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SUMMARY

Metabolic reprogramming provides critical information for clinical oncology. Using molecular 

data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 

cancer types based on mRNA expression patterns of seven major metabolic processes and assessed 

their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical 

outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism 

most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid 

metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but 

exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent 

master regulators across cancer types. As a proof-of-concept example, we demonstrated that 

knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes—

modulates metabolic activity and drug sensitivity. Our study provides a system-level view of 
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metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, 

suggesting related prognostic, therapeutic, and predictive utility.

In Brief

Peng et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to characterize tumor 

subtypes based on the expression of seven metabolic pathways. They find metabolic expression 

subtypes are associated with patient survivals and suggest the therapeutic and predictive relevance 

of subtype-related master regulators.

INTRODUCTION

Teleologically, cancer cells must modify their metabolic programs to adapt to the energy and 

macronutrient requirements that support rapid proliferation. Indeed, metabolic 

reprogramming is a well-established hallmark of cancer (Hanahan and Weinberg, 2011). For 

example, alterations in carbohydrate metabolism epitomized by the Warburg effect have 

been recognized for decades (Vander Heiden et al., 2009). Although different metabolic 

functions are known to be perturbed in cancer, studies of cancer metabolism usually focus 

on a specific perturbation and investigate it in isolation for a specific tumor type. However, 

metabolic reprogramming in tumor cells is complex, frequently consisting of alterations in 

several metabolic functions that synergize to promote tumorigenesis and cancer cell 

proliferation. Elucidating the full spectrum of metabolic reprogramming that occurs in 

human cancers will provide key insights into an essential aspect of tumor development and 

will also build a basis for the rational design of cancer treatments that target metabolism.

During carcinogenesis, somatic alterations in oncogenes and tumor suppressors transform 

cells by inducing broad gene expression changes that subsequently cause metabolic 

reprograming (Vander Heiden and DeBerardinis, 2017). Thus, gene expression represents a 

molecular dimension of particular interest in studying cancer metabolism since it bridges 

between oncogenic drivers and metabolic phenotypes. Some pioneering studies have 
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analyzed large-scale gene expression data across multiple cancer types (Haider et al., 2016; 

Hu et al., 2013; Nilsson et al., 2014; Reznik and Sander, 2015). Focusing on comparisons of 

tumor and adjacent normal tissue, those studies show widespread transcriptional 

dysregulation of metabolic genes. Although such studies have provided significant insight 

into altered metabolic pathways of cancer cells, the clinical relevance of the results may be 

limited since tumor and normal tissues usually contain very different cell compositions (e.g., 

fraction of epithelial cells). Gaude and Frezza (2016) took a more pertinent, pathway-

focused approach to the analysis of data from clinical samples and identified several 

differentially expressed metabolic pathways that distinguish patients by clinical outcomes. 

Those and many other studies have revealed considerable metabolic heterogeneity, both 

within and among cancer types, underscoring the importance of patient stratification in a 

context-specific manner. However, it remains unclear how to stratify cancer patients most 

effectively into different subtypes (groups) based on the expression patterns of metabolic 

genes. More importantly, the utility of such tumor subtypes in guiding clinical practice and 

therapeutic development remains a major question. Here, using the comprehensive 

molecular data recently compiled in The Cancer Genome Atlas (TCGA) (Weinstein et al., 

2013), we focused on seven metabolic super-pathways and characterized metabolic 

expression subtypes in 33 TCGA cancer types (9,125 samples; Table S1) to address those 

questions in a systematic way.

RESULTS

Expression Patterns of Metabolic Genes Reflect Metabolic Activities in Cancer Patients

To gain an incisive view of metabolic heterogeneity in cancer, we curated the gene sets of 

seven metabolic super-pathways based on the latest Reactome annotations (Fabregat et al., 

2016). Included were amino acid metabolism (348 genes), carbohydrate metabolism (286 

genes), integration of energy (110 genes), lipid metabolism (766 genes), nucleotide 

metabolism (90 genes), tricarboxylic acid cycle (TCA cycle, 148 genes) and vitamin & 

cofactor metabolism (168 genes) (Table S2). Those gene sets are largely independent of each 

other, with only a few genes of overlap, and they collectively represent major metabolic 

processes.

One key question is whether the expression patterns of metabolic pathway genes reflect 

actual metabolic activities in patients. Since data on the metabolites themselves are not 

available for TCGA samples, we obtained a published dataset that contains parallel 

metabolite profiling and gene expression data on 60 breast cancer patient samples 

(Terunuma et al., 2014) and focused on the 296 metabolites that had been annotated to 6 out 

of the 7 metabolic super-pathways that we surveyed. For each metabolite, we calculated the 

correlation of its abundance with gene expression levels in the corresponding metabolic 

pathway, then compared the resultant p value distribution with the background distribution 

calculated from other genes (Figure 1A). In total, we detected 73 metabolites that 

significantly correlated with the expression of corresponding metabolic pathway genes (false 

discovery rate [FDR] < 0.15), including 22 metabolites involved in amino acid metabolism, 

22 in carbohydrate metabolism, 21 in nucleotide metabolism, 4 in vitamin & cofactor 

metabolism, 2 in integration of energy, and 2 in lipid metabolism (Figure 1B shows four 
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representative cases from different pathways; Figure 1C provides the full list of significant 

metabolites). To assess the statistical significance of the number of significant hits detected, 

we performed a simulation analysis to compare the number of metabolites with significant 

signals from each pathway with those based on random gene sets of the same size. 

Strikingly, all six metabolic pathways showed higher numbers of significant metabolites 

than expected by chance (p < 0.05, Figure 1D). For example, the number of significant 

carbohydrate metabolites for the real pathway gene set was 22, whereas the expected 

number for a random gene set was only 0.3 (p < 0.001). These results indicate that the 

expression patterns of metabolic pathway genes do reflect metabolic activities.

Classification of Metabolic Expression Subtypes and Their Overall Similarity

We next aimed to characterize metabolic heterogeneity within cancer types based on the 

expression patterns of metabolic pathway genes. For that purpose, we developed a 

computational method to classify tumor samples into “directional” metabolic subtypes in 

two independent steps (Figure 2A). In the first step, within each cancer type, we normalized 

gene expression across samples by Z score to obtain a rank value for each gene (~18,000 

coding genes) within each sample. Then, given the gene set of a specific metabolic pathway, 

we conducted gene set enrichment analysis (GSEA) (Subramanian et al., 2005) on the 

resulting rank values to classify tumors into three subtypes: (1) “upregulated subtype” for 

the samples in which metabolic pathway genes showed enrichment with high Z scores (FDR 

< 0.25); (2) “downregulated subtype” for samples showing the opposite pattern (FDR < 

0.25); and (3) “neutral subtype” for samples showing no significant enrichment pattern. Note 

that the concept of “upregulated” or “downregulated” here is relative to other tumors within 

the same cancer type, rather than relative to normal tissues. In the second step, we assessed 

whether the metabolic genes overall showed differential expression patterns (FDR < 0.05) 

among the tumor subtypes defined in the first step, given that metabolic expression subtypes 

were expected to capture the variation in metabolic pathway gene expression. Among 231 

cases assessed (7 pathways × 33 cancer types), 93.9% of the cases (217) met that criterion 

and were kept for subsequent analyses.

Using the method described above for each metabolic pathway, we classified 9,125 samples 

into the three subtypes. Figure 2B shows the relative proportions of those subtypes across 

and within cancer types. Figure S1 shows metabolic genes with the most consistent changes 

among the subtypes across cancer types. Based on the subtype information, we further 

examined the co-occurrence of expression subtypes of different metabolic pathways and 

found that many subtype combinations occurred at a much higher frequency than expected 

by chance (Figure 2C). For example, the most common subtype combination was those with 

upregulated amino acid metabolism, nucleotide metabolism, and TCA cycle. They showed 

>10-fold more frequently than expected by chance (Figure 2D). We compared the similarity 

of different metabolic subtype classifications based on sample-level labels and found that 

amino acid metabolism, TCA cycle, and nucleotide metabolism formed one tight cluster, 

whereas integration of energy, carbohydrate metabolism, lipid metabolism, and vitamin & 

cofactor metabolism formed another distinct cluster (Figure 2E). These results provide a 

global view of the similarity of different metabolic pathways and may reflect crosstalk 

among them.
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Metabolic Expression Subtypes Show Extensive Clinically Relevant Patterns

To assess the clinical relevance of the metabolic expression subtypes identified above, we 

next determined correlations with patient overall survival, since survival represents a key 

clinical index of tumor aggressiveness. Figure 3A is a summary of 33 significant survival 

associations for the metabolic subtypes in 27 cancer types that included sufficient sample 

size and follow-up time (log-rank test, FDR < 0.2, 28 associations remained significant after 

adjusting for tumor purity). Notably, upregulated subtypes of carbohydrate, nucleotide, and 

vitamin & cofactor metabolism were consistently associated with poor prognosis (Figure 

3B), compatible with the hypothesis that cancer cells have increased demands for glucose 

uptake and nucleotide synthesis (Pavlova and Thompson, 2016; Vander Heiden and 

DeBerardinis, 2017). Unexpectedly, upregulated TCA cycle and lipid metabolic subtypes 

were associated with better prognosis (Figure 3C). Amino acid metabolism and energy 

integration subtypes showed mixed patterns. We obtained similar results using univariate 

Cox regression models (Figure S2). The consistent association of survival patterns with 

certain metabolic subtypes (e.g., carbohydrate metabolism) across cancer types suggests that 

metabolic subtyping has potential prognostic value.

Among the cancer types surveyed, low-grade glioma (LGG) exhibited the most extensive 

survival correlations (5 out of the 7 metabolic pathways; Figure S3). For LGG, poor 

prognosis was significantly associated with downregulated subtypes of amino acid 

metabolism, energy integration, and TCA cycle but with upregulated subtypes of 

carbohydrate and vitamin & cofactor metabolism. LGGs have mutations of isocitrate 

dehydrogenase 1 (IDH1) in >70% of cases and mutations of IDH2 in a minority of cases. 

IDH1 and IDH2 mutations are activating for production of high levels of the oncometabolite 

2-hydroxygluta-rate (2HG) from alpha-ketoglutarate (Claus et al., 2015; Dang et al., 2009; 

Ward et al., 2010). The extensive prognostic patterns observed support the notion of glioma 

as a disease influenced by metabolism.

Genomic profiling studies, especially recent TCGA studies, have characterized a number of 

tumor subtypes that capture major patterns of within-disease heterogeneity. Those tumor 

subtypes are informative about cancer pathophysiology and, in some cases, for clinical 

decision making. We therefore examined the correlations between metabolic expression 

subtypes and previously established molecular tumor subtypes and detected many significant 

correlations (Figure S4). For example, in breast invasive carcinoma (BRCA), we found that 

the vast majority of cases in which nucleotide metabolism was downregulated belonged to 

the luminal A (lumA) subtype (Sørlie et al., 2001); in esophageal carcinoma (ESCA), cases 

with upregulated lipid and vitamin & cofactor metabolism were enriched in the 

chromosomal instability subtype (CIN) (Cancer Genome Atlas Research Network, 2017); in 

glioblastoma multiforme (GBM), cases of downregulated lipid metabolism were enriched in 

the IDHmut-non-codel subtype (Eckel-Passow et al., 2015); in head-neck squamous cell 

carcinoma (HNSC), cases with downregulated carbohydrate metabolism were enriched in 

the HPV− subtype (Figure 3C). These results highlight the clinical relevance of metabolic 

expression subtypes presented here and provide an informative metric for defining tumor 

heterogeneity.
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Metabolic Expression Subtypes Are Associated with Diverse Somatic Drivers but 
Convergent Pathway Functional Effects

Metabolic reprogramming can be largely viewed as a consequence of oncogenic driver 

events (DeBerardinis and Chandel, 2016). For example, mutated TP53 and MYC 
amplification have been extensively linked to anabolic or catabolic activities, including 

glycolysis and redox balance in cancer (Kruiswijk et al., 2015; Stine et al., 2015). To 

identify somatic alterations that potentially drive metabolic expression subtypes, we 

performed a correlation analysis of metabolic expression subtypes with mutation driver 

genes. For each cancer type, we identified significantly mutated genes (SMGs, identified by 

MutSigCV, with a mutation frequency >5%) (Lawrence et al., 2013) and assessed whether 

their mutation status correlated with metabolic subtypes. We found 31 associated SMGs 

(chi-square test, FDR < 0.05), and their associated patterns were quite diverse across cancer 

types (Figure 4A). The SMGs identified recurrent across multiple cancer types included 

TP53 (9 cancer types), PIK3CA (4 cancer types), KRAS (3 cancer types), CDH1 (2 cancer 

types), CTNNB1 (2 cancer types), EGFR (2 cancer types), HRAS (2 cancer types), IDH1 (2 

cancer types), KEAP1 (2 cancer types), and NFE2L2 (2 cancer types). Figure 4B shows the 

metabolic subtype correlations with mutated TP53 as an example. Similarly, we examined 

the correlations of metabolic expression subtypes with potential drivers of somatic copy 

number alteration (SCNA). For each cancer type, we identified amplified oncogenes or 

deleted tumor suppressors in SCNA peaks (identified by GI-SITC2, FDR < 0.25) (Mermel et 

al., 2011) and assessed whether their copy number status correlated with a metabolic 

subtype (chi-square test, FDR < 0.05). We identified 35 such drivers. Some of them showed 

correlations with multiple metabolic subtypes in several cancer types, including ARID1A (8 

cancer types), MYC (7 cancer types), CDKN2A (6 cancer types), EGFR (5 cancer types), 

PARK2 (5 cancer types), RB1 (4 cancer types), PTEN (4 cancer types), AKT1 (4 cancer 

types), BCL2L1 (4 cancer types), and SOX2 (4 cancer types; Figure 4C). Figure 4D shows 

the subtype correlations with amplified MYC as an example. These analyses provide a broad 

view of potential somatic drivers associated with metabolic reprogramming in human 

cancer.

To assess further the biological relevance of metabolic expression subtypes, we examined 

their associations with various cellular pathways by GSEA based on mRNA expression 

(FDR < 0.01, Figure 4E). That analysis included six functional cancer hallmarks (i.e., 

angiogenesis, apoptosis, DNA repair, epithelial–mesenchymal transition [EMT], G2M 

checkpoint, and inflammatory response) and also the mTORC1 signaling pathway, which 

has been implicated in metabolic dysregulation and cancer development (Hay, 2016) (STAR 

Methods). Interestingly, despite the diversity of cancer types surveyed, we found that 

pathway-level functional effects associated with each kind of metabolic subtype were largely 

consistent across cancer types. Among the seven metabolic expression subtypes, amino acid 

metabolism, nucleotide metabolism, and TCA cycle exhibited the most similar profiles. 

Their upregulated subtypes were consistently associated with increased DNA repair, 

decreased angiogenesis, decreased EMT, and decreased inflammation (Figure 4E). 

Angiogenesis, EMT, and inflammation were positively correlated with upregulated 

carbohydrate metabolism and integration of energy and, to a lesser degree, upregulated lipid 

metabolism and metabolism of vitamins & cofactors. G2M checkpoint was consistently 
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negatively correlated with the energy and lipid metabolism subtypes. DNA repair was 

inversely correlated with energy integration and lipid metabolism. Interestingly, mTORC1 

signaling was generally increased for all of the metabolic subtypes except energy 

integration, consistent with the central role of mTORC1 signaling in regulating cancer 

metabolism. Overall, these results suggest that metabolic activity is intrinsically coupled 

with cancer hallmark pathways.

Highly Recurrent Master Regulators for Metabolic Subtypes across Cancer Types

To elucidate how the metabolic expression subtypes are regulated, we performed 

computational analyses to identify two types of “master regulators”: transcription factors 

(TFs) and miRNAs (STAR Methods). For TFs (Figure 5A), we first inferred tumor-context-

specific gene regulatory networks based on the cancer-type-specific expression data, using 

the algorithm for reconstruction of accurate cellular networks (ARACNe) (Lachmann et al., 

2016). We then employed the master regulator inference algorithm (MARINa) and the 

shadow analysis (Aytes et al., 2014; Lefebvre et al., 2010) to infer the master TFs for each 

metabolic pathway in each cancer type. The analysis revealed many highly recurrent TFs for 

the same metabolic pathway across different cancer types. Among different metabolic 

subtypes, amino acid metabolism, nucleotide metabolism, and TCA cycle shared a large 

number of master TFs across many cancer types (Figure 5B).

For miRNAs, we used two criteria to identify master regulators: (1) the miRNA targets are 

significantly enriched in differentially expressed genes between upregulated and 

downregulated subtypes and (2) the miRNAs themselves show significant corresponding 

changes between the two subtypes (STAR Methods). We found that many miRNA master 

regulators recurred across cancer types. miR-484, miR-107, miR-320a, and miR-429 

appeared to be the strongest regulators of the metabolism of amino acids, nucleotides, 

carbohydrates, and vitamins & cofactors. Interestingly, the latter three miRNAs have been 

reported to be key regulators of cancer metabolism (Chan et al., 2015; Rottiers and Näär, 

2012) (Figure 5C). Further examination revealed that SCNAs can modulate the expression of 

some regulators, such as miR-320a in stomach adenocarcinoma (STAD) for nucleotide 

metabolic expression subtypes (Figure 5D).

A Systematic View of Altered Metabolism in Cancer

Integrating insights from the above analyses, a systematic view of heterogeneous metabolic 

activity in cancer has emerged (Figure 6A). Metabolic reprogramming may result from 

diverse somatic driver alterations in different tumor contexts, but it appears to converge on 

common pathway-level functional effects through modulation of highly recurrent master 

regulators across cancer types, ultimately leading to consistent survival patterns. According 

to this model, the master TFs identified here are key nodes with the greatest influence on 

systems-level metabolic activities. Therefore, those TFs may represent a class of therapeutic 

targets whose inhibition could potentially yield clinical benefits.

To test that hypothesis, we focused on carbohydrate metabolism, since its upregulated 

subtypes showed the most consistently poor prognostic patterns across cancer types (Figures 

3A and 3B). To be an ideal target, a master TF should be more highly expressed in the 
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subtype with worse prognosis so that inhibition and subsequent downregulation of the target 

could confer enhanced survival. Among the 8 cancer types whose upregulated carbohydrate 

subtypes had significantly worse survival rates, four master TFs, SNAI1, RUNX1, RUNX2, 

and FOSL1, were identified in at least three cancer types (Figure 6B). We chose two TFs, 

SNAI1 and RUNX1, to perform experimental perturbation. Figures 6C and 6D show higher 

expression levels of those two genes in the upregulated subtypes in lung adenocarcinoma 

(LUAD) and sarcoma (SARC), respectively. Using shRNAs, we knocked down the 

expression of SNAI1 in a lung cancer cell line, NCIH1975, and RUNX1 in a sarcoma cell 

line, U2OS (Figure S5, Table S3). We then measured the relative abundance of intracellular 

glucose (a model carbohydrate) using high-resolution mass spectrometry at time points of 0 

h, 6 h, and 24 h. The concentrations of intracellular glucose were significantly decreased in 

the knockdown cell lines (Figure 6E and F, paired t test, p < 0.05), suggesting that SNAI1 
and RUNX1 indeed positively modulate carbohydrate metabolism. Further studies with 

more robust controls will be required to validate the proposed effects in terms of whether the 

knockdown affects glucose transporter expression and whether the knockdown has predicted 

effects on carbohydrate metabolic gene expression.

Metabolic Expression Subtypes Are Informative About Drug Sensitivity

To explore further the potential clinical utility of carbohydrate metabolic expression 

subtypes, we used expression and drug sensitivity data from Cancer Cell Line Encyclopedia 

(CCLE) (Barretina et al., 2012; Iorio et al., 2016). We focused on 181 lung cancer cell lines 

because of the sufficient sample size for subtype classification. Using the same 

bioinformatic methods as described above, we classified 34, 33, and 114 cell lines as down-

regulated, upregulated, and neutral subtypes, respectively. We next compared the molecular 

characteristics associated with up-regulated subtypes of patient samples and cell lines. 

EGFR—the most important therapeutic target in lung cancer—was identified as a SCNA 

driver associated with carbohydrate metabolic expression subtypes of patient samples. It 

showed significantly higher copy-number and mRNA expression levels in the upregulated 

carbohydrate subtype than in the downregulated subtype (Figure S6A). Concordantly, the 

carbohydrate expression subtypes of lung cancer cell lines adhered to that pattern (Figure 

S6B). Furthermore, the cell lines in the upregulated subtype had higher proliferation rates 

than those from the downregulated subtype (Figure S6C), consistent with the observation 

that LUAD patients in the upregulated carbohydrate metabolic subtype exhibited worse 

prognosis (Figure 3B) (Haverty et al., 2016). These results independently validate the 

patterns observed in TCGA patient samples, suggesting that the analyses are robust.

Given the three carbohydrate expression subtypes of lung cancer cell lines, we found that 12 

drugs showed significantly different sensitivities (Figure 7A, FDR < 0.05). Among those 

drugs, docetaxel is a chemotherapy drug currently used for patients with lung cancer. Cell 

lines in the carbohydrate-upregulated subtype were more sensitive to docetaxel than cell 

lines in other subtypes (Figure 7B). To test further the effect of carbohydrate metabolism on 

drug sensitivity, we assessed the sensitivity of lung cancer cell line NCIH1975 (classified as 

upregulated subtype) to knockdown of SNAI1, since that perturbation has been found to 

modulate carbohydrate metabolism negatively. Indeed, compared with the negative control 

(scrambled shRNA), the SNAI1-KD cell line was more resistant to docetaxel, and that 
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pattern was consistently observed at both 16 hr and 24 hr after treatment (Figures 7C and 

7D). The results suggest that LUAD patients with high carbohydrate metabolic activities 

may be more likely to benefit from docetaxel treatment.

DISCUSSION

Metabolic reprogramming is considered one of the hallmarks of cancer (Hanahan and 

Weinberg, 2011; Ward and Thompson, 2012). Because metabolism is so complex, there is a 

need for systematic characterization. Several previous studies have demonstrated 

considerable heterogeneity in the expression of genes involved in various metabolic 

functional pathways (Gaude and Frezza, 2016; Haider et al., 2016; Hu et al., 2013; Nilsson 

et al., 2014; Reznik and Sander, 2015). Based on a breast cancer patient cohort with parallel 

metabolite and transcriptomic profiling data (Terunuma et al., 2014), we demonstrated that 

the expression patterns of metabolic pathways indeed reflect metabolic activities. Metabolite 

profiling has recently become an informative approach to elucidate tumor heterogeneity 

(Hakimi et al., 2016). Similar analyses should extend to more patient cohorts to further 

validate our findings when such data are available.

The expression patterns analyzed in previous studies ranged from global to discrete (i.e., 

affecting particular metabolic pathways). Here, we have focused on effective stratification of 

cancers based on the expression heterogeneity of metabolic genes within cancer types. One 

central aim is to define meaningful metabolic expression subtypes. Our computational 

method, which combines GSEA and self-contained gene set analysis, has two advantages: 

(1) it allows consistent classification of tumor subtypes, facilitating comparison and contrast 

across a broad range of cancer types and (2) it classifies tumor samples according to 

“functional state” of a specific metabolic process (upregulated, neutral, or downregulated), 

facilitating interpretation of downstream analyses. Through that systematic classification, we 

found that metabolic expression subtypes frequently correlate with each other. In particular, 

metabolic perturbations of amino acids, nucleotides, and TCA cycle are strongly coupled, as 

demonstrated by high correlations of their subtype assignment, similar pathway-level 

associations, and shared master regulators. That global perspective has not been presented 

previously. Another feature of the present study is that, by integrating TCGA 

multidimensional molecular data on the same sample cohorts, we have identified potential 

drivers and master regulators associated with the metabolic derangements observed in our 

global analysis. While the driver roles of some alterations identified in affecting metabolism 

such as TP53 mutation and MYC amplification have been documented, further efforts will 

be required to validate the causal relationships of others.

The metabolic expression subtypes defined here have potential clinical implications. First, 

we demonstrate the extensive correlations of metabolic expression subtypes with prognosis 

across cancer types, suggesting that the subtypes reflect essential aspects of tumor 

development. Notably, different metabolic expression subtypes showed distinct patterns. The 

upregulated subtypes of carbohydrates, nucleotides, and vitamins & cofactors were 

associated with worse prognosis, whereas lipid metabolism showed the opposite association. 

Regardless of underlying reasons, that observation suggests a more complex relationship 

between metabolic reprogramming and cell proliferation than usually assumed. Second, 
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using CCLE data, we demonstrate that the metabolic subtypes correlate with sensitivity to 

drugs used in the clinic, highlighting the possibility that metabolic status will sometimes be 

important to consider in selection of a treatment regime. Overall, the results here support the 

potential utility of metabolic expression subtypes as prognostic and predictive markers.

Since metabolic reprogramming is an essential aspect of tumorigenesis and cancer cell 

proliferation, inhibition of metabolic functions may inhibit tumor progression. Current 

strategies for considering the effect of metabolism on therapy focus on functionally 

important metabolic isoenzymes that show cancer-specific somatic or expression changes. 

There have been a number of studies along those lines (Vander Heiden and DeBerardinis, 

2017), but targeting of metabolic genes for therapy has had only very limited success 

(Vander Heiden and DeBerardinis, 2017). Our systems-biological analysis suggests a 

generic therapeutic strategy. For upregulated metabolic subtypes that are consistently 

associated with worse patient prognosis, tumors may be vulnerable to a therapy, or 

component of combination therapy, that targets their master regulatory factors. Inhibiting 

responsible master regulators has the potential to convert the upregulated subtype to the 

downregulated subtype, thereby conferring a survival benefit. Our functional validation 

results provide preliminary but exciting evidence supporting that hypothesis, and further 

studies will be required.

STAR★METHODS

Key Resource Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemical, Peptides, and Recombinant Proteins

RPMI 1640 Corning, NY, USA Cat#10-040-CV

Fetal bovine serum GIBCO Cat#16140-071

DMEM with 4.5 g/L glucose, 
L-glutamine, & sodium 
pyruvate

Corning, NY, USA Cat#10-013-CV

Puromycin GIBCO Cat#A1113803; CAS:58-58-2

Docetaxel ENZO, New York, USA Cat#BML-T129; CAS: 114977-28-5

DMSO MP Biomedicals LLC, 
France

Cat#02196055; CAS: 67-68-5

Formic acid VWR EM-FX0440-5

Acetonitrile Fisher Scientific A955-4

Methanol Fisher Scientific A456-4

Acetic acid Fisher Scientific A38-212

Chemical Commercial Assays

High-Capacity cDNA Reverse 
Transcription Kit

Applied Biosystems, CA, 
USA

Cat#4374967

RNeasy Plus Mini Kit QIAGEN, Hilden, Germany Cat#74136

SYBR(R) Select Master Mix 
Life technologies, CA, USA

Applied Biosystems, CA, 
USA

Cat#4472908

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA gene expression data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA somatic mutation data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA somatic copy number 
alteration data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA miRNA-seq data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA patient clinic data and 
purity data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Experimental Models: Cell lines

Human: NCIH1975 cells Laboratory of Dr. Zahid H. 
Siddik, MD Anderson 
Cancer Center, TX, USA

N/A

Human: U2OS cells MD Anderson 
Characterized Cell Line 
Core Facility, TX, USA

N/A

Human: HEK293LTX MD Anderson 
Characterized Cell Line 
Core Facility, TX, USA

N/A

Oligonucleotides

shRNA targeting RUNX1 and 
SNAI1

Table S3, this paper N/A

Primers for quantitative PCR Table S4, this paper N/A

Recombinant DNA

MISSION® TRC2 pLKO.5-
puro Non-Mammalian shRNA 
Control Plasmid DNA

Sigma-Aldrich, MO, USA Cat#SHC202

PLKO-puro shRNA constructs Sigma-Aldrich, MO, USA Refer to Table S3

Lentiviral Packaging Mix 
psPAX2 and pMD2.G

Addgene, MA, USA Plasmid# 12260 and 12259

Software and Algorithms

Gene Set Enrichment 
Analysis (GSEA)

(Mootha et al., 2003; 
Subramanian et al., 2005)

http://software.broadinstitute.org/gsea/index.jsp

ARACNe (Lachmann et al., 2016) https://sourceforge.net/projects/aracne-ap/

ssmarina (Aytes et al., 2014; 
Lefebvre et al., 2010)

https://figshare.com/articles/ssmarina_R_system_package/785718

Thermo TraceFinder ThermoFisher Scientific https://www.thermofisher.com/order/catalog/product/OPTON-30491

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Han Liang (hliang1@mdanderson.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The NCIH1975 cell line was a generous gift from Dr. Zahid H. Siddik’s laboratory at MD 

Anderson Cancer Center. HEK293LTX and U2OS cell lines were obtained from MD 

Anderson Characterized Cell Line Core Facility. All cell lines were confirmed by short 

tandem repeat (STR) analysis and were negative for mycoplasma contamination prior to use. 

NCIH1975 cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine 
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serum. U2OS cells were maintained in DMEM with L-glutamine, 4.5 g/L glucose, sodium 

pyruvate and 10% fetal bovine serum.

METHOD DETAILS

Analysis of metabolic pathway genes and metabolite profiling data in breast 
cancer samples—We obtained metabolite profiling data and mRNA expression data on 

60 breast cancer patients (Terunuma et al., 2014). We focused the 296 metabolites that had 

been annotated to the 6 metabolic super pathways including 88 in amino acid, 38 in 

carbohydrate, 9 in integration of energy, 116 in lipid metabolism, 26 in nucleotide, and 19 in 

vitamin & cofactor metabolism. For each metabolite, we calculated the Spearman rank 

correlations between its abundance and the expression levels of the genes in the 

corresponding pathway. Then we compared the empirical cumulative distributions of p 

values from pathway genes versus other genes using Kolmogorov-Smirnov test. One-tailed 

test was used to test whether the p values of the pathway gene set were more significant than 

those of other genes at FDR < 0.15. To evaluate whether pathway genes are more 

informative about metabolic activities than other gene sets, we performed a simulation 

analysis. We randomly selected a gene set with the same size of a metabolic pathway and 

identified the number of metabolites significantly correlated with the expression of the gene 

set in the same way as the metabolic pathway genes. We repeated this analysis for 1,000 

times to generate the background distribution of significant hits from which we assessed the 

observed numbers were statistically higher than random expectation.

Metabolic expression subtype classification—Considering the heterogeneity of the 

metabolic pathway dysregulation in tumors, we developed an algorithm to classify 

individual tumors given the gene set of each metabolic pathway. For a specific patient, the 

classification was based on the deviation extent of the expression level of genes in a 

metabolic functional pathway from the average values of the cohort relative to other genes. 

For each of the 33 cancer types, Z-normalization was performed per gene across samples. 

Then, the genes were ranked by Z scores per sample. GSEA pre-ranked analysis was used to 

determine whether the genes from a metabolic pathway were enriched at the top or bottom 

of the pre-ranked gene list for each sample. For a specific pathway, a tumor sample was 

classified into one of three distinct groups at FDR < 0.25: “upregulated,” “downregulated,” 

or “neutral.” Then we performed self-contained gene analysis to confirm each subtype 

classification. Given the metabolic expression subtypes, we first evaluated expression 

differentiation of protein-coding genes using ANOVA and then used the Kolmogorov-

Smirnov test to determine whether the p values of the pathway genes were lower than those 

from other genes (FDR < 0.05). Through this systematic analysis, each tumor sample was 

labeled with seven kinds of metabolic expression subtypes. To determine the mutual 

dependence among those seven classifications, mutual information was calculated using the 

R package “entropy.” After normalizing the mutual information by dividing the maximum 

value for each row, the mutual information distance was calculated as 1- mutual information.

Clinical relevance analysis of metabolic expression subtypes—We evaluated the 

correlations of metabolic expression subtypes with two clinical features respectively: the 

patients’ overall survival time and established molecular subtype. The R package “survival” 
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was used to perform the overall survival analysis and produce Kaplan-Meier survival plots. 

A log-rank test was used to assess the significance (FDR < 0.2). For significant survival 

associations, we further assessed whether the subtypes correlated with tumor purity using 

ANOVA or whether the survival correlations remained significant after including tumor 

purity as covariate in Cox model. As for molecular subtype analysis, chi-square test was 

performed to access the correlation between tumor subtypes and metabolic expression 

subtypes (assigned to one of three values, −1, 0, or 1, FDR < 0.05).

Somatic driver association analysis—To identify oncogenic events that potentially 

drive metabolic reprogramming, we analyzed the associations of mutation drivers and SCNA 

drivers with metabolic expression subtypes in each cancer type. For the mutation analysis, 

we first excluded 314 hypermutated samples, and only focused on the significantly mutated 

genes (identified by MutSigCV 1.4, FDR < 0.25) (Lawrence et al., 2013) with a mutation 

frequency > 5% for each cancer type. We performed chi-square test to determine the 

association between the metabolic expression subtypes and a specific mutated gene status, 

and reported the significance at FDR < 0.05. For the SCNA analysis, we assessed the copy 

number status of known oncogenes or tumor suppressors (Zack et al., 2013) residing in a 

significant amplification or deletion peak identified by GISTIC2 (Mermel et al., 2011) in 

each cancer type by chi-square test (FDR < 0.05).

Biological pathway association analysis—To explore the biological processes 

responsible for the metabolic reprogramming, we analyzed the correlations between 

metabolic expression subtypes with cancer hallmark pathways in each cancer type. The log2 

transformed RNA-seq data were used. The seven selected cancer hallmark pathways were 

angiogenesis, apoptosis, DNA repair, EMT, G2M checkpoint, inflammatory response and 

mTORC1 signaling, and the related gene sets were obtained from MSigDB (http://

software.broadinstitute.org/gsea/msigdb). We used Student’s t tests between upregulated and 

downregulated subtypes to generate ranked gene lists for each cancer type. Then, pre-ranked 

GSEA analysis were used to determine the pathway enrichment or depletion (FDR < 0.01).

Master regulator analysis—To identify TF master regulators, we first inferred the 

tumor-context-specific GRNs with the expression data (Z score transformed) from all tumor 

samples using ARACNe-AP, which is a new Java implementation of the ARACNe 

(Lachmann et al., 2016). Our analysis used the list of transcription factors as previously 

described (Vaquerizas et al., 2009). Then, given the inferred networks, we used the MARINa 

(R package ssmarina) to infer master regulators based on the comparison of expression 

between upregulated and down-regulated samples for each metabolic expression subtype in 

each cancer type and performed the shadow analysis to all master regulators identified with 

p < 0.05 (Aytes et al., 2014; Lefebvre et al., 2010). We identified master TFs as those 

passing the shadow analysis (FDR < 0.1) and having ≥150 target genes. To identify miRNA 

master regulators, we used two criteria: (1) the expression level of the microRNA itself 

showed a significant difference between the two groups (fold-change > 1.2 and p value < 

0.01); and (2) the miRNA target genes that showed differential expression between 

upregulation and downregulation subtypes were prone to being commonly regulated by a 

specific microRNA (FDR < 0.1). GSEA (including annotated miRNA target gene sets) was 
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employed for this analysis (Subramanian et al., 2005); and the differential direction of the 

microRNA should be opposite to the expression of the corresponding target gene set. The 

network of master regulators and metabolic subtypes were analyzed by Cytoscape (Shannon 

et al., 2003). In the TF networks, each link represented a specific TF identified in at least 3 

cancer types. As for miRNA, a link represented a specific microRNA identified in at least 

one cancer type.

Analysis of CCLE data—We downloaded RNaseq-based expression data and gene-level 

copy number from Cancer Cell Line Encyclopedia (CCLE; https://portals.broadinstitute.org/

ccle) and focused on 181 lung cancer cell lines with gene expression data. Using the same 

classification pipeline, we classified them into downregulated, neutral, and upregulated 

subtypes based on the expression levels from the carbohydrate pathway. We obtained the 

drug screening data from Iorio et al. (2016). We performed ANNOVA analysis to determine 

whether (log-transformed) IC50 values showed significant difference among the three 

carbohydrate expression subtypes of cell lines (FDR < 0.05). We obtained the doubling time 

data of cancer cell lines from Haverty et al. (2016). We used Wilcoxon rank sum test to 

assess whether the doubling time showed a significant difference between carbohydrate 

downregulated and upregulated subtypes.

Generation of stable cell lines—Lentiviruses were produced by co-transfection 

HEK293LTX cells with the MISSION® TRC2 pLKO.5-puro Non-Mammalian shRNA 

Control Plasmid DNA or with the pLKO-puro shRNA constructs (Sigma, shRNA sequences 

are available in Table S3) and the Lentiviral Packaging Mix (psPAX2 and pMD2.G). U2OS 

and NCIH1975 cells were transduced by the lentivirus, and cells with stable knockdowns 

were selected using puromycin (2 μg/ml for U2OS and 1 μg/ml for NCIH1975). The 

knockdown of RUNX1 and SNAI1 in stable cell lines was confirmed by quantitative real-

time PCR.

RNA isolation and quantitative real-time PCR—To examine the effect of the 

knockdown on potential target genes, total RNA was isolated using the RNeasy Plus Mini 

Kit (QIAGEN, Hilden, Germany) and transcribed into cDNA using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, CA, USA). Reactions were 

performed in triplicates using the SYBR®Select Master Mix (Applied Biosystems) and 

specific primers (Sigma, sequences are available in Table S3). RT-qPCR was performed on 

an Applied Biosystems 7900HT Fast Real-Time PCR system (Applied Biosystems). The 

gene expression levels were normalized to β-actin, and relative expression was calculated by 

the 2(−DDCt) method.

Glucose measurement by IC-HRMS—We measured the intracellular abundance of 

glucose in cell samples using high-resolution mass spectrometry (HRMS) as follows. Cells 

were seeded in 10 cm dishes and incubated in fresh medium (DMEM or RPMI-1640 

containing 10% or 5% FBS, respectively) for 0 hr, 6 hr, and 24 hr. Before conducting cell 

extraction, media samples were collected, flash frozen using liquid nitrogen, and transferred 

to −80°C freezer until analysis. Cells were then quickly washed with ice-cold PBS flowed 

by Milli-Q water to remove extra salt/medium components. Metabolites were then extracted 
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by adding 500 μL 1% formic acid in 90/10 (v/v) acetonitrile/water. Cell and medium extracts 

were then centrifuged at 17,000 g for 5 min at 4°C, and supernatants were transferred to 

clean tubes. Samples were evaporated to dryness using a SpeedVac. Samples were 

reconstituted in deionized water, then 10 μL was injected into a Thermo Scientific Dionex 

ICS-5000+ capillary ion chromatography (IC) system containing a Thermo IonPac AS11 

250 × 2 mm with 4 μm particle size. IC flow rate was 300 μl/min (at 30°C) and the gradient 

conditions were as follows: initial 1 mM KOH, increased to 35 mM at 25 min, then to 99 

mM at 39 min, held 99 mM for 10 min. The total run time was 50 min. Methanol containing 

2 mM acetic acid was delivered by an external pump and mixed with the eluent. Data were 

acquired using a Thermo Orbitrap Fusion Tribrid Mass Spectrometer under ESI negative 

mode. Thermo Trace Finder software was used for metabolite identification and area 

integration. The abundance of glucose was normalized by dividing the area of each 

metabolite by the total signal (summed areas of all metabolites) for each sample.

Drug sensitivity assays—To assess changes in drug sensitivity following SNAI1 
knockdown, stable cells (1,500 per well) were seeded in 96-well plates in the complete 

medium a day before treatment. A 2 mM stock solution of docetaxel (ENZO, New York, 

USA) was prepared in DMSO and was further diluted in complete medium to obtain eight 

serial dilutions such that the final treatment concentrations ranged from 0–2 μM. SNAIL-KD 

cells and the negative control (scrambled shRNA) cells were treated with DMSO or the 

various docetaxel dilutions and cell viability was determined using live imaging (Incucyte 

Zoom, Essen Biosciences). Phase contrast images (4x objective) were recorded at 0 hr, 16 hr 

and 24 hr after treatment initiation and the percentage confluence (a measure of cell 

viability) was assessed using the associated software as per manufacturer’s instructions. 

Relative viability was normalized to the confluence value treated with DSMO. Docetaxel 

treatment was repeated independently to ensure reproducibility of the results. The Student’s 

t test was used to analyze differences, and p < 0.05 was considered statistically significant.

QUANTIFICATION AND STATISTICAL ANALYSIS

All the analyses were based on 9,125 tumor samples except for miRNA (7,939) due to 

limited data availability. Definition of significance of various statistical tests were described 

and referenced in their respective Method Details sections.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data and clinical data can be found at the legacy archive of the GDC 

(https://portal.gdc.cancer.gov/legacy-archive/search/f) and the PancanAtlas publication page 

(https://gdc.cancer.gov/about-data/publications/pancanatlas). The mutation data can be 

found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also 

be explored through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) 

and the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.cbioportal.org). 

Details for software availability are in the Key Resource Tables.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Classification of metabolic expression subtypes in 33 TCGA cancer types

• Metabolic expression subtypes show consistent prognostic patterns across 

cancer types

• Analysis of master regulators of metabolic subtypes suggesting therapeutic 

targets

• Metabolic expression subtypes associated with sensitivity to drugs in clinical 

use
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Figure 1. The Expression Patterns of Metabolic Pathway Genes Reflect Metabolite Levels in 
Cancer Patient Samples
(A) The analytic pipeline for assessing whether the expression levels of metabolic pathway 

genes are correlated with the concentration of a given metabolite.

(B) Representative quantile-quantile (QQ) plots showing p values (log transformed) from the 

metabolite-gene Spearman correlation coefficients of pathway genes compared to other 

genes. Sarcosine for amino acid metabolism; N-acetylmannosamine for carbohydrate 

metabolism; 5, 6-dihydrouracil for nucleotide metabolism; nicotinamide adenine 

dinucleotide for vitamin & cofactor metabolism.

(C) Heatmap showing all metabolites whose intracellular concentrations significantly 

correlate with the expression levels of the corresponding pathway genes (FDR < 0.15).

(D) The statistical significance of the numbers of metabolites correlated with the pathway 

gene expression based on the background distribution of random gene sets. The red lines 

indicate the true numbers.
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Figure 2. Classification of Metabolic Expression Subtypes Based on Pathway Gene Expression
(A) The computational method to classify tumor samples into three metabolic expression 

subtypes: upregulated, downregulated, and neutral. Bar charts represent the numbers of 

genes for metabolic pathways surveyed.

(B) Distributions of three metabolic subtypes for each metabolic pathway in 33 cancer types. 

Only tumor subtype classifications passing the two-step statistical criteria in (A) are shown.

(C) Frequency distribution of a specific metabolic subtype combination. The red line is for 

the observed distribution; black lines are for the random expectation assuming that each 

metabolic pathway is perturbed independently in a tumor sample.

(D) The top 10 most frequently observed metabolic subtype combinations. Red, upregulated 

subtype; gray, neutral subtype; and blue, downregulated subtype. The right panel indicates 

the observed and expected frequencies of a specific subtype combination. Data are 

represented as mean ± SD. *p < 0.05, ***p < 0.001.

(E) Clustering pattern of the seven metabolic subtypes based on the similarity of subtype 

labels across 9,125 samples.

See also Table S1, Table S2, and Figure S1.
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Figure 3. Associations of Metabolic Expression Subtypes with Patient Survival Times and Tumor 
Subtypes
(A) Clinical associations of metabolic expression subtypes with patient overall survival 

times. Color indicates the correlation direction; significant correlations (log-rank test, FDR < 

0.2) are boxed. Those cases without qualified subtype classifications are left in blank.

(B) Kaplan-Meier plots for carbohydrate metabolic expression subtypes associated with 

patient overall survival times in head and neck squamous cell carcinoma (HNSC), low-grade 

glioma (LGG), lung adenocarcinoma (LUAD), and sarcoma (SARC).

(C) Kaplan-Meier plots for lipid metabolic expression subtypes associated with patient 

overall survival times in adrenocortical carcinoma (ACC), colon adenocarcinoma (COAD), 

kidney renal clear cell carcinoma (KIRC), and liver hepatocellular carcinoma (LIHC). 

Cancer type, metabolic expression subtype, and the p value of log-rank test are shown at the 

top of each plot.

(D) Representative examples of associations between metabolic expression subtypes and 

established tumor subtypes. p values are based on chi-square test.

See also Figures S2–S4.
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Figure 4. Somatic Drivers and Biological Pathways Associated with Metabolic Expression 
Subtypes
(A) Somatic mutation drivers associated with metabolic expression subtypes. For each 

cancer type, the mutational status of significantly mutated genes (identified by MutSigCV, 

with a mutation frequency > 5%) were assessed based on chi-square test. Colors in each 

circle indicate the correlations with different kinds of metabolic expression subtypes.

(B) Correlations of metabolic expression subtypes with TP53 mutation status. The inner 

band indicates the mutation status of TP53 (dark red, mutated; light red, wide-type); external 

bands indicate the subtype information of a specific metabolic pathway (red, upregulated; 

gray, neutral; and blue, downregulated).

(C) Somatic copy number alteration drivers associated with metabolic expression subtypes. 

For each cancer type, the copy number status of known oncogenes or tumor suppressors 

residing in a significant amplification for deletion peak (identified by GISTIC2) were 

assessed based on chi-square test.

(D) Correlations of metabolic expression subtypes with MYC amplification status. The inner 

band indicates the amplification status of MYC (dark red, high-level amplification; light red, 

low-level amplification); external bands indicate the subtype information of a specific 

metabolic pathway (red, upregulated; gray, neutral; and blue, downregulated). In (A) and 

(C), only associations with FDR < 0.05 are shown; color indicates the specific associated 

metabolic pathway.
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(E) Correlations of metabolic expression subtypes with six cancer hallmarks and mTOR 

signaling pathway based on GSEA (the related gene sets are based on MSigDB). Those 

cases without qualified subtype classifications are left in blank, and significant enrichments 

(FDR < 0.01) are colored in red or blue. For the analysis, differentially expressed genes were 

identified between the upregulated and downregulated subtypes. Red indicates the 

enrichment of a hallmark gene set in genes highly expressed in the upregulated metabolic 

expression subtype; blue indicates the opposite pattern.
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Figure 5. Master Regulators Associated with Metabolic Expression Subtypes
(A) Overview of computational algorithms used to identify master transcription factors.

(B) Network view of “master” transcription factors associated with metabolic expression 

subtype. The line thickness indicates the number of cancer types where the connection was 

identified. Only the connections identified in ≥3 cancer types are shown.

(C) Network view of “master” miRNA regulators.

(D) MiRNA hsa-miR-320a identified as a master regulator for expression subtypes of the 

nucleotide metabolism pathway in stomach adenocarcinoma (STAD). SCNAs of hsa-

miR-320a lead to a lower expression in the samples of downregulated subtype. Its target 

genes are significantly enriched in genes highly expressed in the downregulated subtype. 

The middle line in the box is the median, and the bottom and top of the box are the first and 

third quartiles, and the whiskers extend to 1.5× interquartile range of the lower quartile and 

the upper quartile, respectively.
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Figure 6. Effects of Master Regulators on Carbohydrate Metabolism
(A) Systematic view of metabolic reprogramming across cancer types.

(B) The network shows that master TFs for carbohydrate metabolism identified in ≥3 cancer 

types whose upregulated subtypes showed significant worse prognosis, and these master 

regulators have ≥150 target genes and higher expression levels in the upregulated subtypes.

(C and D) Master regulator expression level in three carbohydrate metabolic expression 

subtypes: SNAI1 in lung adenocarcinoma (LUAD) (C) and RUNX1 in sarcoma (SARC) (D). 

The middle line in the box is the median, and the bottom and top of the box are the first and 

third quartiles, and the whiskers extend to 1.5× interquartile range of the lower quartile and 

the upper quartile, respectively.

(E and F) Relative abundance of intracellular glucose in the NCIH1975 cell line (control) 

and the cell line with shRNA-mediated SNAI1 knockdown (E) and in the U2OS cell line 

(control) and the cell line with shRNA-mediated RUNX1 knockdown (F) at three time 

points (0 hr, 6 hr, and 24 hr). p value was based on paired t test.

See also Figure S5 and Table S3.
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Figure 7. Carbohydrate Expression Subtypes Are Informative about Drug Sensitivity
(A) Heatmap showing drug sensitivity variation across lung cancer cell lines. Those lung 

cancer cell lines were classified into downregulated, neutral, and upregulated carbohydrate 

metabolic subtypes using the same method as for TCGA patient samples. All the drugs with 

a significant difference of IC50 (log-transformed) among the three subtypes (FDR < 0.05) 

are shown.

(B) The distributions showing the log-transformed IC50 values of docetaxel in the 

carbohydrate metabolic expression subtypes.

(C and D) The effect of SNAI1 knockdown in NCIH1975 cells on drug response of 

docetaxel at 16 hr (C) and 24 hr (D). Data are represented as mean ± SE. Compared to 

negative control (scrambled shRNA), *p < 0.05.

See also Figure S6.
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