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ABSTRACT OF THE THESIS

Asynchronous Transmission in Multiuser Networks

By

Mehdi Ganji

Master of Science in Electrical Engineering

University of California, Irvine, 2018

Chancellor’s Professor, Hamid Jafarkhani, Chair

Time asynchrony inherently exists in many wireless communication systems, specially

in multiuser scenarios where the signals come from different locations. Different lo-

cations and paths impose different delays on the received signals, resulting in asyn-

chronous reception at the receiver. In most of the works in the literature, perfect

synchronization is a common presumption. However, it might be impossible to syn-

chronize all the nodes even if an ideal infrastructure with signal overheads is considered.

For example, if the receiver encompasses multiple receive antennas or there are multi-

ple distributed base stations, then, the synchronization can be realized at one of them

at most. Thus, it is of great importance to investigate the effect of the time asyn-

chrony in the wireless systems. One natural question is that how to eliminate the time

asynchrony and make all the received signals aligned at the receiver. This question

is analyzed under the notion of time synchronization. There are many methods in

literature trying to achieve this goal. However, the other question which is atypical

but even more important is that, is synchronizing the received signals necessary? does

the time asynchrony degrade the performance?

When the receiver is designed with the presumption of having perfect synchronization,
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YES, the time asynchrony will degrade the performance. Nevertheless, what if we de-

sign the system and the receiver structure with TIME ASYNCHRONY in mind. Does

the system that is designed based on the time asynchrony provide worse performance

compared to the synchronous one? We will thoroughly investigate this question in

this thesis. In a nutshell, we show that by investigating inherent time delays between

different users in a multiuser/multi-antenna scenario, we are able to improve the per-

formance. By using proper transmission and receiver design, time asynchrony provides

additional degrees of freedom in a time limited communication settings which can be

exploited to improve the performance.

In Chapter one, more details about time synchronization and the problem of time

asynchrony are presented. Then, we introduce the proper structure for exploiting time

asynchrony and present the resulting system model. We also explain the reason be-

hind possible advantages of time asynchrony. In Chapter two, we show implementation

of different detection methods based on the asynchronous system model. We include

different methods like maximum likelihood sequence detection (MLSD), successive in-

terference cancellation (SIC) and Zero Forcing (ZF). In Chapter three, we analytically

analyze the achievable performance by the asynchronous transmission and compare it

with the conventional synchronous transmission. Two performance criteria are con-

sidered. One is the bit error rate (BER) in a fading channel. The other one is the

achievable rate in an additive white Gaussian noise (AWGN) channel. The diversity

gain of the BER performance and the multiplexing gain of the achievable rates are also

derived. Finally, in Chapter 4, simulation results, some discussions and future work

are presented.
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Chapter 1

System Model

In this section, we present the problem statement which is the main motivation to

consider asynchronous transmission. Then, some insightful concepts are provided to

further support the use of asynchronous transmission. Next, the derivation of the

system model are presented. At the end, some features of the resulting system model

are analyzed.

1.1 Problem Statement

Time and Carrier Synchronization are inseparable ingredients of wireless communica-

tions. Timing synchronization is the process by which the proper sampling instants

are acquired by the receiver. If the receiver cannot grasp the right times to sample the

incoming signal, the resulting performance will be degraded. On the other hand, the

carrier synchronization is defined as the process by which the receiver node adjusts the

phase and frequency of its local oscillator to those of the received signal [36]. In this
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thesis, the main focus is time synchronization and carrier synchronization is part of

the future work, although the underlying concepts are more or less the same.

Generally, in wireless systems including single-input-single-output (SISO), multiple-

input-multiple-output (MIMO), cooperative relaying, and multi-user interference net-

works, the transmitted signals are distorted by changes in amplitude, phase and timing

which are priori unknown to the receiver node. Usually, the channel parameters are

estimated in the channel estimation process using pilot based or blind methods. For

example, in SISO systems, the received signal at the receiver antenna is affected by

a single timing offset (TO). The receiver has to estimate this parameter and compen-

sate for its effects in order to decode the transmitted symbols. The receiver may or

may not have the knowledge of channel state information (CSI). In the case of no CSI

availability, the receiver has to carry out channel estimation (CE) in addition to TO

estimation. In a multi-antenna system, data is transmitted across different channels.

The received signal at an antenna is given by a linear combination of the distorted

and delayed version of the data symbols transmitted from different transmit antennas.

In multi-antenna systems, multiple signal streams arrive at a receive antenna from

different transmit antennas resulting in multiple timing offsets (MTOs) [33].

The synchronization challenge in distributed MIMO systems and up-link of the Multi-

user systems is to jointly estimate and compensate for the effect of multiple TOs in

order to mitigate inter-user interference (ISI). For example, in LTE standards, syn-

chronization is achieved through periodically transmitted primary and secondary syn-

chronization signals from the base station. Any user who has not yet acquired the

up-link synchronization can use the primary and secondary synchronization signals to

first achieve synchronization in the down-link. Next, compensation for the propaga-

tion loss is made as part of the up-link random access procedure. However, another
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synchronization challenge is that the correction of one users timing at the receiver can

misalign those of the other users [10]. Hence, a huge effort is made to receive all the

transmitted signals from possibly distributed antennas synchronized at all the receive

antennas. Besides from the additional overhead signaling and processing, the main

question is that whether it is necessary to enforce perfect time synchronization and

align all the received signals or asynchrony can, in fact, be beneficial. There are some

works in the literature which used the phenomena of time asynchrony to improve the

system performance [11, 5, 6, 43, 1, 41, 18].

1.2 Multi-user Systems: Inter-user Interference

From another perspective, the other issue in Multi-user systems is inter-user interfer-

ence (IUI) which is the result of sharing a common medium to transmit data. There are

many applications where multiple users share a common channel to transmit data to

a receiver. Numerous examples of multi-access communication include up-link trans-

mission of a single cell in a cellular system, a group of twisted-pair copper subscriber

lines transmitting data to the same switching office, multiple ground stations commu-

nicating with a satellite and interactive cable television networks. The key challenge

in these types of networks is interference from unwanted signals. Over several decades,

many methods have been introduced to address this problem [24, 46, 29, 8]. Most of

these methods are based on assigning orthogonal dimensions to different users to be

able to separate them and prevent interference. For example, time division multiple

access (TDMA) protocols allocate different time slots to different users to mitigate

interference. The same concept can be applied by partitioning the frequency spectrum

among different users, which is called frequency division multiple access (FDMA). Code
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division multiple access (CDMA) is another scheme used to surpass IUI in which users

are multiplexed by distinct codes rather than by orthogonal frequency bands, or by

orthogonal time slots [34]. More recently, multiple receive antennas are utilized at the

receive side to take advantage of the spatial domain in order to cancel interference [35],

[28].

However, all the aforementioned works in the literature assume perfect time synchro-

nization which is practically challenging as explained before. In this thesis, we inves-

tigate the timing asynchrony between users as an additional resource to address the

problem of IUI. By exploiting time delays between users and employing an appropriate

sampling method, we design detection methods which not only cancel the interference

effectively, but also outperform the synchronous ones. When timing mismatch is used

to cancel the IUI, resources like frequency spectrum, time and receive antenna can be

employed to improve the performance. Next, we will provide some simple examples to

show the concepts behind the timing asynchrony.

1.3 The Concept Behind Asynchrony

In this section, we try to provide some insights into possible benefits of asynchronous

transmission. First, we provide a toy example to demonstrate the advantages of asyn-

chronous transmission. Assume that we have two single-antenna users, namely, U1 and

U2, trying to transmit their corresponding symbols from alphabet {−1, 1} to a common

single-antenna receiver at a same time and same frequency. Assuming AWGN channel,

the received signal at the receiver can be denoted as:

y = s1 + s2 + n. (1.1)

4



Considering Rectangular pulse shape and perfectly synchronized scenario, the possible

outcomes for different permutations of input symbols are shown in Fig. 1.1. As it

can be seen, no matter how small the additive noise is, it is impossible to distinguish

between transmission of {1,−1} and {−1, 1}. As a consequence of IUI, we are unable to

decode the transmitted symbols in synchronous fashion. However, assume that either

we add intentional time delay to transmission of one of the users or channel itself

impose different delays to the transmitted signals. Then, the resulting combination of

transmitted symbols can be one of the options in Fig. 1.2 .

(a) {1, 1} (b) {−1, 1}, {1,−1} (c) {−1,−1}

Figure 1.1: Possible outcomes for synchronous transmission

Thanks to the timing offset between the two received signals, all possible combinations

of the transmitted symbols are distinguishable and, hence, decodable. However, if we

follow conventional sampling methods like sampling the middle point or calculate the

integral over the range of transmission, then the benefits of asynchrony will be lost

and the performance might even be worse. Thus, the proper sampling method is of

great importance in order to take advantage of asynchronous transmission. Although

in this simple example, there is 150% increase in the time interval which results in the

reduced rate, by using sufficiently long frames, the loss due to adding time delays will

be negligible.

The metric to numerically express “distinguishability” is the minimum distance be-
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(a) {1, 1} (b) {1,−1} (c) {−1, 1}

(d) {−1,−1}

Figure 1.2: Possible outcomes for asynchronous transmission

tween the resulting signals. The distance between two continuous and integrable sig-

nals, e.g., f(t) and g(t), is defined as:

D(f, g) =

∫ ∞
−∞
|f(t)− g(t)|2dt (1.2)

Based on the aforementioned example, the minimum distance between the resulting

signals in the synchronous scenario is zero while in the asynchronous scenario, it de-

pends on the introduced delay and is equal to min{ 2T
T+τ

, 4τ
T+τ
} where T and τ are the

symbol length and the time delay, respectively.(the result is normalized by the trans-

mission interval). Assume that the time delay is a portion of the symbol length, i.e.,

τ = κT , then, the minimum distance can be shown with respect to κ as follows:

Maximizing the the minimum distance between the received signals results in mini-

mizing the BER. Therefore, roughly speaking, we can interpret from Fig. 1.3 that the

timing offset equal to half of the symbol length results in the best BER performance.

These concepts are explained in more details in Chapter 3.

6



−0.2 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

1.2

κ < 0.5 κ > 0.5

κ

Dmin

Figure 1.3: Dmin with respect to κ = τ
T

Next, we provide another example using the truncated Raised Cosine (R.C.) pulse

shape. Assume that two symbols modulated by truncated R.C. are transmitted through

two different channels, namely, h1, h2. Then, the received signal is equal to:

y(t) = h1s1(t) + h2s2(t) + n(t). (1.3)

where si(t) = sip(t), p(t) being the truncated R.C. pulse shape. If the two signals are

Figure 1.4: Illustration of synchronous reception

perfectly aligned, then the received signal is sampled at the peak point as shown in

7



Fig. 1.4. Assuming a normalized pulse shape, the discrete sample can be written as

y1 = h1s1 + h2s2 + n1. Note that any extra sample at any other instant, e.g., t′ will

result in y2 = αh1s1 + αh2s2 + n2 where α is the amplitude of the pulse shape at the

new sampling point t′. Now, assume that there is a time delay between the received

signals. Then, based on the sampling method shown in Fig. 1.5, the two samples are

obtained as y1 = h1s1 + βh2s2 + n1 and y2 = γh1s1 + h2s2 + n2 where β and γ are the

amplitude of the normalized pulse shape at the times t1 and t2, respectively. If we put

Figure 1.5: Illustration of asynchronous reception

the samples in the matrix form, for both synchronous and asynchronous scenarios, we

will have:

ysynch =

 h1 h2

αh1 αh2


s1

s2

+ nsynch, yasynch =

 h1 βh2

γh1 h2


s1

s2

+ nasynch.

(1.4)

= Hsynch

s1

s2

+ nsynch, = Hasynch

s1

s2

+ nasynch. (1.5)

The main difference between the synchronous and asynchronous transmissions is in
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the structure of the resulting mixing matrices denoted as Hsynch and Hasynch. One

critical characteristic of the mixing matrix is its rank which is usually called the de-

gree of freedom or multiplexing gain of the channel. In other words, by using proper

processing, any channel matrix H can be divided into rank(H) number of parallel

sub-channels. It can be easily shown that the rank of matrices Hsynch and Hasynch

are 1 and 2, respectively, i.e., rank(Hsynch) = 1, rank(Hasynch) = 2 (channel coef-

ficients are assumed to be independent). Therefore, synchronous transmission results

in one degree of freedom while the asynchronous transmission provides two degrees of

freedom. Again, these concepts will be shown in more details in Chapter 3.

Before delving into details of asynchronous transmission, let us discuss Hilbert Space

of signals, briefly. Hilbert space generalizes Euclidean space of real numbers to finite

energy signals. Each finite energy signal can be represented by a vector in Hilbert space

with each coordinate given by an inner product with the corresponding orthonormal

basis functions. In more details, any finite energy signal like x(t) can be written as a

linear combination of the orthonormal basis functions as:

x(t) =
∑
n∈Γ

x[n]bn(t) (1.6)

where bn(t) is an orthonormal basis function, i.e., 〈bn(t).bm(t)〉 = δ[n − m] and x[n]

is the corresponding coefficient in the direction of the basis function bn(t) which is

obtained by the following inner product.

x[n] = 〈x(t).bn(t)〉 (1.7)

The Hilbert space representation is particularly useful as it allows a complete descrip-

tion of time-continuous signals x(t) by a set of discrete values x[n]. If we further
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constrain our finite energy signals to strictly band-limited ones, then Hilbert Space is

called Paley-Wiener space. The Nyquist sampling theorem states that any signal in

Paley-Wiener space whose Fourier transform is supported on f ∈ (−W W ) can be

written as the linear combination of some Sinc pulses, i.e.,

x(t) =
∞∑

n=−∞

x[n]
(√

2Wsinc(2W (t− nT ))
)

(1.8)

where T is the Nyquist interval, i.e., T = 1
2W

[12]. Due to the completeness of the of

Nyquist rate Sinc pulses, every band-limited signal, even Sinc pulses that do not lie at

integer multiples of T , e.g., their shifted version, i.e., sinc(2W (t − nT − τ)), still lie

completely in Paley-Wiener space.

Assume that, in Eq. (1.8), x[n] is the transmitted symbol modulated on Sinc pulse

bn(t) =
√

2Wsinc(2W (t−nT )). In practice, pulses spanning an unlimited time domain

are not feasible, hence, they are usually truncated within a desired interval. Assume

that the transmission interval is truncated into NT seconds, then we are capable of

transmitting approximately 2WNT symbols by using the Nyquist rate signaling. In

other words, Hilbert space offers 2WNT dimensions by the Nyquist rate signaling in

the case of finite-time transmissions [17]. However, due to the truncation, the finite

set of Nyquist rate Sinc pulses, i.e.:

SNyquist ≡
{
bn(t) =

√
2Wsinc(2W (t− nT )), n = 0, · · · , 2WNT − 1

}

is not complete anymore and does not span the whole signal space. Therefore, we can

insert additional pulses to exploit more signaling dimensions which leads to higher data

throughput.
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For example, defining b2WNT =
√

2Wsinc(2W (t − τ)) and applying the well-known

Gram-Schmidt orthogonalization process, provide us an orthonormal basis function

with size 2WNT +1. The newly formed basis function exploits an additional signaling

dimension. We can continue this procedure and take advantage of the rest of available

signaling dimensions. In fact, it is shown in the literature that the available degree of

freedom in a time-limited channel is unbounded [1]. We will use asynchronous trans-

mission to fully exploit the available degree of freedom inherent in such a channel. So

far, we have provided some basic examples and insights to show the underlying benefits

behind asynchronous transmission. However, as explained before, taking advantage of

asynchronous transmission requires proper sampling and processing at the receiver. In

the next section, the proper sampling and the resulting system model will be presented.

1.4 Sampling Method

First, we explain the system model for a point to point AWGN channel. Then, the

generalization to Multi-user/MIMO fading channels is provided. In the conventional

point to point Nyquist-rate transmission, after performing encoding and modulation,

the modulated symbols are shaped with appropriate waveforms suited to the commu-

nication channel. Let the block length be equal to N , then the transmitted signal will

be:

x(t) =
N∑
n=1

x[n]p(t− (n− 1)T ) (1.9)

where p(t) is the pulse shape, e.g., root raised cosine, which is truncated and its length

is denoted by Tp, i.e., p(t) = 0, t /∈ [0, Tp]. T is the symbol interval and is usually equal

11



to 1
2W

where W is the occupied bandwidth in which most of the transmitted power is

concentrated. To incorporate asynchrony in the transmission, assume that instead of

N symbols, we transmit KN symbols using shifted versions of the pulse shapes. Then

the transmitted signal will be:

x(t) =
K∑
k=1

N∑
n=1

xk[n]p(t− (n− 1)T − τk) (1.10)

It can be interpreted as the superimpose of K sub-streams with the corresponding time

shift of τk, 0 ≤ τ1 < τ2 < · · · < τK < T . We call K the over-signaling factor. By

assuming AWGN channel, the received signal is described as:

y(t) =
K∑
k=1

N∑
n=1

xk[n]p(t− (n− 1)T − τk) + n(t) (1.11)

To detect the transmitted symbols xk[n], instead of working with the continuous ran-

dom process y(t), we use a set of statistics, Zj = rj(y(t)), j = 1, · · · , J that are sufficient

for the detection of the transmitted symbols. Intuitively, Z1, Z2, · · · , ZJ are jointly suf-

ficient statistics if the statistician who knows the values of Z1, Z2, · · · , ZJ can do just

as good a job of estimating the transmitted symbols as the statistician who knows the

entire random process y(t). We use the well-known factorization theorem to find the

sufficient statistics.

Theorem 1.1. Let Y1, · · · , Yn be random variables with joint density f(y1, y2, · · · , yn|θ).

The statistics

Zj = rj(Y1, Y2, · · · , Yn), j = 1, · · · , J (1.12)

are jointly sufficient to estimate θ if and only if the joint density can be factored as
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follows:

f(y1, y2, · · · , yn|θ) = u(y1, y2, · · · , yn).v(r1(y1, y2, · · · , yn), · · · , rJ(y1, y2, · · · , yn), θ)

where u and v are non-negative functions [32].

The density of y(t) given the transmitted symbols is calculated as follows:

f(y(t)|{xk[n]}) = c exp

[∫ ∞
−∞

[z(t)]2dt

]

where z(t) = y(t) −
∑K

k=1

∑N
n=1 xk[n]p(t− (n− 1)T − τk) and c is a constant value.

By expanding the likelihood function, it can be observed that the transmitted symbol

xk[n] is related to y(t) through the value of
∫∞
−∞ y(t)p(t− (n− 1)T − τk)dt. Therefore,

using the factorization theorem stated above, we can conclude that sufficient statistics

for detecting the transmitted symbols are:

yl[m] =

∫ ∞
−∞

y(t)p(t− (m− 1)T − τl)dt (1.13)

which is known as the matched filter in the literature and can also be implemented

using convolution followed by a sampler, i.e.,:

yl[m] = y(t) ∗ p(t)|Tp+(m−1)T+τl (1.14)

Denoting p(t) ∗ p(t) as g(t), the sufficient statistics can be represented as:

yl[m] =
K∑
k=1

N∑
n=1

xk[n]g(Tp + (m− n)T + (τl − τk)) + nl[m] (1.15)

where nl[m] = n(t) ∗ p(t)|Tp+(m−1)T+τl . The NK obtained samples can be put to-
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gether in two different ways. If we define y[m] = [y1[m], · · · , yK [m]]T and x[m] =

[x1[m], · · · , xK [m]]T , the input-output relation of the system can be presented in matrix

form as follows:



y[1]

y[2]

...

y[N ]


=



R11 R12 · · · R1N

R21 R22 · · · R2K

...
. . . . . .

...

RN1 RN2 · · · RNN





x[1]

x[2]

...

x[N ]


+



n[1]

n[2]

...

n[N ]


(1.16)

where Rmn is the K ×K constructing sub-block whose elements are defined as:

Rmn(l, k) = g(Tp + (m− n)T + (τl − τk)) (1.17)

Matrix R is a Hermitian block-Toeplitz matrix, i.e., Rij = Ri′j′ if i − j = i′ − j′,

whose sub-blocks are not necessarily Toeplitz. Two examples of matrixR′ are provided

for Rectangular and R.R.C pulse shapes, K = 3, τ = [0, 0.2, 0.7] and N = 3.

RRect. =



1 0.8 0.5 0 0 0 0 0 0

0.8 1 0.3 0.2 0 0 0 0 0

0.5 0.3 1 0.7 0.5 0 0 0 0

0 0.2 0.7 1 0.8 0.5 0 0 0

0 0 0.5 0.8 1 0.3 0.2 0 0

0 0 0 0.5 0.3 1 0.7 0.5 0

0 0 0 0 0.2 0.7 1 0.8 0.5

0 0 0 0 0 0.5 0.8 1 0.3

0 0 0 0 0 0 0.5 0.3 1



(1.18)
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RR.R.C. =



1 0.93 0.33 0 −0.11 −0.07 0 0.02 0.01

0.93 1 0.6 0.2 0 −0.12 −0.04 0 0.02

0.33 0.6 1 0.84 0.6 0 −0.13 −0.12 0

0 0.2 0.84 1 0.93 0.33 0 −0.11 −0.07

−0.11 0 0.6 0.93 1 0.6 0.2 0 −0.12

−0.07 −0.12 0 0.33 0.6 1 0.84 0.6 0

−0 −0.04 −0.13 0 0.2 0.84 1 0.93 0.33

0.02 0 −0.12 −0.11 0 0.6 0.93 1 0.6

0.01 0.017 0 −0.07 −0.12 0 0.33 0.6 1


(1.19)

On the other hand, if we define yl = [yl[1], · · · , yl[N ]]T and xk = [xk[1], · · · , xk[N ]]T ,

the input-output relation of the system can be presented in matrix form as follows:



y1

y2
...

yK


=



R′11 R′12 · · · R′1K

R′21 R′22 · · · R′2K
...

. . . . . .
...

R′K1 R′K2 · · · R′KK





x1

x2

...

xK


+



n1

n2

...

nK


(1.20)

where R′lk is the N ×N constructing sub-block whose elements are defined as:

R′lk(m,n) = g(Tp + (m− n)T + (τl − τk)) (1.21)

Matrix R′ is a Hermitian matrix whose sub-blocks, i.e., R′lk are banded Toeplitz blocks

of order u, where u = Tp
T

. Two examples of matrix R′ are provided for Rectangular
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and R.R.C. pulse shapes, K = 3, τ = [0, 0.2, 0.7], and N = 3.

R′Rect. =



1 0 0 0.8 0 0 0.3 0 0

0 1 0 0.2 0.8 0 0.7 0.3 0

0 0 1 0 0.2 0.8 0 0.7 0.3

0.8 0.2 0 1 0 0 0.5 0 0

0 0.8 0.2 0 1 0 0.5 0.5 0

0 0 0.8 0 0 1 0 0.5 0.5

0.3 0.7 0 0.5 0.5 0 1 0 0

0 0.3 0.7 0 0.5 0.5 0 1 0

0 0 0.3 0 0 0.5 0 0 1



(1.22)

R′R.R.C =



1 0 0 0.93 −0.11 0.02 0.33 −0.07 0.01

0 1 0 0.2 0.93 −0.11 0.84 0.33 −0.07

0 0 1 −0.04 0.2 0.93 −0.13 0.84 0.33

0.93 0.2 −0.04 1 0 0 0.6 −0.12 0.02

−0.11 0.93 0.2 0 1 0 0.6 0.6 −0.12

0.02 −0.11 0.93 0 0 1 −0.12 0.6 0.6

0.33 0.84 −0.13 0.6 0.6 −0.12 1 0 0

−0.07 0.33 0.84 −0.12 0.6 0.6 0 1 0

0.01 −0.07 0.33 0.02 −0.12 0.6 0 0 1


(1.23)

If the distance between the introduced time delays are equal, i.e., τk = (k − 1) T
K
, k =

1, · · · , K, then the second structure turns into a block-Toeplitz matrix which each

blocks is also Toeplitz. On the other hand, the first structure will turn into a Toeplitz
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matrix. Therefore, these two structures are used interchangeably based on the appli-

cation. Note that, in fact, the uniformly distributed set of time delays provide the best

performance, which will be shown in Chapter 3.

Now, let us adapt the point to point model to a fading multi-user model. We con-

sider a system with K users, transmitting data to a common receiver simultaneously,

which can have one receive antenna or multiple ones. Here, we assume one receive

antenna but having multiple receive antennas also follows the same structure. The

signal transmitted from User k is described by:

xk(t) =
N∑
n=1

xk[n]p(t− (n− 1)T ) (1.24)

Due to the different physical locations of the users, their signal is received with various

time delays. The kth transmitted signal is received with a relative delay of τk and a

channel path gain of hk. Then, the received signal can be represented by:

y(t) =
K∑
k=1

hkxk(t− τk) + n(t) (1.25)

where K is the number of users and n(t) is the white noise with variance of σ2
n. Without

loss of generality, we assume that 0 = τ1 < τ2 < · · · < τK < T . The channel coefficients

are assumed to be fixed during each frame. Again, using the factorization theorem

stated above, we can obtain sufficient statistics and put them in the matrix form as:



y[1]

y[2]

...

y[N ]


= R



H 0 · · · 0

0 H · · · 0

...
. . . . . .

...

0 0 · · · H





x[1]

x[2]

...

x[N ]


+



n[1]

n[2]

...

n[N ]


(1.26)

17



or



y1

y2
...

yK


= R′



H ′1 0 · · · 0

0 H ′2 · · · 0

...
. . . . . .

...

0 0 · · · H ′K





x1

x2

...

xK


+



n1

n2

...

nK


(1.27)

where H = diag[h1, h2, . . . , hK ] and H ′k = hkIN . The elements of matrices R and R′

are defined as before.

In the conventional transmission scheme, the set of modulated signals, hence, the set of

matched filters are orthogonal, which results in independent noise samples. However,

by introducing timing offsets, the set of matched filters are not orthogonal anymore.

Due to the additional signaling, the noise samples are not independent anymore and

their covariance is not identity matrix. Remember that:

nl[m] =

∫ ∞
−∞

n(t)p(t− (m− 1)T − τl)dt (1.28)

Thus, the covariance between nl[m] and nk[n], denoted as δmnlk , will be equal to:

δmnlk = E[nl[m]n∗k[n]]

= E

[∫ ∞
−∞

∫ ∞
−∞

n(t)p(t− (m− 1)T − τl)n∗(s)p(s− (n− 1)T − τk)dtds
]

= σ2
n

∫ ∞
−∞

∫ ∞
−∞

δ(t− s)p(t− (m− 1)T − τl)p(s− (n− 1)T − τk)dtds

= σ2
n

∫ ∞
−∞

p(t− (m− 1)T − τl)p(t− (n− 1)T − τk)dt

= σ2
np(t) ∗ p(t)|Tp+(m−n)T+(τl−τk)

= σ2
ng(Tp + (m− n)T + (τl − τk)) (1.29)
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Therefore, the covariance matrix of noise vectors n = [n[1]T , · · · ,n[N ]T ]T and n′ =

[n1
T , · · · ,nKT ]T are equal to Rσ2

n and R′σ2
n, respectively. However, we can use a

different set of matched filters to produce independent noise samples which circumvent

the noise whitening procedure involving Cholesky decomposition. For example, one

way is to break down the integrals corresponding to the sampling in Fig. 1.6 to define

a new sampling method as shown in Fig. 1.7 [38, 3]. The corresponding output samples

are written as follows where τk+1 is an auxiliary variable equal to Tp.

yl[m] =

∫ τ(l+1)+(m−1)T

τl+(m−1)T

K∑
k=1

N∑
n=1

xk[n]p(t− (m− 1)T − τl)p(t− (n− 1)T − τk)hkdt

+

∫ τ(l+1)+(m−1)T

τl+(m−1)T

n(t)p(t− (m− 1)T − τl)dt 1 ≤ l ≤ K, 1 ≤ m ≤ N + 1

Figure 1.6: Sampling method with large sampling interval

Figure 1.7: Sampling method with small sampling interval

By defining intermediate variables umn(l, k) and noise samples vl[m] as follows:

umn(l, k) =

∫ τ(l+1)+(m−1)T

τl+(m−1)T

p(t− (m− 1)T − τl)p(t− (n− 1)T − τk)dt (1.30)

vl[m] =

∫ τ(l+1)+(m−1)T

τl+(m−1)T

n(t)p(t− (m− 1)T − τl)dt (1.31)
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, respectively, we can write the output samples in a more compact way:

yl[m] =
K∑
k=1

N∑
n=1

xk[n]umn(l, k)hk + vl[m] (1.32)

m = 1, . . . , N + 1 sampling time index

l = 1, . . . , K index of the matched user

Defining y[m] = [y1[m], y2[m], . . . , yK [m]]T and x[n] = [x1[n], x2[n], . . . , xK [n]]T , then,

y[m] for different values of m can be written as:

y[m] =
N∑
n=1

UmnHx[n] + v[m] 1 ≤ m ≤ N + 1 (1.33)

where H = diag[h1, h2, . . . , hK ], v[m] = [v1(j), v2(j), . . . , vK(j)]T and Umn is a K×K

matrix whose elements are defined as Umn(l, k) = umn(l, k). The next step is to put

all vectors of y[m] together and define y as [y[1]T ,y[2]T , . . . ,y[N + 1]T ]T . Then, y

can be written as:

y =



U11 U12 U13 . . . U1N

U21 U11 U12 . . . U1(N−1)

...
. . .

. . .
. . .

...

U(N−1)1 . . . U21 U11 U12

UN1 . . . U31 U21 U11

U(N+1)1 . . . U41 U31 U21





H 0 0 . . . 0

0 H 0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 H 0

0 . . . 0 0 H





x[1]

x[2]

...

x[N ]


+ v

y = UH̄x+ ν (1.34)

Block Toeplitz structure of U originates from the fact that u(j+m)(i+m)(l, k) = uji(l, k).

This can be verified by a change of variable in Eq. (1.30). Based on the relation
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between Tp and T , different numbers of adjacent symbols interfere with each other.

For example, for Rectangular pulse shapes, i.e., Tp = T , at each instant only current

and the previous symbol cause interference. In other words, only U11 and U21 are

nonzero. Without loss of generality, we assume that T = 1, therefore U11 and U21 are

defined as follows:

U11 =



τ2 − τ1 0 . . . 0

τ3 − τ2 τ3 − τ2 . . . 0

...
...

. . .
...

τK − τK−1 . . . τK − τK−1 0

1− τK . . . 1− τK 1− τK


(1.35)

U21 =



0 τ2 − τ1 . . . τ2 − τ1

0 0 . . . τ3 − τ2

...
...

. . .
...

0 . . . 0 τK−1 − τK

0 . . . 0 0


(1.36)

Hence, for Rectangular pulse shapes, the system model simplifies to:

y =



U11 0 0 . . . 0

U21 U11 0 . . . 0

...
. . . . . . . . .

...

0 . . . U21 U11 0

0 . . . 0 U21 U11

0 . . . 0 0 U21





H 0 0 . . . 0

0 H 0 . . . 0

...
. . . . . . . . .

...

0 . . . 0 H 0

0 . . . 0 0 H





x[1]

x[2]

...

x[N ]


+ v
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The important fact about this sampling method is that the covariance matrix of noise

samples is diagonal. With a small abuse of notation, we denote Diag(U11) as a diagonal

matrix including diagonal elements of U11. Then, it can be shown that E[vvH ] is equal

to σ2(IN+1 ⊗Diag(U11)), where In is an n× n identity matrix and (⊗) is Kronecker

product.

Since the statistically sufficient samples in Fig. 1.6 can be created from samples in

Fig. 1.7, the samples in Fig. 1.7, i.e. Eq. (1.37), are sufficient statistics too. Both of

these sampling methods introduce intentional ISI and impose memory on the system;

however, they have some differences:

1. Sampling intervals in Fig. 1.7 are smaller and need faster sampler.

2. Since sampling intervals are disjoint in Fig. 1.7, noise samples are independent.

However, due to sampling overlap, the noise samples in Fig. 1.6 are correlated.

3. The sampling in Fig. 1.7 results in an overdetermined system, while the number

of output samples in Fig. 1.6 is equal to the number of input symbols.

Note that, the notion of increasing signaling dimension by using shifted versions of

the pulse shapes, introduced ISI in the system. Hence, the benefit of having more

degree of freedom is obtained in the expense of dealing with ISI which necessitates the

need for designing low complexity receiver architectures. The question of whether the

mixing matrix, i.e., R/R′, is invertible or not and how it behaves asymptotically as the

block length N tends to infinity will have important consequences in the performance

of system. Hence, we will investigate this question in the next section.
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1.5 Features of Mixing Matrix

To understand the asymptotic behavior of matrix R/R′, we will utilize the Szego

theorem which states that [20]:

Theorem 1.2. Let TN = [tk−j; k, j = 0, 1, 2, · · · , N − 1] be a sequence of Hermitian

Toeplitz matrices whose generating functions is defined as f(w) =
∑∞

k=−∞ tke
ikw, w ∈

[0, 2π]. Also, λ0 ≥ λ1 ≥ · · · ≥ λN−1 are the sorted eigenvalues of matrix TN . Then,

for any function F that is continuous on the range of f:

lim
N→∞

1

N

N−1∑
k=0

F (λk) =
1

2π

∫ 2π

0

F (f(w))dw (1.37)

In addition, the largest and smallest eigenvalues asymptotically converge to:

lim
N→∞

λ0 = max
w

f(w)

lim
N→∞

λN−1 = min
w
f(w)

The proof comes from asymptotic equivalence of sequences of Hermitian Toeplitz matri-

ces and their corresponding circulant versions which result in asymptotic convergence

of the their eigenvalues [21]. Therefore, this theorem can be utilized to specify the

eigenvalues of matrix R when the time delays are uniformly distributed. As N tends

to infinity, the asymptotic eigenvalues of matrix R with uniformly distributed time

delays approach the equispaced samples of the K
T

-folded spectrum of the pulse shape.

K
T

-folded spectrum is defined the same as the conventional folded spectrum except that

the frequency shifts are K
T

[37, 22].

Eigenvalues of matrix R with uniform time delays and different pulse shapes including
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Sinc, R.R.C. and Rectangular are shown in Figs. 1.8, 1.9 and 1.10, respectively. As you

can see, for the conventional transmission, i.e., K = 1, all the eigenvalues are equal to

one for all the three mentioned pulse shapes. The reason is that because of Nyquist no-

ISI condition, independent of the used pulse shape, the folded spectrum is always flat.

Due to the time limited transmission (infinite-time pulse shapes can not be practically

realized), the spectrum is theoretically non-zero for every frequency, thus the extra

eigenvalues provided by the asynchronous transmission are always positive. However,

the used pulse shape has a huge impact on the magnitude of the extra eigenvalues.

For example, for Sinc function, adding asynchrony is not very beneficial, because the

extra eigenvalues have very small values. However, for other pulse shapes which have

some nonzero spectrum outside the 1
T

bandwidth, like, Rectangular and R.R.C. pulse

shapes, adding asynchrony provides additional nonzero eigenvalues. For example, for

R.R.C. pulse shape, β percent additional eigenvalues are available to exploit. For Rect-

angular pulse shape, due to having unlimited spectrum, there are unlimited number of

eigenvalues to exploit, however, by increasing K, the additional eigenvalues get closer

to zero. In summary, the benefits of the asynchronous transmission depends on the

utilized pulse shape and its K
T

-folded spectrum.

Fortunately, the Szego Theorem can also be extended to Toeplitz block matrices likeR′

[22]. The generalized Szego Theorem relates the collective behavior of the eigenvalues

to the generalized generating function, R′(w), which is defined as:

R′(w) =



f11(w) f12(w) · · · f1K(w)

f21(w) f22(w) · · · f2K(w)

...
. . . . . .

...

fK1(w) fK2(w) · · · fKK(w)


(1.38)
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where flk(w) is the generating function for the corresponding Toeplitz block R′lk. The

generalized Szego Theorem states that for any continuous function F [37]:

lim
N→∞

1

N

NK−1∑
k=0

F [λk(R
′)] =

1

2π

∫ 2π

0

K−1∑
j=0

F [λj(R
′(w))]dw (1.39)

In particular, for F (x) = x,

lim
N→∞

1

N

NK−1∑
k=0

λk(R
′) =

1

2π

∫ 2π

0

K−1∑
j=0

λj(R
′(w))dw (1.40)

Moreover, same convergence results can be obtained for the largest and smallest eigen-

values, i.e,:

lim
N→∞

λ0(R′) = max
w

λ0(R′(w))

lim
N→∞

λNK−1(R′) = min
w
λK−1(R′(w))

Therefore, some of the properties of matrix R′ can be deducted by properties of matrix

R′(w) when the block length is sufficiently large. For example, it is proved in the

literature that for time limited transmission, i.e., finite value of u, matrix R′(w) is

positive definite with bounded eigenvalues, thus, eigenvalues of matrix R′ are nonzero

and bounded. On the other hand, when the pulse shapes are strictly band-limited,

matrix R′(w) is singular which results in singularity of R′ [44]. In the next section,

we adapt well-known receiver algorithms to the asynchronous transmission.
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Figure 1.8: Eigenvalues of matrix R with Sinc pulse shape
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Figure 1.9: Eigenvalues of matrix R with R.R.C. pulse shape (β = 0.75)
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Figure 1.10: Eigenvalues of matrix R with Rectangular pulse shape
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Chapter 2

Receiver Design

In this section, we introduce different detection methods which take advantage of asyn-

chronous transmission. In more detail, the problem is to recover the vector b ∈ RNK

from an observation vector in the form of:

y = Utotx+ ν (2.1)

where Utot = UH̄ is the known channel matrix and ν ∼ N(0, σ2Σn). Thanks to the

new sampling method introduced in the previous section, the covariance matrix of noise

vector is a diagonal matrix. For the sake of notational simplicity, we can multiply the

obtained vector with Σn
−1/2 to equalize the variance of noise for different sub-channels.

Thus, we will have ŷ = Ûx + ν̂ where Û = Σn
−1/2UH̄ and ν ∼ N(0, σ2I(N+1)K).

The elements of x belong to a finite alphabet Ω of size |Ω|. Therefore, there are |Ω|NK

possible vectors of x. Detecting x in the maximum-likelihood (ML) sense is equivalent
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to:

min
x∈ΩNK

∥∥∥ŷ − Ûx∥∥∥ (2.2)

Eq. (2.2) is a finite-alphabet-constrained least-squares (LS) problem, which is known to

be nondeterministic polynomial-time (NP)-hard. The complicating factor is of course

the constraint x ∈ ΩNK , otherwise it would be just the classical LS regression [30]. Due

to the distinct feature of the sampling method shown in Fig. 1.7 , i.e., Û(i, j) = 0, j > i,

the metric in Eq. (2.2) can be rewritten as:

min
x∈ΩNK

{f1(x1) + f2(x1, x2) + · · ·+ fNK(x1, · · · , xNK)} (2.3)

where

fn(x1, · · · , xn) =

(
ŷn −

n∑
m=1

Û (n,m)xm

)2

(2.4)

The new representation can be visualized as a decision tree with NK+1 layers, |Ω|

branches emanating from each node, and |Ω|NK leaf nodes. To any branch, we associate

a hypothetical decision on xn , and the branch metric fn(x1, · · · , xn). Also, to any

node, we associate the cumulative metric which is just the sum of all branch metrics

accumulated when traveling to that node from the root. Finally, to each node, we

associate the symbols {x1, x2 · · · , xn} it takes to reach there from the root.

Clearly, a naive but valid way of solving the minimization in Eq. (2.3) would be to

traverse the entire tree to find the leaf node with the smallest cumulative metric. How-

ever, such a brute-force search is extremely inefficient, since there are |Ω|n leaf nodes

to examine. We will now review some efficient, popular, but approximate solutions for
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Figure 2.1: Tree representation of the minimization problem

this problem setting [48, 2].

2.1 Maximum-Likelihood Sequence Detection

Simply stated, Maximum-Likelihood Sequence Detection (MLSD) finds the sequence

through the trellis that looks most like the received output sequence, or, in other words,

minimizes the relation in Eq. (2.3) [16]. As a simple example, the highlighted path in

Fig. 2.2 is the MLSD decision for the sequence that best matches the received outputs.

The receiver need only wait until the entire sequence is received and then compare it

against all possible encoder sequences.

The concept is simple, but the complexity grows exponentially with length of the se-

quence. The Viterbi Algorithm reduces this complexity through a recursive elimination

procedure where trellis paths that are worse than other paths are eliminated early from

further consideration. At each stage of the trellis, the decoder keep only the best sur-

viving path into each state, eliminating all the rest into that state at that time. Thanks

to the memory introduced in the system by the time delays, we can implement MLSD

by using Viterbi algorithm. As a result, the complexity order of O(|Ω|NK) offered by
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Figure 2.2: Illustration of the concept of MLSD in a trellis

exhaustive search reduces to complexity order of O(|Ω|K)[39].

Based on the recursive relation between the input and output which is described as:

ŷ[j] = Û11x[j] + Û21x[j − 1] + ν̂[j] 2 ≤ j ≤ N

the trellis diagram of the system includes |Ω|K states with |Ω|K outgoing paths to the

next states, and |Ω|K incoming paths from previous states. To calculate the metric for

each path, we need to calculate the likelihood function as follows:

Pr(ŷ[j]|x[j],x[j − 1]) =Pr(ν̂[j] = ŷ[j]− Û11x[j]− Û21x[j − 1])

=
1√

(2π)Kσ2
n

exp (− 1

2σ2
n

sj
Hsj)

where sj = ŷ[j]− Û11x[j]− Û21x[j − 1]. By discarding common terms and simple

calculations, the metric for each path can be defined as
∑K

i=1 |sj(i)|2. After calculating

the path metrics, the final goal is to find the surviving path and trace it back to decode

the transmitted symbols.
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2.2 Zero Forcing (ZF)

The ZF detector first solves the problem mentioned in Eq. (2.2) neglecting the finite

alphabet constraint.

x̃ = argmin
x

∥∥∥ŷ − Ûx∥∥∥ (2.5)

= Û
−1
ŷ (2.6)

Note that Û
−1

does not need to be explicitly calculated. For example, one way is to

use Gaussian elimination, i.e.,

x̃1 =
ŷ1

Û(1, 1)
(2.7)

x̃2 =
ŷ2 − Û(2, 1)x̃1

Û(2, 2)
(2.8)

... (2.9)

x̃n =
ŷn −

∑n−1
m=1 Û(n,m)x̃m

Û(n, n)
(2.10)

ZF detector, then approximate the answers by projecting each x̃n onto the closet point

in the constellation point, i.e.,

x̄n = argmin
xk∈Ω

‖xk − x̃k‖ (2.11)

It can be seen that, x̃ = x + Û
−1
ν̂, meaning that all the ISI has been completely

removed. This is, in fact, how ZF got its name. However, unfortunately ZF works

poorly unless Û is well conditioned. The reason is that the correlation between the
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noise samples in the projection phase is neglected which can be high when the matrix

Û is ill-conditioned. This can be improved by using MMSE estimate but it does not

overcome the fundamental problem of the approach [30].

There is a fundamental difference between synchronous and asynchronous ZF. In the

synchronous ZF, we need more number of receive antennas than transmit antennas to

be able to cancel interference completely. However, in the asynchronous ZF, even with

one receive antenna, we are able to remove all the interference completely. The required

dimension at the receiver signal space is provided by asynchronous transmission and

oversampling. Denoting M as the number of receiver antenna, it is well-known in

the literature that, synchronous ZF provides M − K + 1 diversity orders when K

independent symbols are transmitted. K − 1 diversity orders are wasted to remove

the interference [23]. In more details, transmitting S (S ≤ K ≤ M) independent

symbols will result in (M −S+ 1)(K−S+ 1) diversity orders [40]. On the other hand,

asynchronous ZF provides additional degrees of freedom by means of oversampling

which enable us to enjoy full diversity of M while transmitting K independent symbols.

These claims are mathematically proved in Chapter 3.

Here, we present the system model when multiple receive antennas are used at the

receiver. By stacking output samples of all receive antennas together we can represent

the system model as follows:
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

y1

y2
...

yM


=



U 0 . . . 0

0 U . . . 0

...
...

. . .
...

0 . . . 0 U





H̄1

H̄2

...

H̄M


x+



ν1

ν2
...

νM


ytot = UtotHtotx+ νtot

ytot = Ltotx+ νtot

where M is number of receive antennas. Then, the zero-forcing detector is defined as:

ỹ = (Ltot
HΣtot

−1Ltot)
−1Ltot

HΣtot
−1ytot = x+ ν̃ (2.12)

where Σtot = IM ⊗Σ, and Σ is a diagonal matrix representing the covariance matrix

of noise samples νi, 1 ≤ i ≤ M . Note that, because the receive antennas are co-

located the matrix U which corresponds to the timing offsets is the same at all the

receive antennas. The noise enhancement factor is (Ltot
HΣtot

−1Ltot)
−1, which affects

the receiver performance and will be studied in Chapter 3.

2.3 Successive Interference Cancellation with Hard

Decision Passing

Successive interference cancellation (SIC) detection that takes a serial approach to

cancel interference can be used to reduce complexity. SIC is sometimes called ZF de-

tector with decision feedback (ZF-DF). ZF-DF detector performs Gaussian elimination

method mentioned before to detect the transmitted symbol. However, it performs the

Gaussian elimination with the modification that it projects the symbols onto the con-
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stellation Ω in each step of the Gaussian elimination, rather than afterwards. In more

details:

x̄1 = argmin
x1∈Ω

f1(x1) (2.13)

=

[
ŷ1

Û(1, 1)

]
(2.14)

where [.] means the projection onto the nearest point in the constellation. For the next

symbols, the effect of previously detected symbols are removed by subtracing them

from the corresponding samples, i.e.,

b̄n = argmin
xn∈Ω

{fn(x̄1, x̄2, · · · , x̄n−1, xn)} (2.15)

=

[
ŷn −

∑n−1
m=1 Û(n,m)x̄m

Û(n, n)

]
(2.16)

In the decision-tree perspective, ZF-DF can be considered as just examining one single

path down from the root. When deciding on xn, it considers x1, x2, · · · , xn−1 known

and takes the xn that corresponds to the smallest branch metric. Clearly, after NK

steps we end up at one of the leaf nodes, but not necessarily in the one with the smallest

cumulative metric. For example, in Fig. 2.1, considering the branch metrics for x1 will

result in detecting x1 = −1. Next, deciding on x2 given that x1 = −1 will yield the

detected vector as (−1,−1) which is not the optimal answer, i.e., (1,−1).

Thus, the problem with ZF-DF is error propagation. If, due to noise, an incorrect

decision is taken in any of the steps, then this error will propagate and many of the

subsequent symbols are likely to be detected wrong as well. The detection order can

be optimized to minimize the effects of error propagation. It is best to start with
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the symbol for which ZF produces the most reliable result, i.e., the sub-channel with

smallest noise variance, and then proceed to less and less reliable symbols. However,

even with the optimal ordering, error propagation severely limits the performance [4].

Using the sampling method in Fig. 1.7, this serial approach can be either a forward SIC

initiated from the first transmitted symbol, i.e., x1[1], or a backward SIC started from

the last transmitted symbol, i.e., xK [N ]. For example, for forward processing, x1[1] can

be decoded by using y1[1] without interference, then x2[1] can be decoded by canceling

the interference of x1[1] from y2[1], and so on. The same procedure can be performed

backwards. One can also combine forward and backward operations. However, when

hard decisions are used, such a combination will not result in a noticeable gain. On the

other hand, by using soft decisions, combining the forward and backward operations

will improve the results as explained in the following section.

2.4 Forward Backward Belief Propagation Detec-

tion

In the previous section we introduced an SIC method which was performed by passing

hard decisions of previously decoded symbols to cancel the interference. In this section,

we introduce a similar detection method which passes likelihood values.

In practice, each symbol xk typically is composed of information-carrying bits. It is

then of interest to take decisions on the individual bits, and often, also to quantify

how reliable these decisions are. Such reliability information about a bit is called a

soft decision, and is typically expressed via the probability ratio. Hard decisions does

not distinguish between two events of p(x = 0|y) = 0.49, p(x = 0|y) = 0.51 and
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p(x = 0|y) = 0.01, p(x = 0|y) = 0.99, while, the soft decisions take this difference into

account. Therefore, soft decisions carry more information with respect to the hard

decisions. By using likelihood values, instead of hard decisions, performance can be

improved. Additionally, this method provides the opportunity to exploit benefits of

backward processing as well. We explain the strategy of decoding for BPSK modulation

and K = 2, but it can be also generalized to other modulations and other values of

K. We also assume that transmitted symbols have the same prior probabilities and

calculate the conditional probabilities as follows:



a = P (y1[1]|x1[1] = 0) = 1√
2πρ1σ2

n

exp
(
− |y1[1]+h1ρ1|2

2ρ1σ2
n

)
b = P (y1[1]|x1[1] = 1) = 1√

2πρ1σ2
n

exp
(
− |y1[1]−h1ρ1|2

2ρ1σ2
n

)
P fw0 (x1[1]) = P (x1[1] = 0|y1[1]) =

a
a+b

P fw1 (x1[1]) = P (x1[1] = 1|y1[1]) =
b

a+b



c = P (y2[1]|x2[1] = 0, y1[1]) =

P fw0 (x1[1])
1√

2πρ2σ2
n

exp
(
− |y2[1]+h1ρ1+h2ρ2|2

2ρ2σ2
n

)
+ P fw1 (x1[1])

1√
2πρ2σ2

n

exp
(
− |y2[1]−h1ρ1+h2ρ2|2

2ρ2σ2
n

)
d = P (y2[1]|x2[1] = 1, y1[1]) =

P fw0 (x1[1])
1√

2πρ2σ2
n

exp
(
− |y2[1]+h1ρ1−h2ρ2|2

2ρ2σ2
n

)
+ P fw1 (x1[1])

1√
2πρ2σ2

n

exp
(
− |y2[1]−h1ρ1−h2ρ2|2

2ρ2σ2
n

)
P fw0 (x2[1]) = P (x2[1] = 0|y1[1], y2[1]) =

c
c+d

P fw1 (x2[1]) = P (x2[1] = 1|y1[1], y2[1]) =
d
c+d

where ρi = U11(i, i). Using these successive calculations, P fw
0 (xk[n]) and P fw

1 (xk[n])

can be found for all values of 1 ≤ n ≤ N and 1 ≤ k ≤ K. As explained before, due

to the structure of the sampling method in Fig. 1.7, the last transmitted symbol can

also be detected without interference and the same procedure can be applied backward

to find P bw
0 (xk[n]) and P bw

1 (xk[n]). Using either of these likelihood sets as a detection
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metric will result in an improvement over the hard-decision SIC method that was pre-

sented in the previous section. Moreover, the performance can be furthered improved

if we use forward and backward operations together and define the detection metric

as:

P0(xk[n]) = P fw
0 (xk[n])P bw

0 (xk[n])

P1(xk[n]) = P fw
1 (xk[n])P bw

1 (xk[n])

Simulation results are presented in Chapter 4 .
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Chapter 3

Performance Analysis

In this section, the achievable performance by the asynchronous transmission is ana-

lyzed. Different criteria can be considered to show the efficiency of the asynchronous

transmission. In this work, we use BER and the achievable rate. In the analysis of

BER, one important factor is diversity gain which specifies the reliability of the trans-

mission. In the analysis of the achievable rate, the asymptotic metric in high SNR is

called the multiplexing gain. In this section, we analyze the diversity and multiplexing

gain provided by the asynchronous transmission.

3.1 Diversity

Unlike the AWGN channel, the fading channel suffers from sudden declines in the

power. This is due to the destructive addition of multi-path signals in the propaga-

tion media. Therefore, the effective signal-to-noise ratio (SNR) at the receiver can go

through deep fades and be dropped dramatically. Usually we can assume a threshold
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for the received SNR in which the receiver can reliably detect and decode the transmit-

ted signal. If the received SNR is lower than such a threshold, a reliable recovery of the

transmitted signal is impossible. and this event is called an outage. The probability

of outage, which is the probability of having a received power lower than the given

threshold, can be calculated based on the statistical model of the channel or based on

the actual measurements of the channel. One way to combat the outage events is to

provide different replicas of the transmitted signal to the receiver, which is the main

idea behind diversity. If these different replicas fade independently, it is less probable

to have all copies of the transmitted signal in deep fade simultaneously. Therefore,

the receiver can reliably decode the transmitted signal using these received signals.

To define diversity quantitatively, we use the relationship between the received SNR,

denoted by δ , and the probability of error, denoted by Pe. A tractable definition of

the diversity, or diversity gain, is

D = − lim
δ→∞

logPe
log δ

(3.1)

where Pe is the error probability at an SNR equal to δ . In other words, diversity is

the slope of the error probability curve in terms of the received SNR in a log-log scale

[26].

As mentioned before, the conventional ZF detector is unable to fully exploit the avail-

able diversity gain which is M . However, we show that by using asynchronous trans-

mission, all the interference can be canceled by one receive antenna and therefore,

diversity gain of M can be achieved by existing diversity combining methods. In what

follows, we show analytically that asynchronous ZF is able to provide full diversity of

M where M is the number of receive antennas. The system represented in Eq. (2.12)
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consists of NK subchannels, each of them having SNR of E[|xk[i]|2]
COVν̃(i,i)

, 1 ≤ i ≤ NK,

where COVν̃ can be calculated as:

COVν̃ = E[ν̃ν̃H ] = σ2
n(Ltot

HΣtot
−1Ltot)

−1 (3.2)

= σ2
n(

M∑
i=1

Li
HΣ−1Li)

−1 (3.3)

= σ2
n(

M∑
i=1

Hi
∗RHi)

−1 (3.4)

where Li = ŪHi. In the derivation of COVν̃ , Eq. (3.3) is found by some matrix

manipulation and Eq. (3.4) is obtained by using the fact that Ū
H

Σ−1Ū = R. Un-

fortunately, due to the complex structure of
(∑M

i=1Hi
∗RHi

)−1

for M ≥ 1, finding

the exact expression of BER for M ≥ 1 is not easy. We derive an upper bound on

BER by finding an upper bound on the diagonal elements of COVν̃ and show that full

diversity is achieved. Because R is positive definite, for every 1 ≤ i ≤ M , H∗iRHi is

also positive definite. Therefore, we can apply the following lemma.

Lemma 3.1. For n positive definite matrices Ai, 1 ≤ i ≤ n, we have:

(
n∑
i=1

Ai)
−1 ≤

n∑
i=1

Ai
−1 (3.5)

where B ≤ C means that C −B is positive semidefinite.

Proof. This lemma is a straightforward result of the following inequality, which can be

found in [25].

(A+B)−1 ≤ A−1 A,B : positive definite matrices
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As a result, we can conclude that COVν̃ ≤ σ2
n

∑M
i=1 (Hi

∗RHi)
−1. This inequality

implies that the diagonal elements of the covariance matrix of noise are upper bounded

as follows:

COVν̃(i, i) ≤ σ2
nR
−1(i, i)∑M

j=1 |h(1+(i−1)modK),j|2
1 ≤ i ≤ NK (3.6)

where hk,m is the channel coefficient between User k and Receive Antenna m.

The BER expression for an AWGN channel with average transmit power of E[|xk[i]|2]

and noise variance of σ2
nR
−1(i,i)∑M

j=1 |h((1+(i−1)modK),j)|2
is equal to:

pi =

√
δ02

πR−1(i,i)

2
(

1 + δ02
R−1(i,i)

)M+ 1
2

Γ(M + 1
2
)

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + δ02
R−1(i,i)

) (3.7)

where δ0 = E[|xk[i]|2]
σ2
n

. The details of derivation can be found in Appendix A. Due

to having the same average transmit power and a lower noise variance, we conclude

that BER for each subchannel is upper bounded by pi, i.e., Pi ≤ pi. If we define

Di = − limδ0→∞
logPi
log δ0

and di = − limδ0→∞
log pi
log δ0

, it is clear that Di ≥ di. By using the

fact that the hypergeometric function of form 2F1(1,m + 1
2
;m + 1; 1

1+c
) converges to

one as c grows large [47], we can calculate that di = M . Therefore, the diversity of the

ith subchannel is greater than or equal to M . On the other hand, M is the maximum

available diversity for this system, which completes the proof of achieving full diversity,

i.e. Di = M .
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3.1.1 Effect of Time Delays on Performance

In this section, we calculate the optimal values of delays for the ZF detection in order

to achieve the lowest average BER with one receive antenna at high SNR. Because for

M = 1 the inequality in Eq. (3.6) turns into equality, the exact BER expression for

each subchannel can be obtained as:

Pi =

√
δ02

πR−1(i,i)

2
(

1 + δ02
R−1(i,i)

)3/2

Γ(3/2)

Γ(2)
2F1(1, 3/2; 2;

1

1 + δ02
R−1(i,i)

)

Approximating Pavg at high SNR for one receive antenna results in: (see Appendix B

for more details)

P̃avg =
1

4
√
πNK

Γ(3/2)

Γ(2)
×
∑

iR
−1(i, i)

δ0

,

For a fixed number of users and frame length, in order to minimize P̃avg, we need to

minimize the trace(R−1) which is related to time delays between different users. In

what follows, we derive the relationship between the trace(R−1) and time delays, and

consequently find optimum time delays.

Lemma 3.2. the sum of the diagonal elements of the inverse of matrix R is equal to:

trace(R−1) =
(N − 1)(N + 1)

3(1 + τ1 − τK)
+

2N + 1

3(N + 1 + τ1 − τK)
+
N(N + 2)

3

K−1∑
i=1

1

τi+1 − τi

(3.8)

The proof is presented in Appendix C.

Theorem 3.1. The optimum time delays which result in the lowest average BER for
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ZF detection at high SNR are: (τ1 is assumed to be zero)

τi−1 =
i− 2

i− 1
× τi 3 ≤ i ≤ K (3.9)

Also τK is found by solving the following equation:

Aτ 4
K +Bτ 3

K + Cτ 2
K +DτK + E = 0 (3.10)

where

A = (1− (K − 1)2)
(N + 2)

3
.

B =
−2

3
(1− (K − 1)2)N2 + 2(4(K − 1)2 − 1)

(N + 1)

3
.

C =
1

3
(1− (K − 1)2)N3 +

2

3
(1− 4(K − 1)2)N2−

2(K − 1)2(3N + 2).

D =
2

3
(K − 1)2(N3 + 5N2 + 8N + 4).

E = −1

3
(K − 1)2(N3 + 4N2 + 5N + 2).

The proof is easily obtained by taking the derivation of Eq. (3.8) with respect to time

delays.

For K = 2, A will be zero and Eq. (3.10) is a polynomial of degree 3 which has a

closed-form solution as follows:

τopt =
N + 2− 3

√
N3 + 1.5N2 − 1.5N − 1

3
(3.11)

where N is the block length. However, for other values of K, Eq. (3.10) should

be solved numerically. After finding τK , the remaining time delays are calculated

recursively using Eq. (3.9). The optimum delay values for different K and N values
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are reported in Tables 3.1 and 3.2. Optimum time delays approach uniform time

Table 3.1: Optimum Time Delays when K = 2

Case N=10 N=32 N=64 N=128 N →∞
K=2 0.5240 0.5077 0.5039 0.5019 0.5

Table 3.2: Optimum delays when N = 128

Case N=128

K=4 [0.2505,0.5010,0.7514]

K=6 [0.1669,0.3338,0.5006,0.6675,0.8344]

K=8 [0.1251,0.2502,0.3754,0.5004,0.6256,0.7507,0.8758]

delays, i.e, τk = k−1
K

, 2 ≤ k ≤ K, as N increases. The effects of time delay values on

the performance are studied numerically in the following section.

In this section, we showed that unlike synchronous ZF, asynchronous ZF can provide

full diversity of M . If we assume M > K, then transmitting independent symbols from

different users and using ML detection can provide diversity order of M . However, con-

ventional ZF detection wastes K − 1 diversity orders to null the interferences resulting

in diversity order of M −K + 1. On the other hand, if M < K, we are only able to

transmit maximum number of M symbols which is apprehend as the multiplexing gain.

At the receiver side, M diversity gain is available which can be exploited by ML detec-

tion, however, the ZF detection is unable to decode the transmitted symbols because

the null space of the channel matrix is empty. These diversity results are summarize

in Table 3.3

In summary, a MIMO system can provide two types of gains: diversity gain and spatial

multiplexing gain. Given a MIMO channel, both gains can, in fact, be simultaneously

obtained, but there is a fundamental trade-off between how much of each type of

gain any coding scheme can extract: higher multiplexing gain comes at the price of
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Table 3.3: Diversity Gain results

Diversity gain M > K M < K

synchronous ML M M

synchronous ZF M −K + 1 unable to decode

Asynchronous M M

sacrificing diversity [50]. However, by means of asynchronous transmission, another

domain for exploiting multiplexing gain is provided which let us enjoy full diversity

provided by spatial domain without sacrificing the multiplexing gain. Multiplexing

gain is particularly important in the high-SNR regime where the system is degree-of-

freedom limited and is defined as:

Gm = lim
δ→∞

R

log δ
(3.12)

where R is the achievable rate. In the next section, the results for multiplexing gain

are provided.

3.2 Achievable Rate and Multiplexing Gain

In this section, we consider AWGN channels to simplify the analysis. However, the

results can be extended to fading channels. For the conventional synchronous trans-

mission systems, the achievable rate for AWGN channels is:

Csynch = log2

(
1 +

P

σ2
n

)
(3.13)

where P is the transmit power and σ2
n is the variance of noise. This rate is achieved by

Gaussian symbols with variance of P and coding over infinite time slots. The ratio of
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P
σ2
n

is understood as signal to noise ratio (SNR), i.e., δ and thus the multiplexing gain

of the channel is limδ→∞
C

log δ
= 1.

The system model for an asynchronous transmission with K shifted sub-streams in

AWGN channels can be written as:

y′NK×1 = R′NK×NKxNK×1 + n′NK×1 (3.14)

where R′ is a block-Toeplitz matrix and depends on time delays and n′ is the noise

vector with a covariance matrix of R′. As shown in Chapter 1, matrix R′ is a positive

definite matrix for all time-limited pulse shapes. This system model can be regarded

as a point to point system where the sub-streams are superimposed (P2P) or a multi-

node system where shifted sub-streams are transmitted from separate nodes (MP2P).

In the P2P case, x(t) =
∑K

k=1 xk(t) is transmitted from a single node to the receiver

node. In the MP2P case, each node is transmitting one of the shifted sub-streams. For

example, Node 1 transmits x1(t), Node 2 transmits x2(t) and so forth. Both of these

scenarios result in the same system model at the receiver side, denoted in Eq. (3.14).

The achievable rate for the system in Eq. (3.14) can be written as [19]:

Casynch = lim
N→∞

1

N + 1
max
Q

log2

(∣∣∣∣(R′σ2
n +R′QR′

H
) R′−1

σ2
n

∣∣∣∣)
= lim

N→∞

1

N + 1
max
Q

log2

(∣∣∣∣INK +
1

σ2
n

R′Q

∣∣∣∣) (3.15)

Where Q is the covariance matrix of the transmitted vector and the maximization is

over all possible covariance matrices which satisfy the power constraint. However, the

two aforementioned scenarios, i.e., P2P and MP2P, result in different power constraints.

For a fair comparison, let us assume that for the both cases, the total transmit power

during N time slots is NP .
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3.2.1 P2P case:

Denoting the sub-stream corresponding to the time shift τk as xk(t), the power con-

straint for the P2P case can be written as:

E

[∫ ∞
−∞

(
K∑
k=1

xk(t)

)(
K∑
k=1

xk(t)

)∗
dt

]
≤ NP (3.16)

The power constraint can be simplified in the following steps:

E

[∫ ∞
−∞

(
K∑
k=1

xk(t)

)(
K∑
k=1

xk(t)

)∗
dt

]
=

E

[∫ ∞
−∞

(
K∑
k=1

N∑
n=1

xk[n]p(t− (n− 1)T − τk)

)(
K∑
k=1

N∑
n=1

xk[n]p(t− (n− 1)T − τk)

)∗
dt

]
=

K∑
k1=1

K∑
k2=1

N∑
n1=1

N∑
n2=1

E [xk1 [n1]xk2 [n2]]

∫ ∞
−∞

p(t− (n1 − 1)T − τk1)p(t− (n2 − 1)T − τk2)dt =

K∑
k1=1

K∑
k2=1

trace(R′k1k2COV [xk1 ,xk2 ]) = trace(R′COV [x])

Thus, the power constraint for the P2P case can be written as:

trace(R′Q) ≤ NP (3.17)

Then, the corresponding achievable rate can be written as:

CP2P
asynch = lim

N→∞

1

N + 1
max
Q

log2|INK +
1

σ2
n

R′Q|

s.t. trace(R′Q) ≤ NP (3.18)
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Matrix R′ is a Hermitian positive definite matrix, thus its SVD decomposition can be

written as:

R′ = UR′



λ0 0 · · · 0

0 λ1 · · · 0

...
. . . . . .

...

0 0 · · · λNK−1


UH
R′ (3.19)

= UR′ΛU
H
R′ (3.20)

where λ0 ≥ λ1 ≥ · · · ≥ λNK−1 are the eigenvalues of matrix R′ and UR is Unitary ma-

trix. Because the time delays are known at the transmitter, the matrix R′ is known at

the transmitter. Hence, the transmitted symbols can be beam-formed in the direction

of eigen-vectors of matrixR′ and the powers to each sub-channel can be assigned based

on the strength of the corresponding eigen-value. Consequently, the SVD decomposi-

tion of matrix Q can be denoted as Q = UR′PU
H
R′ where P is the diagonal matrix

containing the assigned powers to each symbol, i.e., P = diag[P0, P2, · · · , PNK−1].

Then, the product of R′Q is equal to:

R′Q = UR′



P0λ0 0 · · · 0

0 P1λ1 · · · 0

...
. . . . . .

...

0 0 · · · PNK−1λNK−1


UH
R′ (3.21)

Therefore, the achievable rate can be further simplified to:
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CP2P
asynch = lim

N→∞

1

N + 1
max
P

NK−1∑
n=0

log2

(
1 +

Piλi
σ2
n

)

s.t.

NK−1∑
n=0

Piλi ≤ NP (3.22)

The optimal answer for the P2P maximization problem is very simpler and is obtained

by assigning Pis such that P0λ0 = P1λ1 = · · · = PNK−1λNK−1 = P
K

. As a result, CP2P
asynch

will be:

CP2P
asynch = Klog2

(
1 +

P

Kσ2
n

)

Now, the multiplexing gain of the P2P case can be easily calculated as:

GP2P
m = lim

δ→∞

CP2P
asynch

log δ
(3.23)

= lim
δ→∞

Klog2(1 + δ
K

)

log δ
= K (3.24)

As mentioned before, despite synchronous transmission which only provides one de-

gree of freedom, by means of asynchronous transmission K degrees of freedom can be

achieved where K is the number of shifted sub-streams with distinct timing offsets.

Next, the achievable rate in the MP2P case is analyzed.

3.2.2 MP2P case:

Denoting the sub-stream corresponding to the kth node as xk(t), the power constraint

can be written as:

K∑
k=1

E

[∫ ∞
−∞

xk(t)xk(t)
∗dt

]
≤ NP (3.25)
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Each of the summands can be simplified to:

E

[∫ ∞
−∞

xk(t)xk(t)
∗dt

]
= E

[∫ ∞
−∞

(
N∑
n=1

xk[n]p(t− (n− 1)T )

)(
N∑
n=1

xk[n]p(t− (n− 1)T )

)∗
dt

]

=

N∑
n1=1

N∑
n2=1

E[xk[n1]xk[n2]
∗]

∫ ∞
−∞

p(t− (n1 − 1)T )p(t− (n2 − 1)T )dt

=

N∑
n1=1

N∑
n2=1

E[xk[n1]xk[n2]
∗]δ[n1 − n2]

=

N∑
n=1

E[xk[n]xk[n]
∗]

= trace (COV (xk))

Denoting COV (xk) as Qk, we can write the power constraint as:

K∑
k=1

trace(Qk) ≤ NP or trace(Q) ≤ NP (3.26)

Then, the corresponding achievable rate can be written as:

CMP2P
asynch = lim

N→∞

1

N + 1
max
Q

log2

(∣∣∣∣INK +
1

σ2
n

R′Q

∣∣∣∣)
s.t. trace(Q) ≤ NP (3.27)

Similar to the P2P case, by using the knowledge of eigen-vectors of matrix R′ and

proper beam-forming, the achievable rate can be simplified as:

CMP2P
asynch = lim

N→∞

1

N + 1
max
P

NK−1∑
n=0

log2

(
1 +

Piλi
σ2
n

)

s.t.

NK−1∑
n=0

Pi ≤ NP (3.28)
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The optimal power assignment for this maximization problem is obtained by the well-

known water filling algorithm. The intuitive behind the water filling algorithm is to

assign more power to more reliable sub-channels. It can be described mathematically

as follows.

Pi =

µ−
σ2
n

λi
µ ≥ σ2

n

λi

0 µ ≤ σ2
n

λi

(3.29)

where µ is some cutoff value to make sure the total power constraint is met [45]. In

low SNR regime, the capacity achieving method of water filling forces us to drop all

the sub-channels except the strongest one and take advantage of only one degree of

freedom. However, as available transmit power increases, the algorithm becomes less

strict on choosing affordable sub-channels. In other words, in high SNR regime, i.e,

P
σ2
n
→ ∞, all NK sub-channels will be utilized and also be assigned the same power.

To calculate the degree of freedom provided by the MP2P method and analyze CMP2P
asynch ,

let us look at the water-filling algorithm from another perspective.

For simplicity, assume that σ2
n is equal to one. As described before, power is assigned

to each eigenvector based on the reciprocal of the corresponding eigenvalue. Fig. 3.1

also illustrates the concept of water-filling algorithm. For example, if µ is between 1
λn−1

and 1
λn

, then power is assigned only to n largest eigenvalues in a way that:

n−1∑
i=0

(
µ− 1

λi

)
= NP (3.30)

which results in µ = 1
n

(
NP +

∑n−1
i=0

1
λi

)
. Hence, if P is between 1

N

(
n−1
λn−1
−
∑n−2

i=0
1
λi

)
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and 1
N

(
n
λn
−
∑n−1

i=0
1
λi

)
, then the achievable rate will be equal to:

C =
1

N + 1

n−1∑
i=0

log(1 + Piλi)

=
n

N + 1
log µ+

1

N + 1
log

(
n−1∏
i=0

λi

)

=
n

N + 1
log

(
NP

n
+ a

)
+

n

N + 1
log b (3.31)

where a = 1
n

∑n−1
i=0

1
λi

and b = n

√∏n−1
i=0 λi.

Figure 3.1: Water-filling Algorithm

These results can be generalized as follows:


P ≤ t1 ⇒ C1(P ) = 1

N+1
log (NP + 1

λ0
) + 1

N+1
log λ0

tn−1 ≤ P ≤ tn ⇒ Cn(P ) = n
N+1

log
(
NP
n

+ an
)

+ n
N+1

log bn

P ≥ tNK−1 ⇒ CNK(P ) = NK
N+1

log
(
P
K

+ aNK
)

+ NK
N+1

log bNK

(3.32)

where an = 1
n

∑n−1
i=0

1
λi

, bn = n

√∏n−1
i=0 λi and tn = 1

N

(
n
λn
−
∑n−1

i=0
1
λi

)
. Therefore, the
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degrees of freedom provided by the MP2P case depends on the available transmit power.

Let us consider two extreme cases. First, assume that, P ≤ tn where limN→∞
n
N

= 0,

then CMP2P
asynch = 0. The reason is that when the transmit power is low such that among

infinite number of available sub-channels only a few of them (not comparable with N)

are used, then the total rate approaches zero. However, as P increases, the water-filling

method assigns power to more sub-channels resulting in higher degree of freedom. For

a sufficiently large P , we will have CMP2P
asynch = K log

(
P

Kσ2
n

+ A
)

+ KB where A and B

are defined as follows:

A =
1

2π

∫ 2π

0

1

f(w)
dw (3.33)

B =
1

2π

∫ 2π

0

log2 f(w)dw (3.34)

where f(w) is the K
T

-folded spectrum of the pulse shape defined in Chaper 1. The

derivation of this result is based on the simple use of the Szego theorem stated in

Chapter 1. If we let P → ∞, we can easily show that the MP2P case also provides a

multiplexing gain of K, i.e.,:

GMP2P
m = lim

δ→∞

CMP2P
asynch

log δ
(3.35)

= lim
δ→∞

K log
(
δ
K

+ A
)

+KB

log δ
= K (3.36)

Therefore, asynchronous transmission also provides a multiplexing gain of K in the

MP2P cases. Note that due to use of the water-filling algorithm, the performance of

MP2P depends on the eigenvalues of matrix R′, while the performance of the P2P

case is independent of the eigenvalues as long as they are nonzero. Also note that

the concept of superimposing shifted sub-streams can be applied to the MP2P case.

Thus, a system with J points transmitting to a common receiver and each of them
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superimposing K sub-streams will result in JK multiplexing gain as long as the timing

delays are distinct. The summary of results for multiplexing gain are provided in Table

3.4.

Table 3.4: Multiplexing Gain results

Multiplexing gain P2P MP2P

synchronous ML 1 1

synchronous ZF 1 unable to decode

Asynchronous K K

In the next section, the simulation results for BER and achievable rates, some insightful

discussion and future works are presented.
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Chapter 4

Simulation Results and Discussions

In this section, we provide simulation results in order to validate our theoretical results

and compare different methods. We present the results in two sections. First, the BER

results in the Rayleigh fading channel are presented and the diversity gain is analyzed.

In the second part, the achievable rate results for the AWGN channel are presented

and the multiplexing gain is analyzed.

4.1 BER Results: Diversity Gain Analysis

In this part, we present the BER results in the Rayliegh fading channel. In all simu-

lations, channel coefficients are independent Rayliegh fadings with variance one, fixed

during the block and changing independently for each block. All users have the same

average power of one and variance of noise (σ2
n) is equal to 10

−SNR
10 where SNR is in

dB. To avoid inter-block interference, the last symbol of each block should be idle

for asynchronous methods. This will reduce spectral efficiency, but it is negligible for
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large block lengths. In all simulations, the block length is 128 and the time delays are

uniform except in the case where we report the time delays to study their effects on

the performance. The number of users and the number of receive antennas is denoted

by K and M , respectively. When M is not specified, the assumption is that only one

receive antenna is used. Transmitted symbols are chosen from BPSK modulation and

the comparing criterion is the average bit error rate among all the users.

In Fig. 4.1,we compare the performance of the asynchronous MLSD method with that

of the synchronous ML. Asynchronous MLSD outperforms synchronous ML detection

with similar complexity. Fig. 4.1 also includes the single-user bound for a better

comparison. As can be seen in the figure, asynchronous MLSD for K = 2 achieves

performance of the single user system at high SNR.

Fig. 4.2 shows the performance of different SIC methods presented in Section 2.3.

Figure 4.1: Comparing asynchronous MLSD and synchronous ML

Our new forward backward belief propagation method using the sampling method in
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Fig. 1.7 improves the performance of traditional SIC method by about 3 dB.

Fig. 4.3 compares the performance of the synchronous and asynchronous ZF detec-

Figure 4.2: Performance of SIC method with hard decisions and soft decisions

Figure 4.3: Comparing synchronous and asynchronous ZF

tors. Although asynchronous ZF is even possible with one receive antenna, for fair
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comparison, we consider the cases where the number of receive antennas and users are

the same. Since all users are assumed to have the same transmit power, synchronous

ZF for (K = 2,M = 2) and (K = 4,M = 4) provides the same performance and both

of them have diversity of one. However, for asynchronous ZF detection, diversity of 2

and 4 is achieved for (K = 2,M = 2) and (K = 4,M = 4), respectively.

We study the effects of time delay values on the performance of a ZF system with

K = 4 users and one receive antenna in Fig. 4.4. Note that a synchronous ZF solution

does not exist in this case as we need at least M = 4 receive antennas. We show the

results for six different sets of time delays. For optimum time delays we use the result of

Section 3.1.1 as reported in Table 3.2. The curve associated with random time delays

represents the average performance over uniformly distributed random time delays.

The remaining sets of time delays are specified in the figure. The optimum time delays

and time delays of [0.01, 0.1, 0.9] have the best and worst performances, respectively.

They also have the lowest and the highest trace(R−1), respectively, which are presented

along with other sets of time delays in Table 4.1. As can be seen, a lower trace(R−1)

results in a better performance. This observation is in line with the analysis in Section

3.1.1 where trace(R−1) was introduced as a criterion to compare the performance of

different time delays.

Finally, to compare different methods with each other, we include the performance

Table 4.1: Comparing trace(R−1) for different time delays in Fig. 4.4

Time delays trace(R−1)

[0.2505, 0.5010, 0.7514] 8.8404× 104

[0.4, 0.6, 0.8] 9.6639× 104

[0.1, 0.4, 0.7] 1.1065× 105

[0.1, 0.2, 0.9] 1.7347× 105

[0.01, 0.1, 0.9] 6.7784× 105
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Figure 4.4: Effect of time delays in asynchronous ZF detection for K = 4

of all detection methods for K = 2 in Fig. 4.5. Both MLSD and forward-backward

BP detection methods not only outperform the synchronous ML detection, but also

achieve the performance of the single user system. In addition, the low complexity

method of SIC with hard decisions also provides good performance.

Figure 4.5: Comparison of all detection methods for K = 2

61



4.2 Achievable Rate: Multiplexing Gain Analysis

In this part, the achievable rate results are provided. The achievable rates by syn-

chronous transmission, asynchronous transmission in P2P case and asynchronous trans-

mission in MP2P case are compared. Different pulse shapes including Rectangular,

R.R.C. and Sinc pulse shapes are considered to show the effect of pulse shapes in the

performance of the asynchronous transmission. Note that the achievable rate depends

on the occupied spectrum, therefore comparing different pulse shapes like Rectangu-

lar pulse shape and R.R.C. pulse shape is not fair. However, here, our main goal is

comparing the synchronous and asynchronous transmission using the same pulse shape

of which the bandwidth is identical. Hence, the notion of occupied bandwidth is ne-

glected. Asynchronous results are provided for three different values of K, i.e., 2, 4

and 6. As you can see, in all the figures with different pulse shapes, the asynchronous

transmissions in both P2P and MP2P cases outperform the synchronous transmission.

In the P2P case where the shifted signals are superimposed, the performance is inde-

pendent of the pulse shape but in the MP2P case, the performance depends on the

pulse shape. Wide range of SNR is considered to effectively show the difference in the

multiplexing gain provided by different methods.

In Fig. 4.6, Rectangular pulse shape is used. The synchronous transmission provides

the multiplexing gain of one which is expected. The asynchronous transmissions in

both P2P and MP2P cases provides higher multiplexing gain. It can be observed

from the slope of the figures that the provided multiplexing gain for the asynchronous

transmission with K = 2, 4 and 6 are about 2, 4 and 6 times the synchronous one.

Although the slopes for the P2P and MP2P curves are the same, at low SNR, the

MP2P case outperforms the P2P case, while at the high SNR, P2P provides higher
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Figure 4.6: Comparison of the achievable rates obtained by synchronous and asyn-
chronous transmission using Rectangular pulse shape

achievable rate.

As explained before, the reason behind the superiority of asynchronous transmission is

the non-zero spectrum outside the Nyquist bandwidth, i.e., 1
T

. Rectangular pulse shape

has infinite bandwidth, which provides the best opportunity for the asynchronous trans-

mission. In the conventional synchronous transmission using Nyquist pulse shapes,

the folded spectrum is a flat function independent of the pulse shape which ignores

the out-of-bound spectrum. However, in the asynchronous transmission, the K
T

-folded

spectrum depends on the pulse shape and the more residual out-of-bound spectrum

the more degree of freedom is available to exploit. On the other hand, if the spectrum

is strictly band-limited, the asynchronous transmission superiority becomes marginal

in the MP2P case.

In Fig. 4.7, Sinc pulse shape is considered. Sinc function is a perfect Nyquist pulse
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Figure 4.7: Comparison of the achievable rates obtained by synchronous and asyn-
chronous transmission using Sinc pulse shape

shape meaning that it is strictly band-limited to the [− 1
T
, 1
T

] interval. In practice,

even Sinc function can only be realized in a time-limited fashion, thus the spectrum is

always non-zero, however, the nonzero values outside [− 1
T
, 1
T

] are very small. Hence,

the additional eigenvalues provided by the asynchronous transmission are very close

to zero but still positive. In the P2P case, having nonzero eigenvalues is sufficient to

exploit higher degrees of freedom because the power assignments help to compensate

for the small eigen-values. Thus, asynchronous transmission in the P2P case is able to

provide higher multiplexing gain even with the band-limited pulse shapes. However, in

the MP2P scenario where the powers are assigned by using the water filling algorithm,

the small eigen-values are neglected, thus the multiplexing gain is exactly the same

as the synchronous transmission. Still some marginal improvement is provided in the

P2P case which is because of the mentioned small eigen-values. Asymptotically, if an

infinite transmit power is available, even the very small eigen-values are utilized by the
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water-filling algorithm resulting in the same multiplexing gain as the P2P case.

In Figs 4.8 and 4.9, the R.R.C pulse shape is used. R.R.C. pulse shape is parametrized

by β which is called the roll-of factor. The roll-of factor can be any number in the

interval [0, 1]. The higher the roll-of factor the more out-of-bound spectrum exists.

One can already guess that asynchronous transmission in the MP2P case can provide

higher achievable rate when β is higher which is verified by the simulation results.
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Figure 4.8: Comparison of the achievable rates obtained by synchronous and asyn-
chronous transmission using R.R.C pulse shape (β = 1)

In Fig. 4.8, β is 1 and the MP2P case provides a multiplexing gain of 2. This is

perfectly aligned with our expectation because when β = 1, the out-of-bound spectrum

is exactly equal to the Nyquist bandwidth which makes the whole spectrum interval

twice the one in the synchronous transmission. In the MP2P case, the mentioned out-

of-bound spectrum is utilized by using K = 2. However, further increase of K does

not change the multiplexing gain. On the other hand, in the P2P case, where having
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Figure 4.9: Comparison of the achievable rates obtained by synchronous and asyn-
chronous transmission using R.R.C pulse shape (β = 0.5)

nonzero out-of-bound spectrum is sufficient, a multiplexing gain of K is achieved like

the previous pulse shapes. In Fig. 4.9, β is 0.5, thus the multiplexing gain in the MP2P

case is around 1.5 which is the same for all values of K. Note the multiplexing gain is

theoretically defined as the ratio of the achievable rate to the SNR while SNR goes to

infinity. Sometimes, we misused the multiplexing term to just show the aforementioned

ratio at some finite SNRs. As shown in the mathematical analysis, asynchronous

transmission provides a multiplexing gain of K in both P2P and MP2P cases. However,

to see it in the MP2P case we literally need infinite transmit power because the extra

eigen-values are very close to zero. Thus, with band-limited pulse shapes and in the

practical range of SNR, the full potential of the asynchronous transmission is exploited

only in the P2P case.
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4.3 Discussions and Future work

In this work, we studied the benefits of asynchrony when multiple users are sending data

simultaneously to a common receiver. Instead of treating asynchrony as a disruptive

factor, we exploited it as an additional resource to cancel interference. We have shown

that asynchrony between data streams adds a favorable ISI which makes interference

cancellation possible. It also introduces memory to the system which can be exploited

by methods like maximum-likelihood sequence detection. In addition to MLSD, a novel

forward-backward belief propagation detection method was presented and this method

outperforms synchronous ML detection. Exact BER expression for ZF detection was

derived and it was verified that a diversity equal to the number of receive antennas is

achievable by asynchronous transmission.

It is also shown that asynchronous transmission can provide higher degrees of freedom

with respect to synchronous transmission. The concept of asynchrony can be used

either with superimposing shifted time delays called P2P or consider the time delays

across different users/transmit antennas called MP2P. These two scenarios are analyzed

in this work. We analytically showed that both of these structures are able to provide

a multiplexing gain of K where K is the number of distinct time delays in the system.

It is shown that in the P2P scenario the multiplexing gain of K is realized even in

the practical range of SNR and independent of the used pulse shape. However, when

band-limited pulse shapes like Sinc and R.R.C pulse shapes are utilized , the MP2P

case is unable to exploit the full potential of asynchrony in the practical range of SNR.

Nevertheless, analytically speaking, it still provides a multiplexing gain of K because

the term multiplexing is defined when P →∞.

In this work, we considered fairly simple system models to demonstrate the potentials of
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asynchronous transmission. For example, we considered a flat fading model to analyze

the diversity gain and an AWGN model to analyze the multiplexing gain. Thus, further

work is required to analyze these concepts under more complicated and more practical

models like frequency selective channels. Frequency selectivity will provide multiple

replicas with different time delays at the receiver which is handled by using equalizers.

The structure of equalizers can be complex in the time domain, which motivates the use

of multi-carrier transmission like Orthogonal Frequency Division Multiplexing (OFDM)

easing the equalization process [31]. Thus, it is vital to analyze the asynchronous

transmission in the conjunction with time domain equalizers and also in the multi-

carrier systems. Some rough analysis have shown the same advantages in the use

of frequency offsets in the multi-carrier domain. However, more detailed analysis is

required which is the topic of our future work.

In addition, each of the mentioned methods has its own issues. For example, in the P2P

case where the multiplexing gain of K is achieved, the shifted streams are superimposed

resulting in high Peak to Average Power Ratio (PAPR) which needs to be addressed.

There are many work on this concept within the OFDM framework [27], thus the

applicability of those works to our system model needs to be examined. On the other

hand, MP2P method is free of PAPR drawback, while suffer from dependency on the

used pulse shape. Thus, further analysis is required to design the proper pulse shapes

to maximize the achieved gain. The other issue is the complexity of the receiver which

can handle the intentional ISI and detect the transmitted symbols efficiently. Using

optimum Receivers can be very complicated. We used some sub-optimum receiver

methods like ZF and SIC receivers, however, further research is required to adapt more

efficient receiver designs. For example, low complexity algorithms designed for large

scale MIMO systems [9, 14] can be good candidates for the asynchronous transmission
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system model. Designing proper matched filters at the receiver is also very crucial to

the performance and also complexity of the receiver. For example, we introduced two

different set of matched filter where one of them resulted in correlated noise samples

and the other one created independent noise samples easing the detection process.

However, realizing these matched filter with very small durations might be practically

inefficient, which highlight the need for exploring new sets of match filters. For the

analysis of the achievable rate, we assumed that the transmitter knows the time delays

in order to fully exploit the available degrees of freedom. This assumption is reasonable

when the time delays are intentionally added by the transmitter and the channel does

not impose any time delay. However, this might not be the case in most of the practical

channels. Thus, the receiver needs to send some feedback information about the time

delays to the transmitter. Efficient design of the aforementioned feedback process and

also the achieved gain in such system can be a topic of the future research.

Lastly, we used the concept of asynchrony mainly in the Multiuser scenario where

multiple users/antennas transmit data to a common receiver. All of these concepts

can also be applied to other networks like relay networks [49], broadcast networks and

cognitive radio networks [42].
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Appendices

A Derivation of Bit Error Rate (BER) Expression

For an AWGN channel with an average transmit power of E[|xk[i]|2] and noise variance

of σ2
nR
−1(i,i)∑M

j=1 |h(1+(i−1)modK),j |2
, the post SNR at the receiver can be expressed as:

δi =
δ0

∑M
j=1 |h(1+(i−1)modK),j|2

R−1(i, i)
(A.1)

where δ0 = E[|xk[i]|2]
σ2
n

. We know that |hi,j|2 follows a chi-squared distribution with two

degrees of freedom for all is and js. Therefore,
∑M

j=1 |h(1+(i−1)modK),j|2 is chi-squared

distributed with 2M degrees of freedom. As a result, the distribution of δi can be

calculated as follows:

Pδi(δ) =
R−1(i, i)

δ0

(
R−1(i,i)

δ0
δ
)M−1

exp
(
−R

−1(i,i)
δ02

δ
)

2MΓ(M)
(A.2)

where Γ(.) is the Gamma function. For a specific value of SNR, BER varies according

to the modulation. We assume that BPSK is used, however, extension to other mod-

ulations is straightforward. Based on this assumption, the BER for a given value of
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SNR, e.g., δ is equal to Q(
√

2δ). The next step is to calculate the following integral:

pi =

∫ ∞
0

Q(
√

2δ)Pδi(δ)dδ

The integral of am

Γ(m)

∫∞
0

exp (−az)zm−1Q(
√
bz)dz has a closed-form of:

√
b/2πa

2
(
1 + b

2a

)m+1/2

Γ(m+ 1/2)

Γ(m+ 1)
2F1(1,m+

1

2
;m+ 1;

1

1 + b
2a

)

where 2F1(q, w; e; r) is the hypergeometric function [15]. Therefore, the bit error rate,

i.e., pi is equal to:

pi =

√
δ02

πR−1(i,i)

2
(

1 + δ02
R−1(i,i)

)M+ 1
2

×
Γ(M + 1

2
)

Γ(M + 1)
× 2F1(1,M +

1

2
;M + 1;

1

1 + δ02
R−1(i,i)

)

(A.3)

B Average BER and Its Approximation at High

SNR

In Eq. (A.3), pi depends onR−1(i, i) which varies for different values of i, and therefore

each subchannel has a different BER. This is unlike the synchronous ZF, where all

resulting subchannels have the same performance. In order to evaluate the performance

of the entire system, we define the average BER performance as follows:

pavg =

∑NK
i=1 pi
NK

(B.4)
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Since pavg is not tractable, we approximate it at high SNR, using the fact that 2F1(1,m+

1
2
;m+ 1; 1

1+c
) converges to one as c grows large [47]. Hence, at high SNR, pavg can be

approximated as follows:

p̃avg = Const ×
∑NK

i=1 (R−1(i, i))M

δM0
(B.5)

where the constant value is equal to 1
2(M+1)NK

√
π

Γ(M+ 1
2

)

Γ(M+1)
.

C Proof of Lemma 3.2

When the frame length is N , we denote R by RN . Then, we prove by induction that,

for all N ∈ Z+,

trace((RN )−1) =
(N − 1)(N + 1)

3(1 + τ1 − τK)
+

2N + 1

3(N + 1 + τ1 − τK)
+
N(N + 2)

3

K−1∑
i=1

1

τi+1 − τi

Base case: When N = 1, R1 is equal to R11 which can be written as a generalized

Fiedlers matrix whose inverse is given by [13]:

R11
−1 = −1

2


d1

1
τ2−τ1

... 0 f

1
τ2−τ1

d2
1

τ3−τ2
... 0

... ... ...
0 ... 1

τK−1−τK−2
dK−1

1
τK−τK−1

f 0 ... 1
τK−τK−1

dK


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where f and dis are defined as:

f =
1

τK − τ1 − 2
(C.6)

d1 =
1

τ1 − τ2

− 1

τ1 − τK + 2
(C.7)

dK =
1

τ7 − τ8

− 1

τ1 − τK + 2
(C.8)

di =
1

τi−1 − τi
+

1

τi − τi+1

2 ≤ i ≤ K − 1 (C.9)

Then, trace(R−1
11 ) is equal to

(
−1

2

∑K
i=1 di

)
, which can be calculated using the above

equations:

trace(R−1
11 ) =

1

(2 + τ1 − τK)
+

K−1∑
i=1

1

τi+1 − τi
(C.10)

Therefore, Eq. (C.6) is true for N = 1.

Induction step: Suppose Eq. (C.6) is true for N . We need to show that it also holds

for N + 1, i.e.,

trace((R(N+1))−1) =
(N)(N + 2)

3(1 + τ1 − τK)
+

2N + 3

3(N + 2 + τ1 − τK)
+

(N + 1)(N + 3)

3

K−1∑
i=1

1

τi+1 − τi

Because matrix R follows a recursive structure, RN+1can be presented as follows:

RN+1 =

(RN )NK×NK (L)NK×K

(LT )K×NK (R11)K×K

 (C.11)

where LT = [0K×K , . . . ,0K×K , (R21)K×K ]. For calculating the inverse of RN+1, we

use the following lemma for matrix inversion in block form.
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Lemma C.1. Let na (m+ n)× (m+ n) matrix T be partitioned into a block form:

T =

A B

C D


where the m×m matrix A and n× n matrix D are invertible. Then, we have:

T−1 =

 M−1 −M−1BD−1

−D−1CM−1 D−1 +D−1CM−1BD−1


where M = A−BD−1C [7].

Here, A, B, C and D are equal to RN , L, LT and R11, respectively. Therefore, M

is equal to:

M = RN −L(R11)−1LT (C.12)

Now, we need to find the inverse of M . By defining Z as (RN )−1, the inverse of M

can be presented as:

M−1 =



IK . . . 0K,K Z1NQ(IK −ZNNQ)−1

0K×K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K×K . . . 0K×K (IK −ZNNQ)−1


Z

where Q = R12R11
−1R21 and Zijs are K ×K partitioning blocks of Z. Also, Ik and

0i×j are a k × k identity matrix and a i× j all-zero matrix, respectively.

To show the correctness of Eq. (C.13), we need to take the following steps:
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Step 1: By some calculations, it can be shown that L(R11)−1LT is equal to

0 0

0 Q

.

As a result, we have:

M = RN −

0(N−1)K×(N−1)K 0(N−1)K×K

0K×(N−1)K Q

 (C.13)

Step 2: If we multiply both sides by Z, we will have:

ZM = INK −



0K×K . . . 0K×K Z1NQ

0K×K . . . 0K×K Z2NQ

...
...

...
...

0K×K . . . 0K×K ZNNQ


(C.14)

Step 3: We denote the right hand side of Eq. (C.14) by X, then, we can conclude

that the inverse of M is equal to:

M−1 = X−1Z (C.15)

Step 4: X−1 can be calculated as follows:

X−1 =



IK . . . 0K,K Z1NQ(IK −ZNNQ)−1

0K×K
. . .

...
...

...
... IK Z(N−1)NQ(IK −ZNNQ)−1

0K×K . . . 0K×K (IK −ZNNQ)−1


(C.16)

Step 5: Finally, if we plug X−1 in Eq. (C.15), we will reach Eq. (C.13).
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If we denote K × K diagonal blocks of M−1 as [M−1]i,i 1 ≤ i ≤ N , then, by use of

Lemma C.1, trace((RN+1)−1) can be written as:

trace((RN+1)−1) =
N∑
i=1

trace([M−1]i,i) + trace(R11
−1 +R11

−1R21[M
−1]N,NR12R11

−1)

(C.17)

By simplifying Eq. (C.13), diagonal blocks of M−1 can be presented as follows:

1 ≤ i ≤ N − 1 :

[M−1]i,i = Zii +ZiNQ(I −ZNNQ)−1ZNi (C.18)

i = N :

[M−1]i,i = (I −ZNNQ)−1ZNN (C.19)

In Eq. (C.17), we set the diagonal blocks of M−1 as Eqs. (C.18) and (C.19). Then,

by some manipulations, trace((RN+1)−1) can be presented as:

trace((RN+1)−1) = trace((RN )−1) + trace(R11
−1)

+
N−1∑
i=1

trace(ZiNQ(I −ZNNQ)−1ZNi) (C.20)

+ trace((I −ZNNQ)−1ZNN )− trace(ZNN )

+ trace(R11
−1R21(I −ZNNQ)−1ZNNR12R11

−1) (C.21)

The first and second terms in Eq. (C.21) can be calculated by induction hypothesis

and induction base, respectively. Calculating other terms in Eq. (C.21) is tedious but

similar for different values of K. Therefore, we only calculate it for K = 2 and skip

80



the rest. For K = 2, Q is equal to:

Q =

0 0

0 1−τ
1+τ

 (C.22)

where τ = τ2 − τ1.

If we plug Q =

0 0

0 1−τ
1+τ

 in Eq. (C.21), after some calculations we will have:

trace((RN+1)−1) = trace((RN )−1) +
2

1− (1− τ)2

+
1− τ

(1 + τ)− (1− τ)r(2N, 2N)

2N∑
i=1

(r(2N, i))2

+
(1 + τ)(1 + (τ − 1)2)

(2− τ)2[(1 + τ)− (1− τ)r(2N, 2N)]
r(2N, 2N) (C.23)

where r(i, j) is the (i, j)th element of matrix (RN )−1. By induction hypothesis, the

first term in Eq. (C.23) is equal to (N−1)(N+1)
3(1−τ2+τ1)

+ N(N+2)
3(τ2−τ1)

+ 2N+1
3(N+1−τ2+τ1)

. For calculating

Eq. (C.23), we also need values of r(2N, i), 1 ≤ i ≤ 2N , which are elements of the last

row of (RN )−1. Due to the special structure of matrix R, values of r(2N, i) can be

calculated as follows: r(2N, 2i− 1) = τ−i
τ(N+1−τ)

r(2N, 2i) = i
τ(N+1−τ)

1 ≤ i ≤ N (C.24)

To verify Eq. (C.24), we can multiply the last row of (RN )−1, i.e.,
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[r(2N, 1), r(2N, 2), . . . , r(2N, 2N)], by different columns of RN as follows:

1st column:
(τ − 1)1

τ(N + 1− τ)
+

(1)(1− τ)

τ(N + 1− τ)
= 0

(2i)th column: 1 ≤ i ≤ N − 1

(τ − i)(1− τ)

τ(N + 1− τ)
+

(i)1

τ(N + 1− τ)
+

(τ − (i+ 1))τ

τ(N + 1− τ)
= 0

(2i− 1)th column: 2 ≤ i ≤ N

((i− 1))(τ)

τ(N + 1− τ)
+

(τ − i)1
τ(N + 1− τ)

+
(i)(1− τ)

τ(N + 1− τ)
= 0

2Nth column:
(τ −N)(1− τ)

τ(N + 1− τ)
+

(N)1

τ(N + 1− τ)
= 1

These results verify that the last row of (RN )−1 follows the pattern in Eq. (C.24).

The last step is to plug Eq. (C.24) into Eq. (C.23). As a result, trace((RN+1)−1)

is equal to (N)(N+2)
3(1−τ2+τ1)

+ (N+1)(N+3)
3(τ2−τ1)

+ 2N+3
3(N+2−τ2+τ1)

, which verifies the induction step and

completes the proof.
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