 2009) is attempted
first. A substitution rate of 0.001 was specified, along with
BWA minimum seed length of 2, fraction of missing alignments
0.0001, and quality threshold 10. For the non-NLE samples,
Stampy was used with a substitution rate of 0.015 (Kim et al.
2011). Local realignment at indel sites was performed with the
Genome Analysis Toolkit (GATK, v. 1.4-37) (McKenna et al.
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2010; Depristo et al. 2011). PCR duplicates were removed with
samtools. GATK UnifiedGenotyper was run separately on the
two samples from each genus and single nucleotide variants
(SNVs) and indels with a quality score of at least 50 were
retained to create a mask of variant sites to be excluded from
base quality score recalibration. The GATK indel realignment
tool was run again to standardize alignment of indels across
all samples. UnifiedGenotyper from GATK version 2.1-11 (to
allow multiallelic calling) was used to produce a final set of
SNVs and indels. Each site was annotated with the consensus
quality score of the nomLeul reference sequence. Exome se-
quencing data were processed separately from the shotgun data
but using the same bioinformatic pipeline (more details can be
found in Supporting Information).

Masking of the gibbon reference genome for
downstream analysis

The nomLeul genome is composed of 17,968 contigs, ranging
in size from 2496 bases to ~74 Mb. As small loci may be
compressed and represent duplications in the gibbon genome
that have not been properly separated during the assembly
process, we masked out all scaffolds <1Mb in length, yielding
273 scaffolds that span ~2.73 Gb. University of California
Santa Cruz (UCSC)’s gibbon-human pairwise alignments were
used to identify nonautosomal sequence. Specifically, gibbon
loci that aligned to human X, Y, or M in UCSC’s “net” align-
ments (Kent et al. 2003) were masked, along with locations in
the gibbon genome that were not primary alignments to loca-
tions in the human genome. Further, locations where the gib-
bon reference quality was below a phred quality of 50 repeats
[identified by Tandem Repeat Finder (Benson 1999) or by
RepeatMasker (Smit et al. 1996)], LAVA elements identified
in Carbone et al. (2014), copy number variants (CNV) with
an estimated ploidy >2.5 in any sample (also identified in
Carbone et al. 2014), infinite site violations, positions where
any sample has less than <7X coverage, or more than their
95th percentile read depth, and bases within 3 bp of any indel
called were excluded, unless otherwise specified, from down-
stream analysis.

Profiling of sequencing errors

As our WGS coverage is ~15X per sample, it is likely that
some observed genotype calls will not reflect the true under-
lying genotypes, either because of a combination of low cov-
erage and errors in the sequencing reads or as a result of
choices in the bioinformatic processing (e.g., variant quality
score thresholds). Therefore, we compared genotype calls be-
tween the WGS and whole exome sequencing (WES) data at
the same genomic positions to profile errors present in our
medium coverage WGS, assuming high coverage WES reflects
a “truth set.” Separate profiles were constructed for Vok and
Monty. These profiles were then used (a) as training data to
find a set of high confidence SNPs variable across all eight
gibbon samples using machine learning (ML) methods, and
(b) to stochastically model error processes in our subsequent
ABC analysis.


http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/174425SI.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/174425SI.pdf

Our profiling and modeling of errors made the following
simplifying assumptions: (1) after masking, any WES site
with 30X = coverage = 200X is called without error and
reflects the truth dataset and all other bases are ignored, (2)
per site read depth and mapping bias (which we naively
model by noting whether the sample belongs to the same
taxon as the reference or not) account for all genotyping
errors observed, and (3) all false negatives (i.e., SNPs present
in the WES, but not present in the whole genome data) are
singletons. We profiled errors between the WES truth set and
WGS for a given target sample (Vok or Monty) via two cate-
gories: errors involving singleton polymorphisms (defined with
respect to the nomlLeul reference), and genotyping errors
when the polymorphism is segregating with a nonreference
allele present in two or more chromosomes.

For the former category, we recorded the number of
singleton calls in our WGS data vs. the number in the WES
truth set. For a site to be considered a singleton, a single
nonreference allele must be present in either the WGS, the
WES truth set, or both for the target sample, and it must not
have been observed in any other sample. Singleton sites that
agree and disagree between the WGS and WES truth sets
are considered as “correct” and “incorrect,” respectively.

For the latter category (i.e., any site that is segregating in
either the WGS, the WES truth set, or both, but is not defined
as a singleton as described above) we created 3 X 3 confusion
matrices over the set of genotype calls (reference homozygous,
heterozygous, alternative homozygous) to describe all nine
possible WGS vs. WES truth set genotype calls for the target
sample. The diagonals of these confusion matrices reflect sites
with concordant calls between the WGS vs. WES truth set (i.e.,
they are correct) and off-diagonals represent discordance, and
thus potential errors (i.e., incorrect). For example, the sum
of the middle column will represent all heterozygous sites
in the WES truth set. The middle element of this column
represents sites that were also called heterozygous in the
WGS data (i.e., correctly called sites). The top (bottom) ele-
ment represents a genotyping error in the WGS data where
the site is truly heterozygous but was called homozygous ref-
erence (alternate).

Finding accurately called segregating sites

ML classification techniques, such as variant quality score
recalibration, have been successfully used to find a subset of
sites that are predicted to be truly segregating in a sample.
However, the authors know of no technique that has been
used to predict whether or not individual genotypes have
been correctly called, and as such downstream methods that
presume that the genotypes are correct when they are in fact
incorrect may suffer accordingly. To this end we developed
an ML classification protocol to find a set of segregating sites
where every genotype within is predicted to be correct for
use in our principal components analysis. Broadly, this protocol
uses the comparison of the WGS and WES truth set to train
several largely disparate classifiers. The classifiers are then
used to predict the accuracy of individual genotypes across the

genome. We note that this protocol may introduce some level
of bias with respect to the agglomerative properties of sites
(owing to the increased difficulty in calling heterozygous vs.
homozygous genotypes) as opposed to individual genotypes,
and as such this approach would be undesirable for evaluating,
say, the site frequency spectrum.

More specifically, the ML suite Weka version 3.6.8 (Hall
et al. 2008) was used to classify the WGS genotype data at
all called segregating sites, with the aim of finding a subset
of very high quality sites. Using the definition of correct from
our profiling of errors, we collected the set of all genotypes
that were incorrectly called in the genome, and a random
and equally sized sampling of genotypes that were called
correctly for both our NLE and our non-NLE (SSY) sample.
A variety of features from the GATK output (see Supporting
Information for the entire list) as well as whether the call is
from the NLE or the non-NLE sample, and the combined
P-value of the distribution of read depths observed at the
site were used in the ML analysis. Using the various features,
we generated a training set and evaluated the performance
of a variety of classifiers using 10-fold cross-validation. Four
techniques—multilayer perceptron, ridor, rotation forest, and
classification by regression—showed reasonable performance
(75-85% accuracy). After various optimization procedures, we
classified a genotype call as correct if all four classifiers pre-
dicted that the genotype was correct, and we classified a site as
correct if all genotypes at a site were classified as correct.
Principle Components Analysis (PCA) was performed using
smartpca (Patterson et al. 2006) and visualized using R.

ABC analysis

Our ABC framework was designed to (a) identify the most
likely species topology for the four gibbon genera that
underwent WGS and (b) estimate key parameters of the
gibbon speciation process (specifically effective population
sizes and divergence times) (more detail can be found in the
Supporting Information).

Data: ABC analysis was performed on two datasets containing
independent loci of small enough length such that intra and
interlocus recombination could reasonably be ignored. Set
1 included 12,413 nongenic loci consisting of 1 kb of total
callable sequence across a contiguous stretch of no more than
3 kb separated by at least 50 kb and at least 50 kb from the
nearest exon. Set 2 included 11,323 genic loci consisting of
200 bp of total callable sequence across a contiguous stretch of
no more than 4 kb separated by at least 1 kb (this distance will
likely violate our assumption of independence but increasing
this distance substantially decreased the number of usable loci
and thus reduced the accuracy and precision of our inference
to a greater extent), with an allowance of a maximum of 100
bp of the locus lying adjacent to an exon and the rest lying in
the exon (Figure S1). In addition to the masks and coverage
filters described above, we also masked CpG consistent sites as
well as conserved phastCons (Siepel et al. 2005) elements
inferred from primate genomes with a further 100 bp padding
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either side of the element. Variant sites were polarized against
the aligned human reference genome, hg19.

Phylogeny models and parameter priors: We treated all
possible phylogenetic relationships among the four gibbon
genera as distinct models (including, where applicable, the true
polytomy model). The models are described by two classes of
parameters, mean population nucleotide diversity, 6, and branch
lengths, 7, in units of expected number of substitutions (thus
mutation rates per site per generation do not need to be explic-
itly stated during the analysis). Priors ranged between 0.0001
and 0.03 for all 6 and 7 parameters (a justification for these
prior ranges is given in Supporting Information). Unless other-
wise stated, all prior distributions for all demographic parame-
ters (8 and 7) are all uniformly distributed on a log;o (X) scale.

Simulations: Coalescent simulations of demographic models
and parameters were performed using a version of ms (Hudson
2002) modified for Python that allowed fast parallel processing
to allow us to efficiently simulate the thousands of loci seen in
our observed data. To account for mutation rate heterogeneity
among loci, we estimated relative sequence divergence for all
loci, taking the average sequence divergence for each of the
eight gibbon individuals from hg19. These individual locus esti-
mates were then normalized around a mean of 1, allowing us to
follow the approach of Rannala and Yang (2003) and scale 6
for each individual locus in our demographic simulations.

Stochastic error modeling: We used the error profiles for the
singleton and nonsingleton categories described above in Vok
and Monty to construct an error model E = <S, M> for a par-
ticular sample that could transform perfectly correct data gen-
erated by coalescent simulations into data reflective of the
error processes that are likely to have occurred during whole
genome sequencing and postprocessing. We found that with
our bioinformatic pipeline, the total number of observed single-
tons was always less than or equal to the true number. There-
fore S was calculated as the proportion of missing singletons,
or the probability of not calling a true singleton in the WGS
data. During a coalescent simulation of genetic data, S reflects
the rate at which true singletons will be hidden or dropped and
the genotype called as homozygous reference. To construct M,
we took the 3 X 3 confusion matrix generated for nonsingle-
tons and divided the number in each element of the matrix by
the sum of all elements within their respective columns. During
a simulation of genetic data, for any site not classed as a true
singleton but still segregating, the values within a particular
column of M reflect the probabilities of a multinomial distribu-
tion that determines the rate that a true genotype of a particu-
lar type will be transformed to one of the two other genotypes
or stay the same.

To apply our error correction to (a) nonexome regions in
the two target samples, and (b) nonexome regions in the other
six samples for which there was no WES, we constructed
separate E models for each read depth =7X (ie., we con-
structed E;, the estimated error rate at a particular read-depth
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i). This allowed us to construct an overall E model for a partic-
ular sample, regardless of whether it was one of the two target
samples or not, by taking a weighted average of E; with
weights determined by the empirical distribution of read
depths at the specific regions of interest. The E; models for
Vok and Monty were used for NLE and non-NLE samples, re-
spectively, to take into account any potential mapping biases.

Ancestral state misidentification adjustment: The 2%
ancestral state misidentification was incorporated into
simulations by calculating the expected number of sites to
experience a mutation along the hgl9 lineage for each locus
(1000 bp X 2% = 20 sites). The number of sites to actually
“flip” (i.e., assign the wrong ancestral state) for each locus
during a simulation is drawn from a Poisson distribution with
this mean. These sites are then randomly assigned to a position
along the locus with equiprobability, though only positions that
are found to segregate among the gibbon chromosomes need
to be flipped computationally.

Summary statistics: We computed the following summary
statistics to describe the observed and simulated data for
every pair of populations across all loci: mean number of
shared derived polymorphisms, mean number of private
derived polymorphisms in each population, and the mean
number of private fixed sites in each population. We also
explored including the variance of these summary statistics
across all loci but found they added little to our ability to
infer parameters in the model while contributing more noise
to the partial least squares (PLS) transformation and re-
duced the proportion of correctly inferred simulated topol-
ogies using simulated pseudo-observed data.

Inference: We used the logistic regression (LR) method pre-
viously described (Fagundes et al. 2007) to perform model
choice. When estimating model parameters, we utilized ABC-
toolbox (Wegmann et al. 2010), which implements a general
linear model (GLM) adjustment (Leuenberger and Wegmann
2010) on retained simulations. Before ABC analysis for param-
eter inference, the full set of summary statistics was transformed
into PLS components (Wegmann et al. 2009) and we used the
change in root mean square error (RMSE) to guide the choice of
number of components. The 1% of simulations closest to the
observed data were retained for the GLM (parameter estima-
tion) and LR (model choice) adjustments.

G-PhoCS analysis

The Markov chain Monte Carlo (MCMC) Bayesian coalescent-
based method described by Gronau et al. (2011) was performed
using the software G-PhoCS to estimate 6 and T values for a bi-
furcating tree (we ignored the effect of migration). On this
occasion, we included a human haploid sequence (hgl9) as
an outgroup for the overall gibbon phylogeny (rather than just
to infer the ancestral state as in the ABC analysis). The same
12,431 1-kb loci and the bifurcating species tree with the high-
est posterior probability from the ABC analysis described above
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were utilized and the mutation rate was fixed individually for
each locus as above using the normalized divergence values.
The gamma prior for 6 was set to be relatively broad and the
same for all present and ancestral populations with shape, a =
2 and rate, 3 = 1000. Gamma priors for T were also set to be
relatively broad, with the « value always 2. However, either (a)
B was set as 200 for all T-values or (b) individual B-values were
set for each 7 such that the mean value reflected rough esti-
mates from the ABC analysis or the human/gibbon split time
from Carbone et al. (2014) (Table S1). We ran three indepen-
dent MCMC chains for both prior settings a and b. We allowed
10,000 samples as burn-in followed by 100,000 samples for
estimating parameters. The Markov chain converged to statio-
narity much quicker than the utilized burn-in period, and all six
runs converged to the same stationary distribution. Results were
processed using the software Tracer (http://tree.bio.ed.ac.uk/
software/tracer/).

Results
Second generation sequencing and validation

We performed second generation WGS on two individuals
(one male and one female) from each of the four gibbon genera
(Table 1). For our Nomascus samples, represented by the spe-
cies leucogenys (NLE, the northern white-cheeked gibbon), the
two individuals examined differed from the (NCBI Project
13975 GCA _000146795.1) nomLeul reference genome. For
our Hylobates samples (the most diverse genus with ~13 spe-
cies), we examined one individual each from the H. moloch
(HMO, Javan gibbon) and H. pileatus (HPI, pileated gibbon).
Our Symphalangus sample is represented by two individuals
from the species syndactylus (SSY, Siamang gibbon). It is im-
portant to point out that the two Hoolock samples from the
leuconedys species (HLE, Eastern hoolock gibbon) represent
the only wild-born individuals present in the study, whereas
all other individuals were captive born (i.e., offspring of indi-
viduals living in zoos). We also mention that matings between
different gibbon species (and even different genera) are known
to result in viable offspring in captivity (Myers and Shafer 1979;
Mootnick 2006; Hirai et al. 2007). If any of the individuals in
our sample are indeed hybrids between different species, our
analysis may be affected in unexpected ways.

After postprocessing the sequence data, we obtained a mean
coverage of 15X (min = 11.5X, max = 19.5X) (Figure S2). As
previous work has indicated a relatively high divergence be-
tween gibbon genera, we attempted to incorporate potential
reference bias into our postprocessing by utilizing a higher sub-
stitution rate (1.5%) when mapping sequence reads for non-
NLE samples, and by using a hybrid mapper, Stampy (Lunter
and Goodson 2011) to increase sensitivity. To validate our
variant calling, we performed high coverage WES on one
NLE individual and one non-NLE sample (the male SSY sam-
ple). Mean coverage for WES data were 116X (compared with
14X for WGS data) and 64X (compared with 13X for WGS
data), respectively Human-based exome capture has been

shown to be effective in primates as diverged from humans
as macaques (Jin et al. 2012). Utilizing only exome calls with
coverage between 30X and 200X we found slightly greater
concordance between the WGS and WES data for the NLE
(99.6%) vs. non-NLE samples (99.4%) (Table S2). Noticeably
when only examining singleton variants, calling was markedly
better in the reference taxa (~99% of exome-called sites iden-
tified in the WGS data) than in the nonreference taxa (~96%),
suggesting reference biases may still exist in our data for rare
variants in nonreference taxa.

Genetic diversity among gibbon genera

Within genera diversity, assessed for this dataset by Carbone
et al. (2014), demonstrated that NLE samples had the highest
level of nucleotide diversity (w ~ 2.2 X 1073), while values as
low as ~7.3 X 10~ were observed in the HPI sample. Nucle-
otide diversity for the HMO sample was also relatively high at
~1.7 X 1073, followed by SSY (~1.4 X 1073), and then the
two wild-born HLE (~8 X 1073). By way of comparison,
ranges from ~0.5-1.0 X 1072 in humans, 1.8 X 103 in west-
ern lowland gorillas, and 2.3 X 1072 in Sumatran orangutans
(Prado-Martinez et al. 2013). To examine the relative levels of
genetic differentiation among the gibbon genera we performed
PCA on the individual samples. For this analysis we examined
diallelic SNPs called in all individuals. High-quality SNPs were
identified by using concordance with the WES data to train
a ML algorithm to predict highly confident genotype calls
across the whole genome and in samples that did not undergo
WES. In addition, to ensure independence of SNPs, we ran-
domly selected sites that were separated by at least 100 kb
when on the same scaffold. This resulted in a dataset of 25,531
high-quality genome-wide independent SNPs. The first four
principal components accounted for 40.2, 31.2, 24.6, and
3.5% of the variation, respectively (Figure S3, A and B). The
four genera showed substantial genetic differentiation and
were clearly separated in the PCA plot in the first two compo-
nents, though no clear intergenera phylogenetic relationship
emerged. Individuals from the same species showed high sim-
ilarity suggesting limited intergenera hybridization or contami-
nation. The two Hylobates species could be clearly distinguished
in PC4. We were also able to reproduce the same patterns when
only using a random subset of ~200 SNPs (Figure S3, C and D),
suggesting it may be possible to perform relatively low coverage
shotgun sequencing from a number of different gibbon species
and use a similar approach to this in order to identify a small yet
powerful set of species-specific SNPs. This could be particularly
important for management of gibbons in zoos when it can often
be difficult to distinguish different species or even genera based
on fur alone, sometimes leading to accidental hybrids.

A coalescent-based ABC analysis of the
gibbon phylogeny

Unless species branch lengths are several orders of magnitude
larger than the expected time to the most recent common
ancestor of sequences within a species, it is important to model
stochasticity in the distribution of gene trees across loci when
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Table 1 Gibbon samples undergoing second generation sequencing

Chr no. Genus Species Common name Code Sex Origin Mean coverage
52 Nomascus Nomascus leucogenys Northern white-cheeked NLE M Parents WB 13.78
F Parents WB 11.50
50 Symphalangus Symphalangus syndactylus Siamang SSY M Sire WB, dam CB 12.80
F parents CB 19.53
38 Hoolock Hoolock leuconedys Eastern hoolock gibbon HLE M WB 19.15
F WB 14.36
44 Hylobates Hylobates pileatus Pileated gibbon HPI M Parents WB 14.33
44 Hylobates Hylobates moloch Javan gibbon HMO F Sire WB, dam CB 12.96

WB, wild born; CB, born in captivity.

inferring an underlying species tree (Rosenberg and Nordborg
2002). Current Bayesian coalescent-based methods such as
BEAST (Drummond and Rambaut 2007) that explicitly take
into account sequence and population divergence simulta-
neously to infer species trees are generally computationally
intractable for large datasets (Bryant et al. 2012). Therefore,
to infer the species topology for gibbon genera we developed
an ABC (Beaumont et al. 2002) method for inference of a spe-
cies tree with four taxa. The method can also infer species
divergence times and effective population sizes for a given
topology, can handle large amounts of sequence data, is not
dependent on haplotype phase, and incorporates information
derived from our modeling of errors from comparing WGS
with high coverage WES data.

Analogous to the Bayesian approach of Gronau et al
(2011), which uses an analytical derivation to determine the
likelihood of the full data given typical population genetic
parameters, the data required for this ABC method are short,
independent loci as we assume no intralocus recombination
and free recombination between loci. The latter is a necessary
convenience given that no recombination map is currently
available for gibbons. Thus, we assembled a set of independent
“nongenic” sequences that mapped at least 50 kb away from
genes (~12,000 1-kb loci) and that excluded CpG consistent
sites as well as evolutionarily conserved elements (Siepel et al.
2005) (Figure S1). Mutations detected in these loci are ex-
pected to represent neutral variation and to evolve at a rela-
tively constant rate. To reduce reference-mapping bias, we also
assembled an analogous set of independent “genic” loci that
span exons (~11,000 200-bp loci) and that should have lower
diversity, recognizing that these loci may have been subjected
to natural selection, which may bias any parameter estimates.

Analysis of pseudo-observed data generated by simulations
demonstrated that we were able to detect the correct topology
from randomly drawn datasets using our method 88.4% of the
time, with the correct model among the three highest posterior
probabilities 99% of the time (Figure S4). Analysis of a more
targeted set of pseudo-observed data demonstrated that the
method is only likely to fail when an internal branch is ex-
tremely small (almost instantaneous in evolutionary terms)
or when the total height of the tree in units of expected num-
ber of substitutions is on the order of 0.001 (equivalent to ~1
million years for apes) (Figure S5), which is unrealistic for
gibbons.
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As most ABC analyses are based on performing simulations
to approximate an otherwise analytically intractable likelihood
function, we also attempted to stochastically model sequence
errors (missing singletons and incorrect genotype calls at other
segregating sites) that are likely to have occurred in the real
second generation sequencing data. Errors were introduced
into coalescent simulations by an E model constructed by
comparing the WGS with the high coverage WES data. By
incorporating this E model we found through simulated
pseudo-observed data that we could infer more accurate esti-
mates of 6 and T under very simple demographic scenarios
(one population with a constant size 6 through time and two
populations of constant size that diverged at some time, 7, in
the past) (Figure S6). A full description of the above valida-
tion of our ABC framework using pseudo-observed data are
given in Supporting Information.

Prior to the ABC analysis of the real data we examined
the one-dimensional distribution for each individual summary
statistic from 10,000 random simulations from the 6 and T
parameter space and found a good fit to our nongenic and
genic observed data, while a PCA also demonstrated a good
multidimensional fit (Figure S7).

Table 2 shows the posterior probabilities from the ABC
analysis for all phylogenetic models for the observed data
for both the nongenic and genic loci using the corrected
(with stochastic errors introduced via the E model) and un-
corrected coalescent simulations (a total of four analyses). No
topology dominates the analysis, with three to four topologies
having posterior probabilities >10% in the corrected simula-
tions. The best topology using nongenic and genic loci for the
corrected simulations differ, and both still maintain relatively
low posterior probabilities of <19%. Two topologies appear
most prominent with posterior probabilities >10% in all four
analyses and the highest means across all four analyses and
both (genic and nongenic) corrected analyses. One is the most
frequently observed topology in the sequence divergence anal-
ysis (((SSY, HLE), NLE),(HPI, HMO)) of Carbone et al. (2014)
and the other is a related topology where (HPI, HMO) and
NLE are swapped as the most external groups with HLE and
SSY remaining as sister taxa. Together the posterior probability
for both these related topologies sum to 30-32%. However, in
general the posterior probabilities are lower than typically ob-
served in our pseudo-observed datasets, suggesting that we
have little confidence in the true topology. This is consistent


http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/FigureS1.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/FigureS4.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/FigureS5.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/FigureS6.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/174425SI.pdf
http://www.genetics.org/content/suppl/2015/03/12/genetics.115.174425.DC1/FigureS7.pdf

Table 2 Posterior probabilities for the 15 possible four-population topologies for nongenic and genic loci

Nongenic Genic
Topology Corrected Uncorrected Corrected Uncorrected
(((SSY,HLE)NLE)(HPI,HMO)) 0.16 0.15 0.19 0.15
((((HPI,HMO)NLE)SSY)HLE) 0.19 0.14 0.1 0.08
(((SSY,HLE)HPI,HMO))NLE) 0.14 0.23 0.13 0.19
(((HPI,HMO)NLE)HLE)SSY) 0.13 0.1 0.06 0.05
(((NLE,HLE)SSY)(HPI,HMO)) 0.06 0.05 0.10 0.08
(((HPL,HMO)SSY)NLE)HLE) 0.07 0.06 0.08 0.07
((((HPI,HMO)SSY)HLE)NLE) 0.05 0.07 0.07 0.14
((HPI,HMO)NLE)(SSY,HLE)) 0.05 0.04 0.05 0.03
(((NLE,SSY)HLE)(HPI,HMO)) 0.03 0.03 0.06 0.04
(((NLE,HLE)(HPI,HMO))SSY) 0.04 0.03 0.04 0.04
(((NLE,SSY)(HPI,HMO))HLE) 0.03 0.03 0.03 0.02
((((HPI,HMO)HLE)SSY)NLE) 0.02 0.04 0.03 0.06
(((HPI,HMO)HLE)NLE)SSY) 0.02 0.02 0.02 0.02
((HPI,HMO)SSY)(NLE,HLE)) 0.01 0.01 0.03 0.02
(((HPI,HMO)HLE)(NLE,SSY)) 0.01 0.01 0.01 0.00

Boldface type indicates the topology identified using sequence divergence in Carbone et al. (2014).

with the hypothesis of a rapid radiation of gibbon species from
a large ancestral population.

The simplest phylogenetic description of this process would
be a four-way hard polytomy. Therefore we constructed
an additional model with all four genera diverging at the
same time and analyzed this scenario within the same ABC
framework as the previously examined 15 bifurcating topol-
ogies (i.e., we examined 16 different models in total). This
did not affect our ability to infer the correct model using
pseudo-observed datasets. As with considering only strictly
bifurcating topologies, we were able to detect the correct
topology from randomly drawn datasets from all 16 models
87.3% of the time. Of the 16 individual models, the instan-
taneous model was the one with the lowest proportion of
correctly predicted pseudo-observed datasets but was still
high at 82.4%.

Despite having the lowest predictive value, when we
examined the real data the posterior probability for the
instantaneous model ranged from 87-90% for both the
nongenic and genic loci and for the corrected and uncorrected
simulations (Table 3). The posterior probabilities of the 15
bifurcating topologies after the addition of the instantaneous
model were necessarily much lower but still highly correlated
with the previous values with r? ranging between 0.91 and
0.98. Thus, our ABC analysis strongly supports a relatively in-
stantaneous hard polytomy for the divergence of the four gib-
bon genera over that of a particular bifurcating topology.
Evidence for this can also be seen visually by examining a
PCA of the summary statistics for 1000 random datasets from
each of the 16 models, with the instantaneous model lying
within the center of the cloud of all models and the observed
data found firmly within this part of the cloud (Figure S8).
Other polytomy combinations may also fit the data (for exam-
ple a model with the initial divergence of three lineages, fol-
lowed by a later Hoolock and Symphalangus divergence) but
our ability to reliably discriminate such additional intermediate
models is likely to further worsen given our instantaneous

model already shows reduced predictive ability compared to
the other fully bifurcating models.

Estimation of parameters describing
gibbon demography

To estimate when this rapid radiation may have taken place,
we constructed a model where all four genera diverge simulta-
neously with the addition of a subsequent divergence of the two
Hylobates species. This resulted in a model with seven 6 and two
T parameters. The summary statistics from the nongenic loci
were transformed into PLS components to infer these parame-
ters. Parameter estimates and posterior distributions are shown
in Table S3 and Figure S9. These results are based on 15 PLS
components, the value at which the largest reduction in the
RMSE was observed across all parameters, Figure S10, and for
which the C.I. values for T were considered relatively reliable
based on how often the true value fell within the estimated
95% C.I. using 1000 pseudo-observed datasets (Veeramah
et al. 2012).

Observed values of 7 described above were within the
95% C.I. for the 6 values estimated by the ABC analysis for
present-day species and showed the same relative pattern
with the highest value in the NLE and lowest value in the
HPI sample. The divergence time, 7,, for the two Hylobates
samples was ~50% less than that for the divergence time of
the four gibbon genera, 1o, which is consistent with the relative
difference in sequence divergence of ~50% seen in Carbone
et al. (2014). Because the priors were log;o scaled, the associ-
ated 95% C.I. values potentially could be larger in absolute
values (i.e., 10" Va) than if the observed posterior distribution
had been shifted toward a smaller branch length. Therefore,
we reran the ABC analysis using unscaled flat priors for the two
7 values, which resulted in highly similar median values but
much narrower 95% C.1.’s (Table 4, Table S4, Figure S11). We
note that these C.I.’s were somewhat anticonservative as
assessed by pseudo-observed datasets (see column “HDPI
95% fit” of Table 4 and Table S4). When we assume a . of
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Table 3 Posterior probabilities for the 15 possible four-population topologies as well as a instantaneous four-way hard polytomy for

nongenic and genic loci

Nongenic Genic
Topology Corrected Uncorrected Corrected Uncorrected
Instant 0.874 0.859 0.902 0.899
(((SSY,HLE)NLE)(HPI,HMO)) 0.024 0.023 0.018 0.017
(((HPI,HMO)NLE)SSY)HLE) 0.024 0.023 0.011 0.011
(((SSY,HLE)(HPI,HMO))NLE) 0.023 0.037 0.016 0.018
(((HPI,HMO)NLE)HLE)SSY) 0.015 0.016 0.007 0.008
((((HPI,HMO)SSY)NLE)HLE) 0.008 0.007 0.010 0.007
(((HPI,HMO)NLE)(SSY, HLE)) 0.007 0.006 0.005 0.002
(((NLE,HLE)SSY)(HPI,HMO)) 0.007 0.007 0.009 0.008
((HPI,HMO)SSY)HLE)NLE) 0.005 0.008 0.007 0.013
(((NLE,HLE)(HPI,HMO))SSY) 0.003 0.003 0.004 0.005
(((NLE,SSY)HLE)(HPI,HMO)) 0.002 0.002 0.002 0.003
(((HPI,HMO)HLE)NLE)SSY) 0.002 0.002 0.002 0.002
(((NLE,SSY)(HPI,HMO))HLE) 0.002 0.002 0.001 0.001
(((HPI,HMO)HLE)SSY)NLE) 0.002 0.004 0.002 0.003
(((HPI,HMO)SSY)(NLE,HLE)) 0.001 0.001 0.003 0.002
(((HPI,HMO)HLE)(NLE,SSY)) 0.001 0.000 0.000 0.000

1 X 1077 per site per year * 3/4 (to take into account that we
excluded CpG sites) (Hodgkinson and EyreWalker 2011) this
results in an estimate for the time of the gibbon radiation of
1.6 + 3.5 = 5.1 MYA (71;—75 combined limits of 95% C.I. 2.5—
7.7 MYA) and a split time of 1.6 MYA (95% C.I. 0.6-2.9
MYA) for the two Hylobates samples. In addition, assuming
10 years per generation for gibbons (Harvey et al. 1987) and
thus a w of 7.5 X 10~? per generation, N, for extant species
varies from 57,000 (NLE) to 7500 (HPI). Interestingly, the
ancestral gibbon N, is estimated to be much larger at
132,000 (107,000-162,000) (Figure 1A) as would be ex-
pected if substantial ILS was observed. It should be noted
that the estimate of the ancestral Hylobates population size
(based on 81;) may be somewhat unreliable as the regressed
posterior distribution shows a major shift from the raw
retained posterior distribution (Figure S11) while this was
also the 6 value for which the largest number of PLS compo-
nents was needed to obtain a reasonable reduction in the
RMSE (Figure S12).

One potential source of error in estimating parameters is
ancestral state misidentification due to back mutations
along the human lineage, which was used as an outgroup
(Hernandez et al. 2007). Our simulated data assumed an
infinites sites model. Assuming a human-gibbon split time
of 16.8 MYA and w of 1 X 10~? per site per year, each site
has ~98% chance [(1-1 X 1079) " 16:800,000] of not experi-
encing a substitution along the human branch. Therefore, we
conducted the ABC parameter estimation on a set of 10°
simulations where we incorporated a 2% rate of random an-
cestral allele misidentification. Though this binary model of
back mutation is highly simplistic (e.g., it does not take into
account mutations to another base-pair type or trinucleotide
context), we found it had only minimal impact on our 95%
C.L’s compared with the same number of simulations that did
not incorporate some ancestral state misidentification error
(Table S5). This suggests that our divergence time estimates
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may be only slightly underestimated by not accounting for
this error.

To investigate the effect of imposing a model of instantaneous
speciation rather than bifurcating species divergence on our
parameter inference, we also modeled the five gibbon species
assuming the best sequence phylogeny from Carbone et al
(2014) and that was also suggested by our ABC model choice
analysis, [(((SSY, HLE)NLE) (HPLHMO))] (Table S6, Figure 1B,
Figure S13, Figure S14). The median estimates of the posterior
distributions for the seven 6 parameters common to both the
bifurcating and instantaneous models (five extant population
values as well 0, and 6,,) were similar, while the 95% C.I.
for 61 and 0, were broad and uninformative. Consistent with
the rapid speciation hypothesis (even when allowing bifurcating
speciation), T2+ T3+ T4 Was roughly equivalent to T, for the in-
stantaneous speciation model, with 75 and 74 being an order of
magnitude smaller (i.e., very short internal branch lengths).

Table 4 Posterior estimates for an instantaneous speciation model
for gibbon genera using a flat prior for =

Posterior estimation?

HDPI 95

Parameter HDPI 95% fit® Mode Median Lower  Upper

OnLE 0.930 1.71E-03 1.72E-03 1.07E-03 2.73E-03
Ossy 0.936 9.25E-04 9.24E-04 5.97E-04 1.43E-03
OLe 0.937 4.17E-04 4.17E-04 2.63E-04 6.58E-04
Opl 0.968 2.24E-04 2.25E-04 1.30E-04 3.92E-04
Oumo 0.974 8.29E-04 8.32E-04 4.13E-04 1.68E-03
011 0.958 3.54E-03 3.80E-03 7.69E-04 1.90E-02
07anc 0.964 3.97E-03 3.97E-03 3.23E-03 4.86E-03
T 0.905 1.05E-03 1.23E-03 5.01E-04 2.18E-03
T 0.911 2.69E-03 2.59E-03 1.41E-03 3.63E-03

¢ A metric demonstrating how often known simulated values (n = 1,000) fell within
the calculated 95% C.I., which gives a guide to the reliability of these C.I.'s for real
data.

b Calculated using 15 PLS components, 1,000,000 simulations, and retaining 1%.
All priors ranged from 0.0001 to 0.03 when logo scaled.
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We also applied the 1 kb data to the method of Gronau
et al. (2011) as this approach is based on a similar model (i.e.,
the coalescent with population divergence) as our bifurcating
ABC analysis; however, it should be more accurate for param-
eter estimation as it is based on an exact model likelihood
rather than an approximation (although it does not currently
incorporate the possibility of sequence error). While the imple-
mentation for estimating divergence times is slightly different
(e.g., our ABC approach uses time intervals between diver-
gence events rather than absolute divergence times from the
present), the results are very similar: very short internal branch
lengths among gibbon genera and a total gibbon genera di-
vergence time of ~5-6 MYA. However, as expected when using
the full data rather than an approximation of it (Csilléry et al.
2010), the 95% C.I.’s estimated by G-PhoCS (Table S1) were
substantially narrower than those estimated by ABC, which are
likely inflated because of a loss of information through the use
of insufficient summary statistics.

Allele sharing and D-statistic analysis

Because of the small sample sizes and large divergence
times, it is not expected that we would have the ability to
infer gene flow if added as an additional parameter (whether
an instantaneous pulse or continuous migration after di-
vergence) in our ABC analysis. Although intergenera hybrids
have been observed in captivity, they are almost certainly
infertile as a result of the complicated patterns of homology
that would disrupt meiotic pairing. Moreover, such matings
have never been observed in the wild, even for sympatric
species (Hirai et al. 2007). Therefore, it is unlikely that gene
flow would continue for long after divergence as is typi-
cally modeled using isolation with migration approaches. Of
course, this assumption depends on the rate of karyotypic
change, which is thought to have occurred relatively soon
after divergence and to have contributed to the speciation
process (Carbone et al. 2014). Thus, accounting for biologi-
cally meaningful gene flow would increase the complexity of
the model beyond what can likely be reliably inferred using
ABC for this dataset.

However, a fairly simply measure that can help to infer
admixture events (although not necessarily help to reveal
the mode, timing, or extent of admixture) is the D-statistic
(Durand et al. 2011). We first examined patterns of allele
sharing across the whole genome by tallying the state of each
genus at variable sites by (a) choosing sites that met certain
quality criteria (as determined by our masks) and that were
homozygous for the same allele in both individuals from a ge-
nus (filtl), (b) randomly sampling one allele from the two
genotypes from a genus for sites that met the same quality
criteria as a (filt2), or (c) randomly sampling one read from
both individuals in a genus at a site (filt3) (Table S7a). We also
repeated this at the species level, using only the highest cov-
erage sample from each species (in this case filt1 reflects ho-
mozygous allele sharing) (Table S7c). Results were not
qualitatively different using these different filtering criteria.

Consistent with our ABC analysis and Wall et al. (2013),
SSY and HLE share the largest number of alleles. Interestingly,
while NLE and the two Hylobates samples share a fairly low
number of alleles compared with other pairwise comparisons,
they both share more alleles with SSY than HLE. We per-
formed a D-statistic analysis that demonstrated this excess
sharing was statistically significant (Table S7, b and d). Under
the assumption that SSY and HLE diverged last among the four
genera as indicated in our ABC analysis, such a pattern is
consistent with a model involving two independent gene flow
events into SSY from both NLE and Hylobates after they di-
verged from HLE. An alternative model that does not invoke
postdivergence gene flow involves the maintenance of long-
term population structure between the ancestors of HLE and
the ancestral population giving rise to the other gibbon genera
(Figure 2). We attempted to incorporate population structure
into our ABC framework but found via simulations that we
could not distinguish between these models, especially given
a parameter space consisting of short internal branch lengths
as observed in this dataset (data not shown).

We also used the D-statistic to examine whether there
was any evidence of unbalanced allele sharing between the
two Hylobates species. While the D-statistic slightly favored
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more allele sharing between HMO and the other three genera,
the values were generally quite low and the Z-scores were only
greater than |2| under filtering scheme 2.

Discussion

Previous attempts to resolve the phylogenetic relationships
among the four gibbon genera based on different genetic
systems (karyotypes changes, mtDNA, the Y chromosome,
and short autosomal sequences, and ALU repeats) resulted
in widely discordant phylogenies. All samples utilized in this
study were also analyzed as part of the Gibbon Genome
Project (Carbone et al. 2014) where the best supported overall
consensus tree based on genome-wide sequence divergence
was found to be (((SSY, HLE), NLE),(HPI, HMO)). However,
all four gibbon genera demonstrated a narrow range for se-
quence divergence (1.08-1.12%; mean 1.10%). Here, we de-
veloped a potentially powerful species tree analysis framework
for four taxa that made use of genome-wide second generation
sequencing data and took into account discordant gene trees
and applied them to the problem of the phylogenetic relation-
ships of the four gibbon genera. Despite the availability of
whole genome sequence data and the methodology demon-
strating success with most simulated pseudo-observed datasets,
we could not confidently resolve the phylogenetic relationships
between Nomascus, Symphalangus, Hylobates, and Hoolock, al-
though Symphalangus and Hoolock may represent the most re-
cently diverged genera. This latter result is consistent with the
best consensus gene tree identified by Carbone et al. (2014)
and Wall et al. (2013).

The most well-supported bifurcating phylogeny is charac-
terized by long external branch lengths and very short internal
branch lengths, pointing to a rapid radiation of the four gibbon
genera from a large ancestral effective population of ~10°
individuals. Indeed, when we included an additional model
representing a four-way hard polytomy in our ABC analyses
we found substantial support for this scenario of instantaneous
divergence over any of the individual bifurcating topologies (at
least at the level of resolution of branch lengths afforded by the
data). This demographic scenario would explain previous
observations of genome-wide ILS (Wall et al. 2013) and dis-
cordant phylogenies across smaller datasets. However, we note
that an alternative explanation is that the ancestral gibbon
population already exhibited structure prior to the divergence
of the four gibbon genera.

It is possible that such a stark restructuring of the gibbon
population during this proposed radiation event was driven by
some major climatic or geological shift. This is particularly
likely as gibbons reside predominantly on the relatively
shallow Sunda continental shelf of Southeast Asia. At various
times, sea level changes and volcanic activity significantly
altered the amount of habitable land (i.e., above sea level) in
this region. As gibbons live a highly arboreal lifestyle, any re-
duction or fragmentation of their native forest habitats could
have led to extreme genetic isolation between geographically
dispersed populations. This, coupled with a rapid evolution of
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Figure 2 Cartoon of proposed model of ancestral population structure
among gibbon genera.

karyotype differences, could have driven the speciation process
among these gibbon taxa.

Uncertainty in timing of the gibbon radiation

It is important to note that associating the timing of speciation
with the geological or climatological record is complicated by
uncertainty in how we calibrate our estimates of 7 (i.e., our
choice of mutation rate). A phylogenetic estimate of . for great
apes that is often used is ~1 X 1079 per site per year, an
estimate based on calibrating sequence divergence with the
fossil record (Takahata and Satta 1997; Nachman and Crowell
2000). This would place the radiation of gibbon genera within
the early Pliocene ~5 MYA. Interestingly, it has been proposed
that the Sunda shelf was largely one land mass up to 5 MYA
(Outlaw and Voelker 2008), after which sea levels began to
rise until ~3 MYA (Cichon et al. 2004) leading to the frag-
menting of the region. There is evidence for an increased rate
of divergence in other plants and animals during this early
Pliocene window (Gorog et al. 2004; Outlaw and Voelker
2008; Akula et al. 2010; Lépez-Guillermo et al. 2010) and thus,
it is possible that gibbon divergence may have been driven by
the same process.

On the other hand, a value of w = 0.5 X 10~2 per site per
year has recently been estimated using direct observation of
mutations in human trios and quartets (Roach et al. 2010;
Kong et al. 2012). Scally and Durbin (2012) attempted to
reconcile the phylogenetic and direct pedigree estimates
with the fossil record (which itself is used to calibrate the
phylogenetic estimate) by invoking the hominid slowdown
hypothesis. Under this hypothesis, the increased body size of
great apes correlates with a decrease in generation time and
a reduction in the annual mutation rate after their divergence
from Old World monkeys. Evidence for this comes from evo-
lutionary comparisons of Great Apes to Old World monkeys
(e.g., humans have a 30% slower evolutionary rate as com-
pared to baboons) (Kim et al. 2006). While generally bigger



than Old World monkeys, the largest gibbons, from the genus
Symphalangus, are approximately half the size of the smallest
great ape, Pan paniscus. Thus, given that gibbons have smaller
body sizes (and shorter generation times) than other apes, it is
not clear to what extent the hominid slowdown hypothesis
would apply.

Decreasing the mutation rate would lead to a Late Miocene
speciation time of up to ~10 MYA, thus encompassing previous
estimates of divergence at ~6-8 MYA based on mtDNA (Chan
et al. 2010; Matsudaira and Ishida 2010; Van Ngoc et al. 2010).
However, fossil calibration-based estimates such as used in these
studies are subject to their own biases (Lukoschek et al. 2012),
while estimates of demography from a single locus (especially
a nonrecombining region of the genome, no matter how well
resolved the gene tree) are subject to large evolutionary sto-
chasticity (Rosenberg and Nordborg 2002). It is noteworthy
that the Y chromosome estimate differs from the mtDNA esti-
mate substantially (5 and 9 MYA, respectively) despite applica-
tion of the same calibration procedures (Chan et al. 2012).

Our results do appear to rule out the hypothesis of Chivers
(1977), which suggests a Late Pleistocene divergence of gibbon
genera. Despite this, the constant formation and destruction of
land bridges during the Pleistocene that drives the Pleistocene
pump hypothesis (Gorog et al. 2004; Akula et al. 2010) may
have contributed to divergence of the several species within
each gibbon genus (for example the pileatus/moloch split we
observe ~1.6 MYA). Though the exact numbers are the subject
of some debate, it is generally accepted that there are at least
7, 6, and 2 different Hylobates, Nomascus, and Hoolock species,
respectively (Van Ngoc et al. 2010; Mittermeier et al. 2013;
Rowe and Myers 2015). Movement during these periods likely
explains the current distribution of Hylobates species both on
the mainland and the islands of Sumatra, Borneo, and Java,
especially when one considers that gibbons probably cannot
swim. Today neighboring gibbon species are largely isolated
from each other by rivers. Further whole genome sequencing
of multiple individuals from additional species, along with the
application of powerful genomic methods to infer gene flow or
admixture between species, will provide invaluable informa-
tion for inferring the relationships among gibbon species across
Southeast Asia. In addition, while it is well recognized that
land bridges certainly formed during the Pleistocene, there is
still great uncertainty as to whether these would have involved
forest canopy or more savannah-like vegetation (Bird et al.
2005). Analysis of patterns of historic gene flow among the
tree dwelling gibbons may help shed light on this process. Re-
cent work using small amounts of autosomal sequence data
(~11 kb) has already found evidence of asymmetrical gene
flow between Hylobates species currently located on different
islands (Chan et al. 2013) while a basic D-statistic analysis in
this article also hinted at the possibility of introgression be-
tween genera after divergence.

Challenges in the use of whole genome sequence data for
estimating demographic parameters: Despite the fact that
we generated whole genome sequences, it is important to

appreciate that the explicit ABC modeling performed here
utilized only a small amount of the total available data. A
pairwise sequentially Markovian coalescent (PSMC) (Li and
Durbin 2011) analysis presented in Carbone et al. (2014)
takes a different approach to utilizing genome-scale se-
quence data. By incorporating patterns of genetic diversity
across individual genome sequences, important insights can
be gained into changing N, through time. To summarize
these findings in the context the ABC demographic analysis
presented here, both the NLE and HMO populations show
major fluctuations in effective population size during the
time frame after gibbon genera diverged, when Pleistocene
geological and climate shifts were taking place.

Composite likelihood methods that evaluate the entire allele
frequency spectrum (AFS) across many populations may also
prove useful for inference in situations such as the one
presented here (Gutenkunst et al. 2009). These methods are
likely to be particularly effective for estimating additional
parameters such as recent size changes and migration when
many individuals are sampled from multiple species compared
to our approach, which uses only a summary of the AFS, though
demographic events on the order of millions of years ago may
still not be tractable regardless of sample size (Robinson et al.
2014). These approaches can also take advantage of recent
methods that allow relatively unbiased estimation of the AFS
from even low coverage second generation sequencing data
(though this currently must be done for each population sepa-
rately). There have also been advances in extending these AFS-
based approaches to many (more than three) populations and
testing alternative scenarios even when using nonnested models
and composite rather than full likelihoods (Excoffier et al
2013), though whether these can reliably be used for contrast-
ing many different models simultaneously in a phylogenetic
context has yet to be explored. One notable limitation of these
approaches is that they assume independence of sites and ig-
nore linkage, and thus inference of migration and admixture is
potentially underpowered (Sousa and Hey 2013).

However, to fully exploit whole genome data for demo-
graphic inference using coalescent methods, it will be vital to
construct genetic maps in gibbons, preferably separately for
each genus, such that recombination can be appropriately
incorporated into any population genetic analysis. In addition,
despite applying a correction factor in our analysis, reference
bias toward Nomascus genomes was evident in our data, and it
is likely that even more reference bias exists than we actually
observe due to the variable karyotypes across genera. It seems
unlikely that further large-scale Sanger sequencing will be used
to link up scaffolds or generate reference genomes for the other
three non-Nomascus genera, while short-read Illumina data are
not suited for this task. However, the application of new se-
quencing technologies with long reads such as the PacBio
(English et al. 2012) and nanopore (Schneider and Dekker
2012) technologies may provide useful and relatively low cost
alternatives to assemble more robust reference genomes. This
should lead to more powerful demographic and evolutionary
analyses of gibbons in the future.
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Using ABC in phylogenetics

There is currently one published generalized ABC phylogenetic
approach (ST-ABC) (Fan and Kubatko 2011). This method
relies on having accurately phased sequence as it treats fre-
quencies of gene tree topologies across loci as the data rather
than summary statistics, and has only been tested and applied
to relatively small datasets. However, it has also been ques-
tioned whether ST-ABC can accurately approximate the poste-
rior distribution, as it relies on expectations of the distribution
of gene trees rather than random simulations that incorporate
sampling variability (Buzbas 2012). Our ABC approach does
not have these limitations. While it could not reliably infer
a particular bifurcating gibbon genera topology with any con-
fidence because of the extremely short internal branch lengths
(as we showed with our additional analysis of an instanta-
neous speciation model, a bifurcating topology may not actu-
ally exist in this case of gibbons), simulations suggest our ABC
approach should allow us to infer the correct species topology
for four taxa in most reasonable cases.

However, it is important to appreciate that the framework
applied here is tailored for this particular dataset involving
unphased genome-wide data from a few individuals per taxa
that diverged within the last 10 million years or so. How it
would scale up with regard to speed with increasing numbers
of samples, and how much accuracy and precision would be
lost with fewer loci requires further investigation. It is
possible that adding variance in the number of shared sites
across loci as a summary statistic may prove useful in this
case. In addition, increasing the number of taxa considered
(even by one) could prove problematic due to a rapid in-
crease in the parameter space (i.e., a large increase in the
number of possible topologies) and an increase in the num-
bers of summary statistics needed to capture the phylogenetic
structure (i.e., the potential impact of the “curse of dimen-
sionality”). Combining more efficient ways of traversing tree
space (Bryant et al. 2012) may help with regard to the former
issue, while choosing a more efficient set of summary statis-
tics (e.g., via PLS) may improve the latter; however, there are
still likely to be limits to how well the data can be summa-
rized in just a few summary statistics for large phylogenies.
Another potential issue of our approach that would place
limits on the possible time depth for the phylogeny consid-
ered is the assumption of an infinite sites mutation model. It
would be trivial to incorporate more complex substitution
models, although this would also increase the computational
burden.

With these improvements in mind, the ABC family of
methods has the potential to provide a useful and flexible
phylogenetic tool that balances the need to incorporate
large genomic datasets while taking into account gene tree
uncertainty and variation in a coalescent framework. Geno-
mic data are being generated at a rapid pace for a diverse set
of species and it is clear that phylogenetic methods are
required that can accommodate such data. ABC provides
one approach to do this.
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2" Generation Sequencing

Blood and tissues were obtained in agreement with protocols reviewed and approved by the Gibbon Conservation Center. DNA
was extracted from blood or cell lines, and paired-end libraries were prepared with the Illumina TruSeq chemistry. Libraries
were sequenced on the HiSeq 2000 platform, generating 2x100 bp reads. Four different sequencing centers contributed
sequence data (Table S8). Multiple runs were performed to generate a minimum of 10X mean coverage on each sample after
all processing. Mean coverage ranged from 11.5X to 19.5X (Table S9). Exome capture using the TruSeq Exome Enrichment Kit

(Ilumina) was performed on one NLE sample (Vok, 116x coverage) and one SSY sample (Monty, 64x coverage).

Read Mapping and Variant Calling

Sequences in FASTQ format were trimmed with cutadapt (MARTIN 2011) to remove lllumina TruSeq adapter sequences. Reads
with less than 25 nucleotides left after trimming were dropped, along with their mates. The remaining reads were aligned to
nomLeul with Stampy (v. 1.0.17) (LUNTER and GooDsoN 2011). For the two N. leucogenys (NLE) samples, Stampy was used in its
“hybrid mode” where alignment with BWA (v. 0.5.9) (Li and DurBIN 2009) is attempted first. A substitution rate of 0.001 was
specified, along with BWA minimum seed length of 2, fraction of missing alignments 0.0001, and quality threshold 10. For the
non-NLE samples, stampy was used with a substitution rate of 0.015 (Kim et al. 2011). Local realignment at indel sites was
performed with the Genome Analysis Toolkit (GATK, v. 1.4-37) (McKENNA et al. 2010; DeprisTo et al. 2011). PCR duplicates were

then removed with samtools. Picard (v. 1.70) (http://sourceforge.net/projects/picard/) CleanSam was run on the output. The

two samples from each genus were then merged using Picard MergeSamFiles, and the resulting files were split using samtools
(L1 et al. 2009) into 100 files containing ~180 contigs each to facilitate further parallel processing. The GATK UnifiedGenotyper
was run and Single Nucleotide Variants (SNVs) and indels with a quality score of at least 50 were retained to create a mask of
variant sites to be excluded from base quality score recalibration (BQSR). The BQSR steps were run with the standard set of
covariates, and the resulting files were merged across all samples. The GATK indel realignment tools were then run again to
standardize alignment of indels across the samples. Default settings were used except that “BadCigar” reads were excluded and
BAQ calculation was added. The UnifiedGenotyper from GATK version 2.1-11 was then used to call SNVs and indels in each
genomic part using the “EMIT_ALL_SITES” mode (with the BAQ calculation included) to produce VCF files with data for all

genomic positions. (Version 2.1 was used for this step to allow multiallelic calling). VCFs for all genomic parts were then merged
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using a custom perl script. Annotations were added to specify the consensus quality score of the nomLeul reference sequence
at each position.

Exome sequencing data was processed separately from the shotgun data but using the same bioinformatic pipeline.
The exome targeted regions were lifted over to the nomLeul genome using the UCSC liftOver utility with the default
parameters, and the emit-all VCF of the exome capture data were restricted to these target loci. Sites within these loci with less
than 30x coverage or over 200x coverage for any sample were also removed, while corresponding sites in the whole genome

data with a variant quality less than 20 were called as homozygous reference in all samples.

Finding Accurately Called Segregating Sites

Machine learning classification techniques, such as variant quality score recalibration, have been successfully used to find a
subset of sites that are predicted to be truly segregating in a sample. However, the authors know of no technique that has been
used to predict whether or not individual genotypes have been correctly called, and as such downstream methods that
presume that the genotypes are correct when they are in fact incorrect may suffer accordingly. To this end we developed a ML
classification protocol to find a set of segregating sites where every genotype within is predicted to be correct for use in our
Principal Components Analysis. Broadly, this protocol uses the comparison of the whole genome sequencing (WGS) and whole
exome sequencing (WES) truth set to train several largely disparate classifiers. The classifiers are then used to predict the
accuracy of individual genotypes across the genome. We note that this protocol may introduce some level of bias with respect
to the agglomerative properties of sites (owing to the increased difficulty in calling heterozygous vs. homozygous genotypes) as
opposed to individual genotypes, and as such this approach would be undesirable for evaluating, say, the site frequency
spectrum.

More specifically, the machine learning (ML) suite Weka version 3.6.8 (HALL et al. 2009) was used to classify the whole
genome genotype data at all called segregating sites, with the aim of finding a subset of very high quality sites. Using the
definition of “correct” from our profiling of errors, we collected the set of all genotypes that were incorrectly called in the
genome, and a random and equally sized sampling of genotypes that were called correctly for both our NLE and our non-NLE
(SSY) sample. The following features were used in the machine learning analysis: approximate read depth, the next-best
genotype likelihood, the haplotype score, the read-position bias score, the base quality rank score, the total mapping-quality 0
reads, the root-mean square mapping quality, the fraction of reads spanning deletions, the probability of strand bias, mapping
quality rank sum test, quality by depth, the maximum likelihood expectation of the allele counts and allele frequency, the

quality of the reference base, whether the call is from the NLE or the non-NLE sample, and the combined p-value of the
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distribution of read depths observed at the site. All but the last three features were taken directly from the GATK output. For
the last feature, 2-tailed p-values of the read depth observed at a site for an individual were taken, based on that individual’s
empirical distribution of read depths, and these p-values were combined across individuals using the Method of Fisher to give a
single description of read-depth for the site.

Using the features described above we generated a training set and evaluated the performance of a variety of
classifiers using 10-fold cross validation. Four techniques — multilayer perceptron, ridor, rotation forest and classification by
regression— showed reasonable performance (75%-85% accuracy). However, as our goal is to find genotypes that have been
correctly called, we used cost-sensitive classification to minimize our false discovery rate. Using a simple grid search, we found
a cost-matrix that maximized each classifier’s positive-predictive value by down-weighting the relative cost of false negatives
versus false positives. 10-fold cross validation gave the estimates of accuracy and positive predictive value shown in Table S10.

To reduce overfitting, each iteration from the 10-fold cross validation for each learner type (e.g. rotation forest) was
kept, with each of the folds being a function of the least-significant digit in the SNP position (e.g., Rotation Forest, would be
trained on all SNP positions where 2 is not its least-significant digit, and tested on all SNP positions where 2 is its least-
significant digit). These 4x10 learners were then used in the assessment of genotype accuracy in our exome data. We then
classified a genotype call as correct if all four classifiers predicted that the genotype was correct, and we classified a site as
correct if all genotypes at a site were classified as correct. To increase our sample size of genotypes, the ML included sites that
would have been masked out in the CNV calls (which represent less of a problem given that our measure of correctness is really
a metric of consistency). Our final assessment of accuracy, however, included the CNV masks. Over a total of 54,528 sites that
are segregating in the WES (after applying our filters) and marked as being genotyped correctly according to the 4 learners

above, there was a total of 1 genotyping error and this error occurred in our non-NLE sample.

Approximate Bayesian Computation analysis

Sequence divergence essentially reflects an upper bound for when populations split and can give a false signal of the phylogeny
if the time of coalescence for sequences can fall within the ancestral population of the extant populations of interest (DEGNAN
and ROseENBERG 2006). Therefore in order to investigate the gibbon phylogeny at the population divergence level we applied a
Bayesian coalescent-based method that explicitly take into account sequence and population divergence simultaneously. Most
methods that currently perform this task such as BEAST (DRuMmmoND and RAMBAUT 2007) are not suited to large datasets that
result from 2nd generation sequencing. Therefore we have developed an Approximate Bayesian Computation (ABC) (BEAUMONT

et al. 2002) method that can cope with large amounts of sequence data, is not dependent on haplotype phase and can
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incorporate information derived from our modeling of errors from comparing WGS with high coverage WES data. We aimed to
use the ABC framework to a) identify the most likely species topology for the four gibbon genera that underwent WGS and b)

estimate key parameters of the gibbon speciation process (specifically effective population sizes and divergence times).

Methods

Data: ABC analysis was performed on two data sets. For the first, to approximate independence among regions we identified
loci consisting of 1kb of total callable sequence separated by at least 50kb. In addition to the masks and coverage filters
described in the main manuscript we also masked CpG consistent sites as well as conserved phastCons elements inferred from
primate genomes with a further 100bp padding either side of the element. Loci were then identified that were 50kb from the
nearest exon and where the 1,000 callable bases fall within a maximum of 3kb of contiguous nomLeul reference sequence (i.e.
callable bases are not necessarily contiguous) (see Fig S1 for a cartoon of the distribution of these loci). This resulted in 12,413
1kb loci (total of ¥12Mb). Because these loci are relatively distant from each other (>50kb apart) inter-locus linkage can be
ignored and as they are relatively short (max 3kb) intra-locus recombination should be negligible. Therefore we do not
incorporate recombination parameters into our simulations, only mutation plus the demographic parameters of interest.
However because of the large number of loci analyzed, our data will approach the analytical expectations of the coalescent and
thus should allow accurate and precise estimates of the correct model and associated parameters.

In addition we generated a set of 11,323 200bp loci under the same criteria except the loci were orientated to lie on a
known exon (i.e. genic versus non-genic loci) with the allowance of a maximum of 100bp either side of the known exon
boundary, spanning a total of 4kb with a minimum of 1kb separating any two loci. This relatively small latter distance will likely
violate the assumption of independent genealogies between loci somewhat but increasing this distance in to 5kb severely
reduced the number of loci, which will decrease accuracy and precision more readily. The choice of 200bp per loci for genic
regions was motivated by the average length of exons in the gibbon genome of 213bp. Variant sites were polarized against the

aligned human reference genome, hgl9, using the multiz 11-way alignments from UCSC.

Phylogeny Models and Parameter Priors: We treat all possible phylogenetic relationships amongst the four gibbon genera as
distinct models (we also treat the two species within Hylobates as one population to reduce the model space). Therefore we
need to consider a total of 15 models describing the population divergence relationship among the 4 genera, 12 asymmetric
(Fig S15) and 3 symmetric (Fig S16). We also considered an instantaneous 4-way hard polytomy in a second ABC model testing

analysis. As is standard for coalescent-based phylogenetic approaches the models are described by two classes of parameters,
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mean nucleotide diversity, 6, and branch lengths in units of expected number of substitutions, T. Given an estimate of the mean
mutation rate, y, the former can be transformed into an estimate of N, using 8 = 4N and the latter can be transformed into a
divergence time in generations, t, using T = ty. Priors ranged between 0.0001-0.03 for all 6 and t parameters. Unless otherwise
stated all prior distributions for all demographic parameters are all uniformly distributed on a logyo (x) scale. The justification for
this prior range is that, assuming a mutation rate of 1 x 10 per site per year and a 10 year generation time for gibbons, our
individual priors are equivalent to a time of divergence of 100kya-30mya and an N, of 2,500-750,000. These ranges take into
account the uncertainty we have with regard ape speciation times and ancestral diversity. Thirty million years sits at the upper
end of the range when apes are thought to have diverged from other old world monkeys (ZaLmourt et al. 2010). The earliest
known “sub-species” split times observed in great apes is ~80kya (western and cross river gorilla), while the earliest known
“species” split time (which is what our gibbon data essentially is) is 175kya (western and eastern gorillas), with most being
much older (on the order of millions of years) (PRADO-MARTINEZ et al. 2013). Similarly, other estimates of great ape
heterozygosity range from ~0.0005-0.0025, with ancestral 6 estimates based on pairwise sequentially markovian coalescent
(PSMC) analysis not exceeding 0.005, while we observed in a PSMC analysis of the same Gibbon samples used here (CARBONE et
al. 2014) that the ancestral N, is unlikely to have risen to values greater than 50,000.

When estimating parameters from the best model we included separate HPlI and HMO populations with their own 6
values and a new t parameter for their divergence time. In addition we included a version of this model where the four genera
split simultaneously, and thus only incorporate two ancestral © parameters (one for the HPl and HMO ancestral population and
one for the ancestral population of all four genera) and two t parameters. Finally the analysis with this latter model was
repeated using true uniform priors (rather than logio transformed priors) for the two t parameters (see Results in main

manuscript for more details on this analysis)

Simulations: Coalescent simulations of the 8 individuals (16 chromosomes) were performed using a version of ms (Hudson)
modified for Python that allowed fast parallel processing. In total we performed 106 random draws of the parameter space and
simulated a B-scaled genealogy for each locus. In order to account for mutation rate heterogeneity across loci we estimated
relative sequence divergence for all loci, taking the average sequence divergence for each of the eight gibbon individuals from
hg19. These individual locus estimates were then normalized around a mean of 1, allowing us to follow the approach of Rannala

and Yang (RANNALA and YANG 2003) and scale O for each individual locus in our demographic simulations.
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Stochastic Error Modeling: We used the error profiles for the singleton and non-singleton categories described above in Vok
and Monty to construct an error model E = <S, M> for a particular sample that could transform perfectly correct data generated
by coalescent simulations into data reflective of the error processes that are likely to have occurred during whole genome
sequencing and post processing. We found that with our bioinformatic pipeline the total number of observed singletons was
always less than or equal to the true number. Therefore S was calculated as the proportion of missing singletons, or the
probability of not calling a true singleton in the WGS data. During a coalescent simulation of genetic data S reflects the rate at
which true singletons will be hidden or dropped and the genotype called as homozygous reference. To construct M we took the
3x3 confusion matrix generated for non-singletons and divided the number in each element of the matrix by the sum of all
elements within their respective columns. During a simulation of genetic data, for any site not classed as a true singleton but
still segregating, the values within a particular column of M reflect the probabilities of a multinomial distribution that
determines the rate that a true genotype of a particular type will be transformed to one of the two other genotypes or stay the
same.

To apply our error correction to a) non-exome regions in the two target samples and b) non-exome regions in the
other six samples for which there was no WES we constructed separate £ models for each read depth > 7X (i.e, we constructed
E;=<S;, M;>, where E; is the estimated error at read-depth /). Singleton calling was markedly better in the reference taxon
(5~99%), then in the non-reference taxon (5~96%). For S;, error rates initially decreased up to ~20x but past 30 showed
substantial increases in errors, presumably from uncalled CNVs (Fig S17). Similar to our findings with singletons, WGS/WES
discordance rates initially decreased with increasing read depth, but from read depths of ~20x onwards discordance rates again
began to increase (Fig S18). Given the error profiles observed with respect to coverage, we chose to break our error rate
estimations into three read-depth classes; 7-20x, 21-29x and >30x. For the first class, we assumed that our per-read-depth
estimates were correct, and for the last class, consistent with our assumption from the WES data, that the WGS calling was
perfect. For the middle class, however, we conservatively assumed a constant error rate taken from the average error rate from
read-depths 18-20.

This information allowed us to construct an overall E model for a particular sample, regardless of whether it was one
of the two target samples or not, by taking a weighted average of E;, with weights determined by the empirical distribution of
read depths at the specific regions of interest for sites between 7x and that individual’s 95" percentile of read depth. The E;
models for Vok and Monty were used for NLE and non-NLE samples respectively to take into account any mapping biases. We
assumed errors were uncorrelated between individuals. As the error models were generated with respect to the nomLeul

reference (rather than some ancestral reference) we simulated an additional haploid NLE sample to orient the error correction
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appropriately. Summary statistics were generated from the simulations for both with and without stochastically modeling error

processes in order to examine the affect of the former.

Ancestral state misidentification adjustment: 2% ancestral state misidentification was incorporated into simulations by
calculating the expected number of sites to experience a mutation along the hgl19 lineage for each locus (1000bp x 2% = 20
sites). The number of sites to actually “flip” (i.e. assign the wrong ancestral state) for each locus during a simulation is drawn
from a Poisson distribution with this mean. These sites are then randomly assigned to positions along the locus, though only

positions that are found to segregate amongst the gibbon chromosomes need to be flipped.

Summary Statistics: We computed the following summary statistics to describe the data for every pair of populations: number
of shared derived polymorphisms across loci, number of private derived polymorphisms in each population and the number of
private fixed sites in each population (Table $11). These statistics are known to contain substantial information about
population demography (WAKELEY 1996) and are utilized in the program MIMAR (BecQueT and PRzewoRski 2007). These statistics
are particularly useful in the case of short read sequence data as they do not require haplotype inference. We use the mean of
these summary statistics across all loci to describe the data (unlike MIMAR where these summaries are used to calculate a
likelihood of the data for each locus individually, which is computationally intensive for the amount of data considered here).
We also explored the use of the variance of these same summary statistics across loci but found they added little to our ability
to infer parameters in the model while contributing more noise to the partial least squares (PLS) transformation and reducing
the proportion of correctly inferred simulated topologies using simulated data (see below). Other summary statistics that might
traditionally be considered useful for demographic inference such as Tajima’s D were not utilized due to the small sample size

for each species. Therefore our method is unable to infer parameters such as population growth rates.

Inference: ABC analysis was performed using two different regression adjustments depending on their application. When
estimating model parameters we utilized ABCtoolbox (WEGMANN et al. 2010), which implements a general linear model (GLM)
adjustment (LEUENBERGER and WEGMANN 2010) on retained simulations. The GLM adjustment, by modeling the parameters as the
predictor rather than the response variable, avoids one particular limitation of the standard linear regression adjustment of
Beaumont et al. (BEAUMONT et al. 2002) where the posterior distribution can end up being non-zero in parameter space that
actually lies outside the prior bounds. To maximize sufficiency but limit dimensionality, the full set of summary statistics was

transformed into PLS components (WEGMANN et al. 2009) and we used the change in Root Mean Square Error (RMSE) to guide
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the choice of number of components. These PLS components were then used to estimate parameters. In our analysis to assess
the ability of our ABC framework to determine the correct species topology/model (see below) we compared the marginal
distributions across models using both the GLM adjustment above and the multinomial logistic regression (LR) method
previously described by Fagundes et al. (FAGUNDES et al. 2007). The performance of the two methods was generally very similar
though the LR method demonstrated a slight increase (~3%) in the proportion of correctly recovered models. Because of this
slightly better performance, added to the fact the LR method is by far the most popular regression adjustment method used for
ABC model choice (CsILLERY et al. 2010) and we are less concerned in this case with extrapolating the posterior distributions
outside of the prior range (as we are using categorical classes and all classes have equal prior probability), we chose to use this
method for all subsequent analysis using an adapted version of the R function calmod.r as. However the use of either method is
likely to give very similar results in our particular framework. 1% of simulations were retained for the GLM (parameter
estimation) and LR (model choice) adjustments. PCA was used for comparing the multidimensional distribution of summary

statistics using the “prcomp” function in R.

Using simulated data to assess the ability to determine the correct species topology

In order to assess the reliability of our method to infer the correct species tree from a set of alternatives we simulated 10,000
random pseudo-observed datasets from our model and demographic parameter priors and attempted to recover the true
topology using the ABC machinery. We explored which combination of summary statistics most often inferred the correct
topology and found that the six summary statistics describing the mean number of shared sites for a pair of populations was
most effective. Adding more summary statistics (such as mean pairwise fixed or private differences or the variance of the
number of shared sites across loci) reduced the proportion of correctly inferred simulated topologies and thus were discarded
for this analysis.

Using the LR method for the error-corrected non-genic data we recovered the correct model 88.4% (7,989/9,042) of
the time (for 958 topologies the LR method failed to converge), the correct model was one of the top 3 models 99.1%
(8,959/9,042) of the time and had a posterior probability greater than 5% 98.3% (8,894/9,042) of the time. Using a more naive
method (the direct method, DR) of the proportion of retained simulations from each model (PRITCHARD et al. 1999) we
recovered the correct model 77.6% (7,757/1,000) of the time, the correct model was one of the top 3 models 96.7%
(9,673/10,000) of the time and had a posterior probability greater than 5% 99.5% (9,950/10,000) of the time. For the 958
occasions when the LR method failed, the DR method inferred the correct model 792 (83.0%) times and was within the top 3

models on every occasion bar one, with a minimum posterior probability of 0.07. This suggests the failure of the LR method to
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converge results from either complete separation or because all the retained simulations are only from one model, rather than
an inability to detect the correct model. The posterior probabilities using both the LR and DR methods were highly informative
with regard to the correct model. However the LR method generally demonstrated a better level of discrimination between the
true model and all other models (Fig S4). Therefore we decided to use this method for all subsequent analysis. For the
uncorrected data, there was a slight increase in the ability to infer the correct topology (which is unsurprising given the error
model essentially adds noise) where, for example, using the LR method we recovered the correct model 8,298/9,048 (91.7%) of
the time (the 952 topologies for the LR method failed). The proportion of occasions where we inferred the correct topology for
corrected genic data was similar (86.9%).

In order to obtain a better idea of where our method failed (and where it performed well) we performed a more targeted
set of simulations and again attempted to infer the correct model using our ABC framework. We first chose the total height of
the four taxa species tree (Tanc) to be one of three values (in units of mutations per site): 0.01, 0.005 and 0.001. Assuming a
mutation rate of 1x107 per site per year this is equivalent to 10, 5 and 1 million years. We then chose the & values across the
tree to be either fixed at 0.001 in all present and past populations, or for the present values to be 0.0012, 0.0004, 0.002, 0.0008
(thus roughly reflecting present day estimated ¢ for gibbons in this study) and for the ancestral populations to reflect the
combinations of these ¥ values (i.e. 0.0012 + 0.0004 = 0.0016, 0.0016 + 0.002 = 0.0036, 0.0036 + 0.0008 = 0.0044, thus the N,
gets increasingly bigger going back in time to increase the probability of incomplete lineage sorting in the ancestral populations,
i.e. we make the problem “harder”). The purpose of the latter set of & values is not to choose values that necessarily reflect
reality (though we attempt to pick sensible choices that will prove intuitively useful), but to examine how the method tolerates
changes in 8 compared to utilizing fixed values (which should be an “easier” problem). Finally we simulated either an
asymmetrical tree or symmetrical tree. Thus there are 12 parameter combinations representing 12 scenarios that define our
simulations. For each of these 12 scenarios we choose the two most recent divergence times (Tanc is the third and last event
and is already set) over a range as follows.

1) The most recent divergence event is chosen to be equal to Tanc/a, where a varies from 1.1-5, with steps of 0.1. The
smaller a, the closer the most recent divergence event will be to the final divergence event. For example for a of 1.1,
when Tanc = 0.001 this means that the most recent divergent event occurs at 0.0009, which results in a separation
time of only ~100,000 in years.

2) The second divergence event is chosen based on 8, which ranges between 0.01-0.99 in steps of 0.01, with the value of

8 reflecting the distance from the final divergence event as a percentage of the time between the first and last
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divergence event. Again, a smaller 8 reflects a second divergence event that is very close to the last divergence event
(conversely a high 8 reflects a divergence event that is very close to the first divergence event).

We used our ABC machinery to determine the posterior probabilities for the true model under these 12 scenarios while
varying a and 8 along a two dimensional grid. Posterior probabilities were determined using either the DR or LR method. Fig S5
shows these results with the grid of a and 8 being the X and Y axis and the surface of the posterior probabilities across this grid
shown in the Z-axis. It is immediately apparent that the LR produces much higher posterior probabilities compared to the DR
method, with much of the surface of the former being at or close to 1.0. In both cases reducing Tanc to 0.001 reduces the
posterior probability, but the affect is markedly worse for the DR method. Unsurprisingly, for the asymmetric model our ability
to infer the true model is best when a is highest and 8 is 0.5 and for the symmetric model when «a is highest and 8 is 1. This
essentially reflects situations where the divergence events are maximally separated in terms of branch lengths. The LR method
performs particularly well in most cases, with the posterior probability only decreasing markedly at the edges of the grid (and
for Tanc 0.001 and 0.005 the value of a has almost no effect) suggesting that for a Tanc realistic for gibbons (>4Mya), the
method will only perform sub optimally if the second divergence event is very close to the first or last divergence event, and
even then the posterior probability will still likely be one of the higher values across all 15 possible topologies. Varying 6 across
populations (annotated as fixed in Fig S5) does not appear to have a large effect for the DR or LR methods but does appear to
further exacerbate the poorer performance of the method when Tanc = 0.001, where we presume incomplete lineage sorting

becomes particularly prevalent such that it obscures true tree topology.

Using simulated data to assess the effect of stochastically modeling error processes on parameter inference

To assess how stochastically modeling errors in our simulations for ABC analysis are likely to affect inference of parameters, we
applied our entire analysis framework to simple demographic scenarios where the data was simulated to mimic errors in next
generation sequencing that occur as a result of variable per site coverage and read-specific base miscalling. Specifically we
assessed the affect of our analysis strategy for estimating parameters under two demographic scenarios (see Fig $19):

Scenario A. We estimate 6 in a one-population of constant size model. We sample two individuals (four chromosomes) from the
population, one of which is used as a target sample for which we know the true genotypes to generate an £ model, as well as a
reference chromosome.

Scenario B. We estimate T in a two-populations of constant size with divergence model, where the 6 values in the two present

day populations and the ancestral population are fixed at 0.001, 0.002 and 0.001 respectively. We sample two individuals from
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each population (eight chromosomes), with one from each used as a target sample for which we know the true genotypes to

generate an E model. The reference genome is drawn from the first population.

Our framework for these analyses for a particular demographic model (with a specifc parameter value of interest) involves four
primary stages (further details are given below):
1. Simulating medium coverage next generation sequence data in “exome regions” under the demographic model of
interest and calling genotypes from this data, which along with the known true genotypes allows the construction of
E; models for target samples at individual read depths > 7X.
2. Simulating medium coverage next generation sequence data in “neutral regions” under the demographic model of
interest and calling genotypes from this data. This is essentially our observed data for the ABC analysis.
3. Constructing overall E models for all individuals based on their simulated empirical distribution of read depths at the
neutral regions and the E; from the target samples in stage 1.
4. Performing an ABC analysis to infer parameters where we stochastically introduce errors into the ABC Monte Carlo
simulations based on the £ model constructed for each sample.
In theory we should apply all steps for every parameter value we would like to explore under a given demographic scenario. We
aimed to examine scenarios A and B for 8 and t values that ranged from 0.0001 to 0.01 in steps of 0.1 logso units. This would
involve applying our framework 21 times for each scenario. Even for this relatively modest exploration of the parameter space,
this would be particularly time consuming for stage 4 where we must generate hundreds of thousands of Monte Carlo
simulated datasets each time. However we have found that error profiles to generate E models are only minimally affected by
the specific © or T used in our two particular demographic scenarios (they become much more variable in more complex
demographic scenarios, data not shown) (Fig S20). Therefore, in practice we construct our read depth specific E; and overall £
models (steps 1 and 3) and generate Monte Carlo simulations (step 4) only for 8 or t = 0.001 (i.e. we utilize the midpoint
parameter value) and always apply the same empirical distribution of read depths for each sample for neutral regions
regardless of the value of 6 or t (step 2). Therefore, we only need to perform steps 1, 3 and 4 once across all 8 or T values for a
particular demographic scenario, though it is still necessary to perform step 2 to generate the observed data for each of the
individual 21 parameter values. This will mean our ABC analysis is only optimally applied to the parameter value of 0.001 and all

other inference will be slightly sub-optimal compared to how the method could be applied in practice.
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Simulating the truth set: For a given demographic model and parameter value of interest we simulated 20,000 x 8 exons each of
length 150bp for the appropriate number of chromosomes given the model (including a reference chromosome) using ms. This
gives a total diploid sequence length of 24MB per individual, approximating the amount of data generated by most WES
capture kits. This simulated sequence data reflects the true genotypes and essentially represent the high coverage WES data

from Vok and Monty in our analysis of real data.

Simulating next generation sequence data in exomic regions: To simulate medium coverage next generation sequencing data
for these same true underlying genotypes, we assume each individual was sequenced to a mean coverage of 10X and each site
for each individual is assigned some number of reads (i.e. coverage) by randomly drawing from a poisson distribution with
A=10. For each true heterozygous site the number of reads “sequenced” for each allele is drawn from a binomial distribution
with p=0.5. Each read at a site is assigned a Phred-scaled quality score, Q, from a truncated poisson distribution with A=30 such
that Qs are repeatedly drawn until a value <40 is obtained (i.e. Q is limited to 40) and an error is introduced at a rate
proportional to this Q value (for example for reads with Q=30 there is a 1 in 100 probability that it will be assigned the wrong
base call). In keeping with our use of the infinite sites model in ms and to simply our downstream analysis we limit bases to only
two types, reference and non-reference, rather than he four bases A, C, T and G.

In reality there is considerably more complexity with regard to how coverage and base calling error is distributed
across the genome than is considered in our framework. Coverage is necessarily correlated at sites because reads span at least
100bp of sequence and paired end reads are used in most circumstances, while sequencing errors tend to be more frequent at
the end of reads. In addition Q values assigned by Illumina sequencing software are frequently not truly representative of the
true error rate and are base pair and context dependent. In addition there may also be differences in the proportion of reads
that correctly map to the reference genome when utilizing a mixture of reference on non-reference species individuals. We also

do not consider the effect of Indels or repeats and CNVs, which can introduce additional error from misalignment.

Calling genotypes from the simulated next generation sequence data: We recoded the maximum likelihood genotype and
Bayesian variant calling algorithms described in Depristo et al.(DeprisTo et al. 2011) to only consider two alleles and called
genotypes (assuming a heterozygosity parameter of 0.001) from our simulated next generation sequence data for any sites with
coverage >7x. Sites with a variant quality value <40 were assigned as homozygous reference in all samples. These called

genotypes essentially represent the medium coverage WGS data in our error modeling.
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Construction of E; for target samples: Given these simulated WGS and truth data sets we can construct E; for target samples as
described for the real data. When examining error profiles for both scenarios we see a consistent pattern of a decreased
proportion of missing singletons with increased coverage, with values of ~15% missing singletons at 7X but rising to no errors by
20X (Fig $20). This trend is largely in line with our real data (Fig $17), suggesting that our framework is capturing the most
important error processes, though the real data is much noisier which is likely due to many of the additional factors described

above.

Simulating next generation sequence data in neutral regions: To simulate “neutral regions” (the observed data) we use the
same simulation framework described above to introduce errors and generate called genotypes for the exomic regions except
that we simulate 12,000 1kb regions (to mimic our real data of 1kb regions). E models are then constructed for each sample

given a simulated distribution of coverage in the neutral regions.

ABC inference: We then perform two separate ABC analyses, one with the introduction of stochastic errors via the £ model and
one without. For Scenario A we use the mean number of segregating sites per locus as the summary statistic and for Scenario B

we use the mean number shared, private and fixed sites per locus between the two populations.

Results: The framework described above (subjective to some simplifications to aid tractability) was applied for a range of 8 and
T values under scenarios A and B respectively. We then compared our estimated parameter values (using the mode and median
of the posterior distributions) to the true simulated value. The use of the E model consistently improves the estimate of
parameters, with the effect being particularly noticeable for larger value of T (Fig S6). For example when the true tis 0.010,
modeling errors results in almost no difference with the estimate 1 (t = 0.0098) compared to when errors are ignored (t =
0.0079). In units of time in years this is a difference of ~2my. The RMSE for 6 and t when using the £ model is 36% and 8% of
that respectively when not using the £ model. Thus our simulations suggest that stochastic modeling of error processes in ABC

simulations can improve the inference of parameters for 2" generation sequencing data.

G-PhoCS analysis
The Markov Chain Monte Carlo (MCMC) Bayesian coalescent-based method described by Gronau et al. (GRoNAU et al. 2011) was
performed using the software G-PhoCS to estimate 8 and t values for a bifurcating tree (we ignored the effect of migration). On

this occasion we included a human haploid sequence (hg19) as an outgroup for the overall gibbon phylogeny. The same 12,431
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1kb loci and assumed bifurcating tree from the ABC analysis described above were utilized and the mutation rate was fixed
individually for each locus as above using the normalized divergence values. The gamma prior for 8 was set to be relatively
broad and the same for all present and ancestral populations with shape, a, = 2 and rate, B, =1,000. Gamma priors for T were
also set to be relatively broad, with the a value always 2. However, either a) B was set as 200 for all T values such that the mean
(a/B) = 0.01, which, when assuming p = 1x10-9 /site/year equates to 10My or b) individual B values were set for each t such
that the mean value reflected rough estimates from the ABC analysis or for the human/gibbon split time from Carbone et al.
(CARBONE et al. 2014) (Table S1). Starting values for the MCMC chain for each parameter were chosen randomly from the
interval of 0.8-1.2 * these mean values. Preliminary runs under b) were used to tune the MCMC mixing (as this is the
multidimensional parameter space that is likely to be most important for estimating parameters in this case and mixing
properties can change in different parts of the space), such that the rate of acceptance was between 20%-70% for all
parameters of the model.

Once we obtained good mixing properties we ran three independent MCMC chains for both prior settings a) and b)
for a total of six chains. We allowed 10,000 samples as burn-in followed by 100,000 samples for estimating parameters (this
sample size should be large enough that we do not require independent samples to get unbiased estimates due to correlation
among consecutive samples). The Markov chain converged to stationarity much quicker than the utilized burn-in period, and all
six runs converged to the same tationary distribution, though prior setting a) required slightly more samples as the starting
positions were further away from the converged t values. Results were processed using the software Tracer

(http://tree.bio.ed.ac.uk/software/tracer/).
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Figure S16 Example model setup for a symmetric phylogeny
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Figure S17 Net missed singletons per base, as a function of read depth. The net missed singletons per base is computed on the
intersection of the exome-capture and the whole genome data, and is given as a function of the read-depth in the whole
genome data. Due to sampling variance, there is modest variance in this function, but nevertheless error rates initially are high,

then decrease, and then slightly increase again.
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Figure S18 Genotyping error rates. For sites not called as singletons in the whole genome data, the error rate (defined as the
probability of a miscall), is given as a function of the read-depth. Even after filtering CNV regions, error rates increase at high

read-depth.
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Tables S1-S12

Available for download as Excel files at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.174425/-/DC1

Table S1: Priors and Posterior estimates for G-PhoCS analysis

Table S2: Concordance between genotype calls from whole genome (rows) and whole exome sequencing (columns) in the NLE
and non-NLE individual. First two tables represent absolute number and second two tables represents cells as percentage of
exome genotypes

Table S3: Posterior estimates for an instantaneous speciation model for gibbon genera for 15PLS components

Table S4: Posterior estimates for an instantaneous speciation model for gibbon genera for 10PLS components using a flat prior
fort

Table S5: 95% Cls for instantaneous speciation model examining the effect of ancestral state misidentification
Table S6: Posterior estimates for a bifurcating speciation model for gibbon genera

Table S7: Counts of allele sharing and D-statistic analysis for gibbon genera and species

Table $8: Summary of where sequencing of 8 gibbon samples was performed

Table S9: Summary of sequencing read post-processing

Table S10: Classifier accuracy using multiple ML methods

Table S11: Summary statistics used in ABC analysis

Table S12: Key of numbers assigned to particular bifurcating topologies
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