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Mathematical Models of Vaccine-Preventable Disease in 
California 

Sarah F. Ackley 

Abstract  

In chapter 1, using a Galton-Watson branching-process analysis, we characterize differences in 

measles transmission by estimating the association between genotype and the reproduction number 

among post-elimination California measles cases. Genotype B3 is found to be a significant 

predictor of transmissibility. 

 In chapter 2, we determine whether data from FDA-cleared wired and Bluetooth smart 

thermometers sold by a San Francisco-based company aid influenza forecasting efforts. We 

compare this smart thermometer data to regional influenza and ILI surveilance data from the 

California Department of Public Health. We evaluated the correlation between the regional 

California surveillance data and smart thermometer data, tested the hypothesis that smart 

thermometer readings and symptom reports provide regionally specific predictions, and 

determined whether smart thermometer and mobile application improved disease forecasts. Our 

results are consistent with the hypothesis that smart thermometer readings and symptom reports 

reflect underlying disease transmission in California. Data from such cloud-based devices could 

supplement syndromic influenza surveillance data. 

 In chapter 3, we examine whether changes in varicella transmissibility may have occurred 

following the change from one- to two-dose vaccination scheduling in 2007. Following the change 

in ACIP recommendations for varicella vaccination in 2007, the median outbreak size decreased. 

However, while the number of outbreaks has continued to decrease following 2008, we do not find 

evidence that the distribution of sizes has changed since 2008. Using insights from branching 

process models assuming both subcritical and supercritical transmission and with and without 
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depletion of susceptibles, we cannot rule out that varicella transmission is supercritical in school-

based settings.   
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Chapter 1  

Genotype-Specific Measles Transmissibility: A Branching 
Process Analysis 

 
Introduction 

As a result of a successful measles vaccination program in the United States, measles was 

declared eliminated in 2000 (Orenstein et al. (2004), Katz et al. (2004)). Measles elimination is 

defined as the absence of continuous measles transmission for 12 months or more in a defined 

geographic area (Fiebelkorn et al. (2010)). However, measles remains a significant public health 

concern as measles importations continue to occur resulting in limited outbreaks, small clusters 

or transmission chains. While the number of measles cases continues to increase nationally, 

there’s no direct evidence of difference in susceptible populations over the time period included 

in our study. Therefore, this trend may be due to an increase in the number of disease 

introductions rather than a change in levels of population immunity (Blumberg, Enanoria, et al. 

(2014)). 

In California, 400 measles cases were reported from January 1, 2000 through December 

31, 2015. The December 2014 to March 2015 measles outbreak linked to Disneyland theme 

parks was the largest outbreak in California since elimination, with 131 California cases, 16 

cases in other states, 159 cases in a religious community in Quebec, Canada, and one case in 

Mexico (Zipprich et al. (2015), Blumberg, Worden et al. (2015)). The majority of the California 

cases were unvaccinated or had unknown vaccination status; organized opposition to 

vaccination, the key component of measles control, remains a significant concern (Mello et al. 

(2015)). In addition, the outbreak linked to Disneyland theme parks is consistent with an 

effective reproduction number that is unchanged from the 2001-2011 era (Blumberg, Worden et 
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al. (2015), Blumberg, Enanoria, et al. (2015)), indicating that the level of population immunity 

may have remained roughly constant since elimination. 

There may be alternative explanations for why some measles outbreaks are larger. The 

World Health Organization (WHO) recognizes 8 clades of measles virus, within which there are 

24 recognized genotypes, of which six are currently circulating (Coughlin et al. (2017)). Measles 

clade B viruses (genotypes B1, B2, B3) are endemic to sub-Saharan Africa; prior to 2010, 

genotype B3 had been associated with frequent importations from African counties (Rota et al. 

(2011)). Following a measles genotype B3 outbreak in the Philippines in 2014, genotype B3 has 

been detected in all six WHO regions (Rota et al. (2016)). The 2014-2015 outbreak linked to 

Disneyland theme parks was an outbreak attributed to genotype B3 (Zipprich et al. (2015)), and 

the CDC determined that the strain of B3 identified in this outbreak was identical to the strain 

associated with the Philippines outbreak (CDC, Measles Cases & Outbreaks). The global 

distribution of the measles genotype B3 appeared to expand dramatically after the Philippines 

outbreak and was associated with in record numbers of US measles cases in both 2014 and 2015. 

These observations prompted consideration of whether there might be genotype-specific 

differences in measles transmission. Our analysis aimed to characterize differences in measles 

transmission by estimating the association between genotype and effective reproduction number 

among post-elimination California measles cases. We also evaluated whether other variables 

collected during routine surveillance such as season of introduction and age and vaccine status of 

the index case may confound this relationship. 
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Methods 

Terms 

For conciseness, we use outbreak to refer to clusters of size two and isolated cases, as well as 

clusters large enough to meet the CDC definition of outbreak (three or more epidemiologically 

linked cases in space and time (CDC (2016)). Isolated cases are part of a transmission chain 

where the source case(s) is either not identified or may be known but was reportable outside of 

the jurisdiction of California. We use index case to refer to the progenitor case or cases, and also 

note that this differs from the CDC definition of the first identified case, who may be later in the 

transmission chain. We use R to refer to the reproduction number under vaccination (Scherer et 

al. (2002)). Lastly, for clarity, we use outbreak A to refer to the transmission that occurred 

outside of Disneyland theme parks during the 2014-15 California outbreak linked to Disneyland 

theme parks, since the nature of the transmission events that occurred at Disneyland theme parks 

is unknown (Blumberg, Worden et al. (2015)). See additional details under Case Ascertainment. 

 

Case Ascertainment 

Reported measles cases that met the Council of State and Territorial Epidemiologists (CSTE) 

case definition for confirmed measles were included in the analysis. For the majority of 

outbreaks, the case with the earliest rash onset date was considered the only index case for the 

outbreak. Additional outbreaks include two outbreaks with 2 and 3 contemporaneous cases, in 

which all were considered index cases, and outbreak A. For the latter outbreak, the case or cases 

who transmitted at Disneyland theme parks were never identified. Therefore, 42 cases who 

visited Disneyland theme parks during a three-day period and three additional cases whose rash 

onset dates were consistent with acquiring infection during that three-day period were all 
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considered index cases for that outbreak. The undocumented, extreme transmission event(s) that 

resulted in this large number of secondary cases that occurred at or near Disneyland theme parks 

was omitted; only the subsequent known transmission, which likely is more typical of 

transmission in California (Blumberg, Worden et al. (2015)), has been included in the estimation 

of the reproduction number. 

 

Genetic Characterization 

Measles virus genotypes were determined using a 450 nucleotide sequence of the nucleoprotein 

gene (N-450) at either the California Department of Public Health (CDPH) Viral and Rickettsial 

Disease Laboratory (VRDL) or the Centers for Disease Control and Prevention (CDC) Measles 

Virus Laboratory (WHO (2015)). Outbreaks were assigned the genotype corresponding to any 

individual or individuals with epidemiologic linkage in that outbreak for whom genotyping was 

performed. 

 

Analysis 

Branching process theory (Harris (1963)) has been used to estimate the reproduction numbers of 

many subcritical diseases (Farrington et. al (2003), Lloyd-Smith et al. (2005)). Prior work on 

branching process models has outlined the approach to fitting multi-genotype models that we 

propose for this research. (For example, Blumberg, Funk et al. (2014) fits a model with two 

reproduction numbers.) The secondary case distribution gives is the probability distribution of 

the number of secondary cases per case in a branching process model (Blumberg, Funk et al. 

(2014)). Specifically, assuming a negative binomial secondary case distribution, a mathematical 

expression for the distribution of outbreak sizes can be derived (see Blumberg, Worden et al. 
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(2015) & Blumberg, Funk et al. (2014)) and is employed in our analysis. A negative binomial 

secondary case distribution is preferable to the limiting Poisson or geometric distributions, 

because it yields an empirically better fit to data (Lloyd-Smith et al. (2005)) and accounts for 

heterogeneity in transmissibility (Blumberg et al. (2013)). 

Assuming a negative binomial secondary case distribution, a closed-form solution is 

available for the distribution of outbreak sizes when transmission is subcritical (Blumberg, Funk 

et al. (2014), Nishiura et al. (2015)). The closed-form solution for the distribution of outbreak 

sizes can be found elsewhere (Blumberg, Worden et al. (2015), Blumberg et al. (2013)) and is a 

function of the number of index cases; R, the mean of the secondary case distribution; and k, the 

dispersion parameter, a measure of heterogeneity in transmission, with smaller values indicative 

of a larger variance in the secondary case distribution. (k = 1 corresponds to a geometric 

secondary case distribution and k = ∞ corresponds to a Poisson distribution.) Fitting this model 

to the distri- bution of outbreak sizes using maximum likelihood, we can estimate the 

reproduction number R (Blumberg, Funk et al. (2014)). 

Exact p-values for heterogeneity across genotype and other predictors were determined 

using permutation tests (1,024 permutations) to determine the probability of seeing a ratio of 

reproduction numbers larger than was observed. Confidence intervals for reproduction numbers 

were obtained by percentile bootstrap (1,024 replicates). A type I error rate of 0.05 was used to 

test the hypothesis that genotype B3 is more transmissible than other genotypes. 

It is possible that out of many genotypes one genotype would appear to give rise to larger 

outbreaks by chance, and in testing this genotype against all others we would be susceptible to 

the Texas sharpshooter fallacy (Nuzzo (2015)). To address this, we performed an additional 

sensitivity analysis in which we analyze the data using a multi-genotype model. Specifically, we 
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used a random-effect model to model a random effect for transmissibility by genotype. We used 

the distribution of outbreak sizes in equation 1, where the logit of the reproduction number R 

varies by genotype and is sampled from a normal distribution with variance σ2. The probability 

of the observed outbreaks of a given genotype for this model is the following:  

 

(1) 

     

where Y is a vector of all observed outbreak sizes, G is the total number of observed genotypes, 

g is a specific genotype, Ng is the number of outbreaks of genotype g, Yi,g is the size of the ith 

outbreak of genotype g, and . We then maximized the 

likelihood with respect to µ and σ and performed a likelihood ratio test with a model with σ equal 

to zero, adjusting for the fact that the null hypothesis is on the boundary (Fitzmaurice et. al 

(2012)). We perform a similar analysis with season of outbreak. 
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Results 

There were 400 measles cases and 165 outbreaks in California from January 1, 2000 to 

December 31, 2015. Table 1.1 summarizes the genotype data available for this study. For 2000-

2015, we estimate the overall reproduction number to be 0.47, 95% confidence interval: (0.31, 

0.55). Permutation p-values for the effect of genotype, season of introduction, age of the index 

case, vaccine status of the index are given in Table 1.2. Since we find compelling evidence that 

genotype and age of the index case are significant predictors of measles transmissibility, we 

present effect estimates and confidence intervals in Table 1.3. These effect estimates are also 

summarized in Figure 1.1. (Parameter estimates for the random effect models are given in Table 

1.S1 and estimated dispersion parameters are given in Table 1.S3.)  
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Table 1.1: California measles cases since elimination: case counts, number of out- breaks, and 
mean outbreak size by genotype that include and exclude outbreak A. Values for excluding 
outbreak A or per index case outbreak sizes are given in parentheses only when these values 
differ from the value including outbreak A. 
  

Tables

Table 1: California measles cases since elimination: case counts, number of out-
breaks, and mean outbreak size by genotype that include and exclude outbreak
A. Values for excluding outbreak A or per index case outbreak sizes are given
in parentheses only when these values di↵er from the value including outbreak
A.

Genotype Total Cases, (Ex-
cluding Outbreak
A)

Number of Out-
breaks, (Excluding
Outbreak A)

Mean Outbreak Size, (Ex-
cluding Outbreak A, per
Index Case)

B3 183, (52) 21, (20) 8.71, (2.6, 2.61)
D3 4 2 2
D4 23 16 1.44
D5 16 3 5.33
D6 3 2 1.5
D7 12 4 3
D8 42 28 1.5
D9 14 8 1.75
G2 5 1 5
H1 8 8 1
No Genotype 90 72 1.25, (1.25, 1.2)
Total 400, (269) 165, (164) 2.42, (1.64, 1.62)

16
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Table 1.2: p-values for various predictors of measles transmissibility. Starred p-values are χ2 
likelihood ratio p-values. All other p-values are permutation p-values. 
  

Table 2: p-values for various predictors of measles transmissibility. Starred
p-values are �2 likelihood ratio p-values. All other p-values are permutation
p-values.

Variable p-value
(Including
outbreak A)

p-value
(Excluding
outbreak A)

p-value
(Outbreaks
with One In-
dex Case)

Genotype (B3 vs. not) 0.01 0.04 -
Season of introduction (winter vs. not) 0.01 0.03 -
Age of index Case (school-aged vs. not) - - < 0.001
Vaccine status of index case (vaccinated vs.
unvaccinated or unknown status)

- - 0.12

Random E↵ect of Genotype⇤ 0.004 0.02 -
Random E↵ect of Season⇤ 0.14 0.42 -

Table 3: Estimated reproduction numbers for measles transmission: overall (all
outbreaks), genotype B3 vs. non-B3 genotypes (only for genotyped outbreaks),
and school-aged (ages 5-18 years) vs. non-school aged (only for outbreaks with
a single index case). Dispersion parameters were estimated and are included in
the appendix.

Reproduction Number R
(95% CI)

Overall 0.47 (0.31,0.55)
B3 0.64 (0.48,0.71)
Non-B3 0.43 (0.28,0.54)
School-Aged 0.69 (0.52,0.78)
Non-School
Aged

0.28 (0.19,0.35)

17
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Table 1.3: Estimated reproduction numbers for measles transmission: overall (all outbreaks), 
genotype B3 vs. non-B3 genotypes (only for genotyped outbreaks), and school-aged (ages 5-18 
years) vs. non-school aged (only for outbreaks with a single index case). Dispersion parameters 
were estimated and are included in the Supplemental Information. 
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outbreaks), genotype B3 vs. non-B3 genotypes (only for genotyped outbreaks),
and school-aged (ages 5-18 years) vs. non-school aged (only for outbreaks with
a single index case). Dispersion parameters were estimated and are included in
the appendix.

Reproduction Number R
(95% CI)

Overall 0.47 (0.31,0.55)
B3 0.64 (0.48,0.71)
Non-B3 0.43 (0.28,0.54)
School-Aged 0.69 (0.52,0.78)
Non-School
Aged

0.28 (0.19,0.35)

17
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Figure 1.1:  Estimated reproduction numbers for measles transmission:  overall, genotype B3 vs. 
non-B3 genotypes, and school-aged (age 5-18 years) vs. non-school aged index cases. 
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Figure 1: Estimated reproduction numbers for measles transmission: overall, genotype B3
vs. non-B3 genotypes, and school-aged (age 5-18 years) vs. non-school aged index cases.
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Discussion 

We evaluated whether or not differences between genotypes may be responsible for differences 

in observed outbreak sizes and measles transmissibility. Genotype is significantly associated 

with transmissibility, irrespective of type of analysis (Table 1.2). Prior studies (Blumberg, 

Worden et al. (2015), Blumberg, Enanoria et al. (2015), Majumder et al. (2015)) have indicated 

that there is not compelling evidence for declining population immunity over time during the 

elimination era, so we evaluated other plausible confounders in the relationship between 

genotype and outbreak size. Since a significant number of index cases were US residents with 

recent international travel, season of introduction is plausibly associated with genotype: travel to 

areas with circulating B3 strains might be more common in the cooler winter months. (Table 

1.S2 in the Supplemental Information shows that it does appear that the fraction of winter B3 

introductions is greater than that of other seasons.) However, while season appears significantly 

associated with transmissibility when comparing the winter season to all other seasons, in a 

random effect model the effect of season is nonsignificant. We think it is unlikely that age of 

index case or vaccine status of the index case are causally related to infecting viral genotype (see 

Supplemental Information for more information). However, school-age appears to be a 

significant predictor of measles transmissibility, likely due to the number of contacts 

(Mikolajczyk et al. (2008)) and the potential clustering based on vaccination status, particularly 

among household contacts (Sugerman et al. (2015)). 

Contact investigations may have several decision points, and a better understanding of 

predictors of transmission could be used minimize transmission. While routine vaccination 

remains the most important control measure for measles, other control measures such as home 

quarantine and post-exposure prophylaxis (PEP) are an important part of the on-the-ground 
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response during an outbreak (Liu et al. (2015)). Contact investigations for measles and delivering 

PEP to susceptible contacts of cases are resource intensive and divert funds and staff resources 

from other public health programs (Dayan et al. (2004), Ortega-Sanchez et al. (2011)). Thus, it 

would be advantageous to have a marker of transmissibility that could be used to focus public 

health efforts particularly in a setting of multiple cases and contact investigations competing for 

limited resources (Liu et al. (2015)). More accurately anticipating the number of cases during an 

outbreak could help improve resource and staff allocation. 

Our results are consistent with prior analyses of California and US measles outbreaks. 

The previous estimate for the R for measles in the US between 2001 and 2011 is 0.52 (95% CI: 

0.44, 0.60) (Blumberg et al. (2013)), consistent with an overall R for California from 2000-2015 

of 0.47 (95% CI: 0.31, 0.55) estimated here. The prior estimate for the R for outbreak A is 0.69 

(95% CI: 0.48, 1.04) (Blumberg, Worden et al. (2015)) (note this estimate assumed 40 index 

cases), consistent with an R of 0.64 (95%CI: 0.48, 0.71) estimated here for B3 strains. While in 

Blumberg, Worden et al. (2015) the R for outbreak A was not statistically significantly higher 

than the R for the 2001-2011 time period (which includes outbreaks of the B3 and non- B3 

genotypes), the point estimate was higher, which is consistent with the hypothesis that B3 strains 

are more transmissible. 

This study has several strengths. Measles has been widely studied using a variety of 

mathematical epidemiology techniques since the 1950s (Bailey (1953), Bartlett (1960), Measles 

(1957), Fine et al. (1982), Grenfell et al. (1992), Lloyd-Smith et al. (2005)). While pre-

elimination era measles was characterized by continuous transmission with seasonal patterns in 

transmission (Fine et al. (1982)), measles transmission in the US is now characterized by small 

outbreaks following importation (Fiebelkorn et al. (2010)). Branching processes are ideal for 



	
14 

analyzing diseases that occur as isolated cases, transmission chains, and make it possible to 

determine whether changes in case counts are due to changes in transmissibility or changes in the 

numbers of introductions (Blumberg et al. (2013)). Thus, post-elimination era dynamics favor 

the branching process approach we employed (Farrington et al. (2013), Blumberg et al. (2013)). 

In addition, we performed several sensitivity analyses to avoid the Texas sharpshooter 

fallacy (Nuzzo (2015)). Since outbreak A was the largest outbreak in California since 

elimination, this may have garnered increased, and perhaps undue, interest in the causal effects 

of genotype B3 and winter season on measles transmissibility. To address this possible fallacy, 

we omitted outbreak A and recalculated permutation p-values for all predictors of interest and 

analyzed genotype and season as a random effect. Our result that genotype is a predictor of 

transmissibility was robust to inclusion or exclusion of the outbreak A and random effects 

modeling. However, the effect of season is more questionable given that the p-value was 

significant when comparing winter to all other seasons, but not in a random-effect model. Lastly, 

for outbreak A, we only included known transmission events which occurred outside of the 

Disneyland theme parks; this transmission was likely more typical of transmission in California 

(Blumberg, Worden et al. (2015)). In addition, if there had been a known single index case, the 

decision to model this outbreak as an outbreak with 45 index cases effectively reduced our 

statistical power to detect a difference between B3 and non-B3 genotypes; given that we did 

detect a significant effect, this lends credibility to the hypothesis that there are genotype-specific 

differences in transmissibility. We note that the number of index cases we use has been updated 

and thus differs from the 40 used in Blumberg, Worden et al. (2015). 

A weakness of this study is that we were limited by the number of California measles 

cases since elimination and thus the study may have been underpowered to detect significant 
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effects for key predictors. For example, in only 16 out of 163 single-index-case outbreaks was 

the index case vaccinated (the remainder had unknown vaccination status or were unvaccinated). 

While these outbreaks were on average characterized by less transmission, we did not detect a 

significant effect. In addition, we cannot distinguish between biological differences between 

genotypes (e.g. greater viral replication in the lungs for B3 strains (El Mubarak et al. (2007))) 

and differences in networks in which specific genotypes may tend to circulate (e.g. a larger 

number of contacts in networks where B3 strains tend to be introduced). While we would argue 

that biological differences between genotype B3 and other genotypes are plausible (El Mubarak 

et al. (2007)), since we did not include all possible confounders, our models cannot necessarily 

distinguish between competing explanations for differing transmissibility. While measles case 

ascertainment is thought to be high, missed cases are a possibility and could result in collider 

(selection) bias. For this to bias the observed association between genotype and outbreak in the 

observed direction, the B3 genotype would have to cause less severe disease. (Case detection 

would be enhanced, not diminished during large outbreaks.) While this would be at odds with El 

Mubarak et al. (2007), the B3 genotype could cause less severe disease if the measles vaccine 

were less effective against this genotype. (That is, genotype-B3 cases would be enriched with 

vaccinated and thus partially protected individuals compared with other outbreaks.) In addition, 

if the B3 genotype causes more severe disease, it is possible that B3 outbreaks would appear 

larger due to improved case finding. While we cannot rule out that genotype-B3 out- breaks 

appear larger because genotype B3 causes more severe disease with available data, the apparent 

public health impact of the B3 genotype nonetheless appears to be greater than that of other 

genotypes. 

In conclusion, we have found that genotype appears to be a significant predictor of 
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measles transmissibility, with genotype B3 being more transmissible compared with all other 

genotypes combined. School age also appears to be a significant predictor of transmissibility. 

While we do not find compelling evidence that the relationship between genotype B3 and 

outbreak size is confounded by other factors, is remains to be seen whether this result could be 

replicated in other highly vaccinated populations. Furthermore, outbreak sizes are variable and, 

for example, genotype-B3 outbreaks will overlap substantially in size with non-B3 outbreaks. 

Thus, more data is needed before one could make a firm recommendation that genotype or age of 

index case could be used for guiding contact investigation. The view that non-B3 outbreaks or 

outbreaks with index cases not of school age are of lesser public health importance is 

unwarranted. While high levels of population immunity achieved through routine measles 

vaccination remains the cornerstone of control, variability in measles transmissibility may 

nonetheless have important implications for measles control: the vaccination threshold required 

for elimination may not be the same for all genotypes or age groups. 
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Chapter 1 Supplemental Information 

Mixed Effect Models 

 

Table 1.S1: Random Effect Models: Estimated detransformed reproduction number R, standard 
deviation σ of logit R, and dispersion parameter k. 
 

Plausibility of Association between Season and Genotype 

 

Table 1.S2: Number of introductions and proportion of B3 introductions by season of 
introduction. The p-value for the association between genotype and season of introduction is 
0.01 (Fisher’s exact test). 
 

	  

Appendix

Mixed E↵ect Models

Table A1: Random E↵ect Models: estimated detransformed reproduction num-
ber R, standard deviation � of logit R, and dispersion parameter k.

Variable Including Outbreak
A: R, �, k

Excluding Outbreak
A: R, �, k

Random E↵ect of Genotype 0.44, 0.9, >1000 0.43, 0.86, 11.86
Random E↵ect of Season 0.4, 0.46, 0.54 0.37, 0.18, 0.6

Plausibility of Association between Season and Genotype

Table A2: Number of introductions and proportion of B3 introductions by
season of introduction. The p-value for the association between genotype and
season of introduction is 0.01 (Fisher’s exact test).

Season Number of Introductions Proportion B3
Fall 14 0.20
Spring 47 0.11
Summer 40 0.06
Winter 64 0.38

A1
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Estimated Dispersion Parameters 

 

Table 1.S3: Estimated reproduction numbers and dispersion parameters for measles 
transmission: overall (all outbreaks), genotype B3 vs. non-B3 genotypes (only for genotyped 
outbreaks), and school-aged (ages 5-18 years) vs. non-school aged (only for outbreaks with a 
single index case). Large dispersion parameters (k > 1000) are omitted for clarity; in such cases, 
the secondary case distribution is not distinguishable from a Poisson distribution. 
 

  

Estimated Dispersion Parameters

Table A3: Estimated reproduction numbers and dispersion parameters for
measles transmission: overall (all outbreaks), genotype B3 vs. non-B3 geno-
types (only for genotyped outbreaks), and school-aged (ages 5-18 years) vs.
non-school aged (only for outbreaks with a single index case). Large dispersion
parameters (k > 1000) are omitted for clarity; in such cases, the secondary case
distribution is not distinguishable from a Poisson distribution.

Reproduction Number R
(95% CI)

Dispersion Parameter k
(95% CI)

Overall 0.47 (0.31,0.55) 0.4 (0.19,1.99)
B3 0.64 (0.48,0.71) 19.51 (0.59, >1000)
Non-B3 0.43 (0.28,0.54)
School-Aged 0.69 (0.52,0.78) 4.61 (0.49, >1000)
Non-School
Aged

0.28 (0.19,0.35)

A2
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Plausibility of Association between Age of Index Case and Genotype B3 

Restricting to Index Cases of Outbreaks with a Single Index Case 

Among B3 outbreaks with a single index case, 5 have a school-aged index case, while 15 do not. 

Among genotyped non-B3 outbreaks with a single index case, 8 have a school-aged index case, 

while 65 do not. The p-value for the association between school-age of index case and B3 

genotype is 0.15 (Fisher’s exact test). 

 

Including All Index Cases 

Including outbreaks with more than one index case (e.g. outbreak A), among B3 index cases, 11 

were school-aged while 54 were not. Among index cases of genotyped non-B3 outbreaks, 8 

where school-aged while 65 were not. The p-value for the association between school-age of 

index case and B3 strain is 0.33 (Fisher’s exact test). Lastly, in outbreak A, 6 of the 45 index 

cases where school-aged (13.3%). This proportion is close to the proportion in the entire dataset: 

30 out of 212 total index cases were school-aged (14.2%). 
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Chapter 2  

Assessing the Utility of a Smart Thermometer and Mobile 
Application as a Surveillance Tool for Influenza and Influenza-
Like Illness 

 
Introduction 

Participatory surveillance systems, or systems that encourage the general public to voluntarily 

report health-related information, have the potential to strengthen disease surveillance systems 

and provide realtime estimates of disease burden (Wójcik et al. (2014)). Influenza and influenza-

like illnesses (ILIs) are significant public health concerns, but the timing and peak intensity vary 

considerably from season to season and regionally. Prediction of influenza and ILI trends could 

be used to help plan and execute an effective public health response (Biggerstaff et al. (2016)). In 

addition, delays in obtaining surveillance data have garnered interest in nowcasting, or the use of 

forecasting techniques to estimate current influenza and ILI activity (Lampos et al. (2015)). 

Kinsa, Inc. sells FDA-cleared Bluetooth and wired thermometers nationally and internationally. 

These smart thermometers synchronize with a mobile application, which records temperature 

readings and can also be used to record symptoms. Although multiple individuals, typically 

members of the same household, may share a thermometer, users may indicate which 

temperature readings and symptom reports belong to a specific user. 

The potential for participatory surveillance for monitoring ILI has been explored in other 

settings (e.g. Smolinski et al. (2015), Marquet et al. (2006), Ortiz et al. (2011)) and in-the-field 

thermometers have been used for disease monitoring in school children in China (Hswen et al. 

(2017)). Previous work has shown that smart thermometer readings from the Kinsa application 
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can improve ILI forecasts using national CDC data (Miller et al. (2018)), and we aim to extend 

this work for influenza and smaller geographic regions. Given the use of an FDA-cleared 

thermometer with 33,000 users in California, the data collected from temperature readings and 

user-provided symptom reports from the Kinsa application may be informative for influenza 

forecasting efforts. Using California influenza laboratory surveillance data and ILI surveillance 

data from the 2015-16 and 2016-17 influenza seasons, we aim to determine whether the smart 

thermometer readings and symptom reports provide timely and regionally specific information 

on influenza and ILI trends. There is no standardized approach for simultaneously validating 

crowdsourced data and data from cloud-based devices. We therefore adopted a three-tiered 

approach to evaluate how the smart thermometer and mobile application data corresponded with 

California influenza surveillance data. First, we evaluated the correlation between the California 

influenza surveillance data and smart thermometer data. Second, we test the hypothesis that 

smart thermometer and mobile application data from a given season and region predicts 

influenza and ILI surveillance data for that season and region better than data from other seasons 

and regions. Lastly, in the most demanding test, we evaluate whether data from the smart 

thermometer and mobile application may be useful in influenza and ILI nowcasting and 

prediction efforts.   
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Methods 

California Influenza Surveillance Data 

Outpatient visits for influenza-like illness (ILI) reported by volunteer sentinel providers and 

influenza laboratory surveillance data from volunteer sentinel clinical laboratories reported to the 

California Department of Public Health (CDPH) for the 2015-16 and 2016-17 influenza seasons 

were available for this study. Sentinel providers (physicians, nurse practitioners, and physician 

assistants) situated throughout California report on a weekly basis the number of patients seen 

with influenza-like illness (ILI) and the total number of patients seen for any reason, from which 

the percentage of provider visits due to ILI can be obtained. ILI is defined as any illness with 

fever (greater than 37.8∘C for oral readings) and cough and/or sore throat in the absence of a 

known cause other than influenza. Laboratory surveillance for influenza involves the use of data 

from clinical laboratories throughout California. These laboratories report the number of 

laboratory-confirmed influenza virus detections and the total number of specimens tested for 

each virus on a weekly basis, from which the percentage of laboratory tests positive for influenza 

can be obtained. All data from CDPH were divided into five standard California regions (shown 

in Figure 2.S2-A and the Supplemental Information) and aggregated by CDC weekending date 

prior to analysis. Herein, ILI surveillance data refers to the percent of provider visits due to ILI 

as reported by sentinel providers. Influenza laboratory surveillance refers to the percent of 

laboratory tests positive for influenza. 

 

Smart Thermometer and Mobile Application Data 

The typical Kinsa user is a family with one or more child under the age of 12. Kinsa 

thermometers are sold in 5,000 retail stores across the country and on Amazon. Anonymized data 
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from smart thermometers and the corresponding mobile application collected for the 2015-16 

and 2016-17 influenza seasons and reported in California were available for this study and is 

summarized in Figure 2.1. For the purposes of our analysis, season 1 is defined to be Aug. 30, 

2015 to Aug. 27, 2016 and season 2 is defined to be Aug. 28, 2016 to Aug. 26, 2017. With each 

temperature reading, users have the option to specify type of temperature reading--oral, rectal, 

aural, or underarm--and which user associated with the device took the reading, as well as 

indicate which of 12 symptoms were present from a preset list of the following: body aches, 

chills, cough, diarrhea, earache, fatigue, headache, nausea, runny nose, shortness of breath, sore 

throat, and stomachache. Users also had the option of inputting symptoms without taking a 

temperature reading. Readings and records were assigned a geolocation based on GPS or IP 

address and this was used to assign each reading to one of the five CDPH influenza surveillance 

regions prior to delivery of the dataset. The timestamp for each reading and record was given as 

a Centers for Disease Control (CDC) weekending date. During seasons 1 and 2, there were 

1,120,508 entries, with 1,016,610 temperature readings and 168,564 symptoms reports (readings 

and symptom reports can be entered contemporaneously or separately). To exclude devices used 

for testing and devices used for non-ILI related temperature monitoring, devices associated with 

more than an average rate greater than 500 temperature readings per year were excluded (based 

on number of readings since the device was initialized), resulting in 1,058,617 entries, with 

957,695 temperature readings and 165,440 symptom reports. See Supplemental Information for 

more details. 

Line listed temperature readings and symptom reports from the smart thermometer and 

mobile application were converted into time series data as follows: Temperature readings were 

considered fevers if they were ≥ 38.0∘C for rectal and aural readings, ≥ 37.8∘C for oral readings 
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and readings from unknown body sites, and ≥ 37.2∘C for underarm readings. Temperature 

readings outside of the range 34∘C to 43∘C were not categorized as fever or non-fever readings 

(Miller et al. (2018)). 

Multiple readings and records from a single user (or device, if user was not specified) for 

a given week were collapsed into a single reading or record indicating whether a fever or 

symptom occurred at any point during that week, as defined by the CDC weekending date. 

Number of temperature readings, fevers, and symptom reports were aggregated by week. We 

also determined the number of unique users with fever and cough or sore throat at any point 

during each week, corresponding to the ILI case definition. When unique user profile was not 

specified, number of unique devices with fever and cough or sore throat at any point during each 

week was used. If for a given device, user was not consistently entered, the minimum possible 

number of unique users was assumed. 

To simplify the time series symptoms reports data, we used principal component analysis 

to extract lower dimensional information that can account for the majority of the variance from a 

high dimensional dataset. Since our objective was to quantify the predictive capability of the 

temperature readings and symptom reports, principal component analysis was performed on the 

weekly time series of the number reporting each of the 12 symptoms to reduce the 

dimensionality of this subset of the data. A priori, we planned to retain only the minimum 

number of principal components to account for at least 90% of the variance in weekly symptoms 

reporting. 

To account for a growing number of smart thermometer users over time, time series data 

from the smart thermometers and mobile application were detrended. Detrending was performed 
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for each region sequentially by fitting a linear model using weekending date as the only predictor 

and returning the residuals from that fit. 

A three-point moving average, referred to as smoothing herein, was applied to the 

following smart thermometer and mobile application time series data: number of temperature 

readings, number of fevers, percent of readings indicating fever, number of users meeting the ILI 

case definition, and principal components extracted from the weekly symptoms data. A three-

point moving average was also applied to CDPH influenza surveillance data and ILI surveillance 

data. 
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Figure 2.1: Summary of smart thermometer and mobile application data available for seasons 1 
and 2 in California. Note that an entry may consist of a temperature reading, reported symptoms, 
or both. Note that smoothed data, filtered using a 3-point moving average, includes data from the 
week before season 1 and the week after season 2 in the smoothed time series data within 
seasons 1 and 2. 
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Analysis 

The aims of our analysis were threefold: First, we aimed to quantify the correlation between time 

series data from the smart thermometer and mobile application and time series influenza 

laboratory surveillance data and ILI surveillance data and determine whether these correlations 

differed across regions. Correlations between smoothed and detrended time series smart 

thermometer and mobile application data and time series CDPH data for seasons 1 and 2 and all 

5 California regions were calculated using the Spearman-rank correlation coefficient. Confidence 

intervals were determined using the time series bootstrap with a fixed width of 5 (T. S. Rao, Rao, 

and Rao (2012)). Unsmoothed and raw correlations are presented in the Supplemental 

Information. 

Second, we aimed to determine whether smart thermometer readings and symptom 

reports in a given region and season were more predictive of CDPH influenza and ILI 

surveillance data for that region than for other regions or seasons. That is, since influenza 

patterns are highly correlated across regions in California, high correlations could be indicative 

of capturing regionally and seasonally independent trends. Therefore, we aimed to ascertain 

whether smart thermometer readings and symptom reports are correlated with surveillance data 

because they are reflective of differences in influenza and ILI timing and intensity for the region 

in which they were recorded. To achieve this aim, smart thermometer and mobile application 

data were used to predict influenza laboratory surveillance data and ILI surveillance data using a 

pre-specified time series regression model, with the following regressors: weekending date, total 

number of users taking temperature readings, total number of users with fevers, percent of users 

with fever, and the principal components of the symptoms, accounting for at least 90% of the 

variance in symptoms reporting (see Supplemental Information for further details). Specifically, 
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we tested the hypothesis that data from a given season and region predicts an outcome for that 

season and region better than data from other seasons and regions. For each of 10 possible 

combinations of season and region, smart thermometer and mobile application data were used to 

predict state regional data for the corresponding week in that season and region combination, as 

well as the corresponding week in all other season and region combinations. For each model, we 

estimated an *+. This yields a 10 × 10 matrix, whose diagonal elements represent the predictive 

capability based on modeling using the same season and region. Permutation testing was used to 

test the hypothesis that the off-diagonal elements were smaller than the diagonal elements. The 

predictive specificity of the smart thermometer and mobile application was evaluated for both 

CDPH influenza laboratory surveillance data and CDPH ILI surveillance data. See Supplemental 

Information for additional details. 

Third and finally, we aimed to determine whether the smart thermometer and mobile 

application data has the potential to improve influenza and ILI predictions. To do this, for each 

week - in year two, we first developed a model to predict week . of influenza surveillance data, 

using only the . − 2 and . − 3 weeks of influenza surveillance data (to account for realistic 

reporting delays), as well as flexible functions of time, for all . < -. Using elastic net regression, 

we selected a set of regressors that minimized the squared error for the predictions of week - 

using regressors determined only from prior times summed over each - (see Supplemental 

Information for additional details). These regressors were used in a final model. We then 

evaluated whether including the percentage of users meeting the ILI case definition improved 

model fit. Specifically, we added a linear term for the change in the percentage of smart 

thermometer users meeting the ILI case definition determined from the prior and current week, 

reflecting the fact that smart thermometer and mobile application participant data is available in 
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realtime. 1-values and percent decrease in the mean-squared error were determined using time-

series bootstrap with a fixed width of 5. Confidence intervals were obtained using the percentile 

method. A similar procedure was performed for ILI surveillance data. 
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Results 

Smart thermometer and mobile application data change with a temporal pattern mirroring 

changes in the California influenza and ILI surveillance data (Figure 2.2). After smoothing and 

detrending, they are strongly correlated with regional CDPH influenza laboratory surveillance 

data and ILI surveillance data, with Spearman correlation coefficients ranging from 0.79 to 0.91 

(Table 1). Detrended fevers are plotted against CDPH influenza and ILI surveillance data for 

each region in Figure 2.3. The correlations were comparably strong for all regions and for both 

influenza and ILI. Unsmoothed and raw correlations are also all significantly different from zero 

and are given in the Supplemental Information. Correlations with other smart thermometer and 

mobile application time series data is given in the Supplemental Information. 

Smoothed thermometer readings and symptom reports were more predictive of smoothed 

influenza and ILI surveillance data in the same season and region than in others: 2 = 0.0032 and 

2 = 0.0051, for influenza and ILI, respectively. We find the first principal component derived 

from the time series symptoms data explains 96% of the variance. In the first principal 

component, cough is a very important symptom, followed by runny nose and fatigue; 

gastrointestinal symptoms are the least important. The loadings of the first four principal 

components and plots of the time series for the first four principal components are given in the 

Supplemental Information. 
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Figure 2.2: Influenza and ILI activity by California region. A: California regions (annotated 
version in the Supplemental Information). B: Number of individuals with temperature readings 
and reporting symptoms consistent with the ILI case definition using the smart thermometer and 
mobile application (not detrended). C: ILI surveillance data (CDPH sentinel provider data). D: 
Influenza laboratory surveillance data (CDPH laboratory data). All data are smoothed using a 
three-point moving average. 
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Figure 2.3: Influenza laboratory surveillance data and ILI surveillance data versus detrended 
number of fevers as reported with the smart thermometer by California region. All values are 
smoothed using a three-point moving average. For influenza graphs, percents of tests positive for 
influenza are shown. For ILI graphs, percents of provider visits due to ILI are shown. 
  



	
33 

 

 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.88 0.80 0.92 <0.001 

Northern ILI 0.87 0.73 0.94 <0.001 

Bay Area Influenza 0.88 0.81 0.94 <0.001 

Bay Area ILI 0.86 0.71 0.93 <0.001 

Central Influenza 0.86 0.72 0.93 <0.001 

Central ILI 0.79 0.59 0.89 <0.001 

Upper Southern 

Influenza 

0.89 0.78 0.94 <0.001 

Upper Southern ILI 0.88 0.78 0.94 <0.001 

Lower Southern 

Influenza 

0.82 0.70 0.91 <0.001 

Lower Southern ILI 0.91 0.82 0.95 <0.001 

 

Table 2.1: Correlations between smoothed detrended number of fevers from the smart 
thermometer readings and smoothed influenza laboratory surveillance data and ILI surveillance 
data by California region. (Correlations for data without smoothing and/or detrending are given 
in the Supplemental Information.) 
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For predictions of influenza surveillance data, inclusion of the first difference in percent 

of users meeting the ILI case definition as a linear predictor in the model improved model fit 

(2 = 0.0049), resulting in a 2.1 %, 95 % CI: (0.18 %, 4.9 %), reduction in mean squared error. 

For predictions of ILI surveillance data, we failed to find evidence that the inclusion of the first 

difference in percent of users meeting the ILI case definition as a linear predictor in the model 

improved model fit (2 = 0.39). 
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Discussion 

We examine smart thermometer readings and symptom reports from a mobile application and 

their relationship to influenza laboratory surveillance data and ILI surveillance data by California 

region. Smart thermometer readings and symptom reports are more predictive of influenza and 

ILI for their own region and season than for other times and places. Furthermore, regional 

temperature readings from the smart thermometer are highly correlated with reported influenza 

and ILI and these associations are comparable across California regions. Lastly, these data can be 

used to improve predictions of regional influenza surveillance data, but not necessarily ILI 

surveillance data with the model selection procedure we employ. Therefore, these results are 

consistent with the hypothesis that smart thermometer readings and symptom reports from a 

mobile application reflect underlying disease transmission and can provide insight into the 

epidemiology of influenza and ILI in California. 

While crowdsourced data lacks the quality assurance and face validity of surveillance 

data from providers and laboratories (Olson et al. (2013), Cook et al. (2011), Butler (2013)), it 

may nevertheless provide additional insight on disease transmission dynamics (Santillana et al. 

(2014)). The realtime availability of such data may aid in prediction and nowcasting efforts 

(Smith et al. (2016), Preis and Moat (2014)). Influenza is not a reportable disease in California, 

except for outbreaks, influenza-associated deaths in persons under 65 years of age, and novel 

influenza infections. Furthermore, testing and reporting practices may vary with seasonal 

expectations of influenza. For example, there may be less testing and reporting in the late spring, 

summer, and early fall than in the winter months. Therefore, California influenza laboratory 

surveillance data and ILI surveillance data may provide an incomplete picture of influenza 

activity. Participatory surveillance systems have the potential to address gaps in these systems by 
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bolstering surveillance in regions with fewer participating sentinel providers and laboratories and 

in young and middle-aged adult populations. In addition, crowdsourced data are available in 

realtime and may be useful for influenza prediction efforts, particularly with the addition of data 

from a cloud-based device. Under realistic conditions, there may be delays in obtaining 

surveillance data, and we find that the addition of smart thermometer and mobile application data 

can improve predictions of influenza surveillance data. While reductions in the mean-squared 

error in predictions were not large, influenza follows a predictable seasonal pattern and is 

autocorrelated, and thus large reductions in error from a single data source can be difficult to 

achieve (Dugas et al. (2013)). We failed to find evidence that such data could improve ILI 

predictions made using the model selection procedure we employ and regressing on two prior 

weeks, however. We do note that at the multi-state level these data were found to improve ILI 

predictions (Miller et al. (2018)). 

The majority of previous participatory surveillance efforts have relied solely on self-

reported fevers, in addition to self-reported symptoms (e.g. Chunara et al. (2013)). Our study 

extends this literature by using temperature readings directly from an FDA-cleared device. 

Previous studies have illustrated that time series participatory surveillance data is strongly 

correlated with influenza and ILI surveillance data (e.g. Hswen et al. (2017), Smolinski et al. 

(2015)) and that data from the Kinsa smart thermometer is correlated with and predictive of ILI 

at the multi-state level (Miller et al. (2018)). Corroborating such findings, this study suggests that 

smart thermometer data can provide epidemiologically specific data on regional influenza and 

ILI activity in California and improve influenza predictions in California. 

This study has several limitations. Our analysis pertained to only the two most recent influenza 

seasons. Thermometers are sold in retail stores throughout the state of California. Nonetheless, 
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purchasers and users of smart thermometers may not be a representative sample and may not 

have a uniform geographic distribution. In addition, not all smart thermometer users were 

necessarily residents of the region for which their data was attributed. Location was determined 

based on location of reading or report as determined by GPS or IP address, and not region or 

state of residence. The CDPH surveillance data may also include individuals who traveled 

outside their region or state of residence, although the probability a sick individual outside of 

their region or state of residence visited a clinic and/or provided a specimen may differ from the 

probability that such an individual used a smart thermometer. Since weekending date was the 

smallest time increment, there may be some error in the estimates of the number of smart 

thermometer users with fever or meeting the ILI case definition. Our procedure to test the 

predictive capability of these data aimed to minimize the potential for spurious conclusions due 

to over or under fitting the data prior to the inclusion of smart thermometer and mobile 

application data in predictive models. However, to rigorously evaluate the predictive capability 

of the percent of users meeting the ILI case definition, as well as other channels of this data, 

predictions of influenza and ILI surveillance data would need to be tested as current surveillance 

data became available. 

Crowdsourced data from mobile applications may contain their own biases (Benke 

(2017), Lazer et al. (2014)). Nonetheless, crowdsourced data and data from cloud-based devices 

may provide unique benefits, which may not be available for other data collection methods 

(Deiner et al. (2016), Deiner, Lietman, and Porco (2017)), such as realtime availability and 

geoprecision. Furthermore, such data may be particularly useful when it does not rely entirely on 

self-report, as is the case with smart thermometer readings from an FDA-cleared device. As the 

user base continues to grow for cloud-based devices, these data will likely continue to provide 
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epidemiologically specific data on regional influenza and ILI activity in California. These 

findings may contribute to our understanding of the strengths and weaknesses of big data in 

epidemiology. 

Smart thermometers and mobile applications have the potential to supplement influenza 

and ILI surveillance systems in regions with a sufficient user base. In addition, realtime data on 

influenza and ILI are needed to mobilize public health resources in a timely fashion, and 

crowdsourced data can help address this by nowcasting before CDC reports become available. 

These data could be used for influenza and ILI prediction efforts at the regional level in 

California. 
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Chapter 2 Supplemental Information 

California Regions 

 

Figure 2.S1: California Regions.  

 

Exclusions 

To exclude devices used for testing and devices used for non-ILI related temperature monitoring, 

devices associated with more than an average rate greater than 500 temperature readings per year 

were excluded based on number of readings since the device was initialized. We might imagine 

that a large family with 5 children might have 5 bouts of illness per child per year and that the 

children's temperatures might be taken 4 times a day over a 5-day period. This would result in 
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500 readings for such a device per year and might be considered a reasonable upper bound for 

the rate of temperature readings for a device used for influenza and ILI monitoring. 

 

Pre-specified Model 

The pre-specified model includes the following predictors for the .th region and season 

combination from the smart thermometer and mobile application: weekending date 4, total 

number of readings 56, number of fevers 76, percent of readings indicating fever 26, and the first 

principal component of the symptoms data 86. Data from the smart thermometer and mobile 

application from the .th region and season combination is used to predict the outcome for the 9th 

season and region combination :;, where the outcome is either influenza laboratory surveillance 

data or ILI surveillance data. All linear terms of the predictors are included, as well as the 

interactions with weekending date 4 to account for changes in the user base over time. The model 

is as follows: 

<[:;] = ?@ + ?B56 + ?+564 + ?C76 + ?D764 + ?E26 + ?F264 + ?G86 + ?H864 + ?I4 

. 
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Principal Components 

 PC1 PC2 PC3 PC4 

Body aches 0.2610207 -0.1343484 0.1322127 -0.0135420 

Chills 0.2937175 -0.3982687 -0.2061293 -0.1607322 

Cough 0.4958834 0.1420079 -0.7423604 0.3253080 

Diarrhea 0.0688524 -0.0952334 0.1327917 0.2257187 

Ear ache 0.0707892 -0.0574796 0.0175156 0.1274458 

Fatigue 0.4465816 -0.4849380 0.1323798 -0.4251842 

Headache 0.3006756 -0.0128744 0.3696410 0.0237678 

Nausea 0.1269430 -0.0876612 0.2567750 0.4041942 

Runny nose 0.4280712 0.7266518 0.2072444 -0.2915332 

Short breath 0.0812824 -0.0184077 0.0087004 -0.0133844 

Sore throat 0.2731326 0.1012027 0.2027605 0.1444651 

Stomach ache 0.1397761 -0.0957822 0.2583816 0.5917810 

 

Table 2.S1: Principal components. Loadings for the first four principal components. PC is used 
to abbreviate principal component. 
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Figure 2.S2: First four principal components of the symptoms data for the five California 
regions over two influenza seasons. A three-point moving average filter is applied to each 
component. PC is used to abbreviate principal component. A: First principal component. B: 
Second principal component. C: Third principal component. D: Fourth principal component. The 
first four principal components account for 96%, 1.4%, 1.2%, and 0.27% of the total variance, 
respectively. 
  



	
43 

Correlations with Unfiltered, Detrended Number of Fevers 

We present the correlation coefficients and correlation plots for data without the three-point 

moving average applied. Number of fevers are detrended to account for an increasing number of 

users over time. All correlations are significant and comparable across regions. 
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Figure 2.S3: Influenza laboratory surveillance data and ILI surveillance data versus detrended 
number of fevers as reported with the smart thermometer by California region. For influenza 
graphs, percents of tests positive for influenza are shown. For ILI graphs, percents of provider 
visits due to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.79 0.62 0.86 <0.001 
Northern ILI 0.78 0.58 0.87 <0.001 
Bay Area Influenza 0.85 0.77 0.91 <0.001 
Bay Area ILI 0.82 0.63 0.90 <0.001 
Central Influenza 0.81 0.61 0.90 <0.001 
Central ILI 0.72 0.50 0.84 <0.001 
Upper Southern 
Influenza 

0.86 0.67 0.92 <0.001 

Upper Southern ILI 0.82 0.66 0.89 <0.001 
Lower Southern 
Influenza 

0.80 0.64 0.89 <0.001 

Lower Southern ILI 0.88 0.78 0.93 <0.001 
 
Table 2.S2: Correlations between detrended number of fevers from the smart thermometer 
readings and influenza laboratory surveillance data and ILI surveillance data by California 
region. 
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Correlations with Raw Number of Fevers 

We present the correlation coefficients and correlation plots for the raw data. All correlations are 

significant and comparable across regions. 
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Figure 2.S4: Influenza laboratory surveillance data and ILI surveillance data versus raw number 
of fevers as reported with the smart thermometer by California region. For influenza graphs, 
percents of tests positive for influenza are shown. For ILI graphs, percents of provider visits due 
to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.67 0.39 0.80 <0.001 
Northern ILI 0.59 0.29 0.77 <0.001 
Bay Area Influenza 0.78 0.63 0.87 <0.001 
Bay Area ILI 0.69 0.38 0.85 <0.001 
Central Influenza 0.70 0.41 0.84 <0.001 
Central ILI 0.56 0.29 0.72 <0.001 
Upper Southern 
Influenza 

0.68 0.47 0.81 <0.001 

Upper Southern ILI 0.67 0.39 0.81 <0.001 
Lower Southern 
Influenza 

0.60 0.41 0.84 <0.001 

Lower Southern ILI 0.60 0.36 0.76 <0.001 
 
 
Table 2.S3: Correlations between raw number of fevers from the smart thermometer readings 
and influenza laboratory surveillance data and ILI surveillance data by California region.  
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Correlations with Total Number of Readings 

We present the correlation coefficients and correlation plots for total number of unique users 

taking temperature readings. All correlations are significant and comparable across regions. 
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Figure 2.S5: Influenza laboratory surveillance data and ILI surveillance data versus detrended 
number of readings as reported with the smart thermometer by California region. All values are 
smoothed using a three-point moving average. For influenza graphs, percents of tests positive for 
influenza are shown. For ILI graphs, percents of provider visits due to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.86 0.78 0.91 <0.001 
Northern ILI 0.86 0.69 0.93 <0.001 
Bay Area Influenza 0.79 0.69 0.89 <0.001 
Bay Area ILI 0.77 0.61 0.88 <0.001 
Central Influenza 0.82 0.69 0.90 <0.001 
Central ILI 0.80 0.64 0.89 <0.001 
Upper Southern 
Influenza 

0.80 0.60 0.89 <0.001 

Upper Southern ILI 0.80 0.64 0.89 <0.001 
Lower Southern 
Influenza 

0.77 0.59 0.87 <0.001 

Lower Southern ILI 0.89 0.80 0.95 <0.001 
 
 
Table 2.S4: Correlations between detrended number of readings from the smart thermometer 
readings and influenza laboratory surveillance data and ILI surveillance data by California 
region. All values are filtered using a three-point moving average. 
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Correlations with Number Meeting ILI Case Definition 

We present the correlation coefficients and correlation plots for the number of unique users 

meeting the ILI case definition. All correlations are significant and comparable across regions. 
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Figure 2.S6: Influenza laboratory surveillance data and ILI surveillance data versus detrended 
number of users meeting the ILI case definition as reported with the smart thermometer by 
California region. All values are smoothed using a three-point moving average. For influenza 
graphs, percents of tests positive for influenza are shown. For ILI graphs, percents of provider 
visits due to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.83 0.62 0.91 <0.001 
Northern ILI 0.79 0.50 0.90 <0.001 
Bay Area Influenza 0.84 0.70 0.93 <0.001 
Bay Area ILI 0.86 0.78 0.93 <0.001 
Central Influenza 0.84 0.64 0.94 <0.001 
Central ILI 0.72 0.53 0.84 <0.001 
Upper Southern 
Influenza 

0.90 0.80 0.95 <0.001 

Upper Southern ILI 0.94 0.87 0.97 <0.001 
Lower Southern 
Influenza 

0.65 0.49 0.89 <0.001 

Lower Southern ILI 0.73 0.57 0.87 <0.001 
 

Table 2.S5: Correlations between detrended number of smart thermometer users meeting the ILI 
case definition in a given week and influenza laboratory surveillance data and ILI surveillance 
data by California region. All values are filtered using a three-point moving average. 
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Correlations with Percent of Fever Readings 

We present the correlation coefficients and correlation plots for the percent of users with fever. 

All correlations and comparable across regions. 
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Figure 2.S7: Influenza laboratory surveillance data and ILI surveillance data versus percent of 
smart thermometer readings indicating fever by California region. All values are smoothed using 
a three-point moving average. For influenza graphs, percents of tests positive for influenza are 
shown. For ILI graphs, percents of provider visits due to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.50 0.24 0.72 <0.001 
Northern ILI 0.41 0.09 0.68 0.02 
Bay Area Influenza 0.65 0.35 0.82 <0.001 
Bay Area ILI 0.52 0.16 0.76 0.01 
Central Influenza 0.54 0.14 0.77 0.02 
Central ILI 0.36 -0.04 0.63 0.08 
Upper Southern 
Influenza 

0.55 0.31 0.76 <0.001 

Upper Southern ILI 0.54 0.15 0.80 0.01 
Lower Southern 
Influenza 

0.43 0.22 0.78 <0.001 

Lower Southern ILI 0.32 0.03 0.58 0.03 
 
 
Table 2.S6: Correlations between percent of smart thermometer readings indicating fever and 
influenza laboratory surveillance data and ILI surveillance data by California region. All values 
are filtered using a three-point moving average. 
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Correlations with First Principal Component of Symptoms Data 

We present the correlation coefficients and correlation plots for the first principal component of 

the symptoms data. All correlations are significant and comparable across regions. 
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Figure 2.S8: Influenza laboratory surveillance data and ILI surveillance data versus detrended 
first principal component of the symptoms data as reported with the mobile application by 
California region. All values are smoothed using a three-point moving average. For influenza 
graphs, percents of tests positive for influenza are shown. For ILI graphs, percents of provider 
visits due to ILI are shown. 
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 Correlation 
Lower Confidence 
Limit 

Upper Confidence 
Limit 

p-
Value 

Northern Influenza 0.89 0.77 0.95 <0.001 
Northern ILI 0.90 0.79 0.95 <0.001 
Bay Area Influenza 0.81 0.64 0.90 <0.001 
Bay Area ILI 0.81 0.66 0.90 <0.001 
Central Influenza 0.77 0.48 0.91 <0.001 
Central ILI 0.69 0.49 0.82 <0.001 
Upper Southern 
Influenza 

0.81 0.68 0.90 <0.001 

Upper Southern ILI 0.89 0.73 0.94 <0.001 
Lower Southern 
Influenza 

0.65 0.50 0.80 <0.001 

Lower Southern ILI 0.86 0.81 0.94 <0.001 
 
 
Table 2.S7: Correlations between the detrended first principal component of the symptoms data 
and influenza laboratory surveillance data and ILI surveillance data by California region. All 
values are filtered using a three-point moving average. 
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Predicting Influenza and ILI 

To evaluate the ability of smart thermometer data to improve predictions of influenza and ILI 

surveillance data, we performed the model selection procedure described in the methods. For 

each week - in year two, we regressed the outcome of interest for week . using the outcome for 

the weeks . − 2 and . − 3, week number (linear predictor), weeks since start of season 1 (linear 

predictor), and a number of flexible functions of time of the form sin(N(2O./52.2 − 2RO/8)) 

for N = 1/2, 1, 2, and 3 and R = 0,1,2, . . ,6,7 for all . < -. The coefficients for these predictors 

were then used to predict week - for each region. Elastic net regression was used to find the 

predictors that the minimized the total mean squared error of the predictions of - week using 

coefficients estimated from prior weeks summed over region and week - in year 2. If multiple 

functions of time with the same N were selected, the linear combination was used as a predictor, 

weighted by the respective regression coefficients using both full years of data. These predictors 

were then used to determine whether the addition of the change in ILI as determined by the smart 

thermometer application improved model fits for prediction of week . using the set of predictors 

determined by elastic net regression. For predictions of influenza surveillance data, the selected 

predictors were influenza surveillance data for 2 weeks prior, and sine terms with N = 1, 2, and 

3. For predictions of ILI surveillance data, the selected predictors were ILI surveillance data for 

2 and 3 weeks prior and sine terms with N = 1 and 2. 
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Chapter 3 

School-Based Varicella Transmission in California: Insights 
from Branching Processes 
 

Introduction 

Varicella is a highly contagious disease transmitted by direct contact with an infectious 

individual and aerosols, and while severe disease is rare in children, varicella can result in 

complications, including death (McKinney and others (2011), Heininger and Seward (2006)). 

Contact investigation for varicella can be both challenging and expensive (Leung et al. (2015)). 

Thus, efforts to decrease disease burden have focused on vaccination of school-aged and younger 

children. Beginning in 1996, the Advisory Committee on Immunization Practices (ACIP) 

recommended a single dose of varicella vaccine for children in the United States (Leung et al. 

(2015)). A single dose was not found to be sufficient to prevent school-based outbreaks and, in 

some outbreaks, a majority of cases were among singly vaccinated children (Lopez et al. (2006)). 

In 2007, the ACIP revised and updated its recommendations for varicella vaccination, 

recommending two doses, as well as recommending a catchup dose for children who previously 

received only one dose (Leung et al. (2015), Marin et al. (2007)). In post-licensure studies, two 

doses of varicella vaccine were 98% effective at preventing any form of varicella compared with 

approximately 84% effectiveness with only one dose (Shapiro et al. (2011), Kuter et al. (2004)). 

California school entry requirements were updated in 2017 to require two doses of varicella 

vaccine prior to school entry. 

Varicella transmission is endemic in the United States, likely due at least in part to a 

reservoir of infection from adults who develop zoster (shingles) (Ferguson, Anderson, and 
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Garnett (1996)). However, it is not known whether transmission is self-limited among children in 

school-based settings (Leung et al. (2015)). School-based outbreaks of varicella would likely 

begin with a child who obtained varicella from another infectious individual with a primary 

infection (e.g. a child at another school) or an adult with zoster (e.g. a caregiver) (Ferguson, 

Anderson, and Garnett (1996)). School-based outbreaks in California are only reported if they 

reach a final size of 5 or greater, and other states have similar reporting practices (Leung et al. 

(2015)). 

We analyze school-based varicella outbreaks reported to the California Department of 

Public Health during 2006–2015 with the aim of determining whether the reproduction number 

of varicella changed following the ACIP revised recommendations. Previously, it has been found 

that the shift to two-dose scheduling was associated with a decrease in the number, size, and 

duration of varicella outbreaks in nine states, including school-based outbreaks (Leung et al. 

(2015)). While in other settings finite observed outbreak sizes within a defined geographic region 

might reasonably imply subcritical transmission, finite outbreak sizes within a school could be 

indicative of subcritical transmission or a supercritical process with infection occurring across 

multiple schools. We use branching process theory to gain insight into the expected distributions 

of outbreak sizes and durations for four plausible regimes of within-school transmission: a 

subcritical process, a supercritical process for which we have observed only self-limited 

outbreaks, a supercritical process with depletion of susceptibles, and a process that begins as 

supercritical, but for which transmission declines during an outbreak. 
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Methods 

California varicella outbreak surveillance data from 2006 through 2015 were included in this 

analysis. Varicella outbreaks were defined as five or more cases clustering in time and place. 

Outbreak analysis were restricted to school settings. 

All analysis was performed in R 3.3.0. The Kruskal-Wallis rank sum test was used to 

determine to test whether the median size and duration differed for at least one year from other 

years. Two-sided permutation testing with 1024 replicates was used to evaluate for a significant 

trend in outbreak sizes and durations. Bootstrapped confidence intervals with 1024 replicates 

were used to calculate the 95% confidence limits for rate of change in size and duration. The 

Wilcoxon signed rank test was used to test for differences of medians of outbreak size and 

duration in 2006 and 2007 (pre-policy change) compared with outbreak sizes and durations for 

2008-2015 and 2008-2013 (post-policy change), respectively. 

For the first part of the branching process analysis, we assumed a Galton-Watson 

branching process with a negative binomial secondary case distribution with two parameters: a 

reproduction number *, which gives the mean of the secondary case distribution, and a 

dispersion parameter .. . = 1 corresponds to a geometric distribution, . < 1 represents an 

overdispersed distribution relative to the geometric, and as . approaches infinity, the secondary 

case distribution approaches a Poisson distribution. Equations and methods described in previous 

publications (S. F. Ackley et al. (2017), Blumberg et al. (2014), S. Blumberg and Lloyd-Smith 

(2013), Blumberg, Funk, and Pulliam (2014), Lloyd-Smith (2007), Lloyd-Smith, Schreiber, and 

Getz (2006)). Previous work on measles has shown that the secondary case distribution may be 

overdispersed compared with a geometric distribution (. < 1) (Ackley et al. (2017), Blumberg et 

al. (2014), Blumberg and Lloyd-Smith (2013)). Assuming subcritical transmission within 
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schools, we estimate a reproduction number * from the distribution of outbreak sizes conditional 

on outbreak size greater than five (Ackley et al. (2017), Blumberg et al. (2014), Blumberg et al. 

(2015)). We use the following recursive relationship to describe the cumulative probability W of 

extinction in X generations, which is then used to obtain a mean number of generations as a 

function of * and .: WYZB = 2[
\
[]@ (WY)

[, where 2[ gives the probability of a single case 

producing ^ cases. For the purposes of numerically determining the cumulative probability of 

extinction in X generations WY, the above summation was performed for ^ from 1 to 10,000. 

Outbreaks are reported conditional on size 5 or greater. To determine the effect of 

conditioning on size, we conditioned on specific sizes to determine how * and heterogeneity in 

* affect the outbreak duration. This heterogeneity could either be due to over-dispersion, 

described using ., or due to declining transmissibility with each generation; we define a 

parameter _, which is the relative mean reproduction number with each increasing generation. 

To calculate the expected number of generations conditional on a specific outbreak size N, we 

first enumerated all possible transmission networks for that size. Then, to determine the 

probability that an outbreak of size N is of a specific total number of generations X, we summed 

over each possible configuration that produced a number of total generations X the product of the 

probabilities that the number of cases in each generation producing the number of cases in the 

subsequent generation for that configuration, with 0 cases in the X + 1 generation. 

For a supercritical process characterized by depletion of susceptibles, we calculate the 

final size distribution of an SEIR process assuming a gamma-distributed infectious period using 

a recursion as described elsewhere (Demiris et al. (2006), Bailey (1953), Bailey (1975)). 
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Results 

A summary of California school-based outbreaks for 2006-2015 is shown in Figure 3.1. Figure 

3.2 shows the number of school-based outbreaks of size 5 or greater, the number of individuals 

in these outbreaks, and the number of California hospitalizations in children (18 and under) by 

year. The number of outbreaks decreases from over 100 in 2006 per year to under 10 per year 

following 2010. 

We examined the data for evidence of changes in the distribution of outbreak sizes and 

durations over time. We find evidence that the median size is not the same for all 10 years (2 = 

0.04), but fail to find evidence that the median duration differed for any of the 10 years (2 = 

0.85). In a trend test, we find an average change in size of -0.67 people per year, 95% CI (-1.14, -

0.19), which is highly significant (2 = 0.004). We estimate an average change in duration of -

0.71 days per year, 95% CI (-2.05, 0.74), but this change is not significant (2 = 0.47). The 

median size is significantly decreased following 2007 (2 = 0.0004), but we fail to find evidence 

of change in duration (2 = 0.4). If we assume subcritical transmission within schools and a 

single index case, we estimate a reproduction number * from the distribution of outbreak sizes. 

The observed sizes for 2006 and 2007 corrrespond to an estimate of * of 0.74, 95% CI (0.71, 

0.76), and following 2007, the observed sizes correspond to an estimate of * of 0.65, 95% CI 

(0.45,0.71). 

Hospitalizations in children due to varicella remained roughly constant over the 2010-

2015 time period. However, the ratio of the number of individuals in reported school-based 

outbreaks to the number of hospitalizations decreased by -1.43, 95% CI (-3.27, -0.09) and this 

change is significant (2 = 0.04). However, this result is highly senstive to underreporting of 
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outbreaks in later years. If, for example, two outbreaks of size 5 were not reported in each 2014 

and 2015, the change in this ratio would be similar, but not statistically significant (2 = 0.08). 

As shown in Figure 3.3, our analysis of a Galton-Watson branching process unconditional on 

size indicates that for reproduction numbers less than unity, both mean outbreak size and 

duration decrease with decreasing *. For reproduction numbers greater than unity, mean 

outbreak size and duration decrease with increasing * for finite sized outbreaks. However, the 

extinction probability also decreases with increasing *. 

Figures 3.4 and 3.5 show the effect * and . (Figure 3.4) or _ (Figure 3.5) on outbreak 

duration after conditioning on a single, specific outbreak size. Conditional on a single, specific 

size, we obtain no additional information about the mean * for an outbreak from the outbreak 

durations. However, the durations may yield information about transmission heterogeneity. 

While . and _ describe two very different types of heterogeneity, they have a similar effect on 

duration conditional on size, as shown in Figures 3.4-A and 3.5. 
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Figure 3.1: Box plots of school-based outbreak sizes (top) and durations (bottom) by year in 
California. All sizes and durations are shown as overlaid points. 
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Figure 3.2: Number of school-based outbreaks of size 5 or greater, number of individuals 
represented in outbreaks, and number of hospitalizations in children by year. 



	
70 

 



	
71 

Figure 3.3: Expected sizes, extinction probabilities, and number of generations for a Galton-
Watson branching process model. A: Expected size as a function of the reproduction number *, 
and for various values of the dispersion parameter ., conditional on extinction. B: Extinction 
probability as a function of * and for various values of .. C: Expected number of generations as 
a function of the reproduction number *, and for various values of the dispersion parameter ., 
conditional on extinction. Note lower values of . correspond with a zero-inflated, overdispersed 
secondary case distribution and may be more realistic (Ackley et al. (2017), Lloyd-Smith, 
Schreiber, and Getz (2006)). 
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Figure 3.4: The effect of * and . on outbreak duration conditional on outbreak size. A: 
Conditional on size 6, the expected number of generations in an outbreak does not depend on *, 
but does depend on .. Not only does the expected number of generations not depend on *, but 
the distribution of the number of generations is also independent of *. B: Expected number of 
generations as a function of . conditional on sizes 5 to 9. 
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Figure 3.5: The effect of * and _ on outbreak duration conditional on outbreak size. Conditional 
on size 6, the expected number of generations in an outbreak does not depend on the mean *, but 
does depend on _. 
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Figure 3.6: The observed distribution of outbreak sizes and theoretical distribution of outbreak 
sizes for a supercritical process. A: The overall observed distribution of outbreak sizes and by 
year. Following size 6, the number of outbreaks declines with increasing size. B: The 
distribution of outbreak sizes for sizes of 5 or greater for a supercritical SEIR process with * = 2 
and an exponentially-distributed serial interval. If the number of susceptibles per school is 
constant, the most probable outbreak sizes are just shy of this number of susceptibles However, 
if there is heterogeneity in the number of susceptibles per school, the distribution of outbreak 
sizes may be monotonically decreasing, similar to what is observed in A. 
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Discussion 

Following the change in ACIP recommendations for varicella vaccination in 2007, the median 

outbreak size decreased. However, while the number of outbreaks has continued to decrease 

following 2008, we do not find evidence that the distribution of sizes has changed since 2008. 

We do not find evidence for changes in the distribution of outbreak durations over time.  We 

evaluated the plausibility of three possible scenarios for varicella transmission in schools: a 

subcritical process, a supercritical process without depletion of susceptibles, and a supercritical 

process with declining transmissibility, due to depletion of susceptibles or other factors. 

Under realistic conditions, all of these scenarios can produce a monotonically decreasing 

distribution of outbreak sizes, similar to the observed distribution of outbreak sizes. For 

supercritical varicella transmission in a single school with a constant number of susceptibles, this 

distribution of outbreak sizes is not monotonically decreasing, peaking just below the maximum 

possible size. However, if we assume schools have differing numbers of susceptibles, as is more 

realistic, it is possible to obtain a monotonically decreasing distribution (see Figure 3.4). Thus, 

we cannot conclude that school-based transmission of varicella is subcritical based on the 

distribution of outbreak sizes conditional on size five or greater. 

Based on other sources of information, we may be able to argue that one of these 

scenarios is more plausible than another. For a supercritical branching process (no depletion of 

susceptibles) finite outbreak sizes are only observed when the process goes extinct. For 

reproduction numbers just above unity and with small dispersion parameters (a secondary case 

distribution overdispersed compared with a geometric distribution), extinction can be quite 

probable, over 90%. However, even with a very high extinction probability, over 100 outbreaks 

were reported in each 2006 and 2007 each. Therefore, we would argue that either depletion of 



	
76 

susceptibles plays an essential role in limiting outbreak sizes or that outbreaks are self-limiting 

due to a subcritical reproduction number. 

While we cannot exclude the possibility of supercritical transmission, especially in 2006 

and 2007, the data following 2007 is consistent with a process that became subcritical in school-

based settings in 2008. Theoretical work has shown that for a subcritical disease with a constant 

reproduction number less than unity the prevalence will decrease over time, but the distribution 

of prevalences across homologous geographic regions conditional on a non-zero prevalence is 

approximately the same when prevalences are low (Worden et al. (2017), Nåsell (1996)). 

Following 2007, we see a significant decline in the outbreak size and some evidence for a change 

in the distribution of outbreak sizes. However, we did not find evidence that the distribution of 

outbreak sizes changed following this, but the number of school-based outbreaks continued to 

decline. This is consistent with a subcritical process within the school resulting in less 

community transmission and thus fewer introductions of cases into school settings. 

In this analysis, we were restricted to outbreaks of size five or greater. With a 

reproduction number less than unity, the unconditional outbreak size and duration should 

decrease for as the reproduction decreases (see Figure 3.2). However, by semi-conditioning on 

size, we diminish our ability to track changes in size and duration as the reproduction number 

changes. We find that fully conditioning on size yields a distribution of number of generations 

that is independent of the reproduction number, but not the dispersion parameter. We also note 

that changes in the dispersion parameter can affect the expected sizes and durations of outbreaks. 

This has the potential to make changes in outbreak sizes and durations over time—or a lack 

thereof—difficult to interpret. For example, we did not find evidence of a decrease in duration or 

a change in the distribution of durations over this time period, which would be consistent both 
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with a constant * and . or an increasing . and declining *. We note that significant declines in 

duration are seen in other states over this time period, and may be indicative of a declining * 

(Leung et al. (2015)). 

Reporting smaller varicella outbreaks would allow us to better discern changes in 

outbreak size or duration over time resulting from changes in the reproduction number. 

However, there may be limitations to such a strategy. Outbreaks of size five or greater have high 

specificity for varicella; for singletons or outbreaks of size two to four, misdiagnosis or 

misreporting would be more likely and could make discerning real changes in the distribution of 

outbreak sizes or durations difficult or impossible. Furthermore, irrespective of regime, we might 

expect to see a monotonically decreasing distribution of outbreak sizes that depends both on the 

reproduction number and the dispersion parameter of the secondary case distribution. 

A measure that might help discern changes in the reproduction number over time, rather 

than just a continued decline in prevalence, would be the ratio of cases represented in outbreaks 

of size five or greater to a reasonable proxy for total cases, such as number hospitalizations due 

to varicella or its complications. If varicella were supercritical in school-based settings, a large 

proportion of cases would be represented in outbreaks size five or greater, whereas for a 

subcritical process a very small fraction of cases would be represented in outbreaks of size five 

or greater. We do find that following 2010 the number of cases represented in school-based 

outbreaks declines relative to hospitalizations. This may indicate a continued decline in 

transmissibility following 2010, or may indicate recent underreporting of school-based 

outbreaks. 

Our results indicate that a reduction in the number of outbreaks and changes in outbreak 

size and outbreak duration are not necessarily clear indicators of changes in transmissibility or 
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susceptibility to disease. With the new, more effective shingles vaccine Shingrix available 

starting in 2017 (Tsui and Cohen (2018)) there may be even fewer introductions of varicella into 

school settings if vaccine uptake is high. Understanding how observed distributions of outbreak 

sizes and durations change with changing transmissibility will aid in disentangling the effects of 

the new vaccine and potential continued declines in transmissibility. 
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Chapter 1  

Genotype-Specific Measles Transmissibility: A Branching 
Process Analysis 

 
Introduction 

As a result of a successful measles vaccination program in the United States, measles was 

declared eliminated in 2000 (Orenstein et al. (2004), Katz et al. (2004)). Measles elimination is 

defined as the absence of continuous measles transmission for 12 months or more in a defined 

geographic area (Fiebelkorn et al. (2010)). However, measles remains a significant public health 

concern as measles importations continue to occur resulting in limited outbreaks, small clusters 

or transmission chains. While the number of measles cases continues to increase nationally, 

there’s no direct evidence of difference in susceptible populations over the time period included 

in our study. Therefore, this trend may be due to an increase in the number of disease 

introductions rather than a change in levels of population immunity (Blumberg, Enanoria, et al. 

(2014)). 

In California, 400 measles cases were reported from January 1, 2000 through December 

31, 2015. The December 2014 to March 2015 measles outbreak linked to Disneyland theme 

parks was the largest outbreak in California since elimination, with 131 California cases, 16 

cases in other states, 159 cases in a religious community in Quebec, Canada, and one case in 

Mexico (Zipprich et al. (2015), Blumberg, Worden et al. (2015)). The majority of the California 

cases were unvaccinated or had unknown vaccination status; organized opposition to 

vaccination, the key component of measles control, remains a significant concern (Mello et al. 

(2015)). In addition, the outbreak linked to Disneyland theme parks is consistent with an 

effective reproduction number that is unchanged from the 2001-2011 era (Blumberg, Worden et 




