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Objective: Prior genomewide association studies have identified variation in major
histocompatibility complex (MHC) class I alleles and C–C chemokine receptor type 5
gene (CCR5D32) as genetic predictors of viral control, especially in ‘elite’ controllers,
individuals who remain virally suppressed in the absence of therapy.

Design: Cross-sectional genomewide association study.

Methods: We analyzed custom whole exome sequencing and direct human leukocyte
antigen (HLA) typing from 202 antiretroviral therapy (ART)-suppressed HIVþ noncon-
trollers in relation to four measures of the peripheral CD4þ T-cell reservoir: HIV intact
DNA, total (t)DNA, unspliced (us)RNA, and RNA/DNA. Linear mixed models were
adjusted for potential covariates including age, sex, nadir CD4þ T-cell count, pre-ART
HIV RNA, timing of ART initiation, and duration of ART suppression.

Results: Previously reported ‘protective’ host genetic mutations related to viral setpoint
(e.g. among elite controllers) were found to predict smaller HIV reservoir size. The HLA
‘protective’ B�57:01 was associated with significantly lower HIV usRNA (q¼3.3 �
10�3), and among the largest subgroup, European ancestry individuals, the CCR5D32
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478 AIDS 2023, Vol 37 No 3
deletion was associated with smaller HIV tDNA (P¼4.3� 10�3) and usRNA (P¼8.7�
10�3). In addition, genomewide analysis identified several single nucleotide polymor-
phisms in MX1 (an interferon stimulated gene) that were significantly associated with
HIV tDNA (q¼0.02), and the direction of these associations paralleledMX1 gene eQTL
expression.

Conclusions: We observed a significant association between previously reported
‘protective’ MHC class I alleles and CCR5D32 with the HIV reservoir size in non-
controllers. We also found a novel association between MX1 and HIV total DNA (in
addition to other interferon signaling relevant genes, PPP1CB, DDX3X). These findings
warrant further investigation in future validation studies.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.
AIDS 2023, 37:477–488
Keywords: C–C chemokine receptor type 5 gene, HIV reservoir, host genetics,
major histocompatibility complex class I, type I interferon
Introduction

Although antiretroviral therapy (ART) prolongs life, it
does not fully restore health. Persistent HIV may
contribute to ongoing inflammation, immune activation,
and increased morbidity and mortality [1–4]. Identifying
host genetic predictors of HIV persistence in ART-
suppressed individuals may shed light on novel targets to
reduce residual virus and HIV-associated immune
dysfunction.

Most prior host genetic HIV studies have focused on
identifying variants associated with viral setpoint, for
example, among ‘elite controllers’, HIVþ individuals
able to maintain viral suppression in the absence of
therapy [5–14]. These studies identified several key single
nucleotide polymorphisms (SNPs) in the human major
histocompatibility complex (MHC), or human leukocyte
antigen (HLA)-B and -C regions as well as deletions in
the C–C chemokine receptor type 5 gene (CCR5D32)
[15–18] and a SNP in the HLA complex 5 (HCP5) gene
[6]. However, whether residual viral control during treated
HIV disease – that is, ‘the HIV reservoir’ – is influenced
by the same genetic variants is unknown. We performed
custom whole exome sequencing among HIV noncon-
trollers in relation to four measures of the peripheral
CD4þ T-cell HIV reservoir: cell-associated ‘intact’
DNA [19], total DNA, unspliced RNA, and RNA/
DNA (Figure S1, Supplemental Digital Content, http://
links.lww.com/QAD/C713). We found that previously
reported ‘protective’ HLA-B�57:01 [6,13] and
CCR5D32 [15–17] genetic variation were associated
with smaller HIV reservoir size. Genomewide analyses
demonstrated several novel associations with SNPs in
interferon signaling-associated genes (MX1, PPP1CB,
DDX3X) and total HIV DNA reservoir size, and intact
DNA was significantly associated with gene sets
representing interferon signaling pathways in a subgroup
of participants (Europeans).
Methods

Study participants
HIVþ noncontrollers who initiated ART during chronic
(>2 years) or early (<6months) HIV infection were
sampled from the UCSF SCOPE and Options cohorts
(Table S1, Supplemental Digital Content, http://links.
lww.com/QAD/C713). Inclusion criteria were labora-
tory-confirmed HIV-1 infection, availability of cryopre-
served peripheral blood mononuclear cells (PBMCs),
and plasma HIV RNA<40 copies/ml for �24months at
the time of biospecimen collection. HIV ‘controllers’
[20–22] were excluded (individuals with a undetectable
viral load in the absence of therapy for �1 year). The
estimated date of detected infection (EDDI) was
calculated for each study participant to determine recency
of infection in relation to ART initiation using the
Infection Dating Tool (https://tools.incidence-estima-
tion.org/idt/) [23]. Additional exclusion criteria were
potential factors that might influence HIV reservoir
quantification: recent hospitalization, infection requiring
antibiotics, vaccination, or exposure to immunomodula-
tory drugs <6months prior to sampling timepoint. The
research was approved by the UCSF Committee on
Human Research (CHR), and all participants provided
written informed consent.

Custom whole exome host DNA sequencing
Genomic DNA was extracted (AllPrep Universal Kit;
Qiagen, Hilden, Germany) from negatively selected
CD4þ T cells from cryopreserved PBMCs (StemCell,
Vancouver, Canada). Targeted exome capture was
performed with custom addition of 50 Mb regulatory
regions (Roche NimbleGen; Wilmington, Massachu-
setts, USA), sequencing libraries were generated and then
run on the Illumina HiSeq 2000 system (Illumina, San
Diego, California, USA). The custom regions included
50 kb upstream and 50 kb downstream of 442 candidate
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Host genetics predict HIV reservoir size in treated non-controllers Siegel et al. 479
genes related to cell cycle regulation, HIV host restriction
factors, and HIV-host integration, which were selected
based on Gene Ontology (GO) Consortium experimen-
tal evidence codes (EXP, IDA, IPI, IMP, IGI, IEP) (Table
S2, Supplemental Digital Content, http://links.lww.
com/QAD/C713).

Human leukocyte antigen typing
Direct HLA typing was performed from extracted DNA
following the PCR-SSOP (sequence-specific oligonu-
cleotide probing) typing and PCR-SBT (sequence-based
typing) protocols recommended by the 13th Interna-
tional Histocompatibility Workshop [24,25]. Locus-
specific primers were used to amplify a total of 25
polymorphic exons of HLA-A & B (exons 1–4), C
(exons 1–5), E (exon 3), DPA1 (exon 2), DPB1 (exons
2–4), DQA1 (exon 1–3), DQB1 (exons 2–3), DRB1
(exons 2–3), and DRB3, 4, 5 (exon 2) genes with
Fluidigm Access Array (Fluidigm, Singapore) and
sequenced on an Illumina MiSeq sequencer (Illumina).
HLA alleles and genotypes are called using the Omixon
HLA Explore (version 2.0.0) software (Omixon, Buda-
pest, Hungary).

HIV reservoir quantification from peripheral
CD4R T cells
There is currently no ‘gold standard’ for measuring the
HIV reservoir. Moreover, the HIV reservoir largely
consists of ‘defective’ virus that harbors mutations
prohibiting the production of infectious virus [26,27].
Here, we extracted DNA and RNA from negatively
selected CD4þ T cells from cryopreserved PBMCs, using
the AllPrep Universal Kit (Qiagen). The frequency of
‘intact’ (i.e. potentially replication-competent) HIV
DNA was quantified using a multiplex ddPCR assay
[19]. The number of HIV positive droplets were counted
using three targets per assay, and then normalized (using
RPP30 and TRD genes for all cells and all non-T cells,
respectively) to obtain HIV copy numbers/106 CD4þ T
Fig. 1. Genetic principal component analysis (PCA) plots of geno
identified race/ethnicity) (a) and from the European ancestry subg
PCA plot is shown in panel b, from lower left dashed box in pane
cells. Finally, the estimated number of intact HIV
genomes was corrected for shearing using a DNA
shearing index (DSI). HIV total (defective þ intact)
DNA and unspliced (full-length) RNA was also
measured for all participants. These two measures were
quantified using an HIV-1 LTR-specific qPCRTaqMan
assay [28]. For each measure, HIV copies were quantified
in triplicate reaction wells using a seven-point standard
curve (1–10 000 copies/s).

Data processing and quality control
The bcbio bioinformatics pipeline [29] was used to
perform DNA alignment, which included the Bur-
roughs-Welcome Aligner (BWA) tool [30] and the
GenomeAnalysisToolkit (GATK) HaplotypeCaller joint
variant calling method [31]. Reads were initially mapped
to reference genome b37, then transposed to human
genome assembly GRCh38 using Picard tools [32]. SNPs
and insertions or deletions (indels) were then filtered by
variant quality score recalibration (VQSR) using GATK
[33]. The whole genome data analysis toolset, PLINK
[34], was then used to validate the chromosomal sex of
each individual, filter out individuals with excessive
heterozygosity, and SNPS violating Hardy-Weinberg
equilibrium (HWE) at a P-value threshold of 1 � 10�8.
The VCFtools suite of functions were then used to
summarize data, run calculations, convert data, and filter
out data, and convert data, and filter out relevant SNPs
[35].

The GENESIS analysis pipeline [36] was used to analyze
the relatedness and ancestries of the individuals in the
study. All individuals were determined to be unrelated
(kinship estimates <0.05) aside from one pair of siblings,
so one sibling was randomly removed from the study. The
remaining 199 unrelated individuals had diverse and
mixed ancestries (Fig. 1). We accounted for population
stratification in the total population by including a genetic
effects term with a genetic relatedness matrix (GRM), by
types from the total study population (with legend with self-
roup European ancestry (b). Recalculated European ancestry
l a.

http://links.lww.com/QAD/C713
http://links.lww.com/QAD/C713


480 AIDS 2023, Vol 37 No 3
including the first five PCs as covariates in the
multivariate models, and by performing sensitivity
analyses among the largest subgroup, Europeans.

Single nucleotide polymorphism common variant
analyses
Individual SNP associations were calculated with
GENESIS ‘assocTestSingle’. For HIV tDNA, usRNA,
and intact DNA, each outcome variable was analyzed as
log10 (copies/106 CD4þ T cells þ offset); RNA/DNA
was analyzed as log10 ((RNA copies/106 CD4þ T cells þ
offset)/(DNA copies/106 CD4þ T cells þ offset)). The
offsets counts were given by the smallest nonzero
measured values, to avoid divergences in the logarithm.
Final covariates in multivariate models were sex, timing of
ART initiation (Figure S2, Supplemental Digital Con-
tent, http://links.lww.com/QAD/C713), nadir CD4þ

T-cell count (Figure S3, Supplemental Digital Content,
http://links.lww.com/QAD/C713), and the first five
PCs. Pre-ART viral load (Figure S4, Supplemental
Digital Content, http://links.lww.com/QAD/C713)
and duration of ART suppression (Figure S5, Supple-
mental Digital Content, http://links.lww.com/QAD/
C713) were not associated with HIV reservoir size nor
improved the fit of the final models. A Gaussian link
function was used, and a GRM was included with results
filtered for SNPs with MAF�5%. SNP annotations were
then obtained using Annovar [37].

Gene-based rare variant analyses
Gene level multi-SNP associations were calculated with
the GENESIS software package ‘assocTestAggregate’
function implementing the variant Set Mixed Model
Association Test (SMMAT) [38] for alleles with
MAF<5% with weights following the beta distribution
parameters of a1¼ 1 and a2¼ 25 [39]. The same
covariates, GRM, and regression family were used as
for the individual SNP associations. Outcomes were
quantile-normalized to follow a normal distribution.
Gene regions were defined according to UCSC hg38
assembly [40].

Gene set enrichment analyses (GSEA) were performed
using the Molecular Signatures Database (MSigDB)
[41,42]. For all gene set analyses, introns and flanking
regions of�50 kb were included in the SMMAT P-value
calculations for each gene to account for potential
regulatory regions and SNPs with smaller effects.
GSEAPreranked was run with default parameters on
the SMMAT gene-level �log10(P).

Human leukocyte antigen analysis
Multivariate regression models were fit using the python
statsmodels OLS function [43] with covariates for sex,
timing of ART initiation, nadir CD4þ T-cell count, and
three genetic PCs.
Results

Study population
A total of 202 HIV-infected ART-suppressed individuals
from the UCSF SCOPE and Options HIVþ cohorts
were included in the study with baseline characteristics
consistent with our San Francisco-based HIV patient
population (Table S1, Supplemental Digital Content,
http://links.lww.com/QAD/C713). The Infection Data
Tool [23] was used to calculate the estimated date of HIV
infection for 147 participants with available clinical HIV
test results. For the remaining 55 participants with self-
report data only on date of HIV acquisition, we mean-
imputed values assuming ART initiation started 2þ years
from infection. This estimation is supported by prior data
demonstrating that the HIV reservoir size is relatively
stable after 2 years of infection [44–48] and the fact that all
55 participants had initiated ART during an era when
guidelines were not based on initiating ART immediately
at the time of HIV infection [49]. Sensitivity analyses
excluding these individuals did not alter the overall
study results.

Earlier antiretroviral therapy initiation and lower
nadir CD4R T-cell count were associated with
smaller HIV reservoir, and HIV reservoir
measures were correlated with each other
Consistent with prior work [27,50,51], earlier ART
initiation was associated with significantly smaller HIV
reservoirs (tDNA, usRNA, intact DNA) (Figure S2,
Supplemental Digital Content, http://links.lww.com/
QAD/C713), whereas lower nadir CD4þ T-cell count
was associated with larger HIV reservoirs (tDNA,
usRNA, intact DNA, RNA/DNA) (Figure S3, Supple-
mental Digital Content, http://links.lww.com/QAD/
C713). Pre-ART viral load (Figure S4, Supplemental
Digital Content, http://links.lww.com/QAD/C713)
and duration of ART suppression (Figure S5, Supple-
mental Digital Content, http://links.lww.com/QAD/
C713) were not associated with HIV reservoir size.
Although usRNAwas correlated with both tDNA intact
DNA (Figure S6a, b, Supplemental Digital Content,
http://links.lww.com/QAD/C713), tDNA (by qPCR)
was not associated with intact DNA (by ddPCR) (Figure
S6c, http://links.lww.com/QAD/C713).

HLA ‘protective’ BM57:01 and ‘risk’ CM07 alleles
were associated with smaller and larger HIV
reservoir sizes, respectively
Using a Benjamini–Hochberg [52] false discovery rate
(FDR) adjusted q <0.05, we examined ‘protective’
(B�57:01, B�27:05, B�14, C�08:02, B�52, and A�25)
and ‘risk’ (B�35 and C�07) alleles, as previously reported
for viral control among untreated HIVþ controllers vs.
noncontrollers [13]. Among our treated HIVþ non-
controllers, we observed a ‘protective’ association with
HLA-B�57:01 and usRNA (b ¼ �1.5, q¼ 3.3 � 10�3),
with a similar trend for tDNA (b ¼ �1.6, q¼ 0.13).
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Similarly, previously reported HLA-C�07 ‘risk’ allele also
demonstrated a ‘risk’ trend (larger reservoir size) in our
European subgroup (tDNA: b ¼ 0.76, q¼ 0.072;
usRNA: b¼ 0.41, q¼ 0.10). Further analyses employing
a composite HLA variable did not identify statistically
significant associations (Tables S3�S6, Supplemental
Digital Content, http://links.lww.com/QAD/C713).

CCR5D32 was associated with smaller HIV
reservoir size
Deletions in the C�C chemokine receptor type 5 gene
(CCR5D32) have previously been associated with HIV
control in the absence of therapy [15–17]. Among
individuals of European ancestry (where CCR5D32 is
more commonly observed), CCR5D32 was associated
with smaller HIV reservoirs (tDNA: b¼�1.3, P¼ 4.3�
10�3; usRNA: b ¼ �0.78, P¼ 8.7 � 10�3), with a
similar trend in the total population (tDNA: b ¼ �0.86,
P¼ 0.045; usRNA: b ¼ �0.41, P¼ 0.12), In addition,
Fig. 2. QuantileSquantile (QQ) plots (a, c) and Manhattan plots
ancestry the European ancestry subgroup (c, d).QQ plots: the blue
lines denote the expected error bars. Manhattan plots: the horizonta
significance of P-value of 5� 10�8, while less conservative Benjami
of q¼0.05 is shown as the horizontal blue line (q¼0.25 is show
the previously reported long noncoding RNA variant
which regulates differential CCR5 expression
(rs1015164) [18], was significantly associated with smaller
HIV reservoir size in Europeans (usRNA: b ¼ �0.39,
P¼ 0.027), which also reached near-statistical signifi-
cance in the total population (usRNA: b ¼ �0.30,
P¼ 0.051),

SNP-based analysis identified several SNPs
associated with HIV tDNA, including MX1, for
which HIV reservoir associations paralleled
predicted MX1 gene expression
A total of 1 279 156 variants from 23 733 genes were
included from 199 participants for whom sequencing data
passed quality control (Figure S7, Supplemental Digital
Content, http://links.lww.com/QAD/C713). Final
models demonstrated lambda genomic inflation factor
[53] values close to 1, reflecting adequate adjustment for
possible population stratification bias (Fig. 2).
(b, d) of the total study population (a, b) and of European
line represents the expected �log10 P-values while the black
l black line delineates a traditional conservative genome-wide
ni�Hochberg false discovery rate (FDR) statistical significance
n in grey).
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The strongest genomewide associations were observed
with HIV tDNA (Tables 1 and S7, Supplemental Digital
Content, http://links.lww.com/QAD/C713). In partic-
ular, 44 SNPs in linkage disequilibrium (LD) in the
interferon-inducible myxovirus resistance 1 (MX1 or
MXA) gene [54,55] were significantly associated with
tDNA (all q < 0.03). MX1 is a paralog of MX2 (MXB),
which encodes for a potent HIV-1 host restriction factor
[56–58].We then compared the directionality of the SNP
hits with previously reported whole blood eQTL data at
these loci [59–61] and found that the MX1 SNPs that
were associated with larger HIV tDNA were in
expression quantitative trait loci (eQTL) regions pre-
dicting increased MX1 expression while MX1 SNPs
associated with smaller HIV tDNA were predicted to
decreaseMX1 expression (Table S7, Supplemental Digital
Content, http://links.lww.com/QAD/C713). We also
observed two additional SNPs associated with HIV
tDNA: PPP1CB (protein phosphatase 1 catalytic subunit
beta which reduces MX2’s anti-HIV potency [58] and
regulates HIV-1 transcription [62], q¼ 0.03) and IRAG2
(inositol 1,4,5-triphosphate receptor associated 2, which
regulates delivery of peptides to major MHC class I
molecules [63] and was differentially expressed during
ART initiation and interruption in HIVþ individuals
[64,65], q¼ 0.03) (Table 1). HIV tDNA also showed
trends with SNPs in DDX3X (DEAD-box helicase 3 X-
linked, regulates production of type I interferons [66] and
HIV-1 replication [67], q¼ 0.17) and AKAP6 (A-Kinase
Anchoring Protein 6, which binds to protein kinase A, a
signaling pathway associated with HIV latency reversal
and T-cell proliferation [68,69], q¼ 0.20). Among
Europeans, HIV tDNA also showed a trend with a
SNP in OSBP (oxysterol-binding protein, required for
the replication of viruses such as hepatitis C and Zika [70]
and has been associated with HIV-1 infection of
monocyte-derived macrophages from highly-exposed
seronegative individuals [71], q¼ 0.14).

For the other HIV reservoir measures, no SNPs met
statistical significance in association with HIV intact
DNA or RNA/DNA ratio. For HIVusRNA, a SNP<30
kilobases upstream of BST2 which encodes for the host
restriction factor tetherin [72] demonstrated a trend with
usRNA (q¼ 0.21; Table 1); this SNP is intronic in
PLAVP (protein regulating lymphocyte migration into
lymph nodes [73]).

Gene-based analyses identified several interferon
signaling pathway genes that were associated
with intact HIV DNA
We then performed multi-SNP gene set enrichment
analyses (GSEA), aggregating SNPs by gene region to
identify genes associated with HIV reservoir size. HIV
intact DNA was statistically significantly associated with
several gene sets, notably two gene sets highlighting STAT
signaling/interferon signaling (Table S8, Supplemental
Digital Content, http://links.lww.com/QAD/C713), as
well as a highly significant gene set seen in Europeans,
reflecting viral entry into host cell (Fig. 3, Table S8,
Supplemental Digital Content, http://links.lww.com/
QAD/C713). For the other HIV reservoir measures,
HIV tDNAdemonstrated a trendwith a gene set involving
glycanprocessingwhileHIVusRNAshoweda trendwith a
gene set reflecting retroviral transcription.
Discussion

HIVeradication remains a critical goal in reducing long-
term morbidity and mortality. ART suppression does not
fully restore health; HIVþ individuals have higher levels
of immune activation [74] and increased mortality [3]
compared to HIV-uninfected individuals. ART is also
expensive and a challenge to provide sustainable access for
a global population [75]. HIV cure trials to date have
yielded disappointing results [76–81]. Novel approaches
are needed to better target immunologic pathways that
may drive HIV persistence.

Our study is the first genomic study to evaluate several
measures of the HIV reservoir in HIVþ noncontrollers,
including HIV intact DNA, which estimates the putative
‘replication-competent’ reservoir [19,82,83]. We also
performed direct HLA typing of 25 polymorphic exons
and included detailed clinical data on timing of ART
initiation, one of the strongest clinical predictors of HIV
reservoir size. Unlike prior genomic studies focusing on
‘elite controllers,’ we studied treated HIVþ noncon-
trollers, the majority of people living with HIV (PLWH).
Previously reported ‘protective’ HLA and CCR5D32
mutations during untreated disease [6,15–18] predicted
smaller HIV reservoirs in our study. These findings
suggest that the same immunologic pathways controlling
viral setpoint might also influence HIV reservoir size
during ART, and/or that variable ‘penetrance’ [84] of
these mutations might manifest as differential pheontypes
among HIV ‘elite controllers’ and noncontrollers.

The most striking finding from our SNP-based analysis
was the identification of several SNPs in MX1, which
encodes for a potent antiviral factor that inhibits
replication of several RNA viruses, including influenza
A and measles, and DNAviruses, such as hepatitis B [85],
and is part of the antiviral response induced by type I
(interferon gamma [IFN-a, IFN-b) and type III (IFN-l)
interferons [86]. MX1 expression has also been shown to
be upregulated in HIVþ individuals [87], especially those
with higher viremia [88], as well as in latently HIV-
infected cell lines [89]. Although our DNA-based
genomewide results cannot infer directionality of gene
function without further functional studies, forMX1, we
were able to use previously reported whole blood
expression quantitative trait loci (eQTL) data for the top
hit SNP loci [59–61] to determine whether they also
predict increased MX1 expression. Indeed, SNPs
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Fig. 3. Gene set enrichment analysis (GSEA) was used to identify associations between gene pathways and HIV reservoir
measures (HIV total DNA, unspliced RNA, RNA/DNA, and intact DNA) in the total study population (a) and the European
ancestry subrgoup (b).GSEA performed using rank-ordered q-values frommulti-SNP rare variant analyses (minor allele frequency,
MAF, <5%) using the Gene Ontology Biological Process dataset. Horizontal dashed lines represent the GSEA Benjamini�Hoch-
berg false discovery rate (FDR) statistical significance level of q¼0.05 (blue) and q¼0.025 (grey), respectively.
associated with higher tDNA predicted increased MX1
expression, while SNPs associated with lower tDNA
predicted decreasedMX1 expression. We then performed
anadditional in-silico check, called ‘colocalization analysis,’
to integrate genomewide and eQTL results to calculate the
probability of causal SNP effects on HIV tDNA [90].
However, this only predicted a 1% probability that the top
MX1 SNPs were causally linked to both gene expression
and HIV reservoir size. For the other SNP hits, in-silico
analyses were not possible since these SNPs did not map to
eQTL regions to be able to query any potential
directionality of the associations. Additional functional
genomics studies, for example, using CRISPR�Cas9
editing [91], may further clarify a potential role for MX1
(and other interferon pathway genes) in HIV persistence.

There are limitations to our study that deserve mention.
Although the HIV reservoir has been shown to be
relatively stable over time [51,92,93], our cross-sectional
design provides only a ‘snapshot’ after a median of
5.1 years of ART suppression and may not reflect genetic
associations with reservoir decay. Second, as is character-
istic of many U.S.-based HIVþ cohorts, our San
Francisco-based population consisted mostly of males
of European ancestry. Population stratification is a
critically important potential bias in any multiethnic
genomic study. We approached this potential bias in at
least three ways [36,94]: first by calculating principal
components and including these as covariates in the final
models, second by including a genetic relatedness matrix
(GRM) in the models, and finally by performing stratified
analyses, focusing on the largest homogenous subpopu-
lation (European ancestry). Overall, the findings observed
in the European group did not overlap with the non-
Europeans in our small study (Table S9, Supplemental
Digital Content, http://links.lww.com/QAD/C713).
Third, the majority of the HIV reservoir persists in
lymphoid tissues [95,96]. Although recent data suggests
that the tissue compartment largely reflects (and is the
likely source of) the peripheral compartment [44,96,97],
our study may not be generalizable to the tissue HIV
reservoir. Fourth, intact HIV DNA represents the
potential replication-competent reservoir. Although we
observed several genes that were significantly associated
with intact HIV DNA in the GSEA, individual genes did
not meet statistical significance. The majority of the HIV
reservoir consists of defective HIV; thus, quantifying the
frequency of ‘intact’ (e.g. replication-competent) reser-
voir is challenging [83,98,99]. For example, HIV intact
DNA was undetectable in over half of our measured
samples while total DNA was measurable in 95% of
samples (Figure S6, Supplemental Digital Content,
http://links.lww.com/QAD/C713). Hence, the statisti-
cal power to detect SNP associations is much lower for
this assay compared to the other reservoir measures. By
performing GSEA (a method that aggregates several rare
variants into immunologically relevant ‘gene sets’ to test
for an association with HIV reservoir size), we may have
enhanced the ability to detect real associations with HIV
intact DNA (Fig. 3, Table S8, Supplemental Digital
Content, http://links.lww.com/QAD/C713).

Our findings are in contrast to two recent genomewide
HIV reservoir studies, which did not identify an
association with MX1, HLA-B�57:01, or CCR5D32,
nor reported similar findings to each other [100,101].
The first study performed GWAS microarray genotyping
and whole exome sequencing, measured HIV tDNA
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from PBMCs (not CD4þ T cells), and imputed HLA
alleles (from genotypes), and did not report significant
associations with HLA alleles,CCR5D32, or SNPs [100].
The second study performedGWASmicroarray (noHLA
or CCR5D32 typing) and measured HIV tDNA and
usRNA from CD4þ T cells. They reported a significant
association between tDNA and a SNP in PTDSS2
(phosphatidylserine synthase 2) at genomewide p< 5 �
10�8 [101], which was not statistically significant in our
analysis. Given the polygenic nature of the host immune
response, comparing genomic studies can be challenging,
let alone for studies of the HIV reservoir (often measured
in different ways, from different sample types). Further-
more, how the genetic code translates from DNA to
RNA to protein varies by cell type and tissue [102].
Indeed, prior genomewide association studies identifying
strong genetic predictors such as HLA andCCR5D32 are
estimated to explain only �13% of the variability in viral
load [103]. Using a tool for genome-wide complex trait
analysis (GCTA) [104], we performed a similar calcula-
tion for our HIV tDNA phenotype. The heritability of
our results were estimated to be up to 0.78, but the error
bars were large (�0.94), suggesting that the contribution
of host genetics in determining the HIV reservoir size
likely varies widely (especially when comparing small
genomic studies).

Our findings support a surprising association between the
host innate immune response (e.g. interferon signaling)
and the HIV reservoir, and support recent data suggesting
a key role for interferon signaling in determining viral
rebound after ART interruption [105]. The ‘transcrip-
tionally active’ reservoir may be a major source of the
‘rebound-competent’ reservoir’’ during long-term ART
[106]; perhaps HIVþ individuals with enhanced innate
immune responses (e.g. interferon signaling) are better
able to restrict a residual ‘active’ HIV reservoir during
ART. Our study also suggests that immune pathways
determining viral control during untreated HIV disease
(e.g. HLA-B�57:01,CCR5D32) may also influence HIV
persistence during treated disease. Additional studies are
needed to validate these findings, including replication in
additional cohorts (especially female and non-European
populations) and functional genomic studies (e.g.
CRISPR�cas9 editing studies).
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