
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Fault Discovery, Localization, and Recovery in Smartphone Apps

Permalink
https://escholarship.org/uc/item/38c618f2

Author
Azim, Md Tanzirul

Publication Date
2016

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, availalbe at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38c618f2
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Fault Discovery, Localization, and Recovery in Smartphone Apps

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Md Tanzirul Azim

August 2016

Dissertation Committee:

Dr. Rajiv Gupta, Chairperson
Dr. Iulian Neamtiu
Dr. Zhijia Zhao
Dr. Zhiyun Qian

Copyright by
Md Tanzirul Azim

2016

The Dissertation of Md Tanzirul Azim is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to show my greatest respect and thankfulness to my Ph.D. adviser Dr. Iu-

lian Neamtiu. Without his guidance and inspiration, this journey would not have been

possible. From the very beginning, he was tremendously supportive and helped me un-

dertaking my research by his constructive direction and wisdom. His mentorship was not

limited to the academic projects; rather he was proven as a true friend with his valuable

suggestions in improving myself as a researcher as well. I graciously thank my committee

members Dr. Rajiv Gupta, Dr. Zhiyun Qian, and Dr. Zhijia Zhao for their tremendous

support. Dr. Gupta gave valuable feedback in various parts of my work, and I am ever

grateful to him.

I would like to take this opportunity to thank my most precious treasures in this

life, my parents Delwarul Azim and Kawsar A. Sultana. Not only they owe me my very

existence, but also their painstaking labor, hardship, and sacrifices made the actual person

in me.

I am thankful to my super awesome lab mates and colleagues: Amlan Kusum,

Yongjian Hu, Vineet Singh, Bo Zhou, Yan Wang, Steve Su, Lorenzo Gomez, Arash Alavi

for their backing in my successes and failures. Gavin Huang, Shashank Reddy Kothapalli,

and Xuetao Wei contributed to some of my projects with valuable insight. I also show my

gratitude to my mentor at Microsoft Research Dr. Oriana Riva. I express my regards to

my co-authors Dr. Suman Nath, Dr. Todd Millstein, Dr. Zhiyung Shan. University staff

members Ms. Amy Ricks, Ms. Amanda Wong, and Ms. Vanda Yamaguchi also deserve

my respect for their greatest support and help.

iv

Finally, I consider myself lucky to have so many friends and well-wishers around

me with whom I shared my moments of happiness and frustrations.

v

To my dearest parents.

vi

ABSTRACT OF THE DISSERTATION

Fault Discovery, Localization, and Recovery in Smartphone Apps

by

Md Tanzirul Azim

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2016

Dr. Rajiv Gupta, Chairperson

Applications for smartphones or other mobile devices (“apps”) are used by bil-

lions of subscribers worldwide. Apps and their users are at risk, however: due to their

unique and unprecedented properties, apps have a high potential for faults and errors,

and due to their popularity, apps have become a lucrative target for attackers’ malicious

activities.

This dissertation introduces static and dynamic analysis techniques for fault dis-

covery, localization, and recovery in apps. The existing approaches for fault discovery

and localization either are not mature enough (i.e., lack of sound static and dynamic tech-

niques and low coverage with high overhead) or have severe limitations (e.g., work only

on emulators).

We facilitate the discovery of faults through Automatic Android App Explorer

(A3E). As the name suggests, A3E generates test cases on-the-fly and exercises them. It

achieves that through two distinctive strategies: an exploration in a depth-first manner

and targeted exploration from a particular activity (page) inside the app. After fault dis-

vii

covery, fault localization is necessary to contain the error. To permit fault localization we

have developed three techniques: app state recreation through user defined deep links, au-

tomatic GUI-input generation through AndroidArrow, and the program slicing framework

AndroidSlicer. uLink, our next solution, is a demand-driven record-and-replay library that

creates replayable links on-the-fly; these links can be directly re-executed to re-construct

a particular application state. AndroidArrow is a toolset to generate UI element event se-

quences which can be injected into an app to trigger a target method or program point. Our

next localization strategy is AndroidSlicer; a slicing framework for Android apps. While

program slicing is not new, no substantial slicing work has been done so far for smart-

phone platforms. As smartphone apps have new, unprecedented characteristics, slicing

techniques need to evolve accordingly. Apart from fault localization, slicing has many

other applications, such as improving dynamic taint analysis, finding relevant inputs, and

undo computing. Finally, we have developed an app recovery technique that uses auto-

mated patching while the app runs to seal off faulty code with specific recovery routines,

so the app can recover from faults on-the-fly.

In summary, this dissertation explores and employs static and dynamic analysis

and techniques, algorithms and, in some cases, improves existing approaches to creating

high coverage test cases (fault discovery), identifying program faults (fault localization),

and finally, sealing off erroneous code blocks (fault recovery) to render a smooth and un-

interrupted app experience.

viii

Contents

List of Figures xii

List of Tables xiv

1 Introduction 1
1.0.1 Android architecture . 3

1.1 Fault Discovery . 5
1.2 Fault Localization . 6
1.3 Fault Recovery . 9
1.4 Thesis Organization . 10

2 Dynamic App Exploration 11
2.1 Motivation . 11
2.2 Android Activities, Graphs and Metrics . 15

2.2.1 Android App Structure . 15
2.2.2 Static Activity Transition Graph . 17
2.2.3 Dynamic Activity Transition Graph 18
2.2.4 Coverage Metrics . 20

2.3 User Study: Coverage During Regular Use 21
2.3.1 Activity Coverage . 22
2.3.2 Method Coverage . 26

2.4 Approach . 26
2.4.1 SATG Construction . 28
2.4.2 Targeted Exploration . 30
2.4.3 Depth-First Exploration . 33
2.4.4 Replayable Test Cases and Debugging 35

2.5 Implementation . 35
2.5.1 Setup and Tools . 35
2.5.2 Measuring Coverage . 36
2.5.3 Automatic Explorer . 37
2.5.4 Targeted Exploration . 39
2.5.5 Depth-First Exploration . 39

ix

2.6 Evaluation . 40
2.6.1 Effectiveness and Efficiency . 40
2.6.2 Automatic Exploration Catalysts and Inhibitors 45

2.7 Conclusions . 47

3 Android Application Slicing 51
3.1 Background . 56

3.1.1 Dynamic Slicing . 56
3.2 Program Slicing on Android . 59
3.3 Our Approach: Android Slicer . 61

3.3.1 Offline Control Dependence . 62
3.3.2 Block Summarization . 62
3.3.3 Program Instrumentation . 63
3.3.4 Dynamic Program Slicing . 63

3.4 Conclusion . 66

4 Targeted GUI Input Generation 67
4.1 Directed GUI Event Generation . 68
4.2 Evaluation . 73
4.3 Conclusion . 73

5 User Defined Deep Linking 74
5.1 Motivation and Goals . 79

5.1.1 uLink in Action . 79
5.1.2 uLink Goals . 81
5.1.3 uLink Approach . 84

5.2 System Design . 84
5.2.1 Overview . 85
5.2.2 Improving View Coverage . 87
5.2.3 Link Validation . 92
5.2.4 Developer Effort . 98

5.3 Implementation and Use Cases . 99
5.3.1 uLink Library . 99
5.3.2 Companion Services using uLink . 101

5.4 Evaluation . 104
5.4.1 App Dataset and Developer Effort . 105
5.4.2 Coverage . 107
5.4.3 Correctness of Link Validation . 108
5.4.4 Consistency over Time . 110
5.4.5 System Overhead and Performance 112

5.5 Limitations . 114
5.6 Conclusions . 116

x

6 Application Recovery from Faults 117
6.1 Approach . 120

6.1.1 Architecture . 121
6.1.2 Model Construction and Rollback Point Identification 121
6.1.3 Detection . 124
6.1.4 Recovery . 126

6.2 Implementation . 129
6.3 Evaluation . 131

6.3.1 Limitations . 133
6.4 Conclusions . 134

7 Related work 135
7.1 Program Exploration . 135
7.2 Dynamic Program Slicing . 141
7.3 GUI Event Generation . 142
7.4 User Defined Deep Linking . 142
7.5 Recovery from Faults . 145

8 Future Work 148
8.1 Improvements . 148
8.2 Program Analysis Applications . 149

9 Conclusions 151

Bibliography 153

xi

List of Figures

1.1 Framework overview. 3
1.2 Android architecture. 4

2.1 An example activity transition scenario from the popular Android app, Ama-
zon Mobile. 17

2.2 Static Activity Transition Graph extracted automatically by our approach
from the 12Craigslist Mobile app. Grey nodes and associated edges have been explored
by users. Solid-contour nodes (grey or white) and solid-line edges were tra-
versed dynamically by our exploration. Dashed-contour nodes and dashed-
line edges remained unexplored. Activity names are simplified for legibility. 18

2.3 Constructing SATG with taint analysis: sources and sinks are tagged auto-
matically (left), taint is tracked by SCanDroid (center); the resulting SATG
(right).. 27

2.4 Intent passing through superclasses in NPR News. 28
2.5 Overview of Targeted Exploration in A3E. 30
2.6 Overview of Depth-first Exploration in A3E. 33
2.7 Dynamic Activity Transition Graph for the BBC News app, constructed based

on runs from 5 different users: colors represent users and labels on the edges
represent the sequence in which the edges are explored. 47

3.1 Example program. 58
3.2 Static program dependence graph for figure 3.1. 58
3.3 Example callback. 65
3.4 Example API calls . 65

4.1 Sctivity transtion graph example for path pruning. 69
4.2 Directed path transitioning to the method getVersionString(), as produced by

Redexer. 70
4.3 Our toolset, based on output from Redexer and Gator, reveals the Disclaimer

menu item as the GUI element to invoke to reach this view. 70

5.1 Examples of views uLink can support. 76

xii

5.2 Examples of shortcut-only and shortcut-and-replay links. 85
5.3 uLink system architecture. 87
5.4 uLink can replay correctly a link to page 2 in case a), c) and d), and in case

b) if the file doesn’t change after link creation. 93
5.5 Bookmark (left) and Stuff-I-have-Seen (right) services we have built using

uLink. 103
5.6 uLink link coverage in 6 apps (NPR News is open source, others are closed

source). 106
5.7 uLink across different app versions over time (green = link opened correctly,

red = link failed). 110

6.1 System architecture. 122
6.2 Our static analysis infers B as the rollback point when the app crashes at

point D. 123
6.3 Example: fault point detection and rollback in the NPR News app. 124
6.4 Code sketch of patch construction. 127

xiii

List of Tables

2.1 Overview of our examined apps. 19
2.2 The results of our user study. 24
2.3 Evaluation results: activity and method coverage. 41
2.4 Evaluation results: time taken by SATG construction and exploration. Note

the different units across columns (seconds vs. minutes). 42
2.5 Activity count and coverage. User 1 has explicitly tried to achieve high cov-

erage, while 2–7 are “regular” users. 48
2.6 Method count and coverage. 50

4.1 Runtime statistics for top-5 most downloaded apps. 72

5.1 Developer effort to add uLink in Android apps. 99
5.2 The 34 Android apps to which we added the uLink library and the devel-

oper effort required. (First 5 apps are open source.) 104
5.3 uLink feedback for various links with dependencies on sensors, file system

and database (r=read, w=write, db=database, pref=preferences). 107
5.4 Comparison of uLink and the record and replay RERAN tool in terms of

replay time, number of replayed UI events and log size. 112

6.1 Examined apps. 131
6.2 Efficiency measurements results. 133

7.1 uLink goals and comparison with the state-of-the-art. 144

xiv

Chapter 1

Introduction

Mobile devices running Android or iOS have flourished and have continued to

expand their user base: in 2015 there were around 2.6 billion smartphone subscriptions

worldwide, and by 2020 this number is expected to grow to 6.1 billion [14]. However, the

very features that made these devices successful (e.g., rich sensor inputs, continuous con-

nectivity, ample computational or storage capabilities), have made the devices a favorite

target for attackers. Moreover, due to the apps’ short update cycle, developers often rely

on crowdsourcing for error discovery. However, crowdsourcing is not necessarily useful,

as shown in Section 2.3.2. We have constructed automated exploration techniques that can

generate high-coverage test cases by employing two key tactics: dept-first exploration and

targeted exploration (Chapter 2).

While automatic exploration aids us in achieving higher coverage and discovery

of errors and faults, additional techniques are required to locate the faults. For instance,

automated exploration may reveal app errors on the user interface, while a log of app

1

events can point to erroneous parts of a program; but we need to develop specific test

cases to contain the error. This requires a combination of static and dynamic analyses to

inspect program elements such as the data flow facts and input sequences that contribute

to such flows. We created strategies to efficiently reproduce and constrain the fault inside

a program. Reproducing faulty test cases required adequate record-and-replay capability.

We introduced a novel mobile deep linking framework [9] that can recreate the app state

by tainting the execution order. Next, to generate appropriate sets of inputs we produced

GUI-objects-events mapping to trigger an erroneous target method. Finally, we provide

dynamic slicing for the Android platform to further identify sets of inputs associated with

particular runs of the program by exploiting the control and data dependences inside the

app.

Offline fault discovery and localization are insufficient. However, some apps can-

not be patched promptly, or users might be without connectivity (e.g., a soldier in a remote,

hostile location). In such cases on-the-fly fault recovery is necessary. Therefore, we devel-

oped means to “seal off” faulty code blocks in case of errors to ensure that the application

was able to operate without interruption.

Static and dynamic analyses to precisely uncover faults and perform recovery

without crashing the app (or ruining the user experience) form the foundation of our work.

In a broader sense, this thesis revolves around the following three particular goals: fault

discovery using systematic exploration, fault localization, and fault recovery. Figure 1.1

shows the overview of the framework.

2

Fault discovery, localization, and recovery

Static Model
(Transition Graph)

Automated
exploration

App

Self-healing
App

Patch

State
S

Dynamic Model
(Sensor Inputs)

Model

Replay

Automated
patching

Directed
Testing

slice
Dynamic

slicing

Figure 1.1: Framework overview.

1.0.1 Android architecture

Android platform architecture is designed as a stack of components. The stack

layout comprises of applications, an operating system, run-time environment, middle-

ware, services, and libraries layer. This design is outlined in the figure 1.2. High integra-

tion is maintained between the individual layers tuned to deliver an optimal environment

for application development as well as execution.

Android callbacks Unlike traditional programs smartphone apps are mostly designed

on event driven model. The flow of the program is regulated by events. An event can

be user actions (touches to the screen, gestures), sensor data (microphone, accelerometer,

gyroscope, ambient light sensor, pedometer), inter-process or inter-thread messages. An-

droid SDK provides two major kinds of callbacks. Application life cycle callbacks, and

event callbacks. Lifecycle callbacks are those that are triggered during various phases of

application’s presence on the memory before it gets killed either by the action of the user

3

Figure 1.2: Android architecture.

4

or by the system. Event callbacks are asynchronous feedback and acknowledgment calls

when some events are finished processing on the event queue. For instance, when a user

touches the screen, the system adds it to the event queue, and upon completion triggers

onTouch as a response. So, instead of traditional program control flow, Android control

flow is distinctively manipulated by the callbacks. In the underlying architecture, there

exists a main loop which constantly listens to events, processes them, and finally invokes

a callback.

Android program entrypoint Android programs do not contain any particular “main”

method. An app mainly presents an entry screen viewable to the user. The rendering of

the screen are the results of a group of life cycle events triggered in a particular order.

Moreover, depending on the design of the app, an app can have multiple entry screens.

Several approaches exist to create pseudo entry points for data flow analysis [35, 29].

1.1 Fault Discovery

We aid fault discovery by developing exploration strategies that generate high-

coverage test cases. In fact, systematic exploration of Android apps is an enabler for a

variety of app analysis and testing tasks. Performing the exploration while apps run on

actual phones is essential for exploring the full range of app capabilities. The practical

challenges of a self-guided exploration mechanism can be put into two different categories:

OS specific programming problems, and device or hardware related constraints.

To address these problems, we present A3E, an approach and tool that allows sub-

5

stantial Android apps to be explored systematically while running on actual phones, yet

without requiring access to the app’s source code. The key insight of our approach is to use

a static, taint-style, data-flow analysis on the app bytecode in a novel way to construct a

high-level control-flow graph that captures legal transitions among activities (app screens).

We then use this graph to develop an exploration strategy named “Targeted Exploration”

that permits fast, direct exploration of activities, including activities that would be diffi-

cult to reach during normal use. In addition, we developed a strategy named “Depth-first

Exploration” that mimics user actions for exploring activities and their constituents in a

slower, but a more systematic way. To measure the effectiveness of our techniques, we use

two metrics: activity coverage (number of screens explored) and method coverage. Exper-

iments with using our approach on 25 popular Android apps, including BBC News, Gas

Buddy, Amazon Mobile, YouTube, Shazam Encore, and CNN, show that our exploration

techniques achieve 59.39–64.11% activity coverage and 29.53–36.46% method coverage.

1.2 Fault Localization

The next step in the process is fault localization, which is essential to recreate the

faulty state and to develop recovery tactics. The purpose of fault localization techniques

is to compartmentalize error sources so that further investigations can be carried out effi-

ciently. We have introduced three localization mechanisms, at different levels of granular-

ity. First, we introduced a novel approach to generate input sequences responsible for a

particular failure. Then, we developed a robust slicing framework tailored for smartphone

apps to investigate errors from a much lower level. Finally, we have an app state recreation

6

technique that can reproduce the fault condition keeping the app execution at a minimum

level by triggering only those events necessary for reinstating the app state.

GUI input sequence generation for a reaching a target (program point) in the exe-

cution is undecidable in general, and challenging in practice. This requires comprehensive

static analysis to discover data flow paths inside the app to the point of interest. Moreover,

apps have complex GUI structures: for instance, in Android, GUI elements can be defined

in layout files, or created programmatically. For finding a valid order of execution through

distinct UI objects, we need to rebuild the explicit and implicit co-relation between the

resources and UI elements and discover the underlying event handlers. To pursue this,

we introduced the tool-set AndroidArrow. AndroidArrow proceeds in two steps: first, it un-

covers the transitioning path to a specific target inside the program by conducting flow

analysis, and second, it reproduces the inter-relation between external GUI resources and

their associated event handlers by static object referencing. We have successfully analyzed

34 apps using AndroidArrow.

When evaluating errors and faults in Android apps, one technique that has proved

to be valuable is dynamic analysis. Dynamic analysis critically relies on high-quality in-

puts that can ensure good coverage, i.e., drive program execution through a significant

set of representative application states [50, 42]. Finding “high-quality inputs” for dynamic

analysis on Android is a major challenge due to the sensor- and event-driven nature of

apps: Android apps, whether benign or malicious, have rich, concurrent, high throughput

inputs, e.g., from sensor and networks. This compounds the precision problem, as we now

have to analyze not only data/control dependences, but also the sizable inputs. Finally, ex-

7

amining phone state to separate legitimate from malicious/buggy actions is a challenge,

given the large extent of the state and the potential for system-wide corruption. As appli-

cations can be vulnerable from programming errors, or malicious code injections/tweaks,

understanding the program behavior is essential to further localizing the fault or threat.

To address the aforementioned issues, we propose a dynamic slicing infrastruc-

ture for Android. The slice contains all instructions responsible for affecting a particular

register value at a program point during a specific run of the app instead of aggregating all

other statements that may change it in separate runs. This approach helps us better under-

stand the role of inputs in application control flow, and aids us to identify fault-inducing

input sets. Chapter 3 discusses our Android slicing implementation.

Our next contribution to fault localization is uLink, a user defined deep linking

framework. Our primary motivation was to provide effective means to recreate a faulty

state. The idea behind this strategy is rooted in the phenomenon of web deep links, which

are instrumental to many fundamental user experiences such as navigating to one web

page from another, bookmarking a page, or sharing it with others. Such experiences are

not possible with individual pages inside mobile apps since historically mobile apps did

not have links equivalent to web deep links. Furthermore, mobile deep links, introduced

in recent years, still lack many important properties of web deep links. Unlike web links,

mobile deep links need significant developer effort, cover a small number of predefined

pages, and are defined statically to navigate to a page for a given link, but not to dy-

namically generate a link for a given page. We developed uLink, a novel deep linking

mechanism for addressing these problems. uLink is implemented as an application library,

8

which transparently tracks data- and UI-event-dependencies of app pages, and encodes

the information in links to the pages; when a link is invoked, the information is utilized

to recreate the target page quickly and accurately. uLink also employs static and dynamic

analysis techniques that can provide feedback to users about whether a link may break in

the future due to, e.g., modifications of external resources such as a file the link depends

on. We have implemented uLink on Android. Our evaluation of 34 (of the 1,000 most

downloaded) Android apps shows that compared to existing mobile deep links, uLink re-

quires minimal developer effort, achieves significantly higher coverage, and can provide

accurate user feedback on a broken link.

1.3 Fault Recovery

Having discovered, analyzed, and localized the fault in an Android application

using the aforementioned techniques, we must now address fault recovery, a critical com-

ponent of the user experience. Frequent app bugs and low tolerance for loss of functional-

ity have created an impetus for self-healing smartphone software. We take a step towards

this via on-the-fly error detection and automated patching. Specifically, we add failure de-

tection and recovery to Android by detecting crashes and “sealing off” the crashing part

of the app to avoid future crashes. In the detection stage, our system dynamically ana-

lyzes app execution to detect certain exceptional situations. In the recovery stage, we use

bytecode rewriting to alter app behavior to avoid such cases in the future. When using our

implementation, apps can resume operation (albeit with limited functionality) instead of

repeatedly crashing. Our approach does not require access to app source code or any sys-

9

tem (e.g., kernel-level) modification. Experiments on several real-world, modern Android

apps and bugs show that our approach manages to recover the apps from crashes in an

effective, timely manner and without introducing overhead.

1.4 Thesis Organization

The dissertation is organized as follows. In Chapter 2 we focus on our implemen-

tation of an automated exploration strategy. Chapter 3 discusses our slicing framework.

We present our static analysis-based targeted GUI-event generation techniques in Chap-

ter 4. User-defined deep linking is described in Chapter 5. In Chapter 6 we present our

recovery techniques. Chapter 9 provides the conclusion and future research directions.

10

Chapter 2

Dynamic App Exploration

Effective fault discovery strategies require high coverage test cases. Due to their

shorter update cycle smartphone, app developers highly rely on manual testing or crowd-

sourcing based efforts to discover or reveal errors inside the apps. In this chapter, we

will show why these techniques cannot always be trusted as a measure of yielding high-

coverage test cases. We will also introduce A3E, our novel approach, and tool to conduct

automated exploration in Android apps. We will also show how A3E significantly achieves

a higher percentage of code coverage than manual means.

2.1 Motivation

Users are increasingly relying on smartphones for computational tasks [56, 55],

hence concerns such as app correctness, performance, and security become increasingly

pressing [64, 67, 32, 49, 65]. Dynamic analysis is an attractive approach for tackling such

concerns via profiling and monitoring, and has been used to study a wide range of prop-

11

erties, from energy usage [65, 46] to profiling [121] and security [49]. However, dynamic

analysis critically hinges on the availability of test cases that can ensure good coverage, i.e.,

drive program execution through a significant set of representative program states [50, 42].

To facilitate test case construction and exploration for smartphone apps, several

approaches have emerged. The Monkey tool [24] can send random event streams to an

app, but this limits exploration effectiveness. Frameworks such as Monkeyrunner [23],

Robotium [59] and Troyd [73] support scripting and sending events, but scripting takes

manual effort. Prior approaches for automated GUI exploration [20, 128, 93, 21, 99, 130]

have one or more limitations that stand in the way of understanding how popular apps

run in their natural environment, i.e., on actual phones: running apps in an emulator,

targeting small apps whose source code is available, incomplete model extraction, state

space explosion.

For illustration, consider the task of automatically exploring popular apps, such

as Amazon Mobile, Gas Buddy, YouTube, Shazam Encore, or CNN, whose source code is not

available. Our approach can carry out this task, as shown in Section 2.6, since we connect

to apps running naturally on the phone. However, existing approaches have multiple

difficulties due to the lack of source code or running the app on the emulator where the

full range of required sensor inputs (camera, GPS, microphone) or output devices (e.g.,

flashlight) is either unavailable [25] or would have to be simulated.

To tackle these challenges, we present Automatic Android App Explorer (A3E),

an approach and open-source tool1 for systematically exploring real-world, popular apps

Android apps running on actual phones. Developers can use our approach to complement

1http://spruce.cs.ucr.edu/A3E/

12

their existing test suites with automatically-generated test cases aimed at systematic explo-

ration. Since A3E does not require access to source code, users other than the developers

can execute substantial parts of the app automatically. A3E supports sensors and does

not require kernel- or framework-level instrumentation, so the typical overhead of instru-

mentation and device emulation can be avoided. Hence we believe that researchers and

practitioners can use A3E as a basis for dynamic analyses [42] (e.g., monitoring, profiling,

information flow tracking), testing, debugging, etc.

In this dissertation, our approach is focused on improving coverage at two gran-

ularity levels: activity (high-level) and method (low-level). Activities are the main parts of

Android apps—an activity roughly corresponds to a different screen or window in tra-

ditional GUI-based applications. Increasing activity coverage means, roughly, exploring

more screens. For method coverage we focus on covering app methods, as available in the

Dalvik bytecode (compiled from Java), that runs on the Dalvik VM on an actual phone;

an activity’s implementation usually consists of many methods, so by improving method

coverage we allow the functionality associated with each activity to be systematically ex-

plored and tested. In Section 2.2 we provide an overview of the Android platform and

apps, we define the graphs that help drive our approach, and provide definitions for our

coverage metrics.

To understand the level of exploration attained by Android app users in practice,

we performed a user study and measured coverage during regular interaction. For the

study, we enrolled 7 users that exercised 28 popular Android apps. We found that across

all apps and participants, on average, just 30.08% of the app screens and 6.46% of the

13

app methods were explored. The results and reasons for these low levels of coverage are

presented in Section 5.1.

In Section 2.4 we present our approach for automated exploration: given an app,

we construct systematic exploration traces that can then be replayed, analyzed and used

for a variety of purposes, e.g., to drive dynamic analysis or assemble test suites. Our

approach consists of two techniques, Targeted Exploration and Depth-First Exploration. Tar-

geted Exploration is a directed approach that first uses static bytecode analysis to extract a

Static Activity Transition Graph and then explore the graph systematically while the app

runs on a phone. Depth-First Exploration is a completely dynamic approach based on

automated exploration of activities and GUI elements in a depth-first manner.

In Section 2.5 we provide an overview of A3E’s implementation: hardware plat-

form, tools and measurement procedures. In Section 2.6 we provide an evaluation of our

approach on 25 apps (3 apps could not be explored because they were written mainly in

native code rather than bytecode). We show that our approach is effective: on average it

attains 64.11% and 59.39% activity coverage via Targeted and Depth-first Exploration, re-

spectively (a 2x increase compared to what the 7 users have attained); it also attains 29.53%

and 36.46% method coverage via Targeted and Depth-first Exploration, respectively (a 4.5x

increase compared to the 7 users). Our approach is also efficient: average figures are 74

seconds for Static Activity Transition Graph construction, 87 minutes for Targeted Explo-

ration and 104 minutes for Depth-first Exploration.

In summary, this work makes the following contributions:

• A qualitative and quantitative study of coverage attained in practice by 7 users for

28 popular Android apps.

14

• Two approaches, Targeted Exploration and Depth-first Exploration, for exploring

substantial apps running on Android smartphones.

• An evaluation of the effectiveness of Targeted and Depth-first Exploration on 25 pop-

ular Android apps.

2.2 Android Activities, Graphs and Metrics

We have chosen Android as the target platform for our A3E implementation as

it is currently the leading mobile platform in the US [41] and worldwide [70]. We now

describe the high-level structure of Android platform and apps; introduce two kinds of

Activity Graphs that define the high-level workflow within an app; and define coverage

based on these graphs.

2.2.1 Android App Structure

Android platform and apps. Android apps are typically written in Java (possibly with

some additional native code). The Java code is compiled to a .dex file, containing com-

pressed bytecode. The bytecode runs in the Dalvik virtual machine, which in turn runs

on top of a smartphone-specific version of the Linux kernel. Android apps are distributed

as .apk files, which bundle the .dex code with a “manifest” (app specification) file named

AndroidManifest.xml.

Android app workflow. A rich application framework facilitates Android app construc-

tion, as it provides a set of libraries, a high-level interface for interaction with low-level

devices, etc. More importantly, for our purposes, the application framework orchestrates

15

the workflow of an app, which makes it easy to construct apps but hard to reason about

control flow.

A typical Android app consists of separate screens named Activities. An activity

defines a set of tasks that can be grouped together in terms of their behavior and corre-

sponds to a window in a conventional desktop GUI. Developers implement activities by

extending the android.app.Activity class. As Android apps are GUI-centric, the programming

model is based on callbacks and differs from the traditional main()-based model. The An-

droid framework will invoke the callbacks in response to GUI events and developers can

control activity behavior throughout its life-cycle (create, paused, resumed, or destroy) by

filling-in the appropriate callbacks.

An activity acts as a container for typical GUI elements such as toasts (pop-ups),

text boxes, text view objects, spinners, list items, progress bars, check boxes. When inter-

acting with an app, users navigate (i.e., transition between) different activities using the

aforementioned GUI elements. Therefore in our approach activities, activity transitions

and activity coverage are fundamental, because activities are the main interfaces presented

to an end-user. For this reason we primarily focused on activity transition during a normal

application run, because its role is very significant in GUI testing.

Activities can serve different purposes. For example in a typical news app, an

activity home screen shows the list of current news; selecting a news headline will trigger

the transition to another activity that displays the full news item. Activities are usually

invoked from within the app, though some activities can be invoked from outside the app

if the host app allows it.

16

Activity Coverage: Activities and
Transition

Can be used to reach a particular point of the
application. i.e., regenerate bugs.

1. Main
Activity

2. Search
Activity

3. Search
List Activity

Clicking
Search Box

1 2 3

Typing in
Search Box

Selecting in
the List of
Items

Figure 2.1: An example activity transition scenario from the popular Android app, Ama-
zon Mobile.

Naturally, these activity transitions form a graph. In Figure 2.1 we illustrate how

activity transitions graphs emerge as a result of a user interaction in the popular Android

app, Amazon Mobile. On top we have the textual description of users’ actions, in the middle

we have an actual screen shot, and on the bottom we have the activities and their transi-

tions. Initially the app is in the Main Activity; when the user clicks the search box, the app

transitions to the Search Activity (note the different screen). The user searches for items by

typing in item names, and a textual list of items is presented. When the user presses “Go”,

the screen layout changes as the app transitions to the Search List Activity.

We now proceed to defining the activity transitions graphs that form the basis of

our work.

2.2.2 Static Activity Transition Graph

The Static Activity Transition Graph (SATG) is a graphGS = (VS , ES) where the set

of vertices, VS , represents the app activities, while the set of edges, ES , represents possible

activity transitions. We extract SATG’s automatically from apps using static analysis, as

17

CraigslistStartup

SearchActivity

StateActivity SearchSettingActivityLocationActivity CategoryActivity

PostSelectionActivity

ItemListActivity CityActivity

ItemActivity

VerificationActivity

PostComposeActivity

BrowserActivity

LoginActivity

MMAdViewWebOverlay MMAdViewController AdActivity

VideoPlayerActivity

MMAdViewOverlayActivity

PlusOneActivity

Figure 2.2: Static Activity Transition Graph extracted automatically by our approach from
the Craigslist Mobile app. Grey nodes and associated edges have been explored by users.
Solid-contour nodes (grey or white) and solid-line edges were traversed dynamically by
our exploration. Dashed-contour nodes and dashed-line edges remained unexplored. Ac-
tivity names are simplified for legibility.

described in Section 2.4.1.

Figure 2.2 shows the SATG for the popular shopping app, Craigslist Mobile; the

reader can ignore node and edge colors as well as line styles for now. Note that activities

can be called independently, i.e., without the need for entering into another activity. There-

fore, the SATG can be a disconnected graph. SATG’s are useful for program understanding

as they provide an at-a-glance view of the high-level app workflow.

2.2.3 Dynamic Activity Transition Graph

The Dynamic Activity Transition Graph (DATG) is a graph GD = (VD, ED) where

the set of vertices, VD, represents the app activities, while the set of edges, ED, represents

actual activity transitions, as observed at runtime.

A DATG captures the footprint of dynamic exploration or user interaction in an

18

App Type Category Size # Down-
Kinst. KBytes loads

Amazon Mobile Free Shopping 146 4,501 58,745
Angry Birds Free Games 167 23,560 1,586,884
Angry Birds Space P. Paid Games 179 25,256 14,962
Advanced Task Killer Free Productivity 9 75 428,808
Advanced Task Killer P. Paid Productivity 3 99 4,638
BBC News Free News&Mag. 77 890 14,477
CNN Free News&Mag. 204 5,402 33,788
Craigslist Mobile Free Shopping 56 648 61,771
Dictionary.com Free Books&Ref. 105 2,253 285,373
Dictionary.com Ad-free Paid Books&Ref. 49 1,972 2,775
Dolphin Browser Free Communication 248 4,170 1,040,437
ESPN ScoreCenter Free Sports 78 1,620 195,761
Facebook Free Social 475 3,779 6,499,521
Tiny Flashlight + LED Free Tools 47 1,320 1,612,517
Movies by Flixster Free Entertainment 202 4,115 398,239
Gas Buddy Free Travel&Local 125 1,622 421,422
IMDb Movies & TV Free Entertainment 242 3,899 129,759
Instant Heart Rate Free Health&Fit. 63 5,068 100,075
Instant Heart R.-Pro Paid Health&Fit. 63 5,068 6,969
Pandora internet radio Free Music&Audio 214 4,485 968,714
PicSay - Photo Editor Free Photography 49 1,315 96,404
PicSay Pro - Photo E. Paid Photography 80 955 18,455
Shazam Free Music&Audio 308 4,503 432,875
Shazam Encore Paid Music&Audio 308 4,321 18,617
WeatherBug Free Weather 187 4,284 213,688
WeatherBug Elite Paid Weather 190 4,031 40,145
YouTube Free Media&Video 253 3,582 1,262,070
ZEDGE Free Personalization 144 1,855 515,369

Table 2.1: Overview of our examined apps.

intuitive way and is a subgraph of the SATG. Figure 2.2 contains the DATG for the popular

shopping app, Craigslist Mobile: the DATG is the subgraph consisting of solid edges and

nodes. Paths in DATG’s illustrate sequences of actions required to reach a particular state

of an app, which is helpful for constructing test cases or reproducing bugs.

19

2.2.4 Coverage Metrics

We chose two coverage metrics as basis for measuring and assessing the effec-

tiveness of our approach: activity coverage and method coverage. We chose these metrics

because they strike a good balance between utility and collection overhead: first, activ-

ities and methods are central to app construction, so the numeric values of activity and

method coverage are intuitive and informative; second, the runtime performance over-

head associated with collecting these metrics is low enough so that user experience and

app performance are not affected. We now proceed to defining the metrics.

Activity coverage. We define activity coverage (AC) as the ratio of activities reached dur-

ing execution (AR) to the total number of activities defined in the app (AT), that is, AC =

AR
AT . Intuitively, the higher the AC for a certain run, the more screens have been explored,

and the more thorough and complete the app exploration has been. We retrieve the AR

dynamically, and the AT statically, as described in Section 2.5.2.

Method coverage. Activity coverage is intuitive, as it indicates what percentage of the

screens (that is, functionality at a high level) are reached. In addition, users might be

interested in the thoroughness of exploration measured at a lower, method-level. Hence

we use a finer-grained metric—what percentage of methods are reached—to quantify this

aspect. We define method coverage (MC) as the ratio of methods called during execution

(ME) to the total number of methods defined in the app (MT), that is, MC = ME
MT .

We found that all the examined apps, except Advanced Task Killer, ship with third-

party library code bundled in the app’s APK file; we exclude third-party methods from

20

ME and MT computations as these methods were not defined by app developers hence

we consider that including them would be misleading. We measured the ME using run-

time profiling information and the MT via static analysis, as described in Section 2.5.2.

2.3 User Study: Coverage During Regular Use

One possible approach to exploration is to rely on (or at least seed the exploration

with) actual runs, i.e., by observing how end-users interact with the app. Unfortunately,

this approach is not systematic: as our measurements indicate, during normal user inter-

action, coverage tends to be low, as users explore just a small set among the features and

functionality offered by the app. Therefore, relying on users might have limited utility. To

quantify the actual coverage attained by end-users, we have performed a user study, as

described next.

App dataset. As of March 2013, Google Play, the main Android app market, lists more

than 600,000 apps. We selected a set of 28 apps for our study; the apps and their charac-

teristics are presented in Table 6.1. The selection was based on several criteria. First, we

wanted a mix of free and paid apps, so for 7 apps we selected both the free and the paid

versions (column 2). Second, we wanted representation across different categories such as

productivity, games, entertainment, news; in total, our dataset has apps from 17 different

categories (column 3). Third, we wanted substantial apps; the sizes of our selected apps,

in thousands of bytecode instructions and KB, respectively, are shown in columns 4 and 5.

Finally, we wanted to investigate popular apps; in the last column we show the number of

21

downloads as listed on Google Play as of March 28, 2013; the number of downloads varied

from 2,775 to 6,499,521. We believe that this set covers a good range of popular, real-world

mobile apps.

Methodology. We enrolled 7 different users in our study; one high-coverage minded user

(called User 1) and six “regular” users (User 2–User 7). Each app was exercised by each

user for 5 minutes, which is far longer than the typical average app session (71.56 sec-

onds) [36]. To mirror actual app use “in the wild,” the six regular users were instructed to

interact with the app as they normally would; that is, regular users were not told that they

should try to achieve high coverage. However, User 1 was special because the user’s stated

goal was to achieve maximum coverage within the time limit. For each run, we collected

runtime information so we could replicate the experiment later. We then analyzed the 192

runs2 to quantify the levels of activity coverage (separate screens) and method coverage

attained in practice.

2.3.1 Activity Coverage

We now turn to discussing the levels of activity coverage that could be attained

based on end-user coverage (separate and combined across users) for each metric.

Cumulative coverage. As different users might explore different app features, we devel-

oped a technique to “merge” different executions of the same app. More specifically, given

two DATG’s G1 and G2 (as defined in Section 2.2.3), we construct the union, i.e., a graph

2We had access to 192 (28× 7− 4) instead of 196 runs; due to the unavailability of two user study subjects,
we could not collect app execution data for two users for the apps IMDb Movies & TV and BBC News.

22

G = G1 ∪ G2 that contains the union of G1 and G2’s nodes and edges. This technique

can potentially increase coverage if the different executions explore different parts of the

app. We use this graph union-based cumulative coverage as a basis for comparing manual

exploration with automated exploration.

Results. In Table 2.2, we present the activity count and a summary of the activity cov-

erage achieved manually by the 7 users. Column 2 presents the number of activities in

each app, including ads. Column 3 presents the number of activities, excluding ads (hence

these numbers indicate the maximum the number of activities users can explore without

clicking on ads). Column 4 shows the cumulative activity coverage, i.e., when combining

coverage via graph union. The percentages are calculated with respect to column 3, i.e.,

non-ad activities; we decided to exclude ads as they are not related to core app functional-

ity. The complete dataset (each app, each user) is available in Table 2.5.

We can see that in regular exploration cumulative coverage is quite low across

users: mean3 cumulative coverage is 30.08% across all apps. We now proceed to explain

why that is the case.

Why are so few activities explored? The “Missed activities” group of columns in Ta-

ble 2.2 shows, for each app, the number of activities that all users missed (first column in

the group), and the reason why these activities were missed (the remaining 6 columns in

the group). We were able to group the missing activities into the following categories:

3We use geometric mean for all mean computations due to large standard deviations.

23

App Activities Activity Missed activities Methods Method
coverage (%) coverage (%)

To
ta

l#

Ex
cl

ud
in

g
ad

s

U
se

rs
1–

7
(c

um
ul

at
iv

e)

#
M

is
se

d

Fe
at

ur
es

So
ci

al

A
cc

ou
nt

Pu
rc

ha
se

O
pt

io
ns

A
ds

U
se

rs
1–

7
(c

um
ul

at
iv

e)

Amazon Mobile 39 36 25.64 30 • • • 7,154 4.93
Angry Birds 8 1 100 6 • 6,176 10.98
Angry Birds Space Premium 1 1 100 0 7,402 0.68
Advanced Task Killer 7 6 70 3 • • 3,836 11.46
Advanced Task Killer Pro 6 6 57 2 • • 427 21.32
BBC News 10 10 52.34 3 • • 257 7.69
CNN 42 39 19.05 10 • • 7,725 4.97
Craigslist Mobile 17 15 42 35 • • • 2,095 10.76
Dictionary.com 22 18 61 11 • • • 2,784 13.83
Dictionary.com Ad-free 15 15 73.33 4 • 1,272 19.10
Dolphin Browser 56 56 12.5 49 • • 13,800 13.26
ESPN ScoreCenter 5 5 60 2 • 4,398 1.35
Facebook 107 107 5.60 95 • • 21,896 1.69
Tiny Flashlight + LED 6 4 66.67 4 • • 1,578 15.91
Movies by Flixster 68 67 23.3 48 • • • 7,490 5.32
Gas Buddy 38 33 30.2 29 • • • • 5,792 9.13
IMDb Movies & TV 39 37 25.64 30 • • 8,463 4.60
Instant Heart Rate 17 14 29.4 15 • • • 2,002 4.60
Instant Heart Rate - Pro 17 16 13.2 16 • • • 1,927 5.13
Pandora internet radio 32 30 12.5 30 • • • 7,620 3.21
PicSay - Photo Editor 10 10 10 9 • • 1,580 4.39
PicSay Pro - Photo Editor 10 10 33.33 9 • -a -
Shazam 38 37 15.8 36 • • • 9,884 9.43
Shazam Encore 38 37 22.3 33 • • • • 9,914 9.32
WeatherBug 29 24 29 24 • • • 7,948 8.15
WeatherBug Elite 28 28 14.30 24 • • 8,194 6.39
YouTube 18 18 27.77 17 • • 11,125 5.13
ZEDGE 34 34 38.9 18 • • 6287 9.27
Mean 30.08 6.46
aWe could not get method profiling data for PicSay Pro as the profiler could not analyze it.

Table 2.2: The results of our user study.

• Unexplored features. Specific features can be missed because users are not aware

of/interested in those features. For example, apps such as Dictionary.com or Tiny Flash-

light + LED, provide a “widget” feature, i.e., an app interface typically wider than

a desktop icon to provide easy to access functionality. Another example is “voice

search” functionality in the Dolphin Browser browser, which is only explored when

users search by voice.

24

• Social network integration. Many apps offer the option to share information on

social networking sites—third-party sites such as Facebook or Twitter, or the app’s

own network, e.g., Shazam. During normal app use, users do not necessarily feel

compelled to share information. These missed activity types appear in the “social”

column.

• Account. Many apps can function, e.g., watch videos on YouTube, without the user

necessarily logging-in. If an user logs into her account, she can see her profile and

have access to further activities, e.g., account settings or play-lists on YouTube. In

those cases where users did not have (or did not log into) an account, account-specific

activities were not exercised.

• Purchase. E-commerce apps such as Amazon Mobile offer functionality such as buy/sell

items. If test users do not conduct such operations, those activities will not be ex-

plored.

• Options. When users are content with the default settings of the app and do not

change settings, e.g., by accessing the “options” menu, options activities are not ex-

ercised.

• Ads. Many free apps contain ad-related activities. For example, in Angry Birds, all

the activities but one (play game) were ad-related. Therefore, in general, free apps

contain more activities than their paid counterparts—see Angry Birds, Advanced Task

Killer, Dictionary.com. When users do not click on ads, the ad-related activities are not

explored.

25

2.3.2 Method Coverage

Since activity coverage was on average about 30%, we would expect method cov-

erage to be low as well, as the methods associated with unexplored activities will not be

invoked. The last group of columns in Table 2.2 shows the total number of methods for

each app, as well as the percentages of methods covered by Users 1 and 2–7, respectively.

We can see that method coverage is quite low: 6.46% is the mean cumulative coverage

for users 1–7. The complete dataset (each app, each user) is available in Table 2.6. In

Section 2.6.1 we provide a detailed account of why method coverage is low.

2.4 Approach

We now present the two thrusts of our approach: Targeted Exploration, whose

main goal is to achieve fast activity exploration, and Depth-first Exploration, whose main

goal is to systematically explore app states. The two strategies are not complementary;

rather, we devised them to achieve specific goals. Depth-first Exploration tests the GUI

similarly to how an user would, i.e., clicking on objects or editing text boxes, going to

newer activities and then returning to the previous ones via the “back” button. Targeted

Exploration is designed to handle some special circumstances: it can list all the activities

which can be called from other apps or background services directly without user inter-

vention, and generates calls to invoke those activities directly. The Targeted strategy was

required because not all activities are invoked through user interaction. Both strategies

can start the exploration in the app entry points, inject user-like GUI actions and generate

callbacks to invoke certain activities.

26

Tagging sources and sinks Static analysis Resulting SATG
public class A extends Activity {
...
public void foo()
{

/⇤ Example 1 ⇤/
Intent intent1 = new Intent(A, B); //tagged as source
...
startActivity (intent1); //tagged as sink

/⇤ Example 2 ⇤/
Intent intent2=new Intent(); //tagged as source
intent . setClass (this , B.class);
...
startActivityForResult (intent2 , requestCode); //tagged as sink

/⇤ Example 3 ⇤/
Intent intent3 = new Intent(); //Intent object tagged as source
intent .setComponent(new ComponentName(‘‘package.name’’, ‘‘B’’));
...
startActivityIfNeeded (intent3 , requestCode); //tagged as sink

}}

A: intent=new Intent (A, B)

Track taint
through app

SC
an

D
ro

id

A: startActivity(intent)

A

B

Figure 3. Constructing SATG’s with taint analysis: sources and sinks are tagged automatically (left), taint is tracked by
SCanDroid (center); the resulting SATG (right).

Sta$c&Ac$vity&
Transi$on&Graph&

SCanDroid*

Sta$c&Taint&Analysis&App&Bytecode&

Automa/c*
explorer*

APK*

Replayable*
Trace*

App&running&on&phone&

Results&
De

bu
gg
in
g&
Br
id
ge
&

Targeted&
Explora$on&

Coverage**
summary*

Figure 5. Overview of Targeted Exploration in A3E.

laptop, orchestrates the exploration. The explorer first reads
the SATG constructed by SCanDroid (a static dataflow ana-
lyzer that we customized to track intent tainting, as described
in Section 4.1) from the app’s bytecode, and then starts the
app on the phone. Our SATG construction algorithm lists all
the exported activities, and entry point activities. Exported
activities are activities that can be independently called from
within or outside the app; they are marked as such by setting
the parameter exported=true in the manifest file. Note
that not all activities can be called from outside—some have
to be reached by the normal process, primarily for security
reasons and to maintain application workflow. For example,
when an activity can receive parameters from a previous ac-
tivity, the parameters may contain security information that

is limited to the application domain. Therefore, we cannot
just “jump” to any arbitrary activity.

Next, the explorer runs the Targeted Exploration algo-
rithm, which we will describe shortly. The explorer controls
the app execution and communicates with the phone via the
Android Debugging Bridge. The result of the exploration
consists of a replayable trace—a sequence of events that can
be replayed using our RERAN tool [7]—as well as coverage
information.

We now proceed to describing the algorithm behind tar-
geted exploration; parts of the algorithm run on the phone,
parts in the automatic explorer. In a nutshell, the SATG con-
tains edges A!B indicating legal activity transitions. As-
suming we are currently exploring activity A, we have two

Figure 2.3: Constructing SATG with taint analysis: sources and sinks are tagged automati-
cally (left), taint is tracked by SCanDroid (center); the resulting SATG (right)..

To illustrate the main principles behind these strategies, let us get back to the flow

of the Amazon Mobile app shown in Figure 2.1. In Targeted Exploration, the SATG is con-

structed via static analysis, and our exploration focuses on quickly traversing activities in

the order imposed by the SATG—in the Amazon Mobile case, we quickly and automatically

move from Main Activity to Search Activity to Search List Activity. In Depth-first Explo-

ration, we use the app entry points from the SATG (that is, nodes with no incoming edges)

to start the exploration. Then, in each activity, we retrieve the GUI elements and exer-

cise them systematically. In the Amazon Mobile case, we start with the Main Activity and

exercise all its contained GUI elements systematically (which will lead to eventually ex-

ploring Search Activity and from there, Search List Activity); this is more time-consuming,

but significantly increases method coverage.

We first discuss how the SATG is constructed (Section 2.4.1), then show how it

drives Targeted Exploration (Section 2.4.2); next we present Depth-first Exploration (Sec-

tion 2.4.3) and finally how our approach supports test case generation and debugging (Sec-

tion 2.4.4).

27

// class NewsListActivity extends TitleActivity
public void onItemClick (...)
{

Intent localIntent = new Intent(this, NewsStoryActivity.class);
...
startActivityWithoutAnimation(localIntent);
}

// class TitleActivity extends RootActivity
public startActivityWithoutAnimation(Intent paramIntent)
{ super.startActivityWithoutAnimation(paramIntent); }

// class RootActivity
protected void startActivityWithoutAnimation(Intent paramIntent)
{ startActivity (paramIntent);...}

Figure 2.4: Intent passing through superclasses in NPR News.

2.4.1 SATG Construction

Determining the correct order in which GUI elements of an Android app should

be explored is challenging. The main problem is that the control flow of Android apps

is non-standard: there is no main(), but rather apps are centered around callbacks invoked

by the Android framework in response to user actions (e.g., GUI events) or background

services (e.g, GPS location updates). This makes reasoning about control flow in the app

difficult. For example, if the current activity is A and a transition to activity B is possi-

ble as a result of user interaction, the methods associated with A will not directly invoke

B. Instead, the transition is based on a generic intent passing logic, which we will dis-

cuss shortly. We realized that intent passing and consequently SATG construction can be

achieved via data-flow analysis, more specifically taint tracking. Hence our key insight is

that SATG construction can be reduced to a taint-tracking problem.

Coming back to our prior example with the A and B activities, using an appro-

priately set-up taint analysis, we taint B; if the taint can reach an actual invocation request

28

from A, that means activity B is reachable from A and we add an A→B edge to the SATG.

The “glue” for activity transitions is realized by objects named Intents. Per the official

Android documentation [25], an Intent is an “abstract description of an operation to be

performed.” Intents can be used to start activities by passing the intent as an argument to

a startActivity -like method. Intents are also used to start services, or send broadcast mes-

sages to other apps. Hence tracking taint through intents is key for understanding activity

flow.

We now provide several examples to illustrate SATG construction using taint

analysis over the intent passing logic. In Figure 2.3, on the left we have valid Android

Java code for class A that implements an activity. Suppose the programmer wants to set up

a transition to another activity class, B. We show three examples of how this can be done

by initializing the intent initialized in a method of A, say A.foo(), and coupling it with the

information regarding the target activity B. In Example 1, we make the A→B connection by

passing the class names to the intent constructor. In Example 2, the connection is made by

setting the B’s class as the intent’s class. In Example 3, B is set to be called as a component

of the intent. Our analysis will tag these Intent object declarations (new Intent()) as sources.

Next, the taint analysis will look for sinks; in our example, the tagged sinks are startActivity ,

startActivityForResult , and startActivityIfNeeded . Of course, while here we show the Java code

for clarity, our analysis operates on bytecode. Taint tracking is shown in Figure 2.3 (center):

after tagging sinks and sources, the taint analysis will propagate dataflow facts through the

app code, and in the end check whether tainted sources reach sinks. For all (source, sink)

pairs for which taint has been detected, we add an edge in the SATG (Figure 2.3 (right)).

29

Sta$c&Ac$vity&
Transi$on&Graph&

SCanDroid*

Sta$c&Taint&Analysis&App&Bytecode&

Automa/c*
explorer*

APK*

Replayable*
Trace*

App&running&on&phone&

Results&

De
bu

gg
in
g&
Br
id
ge
&

Targeted&
Explora$on&

Coverage**
summary*

Figure 2.5: Overview of Targeted Exploration in A3E.

Hence the general principle for constructing the SATG is to identify Intent construction

points as sources, and activity start requests as sinks.

A more complicated, real-world example, of how our analysis tracks taint through

a class hierarchy is shown in Figure 2.4, a code snippet extracted from the NPR News

app. An Intent is initialized in NewsListActivity.onItemClick (...) , tagged as a source, and passed

through the superclass TitleActivity to its superclass RootActivity. The startActivity (on the last

line) is tagged as a sink. When the analysis concludes, based on the detected taint, we add

an edge from NewsListActivity to NewsStoryActivity in the SATG.

2.4.2 Targeted Exploration

We now proceed to describing how we perform Targeted Exploration using the

SATG as input. Figure 2.5 provides an overview. The automatic explorer, running on a

desktop or laptop, orchestrates the exploration. The explorer first reads the SATG con-

structed by SCanDroid (a static dataflow analyzer that we customized to track intent taint-

30

Algorithm 1 Targeted Exploration
Input: SATG GS = (VS , ES)

1: procedure TARGETEDEXPLORATION(GS)
2: for all nodes Ai in VS that are entry points do
3: Switch to activity Ai

4: currentActivity ← Ai

5: for all edges Ai→ Aj in ES do
6: if Aj is exportable then
7: Switch to activity Aj

8: currentActivity ← Aj

9: G′S ← subgraph of GS from starting node Aj

10: TARGETEDEXPLORATION(G′S)
11: end if
12: end for
13: guiElementSet← EXTRACTGUIELEMENTS(currentActivity)
14: for each guiElement in guiElementSet do
15: exercise guiElement
16: if there is an activity transition to not-yet-explored activity An then
17: G′S ← subgraph of GS from starting node An

18: currentActivity ← An

19: TARGETEDEXPLORATION(G′S)
20: end if
21: end for
22: end for
23: end procedure

ing, as described in Section 2.4.1) from the app’s bytecode, and then starts the app on the

phone. Our SATG construction algorithm lists all the exported activities, and entry point

activities. Exported activities are activities that can be independently called from within

or outside the app; they are marked as such by setting the parameter exported=true in

the manifest file. Note that not all activities can be called from outside—some have to be

reached by the normal process, primarily for security reasons and to maintain application

workflow. For example, when an activity can receive parameters from a previous activity,

the parameters may contain security information that is limited to the application domain.

Therefore, we cannot just “jump” to any arbitrary activity.

31

Next, the explorer runs the Targeted Exploration algorithm, which we will de-

scribe shortly. The explorer controls the app execution and communicates with the phone

via the Android Debugging Bridge. The result of the exploration consists of a replayable

trace—a sequence of events that can be replayed using our RERAN tool [79]—as well as

coverage information.

We now proceed to describing the algorithm behind targeted exploration; parts

of the algorithm run on the phone, parts in the automatic explorer. In a nutshell, the

SATG contains edges A→B indicating legal activity transitions. Assuming we are currently

exploring activity A, we have two cases for B: (1) B is “exportable”,4 that is, reachable from

A but not a result of local GUI interaction in A; or (2) B is reached from A as a result of

local GUI interaction in A. In case (1) we switch to B directly, and in case (2) we switch to

B when exploring A’s GUI elements. In either case, exploration continues recursively from

B.

Algorithm 1 provides a precise description of the Targeted Exploration approach.

The algorithm starts with the SATG as input. First, we extract the app’s entry point activi-

ties from the SATG (line 2) and start exploration at one of these entry points Ai (lines 3–4).

We look for all the exportable activities Aj that have an incoming edge from Ai (lines 5–6).

We then switch to each of these exportable activities and invoke the algorithm recursively

from Aj (lines 7–10). Activities An that are not exportable but reachable from Ai will be

switched to automatically as a result of local GUI exploration (lines 13–16) and then we

invoke the algorithm recursively from An (lines 17–19).

The advantage of Targeted Exploration is that it can achieve activity coverage

4The list of exportable activities is available in the AndroidManifest.xml file included with the app.

32

Automa'c)
explorer)

App#Bytecode#

APK)

App#running#
on#phone#

De
bu

gg
in
g#
Br
id
ge
#

Depth3first#
Explora:on#

Replayable)
Trace)

Results#

Coverage))
summary)

Figure 2.6: Overview of Depth-first Exploration in A3E.

fast—we can switch to exportable activities without firing GUI events.

2.4.3 Depth-First Exploration

We now proceed to presenting Depth-First Exploration, an approach that takes

more time but can achieve higher method coverage. As it is a dynamic approach, Depth-

First Exploration can be performed even when the tester does not have activity transition

information (i.e., the SATG) beforehand. As the name suggests, this technique employs

depth-first search to mimic how an actual user would interact with the app.

33

Algorithm 2 Depth-First Exploration
Input: Entry point activities |A|

1: procedure DFE(|A|)
2: for all nodes Ai in |A| do
3: Switch to activity Ai

4: DEPTHFIRSTEXPLORATION(Ai)
5: end for
6: end procedure
7:
8: procedure DEPTHFIRSTEXPLORATION(Ai)
9: guiElementSet← EXTRACTGUIELEMENTS(Ai)

10: for each guiElement in guiElementSet do
11: excercise guiElement
12: if there is an activity transition to not-yet-explored activity An then
13: DEPTHFIRSTEXPLORATION(An)
14: Switch back to activity Ai

15: end if
16: end for
17: end procedure

Figure 2.5 provides an overview. In this case, no SATG is used, but the auto-

matic explorer runs a different, Depth-first Exploration algorithm, which we will describe

shortly. The rest of the operations are identical with Targeted Exploration, that is, the

explorer orchestrates the exploration and the results are a replayable trace and coverage

information.

Algorithm 2 provides the precise description of the Depth-first Exploration ap-

proach. Similar to Targeted Exploration, we first extract the entry point activities from the

app’s APK; these activities will act as starting points for the exploration. We then choose

a starting point Ai and start depth-first exploration from that point (lines 1–5). For each

activity Ai, we extract all its GUI elements (line 9). We then systematically exercise the

GUI elements by firing their corresponding event handlers (lines 10–11). Whenever we

detect a transition to a new activity An, we apply the same algorithm recursively on An

34

(line 13). This process continues in a depth-first manner until we do not find any transition

to a newer activity after exercising all the GUI elements in that screen. We then go back to

the previous activity and continue exploring its view elements (line 14).

2.4.4 Replayable Test Cases and Debugging

During exploration, A3E automatically records the event stream using RERAN,

a low-overhead record-and-replay tool [79], so that the exploration, or parts thereof, can

be replayed. This feature helps users construct test cases that can later be executed via

RERAN’s replay facility. In addition, the integration with RERAN facilitates debugging—

if the app crashes during exploration, we have the exact event stream that has led to the

crash; assuming the crash is deterministic, we can reproduce it by replaying the event

stream.

2.5 Implementation

We now proceed to presenting the experimental setup, implementation details,

and measurement procedures used for constructing and evaluating A3E.

2.5.1 Setup and Tools

The smartphones used for experiments were Motorola Droid Bionic running An-

droid version 2.3.4, Linux kernel version 2.6.35. The phones have Dual Core ARM Cortex-

A9 CPUs running at 1GHz. We controlled the experiments from a MacBook Pro laptop

(2.66 GHz dual-core Intel Core i7 with 4GB RAM), running Mac OS X 10.8.3.

35

For the user study, we used RERAN, a tool we developed previously [79] to record

user interaction so we could replay and analyze it later.

SCanDroid is a tool for static analysis on Dalvik bytecode developed by other

researchers and us [110]. For this work we extended SCanDroid in two directions: (1) to

tag intents and activity life-cycle methods as sinks and sources so we can construct the

SATG, and (2) to list all the app-defined methods—this information was used for method

coverage analysis.

2.5.2 Measuring Coverage

Activity coverage. The automatic explorer keeps track ofAR, the number of successfully

explored activities, via the logcat utility provided by Android Debug Bridge (adb) tool

from the Android SDK.

The total number of activities, AT , was obtained offline: we used the open source

apktool to extract the app’s manifest file from the APK and parsed the manifest to list all

the activities. From the AT and AR we exclude “outside” activities, as those are not part

of the app’s code base. Examples of outside activities are ad-related activities and external

system activities (browser, music player, camera, etc.)

Method coverage. Android OS provides an Application Manager (am) utility that can

create method profiles on-the-fly, while the app is running. To measure ME, the number

of methods called during execution, we extracted the method entries from the profiling

data reported by am. We measured MT , the total number of methods in an app, via static

analysis, by tailoring SCanDroid to find and list all the virtual and declared method calls

36

within the app. Note that third-party code is not included in ME and MT computation

(Section 2.3.2).

2.5.3 Automatic Explorer

GUI element extraction and exercising is required for both Targeted and Depth-

first Exploration. To explore GUI elements, A3E “rips” the app, i.e., extracts its GUI ele-

ments dynamically using the Troyd tool [73] (which in turn is based on Robotium [59]).

Robotium can extract and fire event handlers for a rich set of GUI elements. This set in-

cludes lists, buttons, check boxes, toggle buttons, image views, text views, image buttons,

spinners, etc. Robotium also provides functionality for editing text boxes, clearing text

fields, clicking on text, clicking on screen positions, clicking on hardware home menu, and

back button. Troyd allows developers to write Ruby scripts that can drive the app us-

ing the aforementioned functionality offered by Robotium (though Troyd does not require

access to the app’s source code).

A3E is built on top of Troyd. We modified Troyd to allow automatic navigation

through the app, as follows. Each Android screen consists of GUI elements linked via event

handlers. Simply invoking all the possible event handlers and firing the events associated

with them would be incorrect—the app has to be in a state where it can accept the events,

which we detected by interacting with the live app. Hence A3E relies on live extraction

of the GUI elements that are actually present on the screen (we call a collection of such

elements a view). We then systematically map the related event handlers, and call them

mimicking a real user. This run-time knowledge of views was essential for our automated

explorer to work. Once we get the information of the views, we can systematically fire the

37

correct actions.

As described in Section 2.3.1, our test users tended to skip features such as op-

tions, ads, settings, or sharing via social networks. To cover such activities and functional-

ity, A3E employs several strategies. A3E automatically detects activities related to special

responsibility, such as log in screen, social networking, etc. We created sets of credential

information (e.g., username/password pairs) that A3E then sends to the app just like a

user would do to get past the screen, and continues the exploration from there.

As we implemented our approach on top of the Robotium testing framework, we

had to compensate for its limitations. One such limitation was Robotium’s inability to gen-

erate and send gestures, which would leave many kinds of views incompletely exercised

when using Robotium alone. To address this limitation we wrote a library of common

simple gestures (horizontal and vertical swipes, straight line swipes, scrolling). We leave

complex multi-touch gestures such as pinching and zooming to future work; as explained

in our prior work [79], synthesizing complex, multi-touch gestures is non-trivial.

In addition to the gesture library and log-on functionality, A3E also supports mi-

crophone, GPS, compass, and accelerometer events. However, certain apps’ functionality

required complex inputs, e.g., processing a user-selected file. Feeding such inputs could

be achieved via OS-level record and replay, a task we leave to future work.

With this library of input events, and GUI-element invocation strategies at hand,

A3E uses the appropriate exploration algorithm depending on the kind of exploration we

perform, as described next.

38

2.5.4 Targeted Exploration

Section 2.4.1 described the intent passing logic among internal app activities, and

Targeted Exploration uses the pre-constructed SATG to explore these intra-app activity

paths. However, the Android platform also allows activities to be called from external apps

through implicit messaging by intents, as follows: apps can define intent “filters” to notify

the OS that certain app activities accept intents and can be started when the external app

sends such an intent. Therefore, when systematically exercising an app’s GUI elements,

there is a chance that these externally-callable activities are missed if they are not reachable

by internal activities. In addition to intent filters, developers can also identify activities as

“exported,” by defining android:exported="true" in the manifest file. This will allow

activities to be called from outside the app. When implementing Targeted Exploration we

also invoked these externally-callable activities so we do not miss them when they are not

reachable from internal activities.

2.5.5 Depth-First Exploration

With the infrastructure for dynamic GUI element extraction and event firing at

hand, we implemented Depth-first Exploration using a standard depth-first strategy: each

time we find a transition to a new activity, we switch to that activity and thus we enter

deeper levels of the activity hierarchy. This process continues until we cannot detect any

more transition from the current activity. At this point we recursively go back to the last

activity and start exploring from there.

39

2.6 Evaluation

We now turn to presenting experimental results. From the 28 examined apps

presented in Section 5.1, we were able to explore 25; 3 apps could not be explored (Angry

Birds, Angry Birds Space premium, Facebook) because they are written primarily in native

code, rather than bytecode, as explained in Section 2.6.2.

We first evaluate our automated exploration techniques on these apps in terms of

effectiveness and efficiency (Section 2.6.1), then discuss app characteristics that make them

more or less amenable to our techniques (Section 2.6.2).

2.6.1 Effectiveness and Efficiency

Activity coverage. We present the activity coverage results in Table 2.3. Column 2 shows

the number of nodes in the SATG, that is, the number of activities in each app, excluding

ads. The grouped columns 3–5 show the activity coverage in percents, in three scenar-

ios: the cumulative coverage for users 1–7, coverage attained via Targeted Exploration,

and coverage attained via Depth-first Exploration. We make several observations. First,

systematic exploration increases activity coverage by a factor of 2x, from 30.08% attained

by 7 users cumulatively to 64.11% and 59.39% attained by Targeted and Depth-first Ex-

ploration, respectively. Hence our approach is effective at systematically exploring activities.

Second, SATG construction pays off; because it relies on statically-discovered transitions,

Targeted Exploration will be able to fire transitions in cases where Depth-first Exploration

cannot, and overcome a limitation of dynamic tools that start the exploration inside the

app.

40

App Acti- Activity coverage (%) Methods Method coverage (%)

vities U
se

rs
1–

7
(c

um
ul

at
iv

e)

Targeted Depth-first U
se

rs
1–

7
(c

um
ul

at
iv

e)

Targeted Depth-first
Amazon Mobile 36 25.64 63.90 58.30 7,154 4.93 28.1 45.10
Angry Birds - 100 - - - 10.98 - -
Angry Birds Space Premium - 100 - - - 0.68 - -
Advanced Task Killer 6 70 83.33 83.33 420 11.46 59.76 62.86
Advanced Task Kill. P. 6 57 83.30 83.30 257 21.32 39.30 73.20
BBC News 10 52.34 80.00 80.00 3,836 7.69 31.80 37.40
CNN 39 19.05 69.23 61.54 9,269 4.97 29.88 29.97
Craigslist Mobile 15 42 73.30 66.70 2,095 10.76 30.50 41.10
Dictionary.com 18 61 83.33 72.22 3,881 13.83 44.29 44.62
Dictionary.com Ad Free 15 73.33 100 80 1,846 19.10 47.72 49.13
Dolphin Browser 56 12.50 42.86 37.50 17,007 13.26 42.92 43.37
ESPN ScoreCenter 5 60 80.00 80.00 4,398 1.35 16.10 31.20
Facebook 107 5.60 - - - 1.69 - -
Tiny Flashlight + LED 4 66.67 75 75 1,837 15.91 28.03 47.63
Movies by Flixster 67 23.30 77.60 61.20 10,151 5.32 29.50 31.80
Gas Buddy 33 30.20 72.70 63.60 5,792 9.13 31.40 47.80
IMDb Movies & TV 37 25.64 54.10 62.10 11,950 4.60 29.80 32.40
Instant Heart Rate 14 29.40 42.86 35.71 2,407 4.60 20.40 23.18
Instant Heart Rate - Pro 16 13.20 37.50 37.50 2,514 5.13 26.05 26.21
Pandora internet radio 30 12.50 80.0 76.70 7,620 3.21 21.10 31.70
PicSay - Photo Editor 10 10 50 40 1,458 4.39 25.58 27.43
PicSay Pro - Photo Editor 10 33.33 50 40 - - - -
Shazam 37 15.80 45.95 45.95 12,461 9.43 34.74 35.67
Shazam Encore 37 22.30 45.90 51.40 9,914 9.32 29.10 36.30
WeatherBug free 24 29 54.17 45.83 7,744 8.15 40.05 40.33
WeatherBug Elite 24 14.30 91.70 87.50 7,948 6.39 17.20 25.70
YouTube 18 27.77 55.56 50 14,550 5.13 26.95 26.99
ZEDGE 34 38.90 67.60 67.60 6,287 9.27 16.60 24

Mean 30.08 64.11 59.39 6.46 29.53 36.46

Table 2.3: Evaluation results: activity and method coverage.

Method coverage. The method coverage results are shown in the last columns of Ta-

ble 2.3. The methods column shows the number of methods defined in the app, excluding

third-party code. The next columns show activity coverage in percents, in three scenar-

ios: the cumulative coverage for users 1–7, coverage attained via Targeted Exploration,

and coverage attained via Depth-first Exploration. We make several observations. First,

systematic exploration increases method coverage by about 4.5x, from 6.46% attained by 7

users cumulatively to 29.53% and 36.46% attained by Targeted and Depth-first Exploration,

41

respectively. Hence our approach is effective at systematically exploring methods. Second, the

lengthier, systematic exercising of each activity element performed by Depth-first Explo-

ration translates to better exploration of methods associated directly (or transitively) with

that activity.

App Time
SATG Targeted Depth-first

(seconds) (minutes) (minutes)
Amazon Mobile 222 123 131
Advanced Task Killer 39 41 47
Advanced Task Kill. P. 24 27 58
BBC News 68 18 52
CNN 14 158 161
Craigslist Mobile 43 83 91
Dictionary.com 66 113 131
Dictionary.com Ad Free 45 153 156
Dolphin Browser 595 171 179
ESPN ScoreCenter 42 22 44
Tiny Flashlight + LED 52 33 39
Movies by Flixster 53 228 219
Gas Buddy 157 109 124
IMDb Movies & TV 107 135 126
Instant Heart Rate 56 47 51
Instant Heart Rate - Pro 50 48 49
Pandora internet radio 92 89 111
PicSay - Photo Editor 36 119 121
PicSay Pro - Photo Ed. 40 112 129
Shazam 64 236 239
Shazam Encore 248 188 230
WeatherBug free 120 69 107
WeatherBug Elite 119 115 124
YouTube 200 131 135
ZEDGE 124 97 114
Mean 74 87 104

Table 2.4: Evaluation results: time taken by SATG construction and exploration. Note the
different units across columns (seconds vs. minutes).

42

Exploration time. In Table 2.4 we show the time required for exploration. Column 2

contains the static analysis time, which is required for SATG construction; this is quite effi-

cient, at most 10 minutes but typically 4 minutes or less. We measured exploration time by

letting both Targeted and Depth-first explorations run to completion, that is until we have

explored all entry point activities and activities we could transitively reach from them.

We imposed no timeout. Columns 3 and 4 show the dynamic exploration time, 18–236

minutes for Targeted Exploration and 39–239 minutes for Depth-first Exploration. Hence

our approach performs systematic exploration efficiently. As expected, Targeted Exploration is

faster, even after adding the SATG construction time, because it can fire activity transitions

directly (there were two exceptions to this, explained shortly). We believe that these times

are acceptable and well worth it, considering the provided benefits: a replayable trace that

can be used as basis for dynamic analysis or constructing test cases.

Targeted vs. Depth-first Exploration. While the two exploration techniques implemented

in A3E have similar goals (automated exploration) they have several differences.

Targeted Exploration requires a preliminary static data-flow analysis stage to con-

struct the SATG. However, once the SATG is constructed, targeted exploration is fast, es-

pecially if a high number of activities are exportable, hence we can quickly achieve high

activity coverage by directly switching to activities.

Depth-first Exploration does not require a SATG, but the exploration phase is

slower—systematically exercising all GUI elements will prolong exploration. However,

this prolonged exploration could be a worthy trade-off since Depth-first Exploration achieves

higher method coverage.

43

We now present some examples that illustrate tradeoffs and shed light on some

counterintuitive results. For Advanced Task Killer and ESPN ScoreCenter we attain similar

activity coverage but for ESPN ScoreCenter method coverage is significantly lower. The

reason for this is app structure: ESPN ScoreCenter employs complex activities, i.e., differ-

ent layouts within an activity with more features to use. The Targeted algorithm quickly

switches the activities without exploring layout elements in depth, while Depth-first takes

longer to exercise the layout elements thoroughly. For the same app structure reason, Tar-

geted exploration finishes significantly faster for Advanced Task Killer Pro and BBC News.

Most apps show better activity coverage for Targeted than Depth-first Explo-

ration. This is primarily because they have multiple entry points, or they have activities

with intent filters to allow functionality to be invoked from outside the app—starting the

exploration from within the app for intent-filter based activities which are not invoked

from within the app will fail to discover those activities. For instance, Amazon Mobile has a

bar-code search activity which was missed during the Depth-first search, but the Targeted

Exploration succeeded to call the activity with the information from the SATG. An excep-

tion from this were IMDb Movies & TV and Shazam Encore: both apps have lower activity

coverage in Targeted Exploration than Depth-first. After investigation we found that some

activities could be invoked by Targeted Exploration using intent filters with parameters,

but Targeted Exploration failed to exercise the activities; this was due to specific input pa-

rameters what Targeted exploration failed to produce. The Depth-first search exercised

the app as a user would and landed on those particular pages from the right context with

correct input parameters, achieving higher coverage. For example the “play trailer” activ-

44

ity in IMDb Movies & TV was not run during Targeted Exploration as it does not have the

required parameter, in this case the video file name or location.

The exploration times depicted in Table 2.4 also have some interesting data points.

The exploration time largely depends on the size and GUI complexity of the app. Nor-

mally, Depth-first Exploration is slower than Targeted because of the switch back (line 14

in Algorithm 2). Two apps, though, Movies by Flixster and IMDb Movies & TV do not conform

to this. Upon investigation, we found that activities in these apps form (almost) complete

graphs, with many activities being callable from both inside the app or outside the app

(but when called from outside, parameters need to be set correctly). Depth-first reached

the activities naturally with the correct parameters, whereas Targeted had to back off re-

peatedly for some activities when attempting to invoke those activities before parameters

were properly constructed.

2.6.2 Automatic Exploration Catalysts and Inhibitors

We now reflect on our experience with the 28 apps and discuss app features that

facilitate or hinder exploration via A3E. The reasons that prevent us from achieving 100%

coverage are both fundamental and technical. Fundamental reasons include the presence

of activities that cannot be automatically explored due to their nature, and for a good rea-

son. For example, in Amazon Mobile, purchase-related activities could not be explored be-

cause server-side validation would be required: to go to the “purchased” state, we would

first need to get past the checkout screen where credentials and credit card are verified.

Complex gestures and inputs. Our techniques can get good traction for apps built

around GUI elements provided by the Android SDK, such as text boxes, buttons, images,

45

text views, list views, check boxes, toggle buttons, spinners, etc. However, some apps rely

on complex, app-specific gestures. For example, in the PicSay-Photo Editor app, most of the

view elements are custom-designed objects, e.g., artwork and images that are manipulated

via specific gestures. Our gesture and sensor libraries (Section 2.5.3) partially address this

limitation.

Task switching. Another inhibitor is task switching: if our app under test loses

focus, and another app gains focus, we cannot control this second app. For example, if an

app invokes the default file browser to a specific file location, the A3E explorer will stop

tracking, because the file browser runs in a different process, and will resume tracking

when the app under test regains focus. This is for a good reason, as part of the Android

app isolation policy, but we cannot track GUI events in other apps.

Service-providing apps. Some apps can act as service providers by implementing

services that run in the background. For example, WeatherBug runs in the background

reporting the weather; Advanced Task Killer runs in the background and kills apps which

were not accessed for a specific amount of time. Hence for such apps we cannot explore

methods that implement background service-providing functionality because they are not

reachable from the GUI.

Native code. Finally, our static analysis works on Dalvik VM bytecode. If the app

uses native code instead of Dalvik bytecode to handle GUI elements, we cannot apply our

techniques. For example, the two Angry Birds apps use native Open GL code to manage

drawing on the canvas, hence our GUI element extraction does not have access to the

46

_HomeWwActivity

_PersonalisationActivity

1

_ArticleActivity

1

_SettingsActivity

1

41 8

bbc_mobile_news_ReportActivity

10

1

_VideoActivity

2

3

_AudioControlActivity

4

4

5

2

3

2

3

9

2 3 4 5

_RemoteInfoViewActivity

6

2

12

7

8

11

5 6

7

Figure 2.7: Dynamic Activity Transition Graph for the BBC News app, constructed based
on runs from 5 different users: colors represent users and labels on the edges represent the
sequence in which the edges are explored.

native GUI information. We could not explore the Facebook app for the same reason.

2.7 Conclusions

We have presented A3E, an approach and tool that allow Android apps to be ex-

plored systematically. We performed a user study that has revealed that users tend to ex-

plore just a small set of features when interacting with Android apps. We have introduced

Targeted Exploration, a novel technique that leverages static taint analysis to facilitate fast

47

App Activities Activity coverage (%)
total # excluding ads User 1 User 2 User 3 User 4 User 5 User 6 User 7

Amazon Mobile 39 36 18 13 15.4 10.26 13 25.64 13
Angry Birds 8 1 100 100 100 100 100 100 100
Angry Birds Space Premium 1 1 100 100 100 100 100 100 100
BBC News 10 10 70 20 30 - - 70 20
Advanced Task Killer 7 6 28.6 43 43 28.6 28.6 28.6 57
Advanced Task Killer Pro 6 6 50 33.33 50 16.66 16.66 16.66 33.33
CNN 42 39 19.05 9.5 14.29 12 12 19 14.29
Craigslist Mobile 17 15 23.5 35.3 41.2 23.5 29.4 29.4 35.3
Dictionary.com 22 18 41 41 59 32 41 59 41
Dictionary.com Ad-free 15 15 33.33 60 53.33 20 20 73.33 33.33
Dolphin Browser 56 56 12.5 8.9 1.78 1.78 1.78 1.78 1.78
ESPN ScoreCenter 5 5 60 40 20 20 20 20 20
Facebook 107 107 5.60 2.8 4.67 4.67 6.54 3.73 3.73
Tiny Flashlight + LED 6 4 50 50 50 50 50 50 66.67
Movies by Flixster 68 67 8.8 14.7 5.9 13.2 8.8 20.6 7.3
Gas Buddy 38 33 29 29 23.6 21 29 26 15.8
IMDb Movies & TV 39 37 25.64 15.4 15.4 - - 20.5 12.8
Instant Heart Rate 17 14 23.5 29.4 29.4 23.5 23.5 23.5 23.5
Instant Heart Rate - Pro 17 16 11.8 17.65 11.8 11.8 11.8 11.8 11.8
Pandora internet radio 32 30 9.4 9.4 12.5 12.5 12.5 9.4 12.5
PicSay - Photo Editor 10 10 10 10 10 10 10 10 10
PicSay Pro - Photo Editor 10 10 10 30 10 10 10 10 10
Shazam 38 37 5.3 15.8 5.3 5.3 5.3 5.3 8
Shazam Encore 38 37 15.8 21 21 8 8 10.5 10.5
WeatherBug 29 24 27.6 24.13 20.7 20.7 20.7 20.7 27.6
WeatherBug Elite 28 28 10.71 14.3 14.28 7.14 7.14 3.57 3.57
YouTube 18 18 11.11 11.11 11.11 11.11 11.11 11.11 27.77
ZEDGE 34 34 35.29 29.41 32.35 29.41 20.58 11.76 23.52

Table 2.5: Activity count and coverage. User 1 has explicitly tried to achieve high coverage,
while 2–7 are “regular” users.

yet effective exploration of Android app activities. We have also introduced Depth-first

Exploration, a technique that does not use static analysis, but instead performs a thor-

ough GUI exploration which results in increased method coverage. Our approach has the

advantage of permitting exploration without requiring the app source code. Through ex-

periments on 25 popular Android apps, we have demonstrated that our techniques can

achieve substantial coverage increases. Our approach can serve as basis for a variety of

dynamic analysis and testing tasks.

48

Acknowledgments

We thank Lorenzo Gomez, Gavin Huang, Shashank Reddy Kothapalli, and Xue-

tao Wei for their assistance with the user study; Steve Suh and Jinseong Jeon for their

valuable suggestions on the implementation; and the anonymous referees for their helpful

comments. This research was supported in part by NSF grant CNS-1064646.

49

App Method External App specific Method coverage (%)
count packages method count

User 1 User 2 User 3 User 4 User 5 User 6 User 7
Amazon Mobile 13151 5 7154 4.21 1.36 3.93 1.64 4.93 3.99 2.92
Angry Birds 12245 4 6176 10.81 10.27 10.37 10.98 10.94 10.43 10.17
Angry Birds Space Premium 12953 4 7402 0.68 0.33 0.37 0.63 0.42 0.31 0.19
BBC News 4918 1 427 11.46 6.52 4.92 9.37 10.30 11.24 11.00
Advanced Task Killer 525 0 257 19.26 17.51 16.73 14.01 16.34 18.29 16.54
Advanced Task Killer Pro 257 4 3836 3.96 3.18 2.77 - - 3.47 7.69
CNN 13029 11 7725 4.86 4.72 4.12 4.44 1.89 4.44 4.44
Craigslist Mobile 2765 4 2095 6.88 5.78 8.78 3.10 9.27 10.07 10.69
Dictionary.com 4664 6 2784 0.97 0.97 5.96 10.86 12.31 4.64 11.02
Dictionary.com Ad-free 2199 4 1272 18.64 17.55 15.33 15.65 17.37 18.08 15.80
Dolphin Browser 23701 6 13800 13.26 9.98 10.06 7.54 3.95 4.17 11.15
ESPN ScoreCenter 5511 5 4398 0.55 0.45 0.23 0.28 0.28 1.04 1.20
Facebook 34883 12 21896 1.67 1.61 1.64 1.48 1.59 1.56 1.53
Tiny Flashlight + LED 2121 3 1578 15.59 15.85 4.81 13.68 0.70 15.85 15.05
Movies by Flixster 12476 8 7490 3.53 3.30 4.60 4.66 2.86 3.41 4.68
Gas Buddy 7841 4 5792 7.38 5.51 3.82 7.84 5.52 3.53 5.31
IMDb Movies & TV 19781 9 8463 4.60 1.78 0.98 - - 0.89 0.47
Instant Heart Rate 3044 5 2002 2.69 8.44 1.35 3.30 2.30 3.60 4.90
Instant Heart Rate - Pro 3044 5 1927 6.49 7.79 6.43 2.07 1.14 6.54 7.84
Pandora internet radio 13704 7 7620 2.88 2.01 1.44 2.07 3.24 2.75 2.18
PicSay - Photo Editor 1580 0 1580 2.97 3.04 2.66 2.59 4.37 1.39 2.97
Shazam 22071 13 9884 9.40 7.61 5.23 8.46 7.93 8.89 6.25
Shazam Encore 22071 9 9914 6.92 6.52 6.72 6.66 6.99 7.03 9.24
WeatherBug 9581 10 7948 3.70 8.02 3.11 3.82 4.52 3.93 5.75
WeatherBug Elite 9688 8 8194 5.06 4.24 6.36 3.41 6.12 5.89 3.83
YouTube 19902 10 11125 4.85 5.01 2.04 3.08 3.86 2.83 5.12
ZEDGE 8308 11 6287 6.96 3.00 4.82 6.44 7.32 8.44 5.75

Table 2.6: Method count and coverage.

50

Chapter 3

Android Application Slicing

In this chapter, we will introduce program slicing for Android platform. While

the concept of program slicing is not new in the literature concerning program analysis,

to the best of our knowledge there are no exclusive slicing methodologies have been im-

plemented in event-driven smartphone platforms. Our approach to fault localization de-

mands to identify error sources in a wide area of possible input scenarios. For example,

apps can get user input from simple to complex gestures, or sensor feedbacks, or even

from outside applications through inter-process messaging. To make things more com-

plicated, the execution of an app is mostly determined by the non-deterministic nature of

the callbacks. For this reason, fault localization approaches need to address these issues.

Despite being an efficient tool for locating and identifying sets of failure-inducing inputs,

traditional program slicing techniques will not work effectively in modern smartphone

platforms. We will present our novel approach to program slicing in Android which is

designed to deal with the above-mentioned smartphone specific challenges.

51

The Problem. The factors that have made the mobile platform popular and mobile OSes

ubiquitous are also responsible for a host of problems. Constant connectivity means that

a compromised phone can be turned into a “bot” and used to launch attacks 24/7. The

data collected by physical sensors can be used for positive purposes, e.g., to track physical

activity for well-being, but also nefarious ones — users’ geographical position and physical

activities can be subject to constant monitoring or revealed to attackers. The convenience

introduced by rich processing and storage capabilities also make it more likely that phones

and tablets store and process sensitive documents, e.g., tax returns or bank statements.

Attacks can compromise the confidentiality, integrity, and availability of these sensitive

documents. There is constant pressure on app developers to release new apps, or frequent

app updates, to keep up with the competition which means apps can be released with

little scrutiny. Similarly, app marketplaces, e.g., Google Play or Apple App Store are under

pressure to accept new apps or app updates in a timely fashion to satisfy app users, which

in turn means that limited time is being allocated to scrutinizing the apps that are about to

be published.

Android attacks take many forms, and many studies have categorized these at-

tacks. For example, Zhou and Jiang [135] have investigated the 1,260 apps in the Malware

Genome project, with a focus on malware behavior and malware evolution. Felt et al. [51]

have looked at malware, spyware, and grayware. Vidas and Christin [113] have catego-

rized anti-detection techniques. Our prior work has quantified the risk associated with

HTTP(S) communication [122]. We now summarize the most prevalent categories of An-

droid attacks.

52

Exfiltrating user information. Malware can read private information such as device ID,

phone number, list of contacts, and send this information to scammers or adver-

tisers. Other malware steals user credentials or credit card numbers and sells this

information so it can be used on the black market. “Personal spyware” apps collect

personal information and then store it or exfiltrate it; such apps are up-front about

their purpose, but the user might not be aware that the app is installed.

Financial attacks. In these attacks, malicious apps operate behind the scenes, e.g., make

premium-rate calls, send premium-rate SMS messages, or sign up for premium-rate

SMS services, and then filter the call or SMS logs to cover their tracks.

Botnets. Malware can turn a phone into a “bot” that takes commands from its peers

or a Command-and-Control center; hence the phone becomes a base for launching

attacks, sending spam, purchasing tickets for scalping, implementing pay-to-click

schemes, etc.

Root-level exploits. Such exploits give the attacker root privileges, hence complete control

of the phone.

Ransomware. Apps can employ various ways of blackmailing users — threatening to ex-

pose their information or locking the device — unless a ransom is paid.

Note how these attacks share certain traits:

1. Finding security issues reduces to answering information flow queries, e.g., whether

information from a sensitive source (user credentials, location, etc.) flows to an un-

trusted sink; or, how commands flow from an untrusted remote source to a local

execution engine on the device.

53

2. The relevant behavior is highly dynamic. For example, the destination for exfiltrat-

ing data (i.e., server addresses), or the premium phone/SMS numbers for financial

attacks are learned at runtime [135]. Botnet models are dynamic: the Command-

and-Control center’s address, commands, and a list of peers are sent to the bots at

runtime [107]. Our prior work has shown that mutations of the same virus might

look very different to static analysis, but similarities are apparent when using dy-

namic slicing [52].

3. Large inputs have to be analyzed, to find that small input values that play a crucial

role during execution, e.g., a botnet command in network input [107], or bitmap

input data that triggers a libSecMMCodec.so vulnerability on Samsung devices [95].

4. Large extents of in-memory and persistent state have to be efficiently and precisely

separated into tainted and untainted parts, e.g., to find how a root exploit or ran-

somware have altered system state.

Current approaches and their limitations. Static information flow tracking has been pro-

posed to help find flows/leaks, e.g., using taint to track the flow from security-sensitive

sources to untrusted sinks [40]. Static flow tracking [29] is sound and scales well, permit-

ting analysis of a large number of apps, but is prone to false positives and cannot be used

to reveal inherently runtime behavior/information, as mentioned above.

Dynamic analysis. in general is an attractive approach for tackling many Android

concerns via profiling and monitoring, and has been used to study a wide range of proper-

ties, from energy usage [65, 46] to profiling [121]. In security contexts, dynamic techniques

are well suited for exposing nefarious behavior and learning the operational model for at-

54

tackers or botnets, because malware behavior is highly dynamic, and the data of interest/-

operational model might not be known until well into the execution. Dynamic information

flow tracking [49] has been used successfully in the past to find leaks — the TaintDroid

dynamic taint tracker has exposed that the user’s location, and phone information is rou-

tinely leaked to advertising and content servers. Similarly, constructing botnet operational

models [107] or finding anti-detection techniques has relied on runtime monitoring and

analysis [114, 113].

Problems with current dynamic approaches. Dynamic analysis critically relies on

high-quality inputs that can ensure good coverage, i.e., drive program execution through a

significant set of representative program states [50, 42]. Finding “high-quality inputs” for

dynamic analysis on Android is a significant challenge due to the sensor-driven nature of

Android apps. We and others [72, 16] have made inroads (e.g., our A3E automatic app ex-

plorer achieves coverage that exceeds the coverage of several human users combined [31])

but achieving high coverage on real-world obfuscated apps running on real phones is still

a challenge.

Even assuming high-quality inputs, dynamic taint trackers face several hurdles:

(1) they tend to track data dependences, not control dependences, hence taint trackers

are vulnerable to implicit flows; (2) they are imprecise, and even with a carefully crafted

taint tracking rules, “taint explosion” is a problem — where large parts of program data

appear to be tainted, which makes analysis difficult; (3) they point out a leak, but do not

help the developer fix the leak. Android apps, benign or malicious, have rich, concurrent,

high-throughput inputs, e.g., from sensor and networks. This compounds the precision

55

problem, as we now have to analyze not only data/control dependences, but also the

sizable inputs.

Finally, analyzing phone state after an intrusion or successful attack to separate

legitimate from malicious actions is a challenge, given the large extent of the state and the

potential for system-wide corruption.

Our solution. We propose developing a dynamic slicing infrastructure for Android that

can track dependences between input, data, and control, in a precise and efficient way, and

using this infrastructure in security applications. Our work will be focused mainly on an

end-to-end infrastructure for dynamic slicing Android apps running on real phones and

without requiring access to the app source code.

/

There have been a good number of works regarding program slicing. But they

were mainly based on programs for desktop operating systems. While both the desktop

and smartphone applications share much common structures, smartphone apps vary in

different aspects. Hence there is a high need to shed some lights on those differences to

develop efficient slicing algorithms for mobile apps.

3.1 Background

3.1.1 Dynamic Slicing

Dynamic analysis. Dynamic analyses are a class of program analyses where the pro-

gram is executed and its behavior is monitored, to verify if a certain property continues

56

to hold during the execution. Dynamic analysis is an effective “lens” for observing pro-

gram behavior. As the program executes, instrumentation is used to collect a variety of

data, from memory locations accessed, to values created and propagated, to energy used

in each method. Then developers can use the collected data in various ways, e.g., perform

runtime verification to ensure that the app fulfills functional requirements; or observe in-

formation flows (dynamic information flow tracking) to ensure sensitive information does

not leak to unauthorized websites; or optimize energy-intensive methods to reduce their

energy usage.

Program dependence graph. A program dependence graph (PDG) captures the data and

control dependences relation inside a program. Each edge of the PDG represents a data

or control dependence between the nodes. Depending on the purpose, a node can either

represent an instruction or a basic block. A directed data dependence edge from node vi

to node vj means any computation performed in vi depends on the computed value at

node vj . A control dependence edge means that the execution decision of vi is taken in

vj , that is, vj contains an instruction which is a predicate statement. A static dependence

graph consists of all possible data and control dependence relations. Figure 3.2 represents

a static program dependence graph for the example program in 3.1 reproduced from [19].

A dynamic dependence graph is a subgraph that contains only the nodes executed during

a particular run.

57

the program behavior under the test-case that re-

vealed the error, not under any generic test-case.

Consider, for example, the following scenario: A

friend while using a program discovers an error. He

�nds that the value of a variable printed by a state-

ment in the program is incorrect. After spending

some time trying to �nd the cause without luck, he

comes to you for help. Probably the �rst thing you

would request from him is the test-case that revealed

the bug. If he only tells you the variable with the in-

correct value and the statement where the erroneous

value is observed, and doesn't disclose the particular

inputs that triggered the error, your debugging task

would clearly be much more di�cult. This suggests

that while debugging a program we probably try to

�nd the dynamic slice of the program in our minds.

The concrete test-case that exercises the bug helps us

focus our attention to the \cross-section" of the pro-

gram that contains the bug.2 This simple observation

also highlights the value of automatically determin-

ing dynamic program slices. The distinction between

static and dynamic slicing and the advantages of the

latter over the former are further illustrated in Sec-

tion 3.

In this paper we sketch several approaches to com-

puting dynamic program slices. A more detailed dis-

cussion with precise algorithmic de�nitions of these

approaches may be found in [AH89]. In Section 2

we brie
y review the program representation called

the Program Dependence Graph and the static slic-

ing algorithm. Then we present two simple extensions

to the static slicing algorithm to compute dynamic

slices in Sections 3.1 and 3.2. But these algorithms

may compute overlarge slices: they may include ex-

tra statements in the dynamic slice that shouldn't

be there. In Section 3.3 we present a data-structure

called the Dynamic Dependence Graph and an algo-

rithm that uses it to compute accurate dynamic slices.

Size of a Dynamic Dependence Graph depends on the

length of the program execution, and thus, in gen-

eral, it is unbounded. In Section 3.4, we introduce

a mechanism to construct what we call a Reduced

Dynamic Dependence Graph which requires limited

space that is proportional to the number of distinct

dynamic slices arising during the current program ex-

ecution, not to the length of the execution. The four

approaches to dynamic slicing presented here span a

range of solutions with varying space-time-accuracy

2When we say the slice contains the bug, we do not nec-
essarily mean that the bug is textually contained in the slice;
the bug could correspond to the absence of something from the

slice|a missing if statement, a statement outside the slice that
should have been inside it, etc. We can discover that something
is missing from the slice only after we have found the slice. In
this sense, the bug still \lies in the slice."

begin

S1: read(X);

S2: if (X < 0)

then

S3: Y := f1(X);

S4: Z := g1(X);

else

S5: if (X = 0)

then

S6: Y := f2(X);

S7: Z := g2(X);

else

S8: Y := f3(X);

S9: Z := g3(X);

end if;

end if;

S10: write(Y);

S11: write(Z);

end.

Figure 1: Example Program 1

trade-o�s.

2 Program Dependence Graph

and Static Slicing

The program dependence graph of a program

[FOW87, OO84, HRB88] has one node for each simple

statement (assignment, read, write etc., as opposed

to compound-statements like if-then-else, while-do

etc.) and one node for each control predicate expres-

sion (the condition expression in if-then-else, while-

do etc.). It has two types of directed edges|data-

dependence edges and control-dependence edges.3 A

data-dependence edge from vertex vi to vertex vj im-

plies that the computation performed at vertex vi di-

rectly depends on the value computed at vertex vj .
4

Or more precisely, it means that the computation at

vertex vi uses a variable, var , that is de�ned at vertex

vj , and there is an execution path from vj to vi along

which var is never rede�ned. A control-dependence

edge from vi to vj means that node vi may or may

not be executed depending on the boolean outcome

3In other applications like vectorizing compilers program

dependence graphs may include other types of edges besides
data and control dependence, e.g., anti-dependence, output-

dependence etc., but for the purposes of program slicing, the
former two su�ce.

4At other places in the literature, particularly that related
to vectorizing compilers, e.g., [KKL+81, FOW87], direction of

edges in Data Dependence Graphs is reversed, but for the pur-
poses of program slicing our de�nition is more suitable.

2

Figure 3.1: Example program.

1

2

5

8

3

6

4

7 10

119

Figure 3.2: Static program dependence graph for figure 3.1.

58

Program slicing. Program slicing is a technique for isolating values, paths, or depen-

dences of interest in the dynamically collected data, as the analysis demands verification,

security or energy. Dynamic program slicing (a class of dynamic analysis) proposed by Ko-

rel and Laski [77], was first introduced to assist programmers in debugging. The dynamic

slice of a value computed at a program point during an execution consists of all the exe-

cuted statements that were directly or indirectly involved in the computation of the value;

more precisely, a dynamic slice is the transitive closure of data and control dependences

in the dynamic dependence graph. For multithreaded programs dynamic dependences

between different threads (introduced via events, files, or shared memory) must also be

considered.

3.2 Program Slicing on Android

Prior slicing work has targeted desktop and server platforms [77, 134, 104]. But

traditional slicing techniques are not sufficient on smartphone platforms. That is why we

were motivated to building a slicing infrastructure that will address several issues related

to mobile platforms. We chose Android as target platform due to its popularity.

Slicing infrastructure for Android requires addressing several challenges, as out-

lined next.

Event-based programming model. Most Android apps are built around a GUI. The GUI

control flow is however orchestrated by the Android Framework, rather than the app de-

velopers only define callbacks that are invoked when GUI elements are exercised. While

59

this makes development easier, it complicates analysis, because reconstructing the control

flow requires analyzing or modeling the control flow orchestration that takes places inside

the Android Framework. Nevertheless, our recent positive experience with Gator [127],

a tool that helps reconstruct app control flow by building a static model of an app’s GUI,

holds promise for constructing an app’s control flow statically.

Sandboxing. Unlike desktop/server Linux, Android Linux uses application sandboxing

(assigning unique user IDs to each app, so each app runs in its user space) for security rea-

sons. We will have to determine the effect of isolation on tracking dependences in shared

code, such as framework and system libraries. Addressing this might require “rooting”

the phone or running the slicing process as root, which is acceptable in a development or

research setting.

Inter-process communication (IPC). Android uses IPC (e.g., Intents) heavily to permit

apps to access system resources in a controlled way. For example, the Facebook app can

send an Intent to the Camera app asking it to take a picture. Apps can share data via

structures named Bundles. Also, apps can have references to other services, called Binders,

to initiate method calls from their side. These techniques are different from traditional IPC,

hence we will need to implement a slicing algorithm to capture external influences due to,

and data flow through, IPC. This challenge is related to sandboxing — we believe that we

can track dependences in apps that are the source or destination of an Intent (besides the

app under analysis) in a similar way to tracking dependences in system code.

60

Just-in-time and Ahead-of-time compilation. Dalvik VM, the VM used in Android be-

fore version 5.0, implements JIT compilation for efficiency reasons; hence the instruction

stream that is executed will contain some differences from the app code, due to JITing.

Similarly, for Android version 5.0 and above, where app bytecode is translated directly to

native code using ahead-of-time compilation (AOT), ART performs optimizations hence

static analysis assumptions might not hold. Our preliminary results (discussed next) indi-

cate that the Android Pin infrastructure is promising for analyzing AOT code.

3.3 Our Approach: Android Slicer

In this section, we will represent our design of the slicing algorithm. We ad-

dressed several factors and needed to take various Android aspects into consideration.

The key insight of our design is following:

1. The algorithm needs to detect complex gesture inputs by detecting appropriate frame-

work callbacks.

2. It needs to provide a tracking mechanism for sensor inputs.

3. The design must maintain the order of the callbacks.

4. External communication elements such as inter-process communication (IPC) objects

need to be taken into consideration,

Our framework conducts the analysis in three phases which we will describe in

next three sections:

61

3.3.1 Offline Control Dependence

We statically analyze the app to produce control flow graph where each node is

a basic block. This offline static analysis is later used to measure dynamic control depen-

dence.

3.3.2 Block Summarization

We collect summaries of executed blocks during our static analysis. We calculate

the definitions inside the blocks which are live at the end of the block. With this informa-

tion, we can create the data dependency table during run-time application execution. Our

block summarization records the following information:

Callbacks We enlist callback information inside a basic block. If a particular block is en-

closed by a callback, we keep that information. We keep track of the use of the call-

back arguments. This information is required to determine if the source of error is

due to any of the events associated with the callback. For example in onClick(View v)

the argument v represents the view element that received the event.

Framework calls Framework calls are the Android SDK APIs invoked by the application.

Currently, we do not analyze the framework. We track the API parameters and return

values instead.

For example, consider the API calls getCellLocation() and startActivity(Intent i). For

the former, we summarize the return value from the API call and report it, and for

the latter, we track down the Intent object i.

62

Live variable analysis We summarize the blocks by computing the reaching definitions

at the block exit (OUTs).

3.3.3 Program Instrumentation

We took advantage of app instrumentation techniques to further improve the ef-

ficiency of our slicing algorithm. Instead of collecting the whole execution trace we only

collect information of executed basic blocks. The blocks are cross referenced with our block

summaries obtained above.

3.3.4 Dynamic Program Slicing

Dynamic control dependence. Effective online dynamic control dependence is impor-

tant in achieving higher precision. While static definitions can be translated in the run-

time, but such trivial measures can lead to inefficiency [125]. In our design, we followed

the online detection algorithm described in the work of Xin et al. [125].

Dynamic slicing. We follow backward propagation technique to build run-time program

dependence graph from app execution trace generated in phase 3.3.3. Instead of taking

the whole execution trace we take another program slicing approach called LP processing

[133]. We build dependence graph considering 200 instructions each time and summarize

the results. This process involves dynamic control dependence calculation. We maintain

two separate tables one for data dependency information for a variable x and the con-

trol dependency for the associated instruction to the predicate instruction that decides the

execution of the instruction.

63

Algorithm 3 Dynamic program slicing
Input: slicing criterion Sc = (av, v)

1: procedure SLICE(Sc)
2: for all nodes n that are in Dv and Cv do
3: calculate vd = Dv ∪ Cv

4: if n is an occurrence of v then
5: if nd ≡ vd then
6: point v to n
7: else if
8: then create a new node for v
9: end if

10: end if
11: if if vd ⊂ nd then
12: merge n with v
13: end if
14: if if nεDv then
15: SLICE((an, n))
16: end if
17: end for
18: end procedure

To achieve the dynamic slicing for a particular slicing criterion with the format

(address, register) using our dependence table from phase 3.3.4, we first measure its im-

mediate definition and calculate that node’s reachable statements.

Algorithm 3 illustrates the approach. For a particular variable v, Dv and Cv

denotes the data dependence and control dependence nodes respectively; av denotes the

address of the instruction containing the variable.

We analyze the dynamic slices to address Android specific challenges,

Android callbacks If the slices include traces of the callbacks parameters as “uses” we

analyze the parameters of the callbacks. Currently, we do not analyze the framework.

The callbacks also represent the different input gestures and sensor event handlers

as they are some callbacks. For example in figure 3.3 we show a code snippet for the

64

v1 = View v
Pointer to the view object

Figure 3.3: Example callback.

V2 = Intent
V3 = result code

Track argument v2, v3

Track return result on v0

Figure 3.4: Example API calls

callback onClick(View v) in Dex code format. As we do not inspect framework code, we

only track the argument of the callback in this case the register v1 which holds the

pointer to the view element the callback was made upon.

API calls For framework API calls we analyze parameters to the call and the return value,

but we do not analyze the framework itself. For instance, in figure 3.4 we demon-

strate two code snippet from two different framework call startActivityForResult (Intent , resultCode)

and getActivityContext () . The former takes two parameters into registers v2, v3, and the

later returns result through register v0. We only track these registers in our analysis.

Event ordering. We precisely keep the ordering of the events regarding their execution.

We yet to analyze the effect of event shuffling.

IPC objects. During instrumentation we collect information of the IPC objects and cross

65

reference them with our block summarization. We examine the bundle object associ-

ated with intent callbacks to identify the source. We do not analyze the source if it is

external. We just report it.

3.4 Conclusion

In this chapter, we have presented our approach to slicing Android applications.

We tried to address distinct Android specific challenges. Moreover, we discussed three

exciting applications of our proposed framework.

66

Chapter 4

Targeted GUI Input Generation

This chapter explores the problem of fault localization from a higher level. Unlike

chapter 3 where we developed slicing techniques to reveal faulty inputs from a lower level,

in this chapter we will identify the source of error in a much higher level. In this chapter,

we present AndroidArrow a toolset designed to generate GUI-object-event ordering sets to

trigger a particular point of interest, i.e. a target method inside the application. Our main

purpose is to channel the flow of the program to the target, which is a particular method in

our case. We achieve this by driving the execution in that direction. As Android apps are

built upon GUI-object based driven models [84], we generate the event flows, and their

graphicaluserinterface or GUI counterparts. We took advantage to two specific program

analysis techniques: Static object reference analysis and data flow analysis. We conducted

experiments on a set of 324 apps [131].

Because of being event-driven and employing an extensive use of user interface

elements, Android applications require non-conventional program analysis techniques.

67

Our design approach was made keeping this distinct model in mind. Existing reference

and data flow analysis cannot be conducted explicitly on Android apps. Android follows

a component-centric model. Control flow is determined by the underlying system which

mostly manages the life-cycle of the components along with the data they communicate

with. Being event driven an application primarily presents a user interface to the user,

and she interacts with the UI elements through specific actions such as touches, swipes,

etc. As a result, the program flow is largely ordered by the combination of the GUI-object

interaction and associated event handlers’ invocation. We statically build this mapping

between the GUI elements and their corresponding event handlers inside the program.

To this point, our job is not complete. We still need to find the exact path transition

to a particular target method. We employed directed path exploration using data-flow

analysis that finds component transition paths towards the goal.

In this work, we made the following contributions

• GUI object-event mapping using static object referencing.

• Directed path transitioning using data-flow analysis.

In the following sections, we will be presenting our implementation of AndroidArrow,

and demonstrate its usage. We will also show the results obtained from experiments.

4.1 Directed GUI Event Generation

In this section, we present our design and implementation of the toolset AndroidArrow.

Before jumping into the implementation details, we would like to discuss different phases

68

A D

B C

E

Entry point 1 Entry point 2

Target activity

Figure 4.1: Sctivity transtion graph example for path pruning.

of our analysis.

Static pruning of path. We only take into account the part of the execution that is “use-

ful” to us. For example, before reaching to a specific point in the event flow, there may

be infinite ways to explore an app. So, just rely on the event flow may not give us the

“optima” path. Lets us have a look on figure 4.1. In the figure, we show a static activity

transition graph discussed in 2.4.1. Here each node represents an activity. Now let us

assume our target method foo() is in activity C. We can see that there exist several ways to

reach C if we start from A. Moreover, if there are multiple entry points, for example, E, we

may have shorter or direct paths to C. So, before we dive into generating path transitioning

we build the ascending order of the paths regarding their length by counting the number

of the edges it requires to arrive at the target activity from any of the entry point. It is to be

noted that not necessarily the shorter path will reveal a transitioning passage to our target

activity C. But that we will find out later.

Directed path transitioning. Once we have the order of the paths in a higher level, we

conduct data flow analysis techniques to generate the implicit flow of the execution. To

achieve this, we utilized the path transition analysis support from Redexer [74]. As dis-

cussed in Bhoraskar et. al. [33] redexer builds the callgraph of the application and runs

69

====== path ======
Lorg/hermit/audalyzer/Audalyzer;→

onCreate(Landroid/os/Bundle;)V
−##→ Lorg/hermit/audalyzer/Audalyzer;→

onOptionsItemSelected(Landroid/view/MenuItem;)Z
−−> Lorg/hermit/audalyzer/Audalyzer;→ showAbout()V
−−> Lorg/hermit/android/core/MainActivity;→ showAbout()V
−−> Lorg/hermit/android/core/MainActivity;→ createMessageBox()V
−−> Lorg/hermit/android/core/AppUtils;→ getVersionString()

Ljava/lang/String ;
−−> Lorg/hermit/audalyzer/Audalyzer;→ showFirstEula()V
−−> Lorg/hermit/android/core/MainActivity;→ showFirstEula()V
−−> Lorg/hermit/android/core/OneTimeDialog;→ showFirst()V
−−> Lorg/hermit/android/core/OneTimeDialog;→ isAccepted()Z

Figure 4.2: Directed path transitioning to the method getVersionString(), as produced by Re-
dexer.

Figure 4.3: Our toolset, based on output from Redexer and Gator, reveals the Disclaimer
menu item as the GUI element to invoke to reach this view.

constant propagation and hierarchy analysis to reveal the directed transition edges. Figure

4.2 shows a sample output from the app Audalyzer. We then analyze the revealed paths and

order them in the ascending order of their length.

GUI-object-Event mapping. We conduct static object reference analysis using Gator [127]

to create a GUI-object mapping with their associated event handlers. We cross reference

the generated list the results found in the path transition phase to create the list of GUI-

objects in their order of executing the target.

70

Example: Reproducing Audalyzer’s KR Error

We start with an example, the Audalyzer app, to demonstrate how we verify the

potential bug reports produced by the static analysis. Audalyzer is an audio analyzer. When

the app is first opened, an End User License Agreement (EULA) is displayed; the user

accepts it by pressing the ‘Accept’ button, and the app sets the isAccepted field to true. This

ensures that the EULA confirmation will never pop up again. But if the app exits just after

the user presses ‘Accept’, the isAccepted field value change might be lost, as it is not saved

on all exit paths.

Further analysis indicates that isAccepted was changed in the isAccepted() method

of the org/hermit/ android/core/OneTimeDialog class. Hence, to reproduce the error we need to

trigger input events in such a way that we execute this method and then exit the app at the

point after the change.

To do so, AndroidArrow uses the Redexer binary rewriting infrastructure [74] to

generate a directed path transition. Given the Audalyzer.apk and the target method isAccepted(),

Redexer produces a sequence of callbacks and associated method calls such that calling the

sequence will lead to isAccepted() being invoked. Figure 4.2 shows the corresponding output

of Redexer for this scenario: the types of callbacks that need to be generated to end up in

the isAccepted() method.

Note, however, that just generating the sequence of callbacks is not enough. We

need to identify the associated GUI elements that, when exercised by the user, trigger those

callbacks. To do so, AndroidArrow uses another tool, Gator [127], which, given an APK file,

produces the necessary GUI element-callback mapping utilized in the program. Coupling

71

App Size Installs Time Events#
Name (KB) (sec.)

Facebook 23,112 1,000,000,000–5,000,000,000 73 4
UC Browser 13,429 100,000,000–500,000,000 47 1

Dr.WebAnti-virusLight 1,464 50,000,000–100,000,000 221 3
Yahoo weather 391 10,000,000–50,000,000 56 7

Alarm Clock Plus 2,245 5,000,000–10,000,000 88 3

Table 4.1: Runtime statistics for top-5 most downloaded apps.

Gator’s and Redexer’s outputs we can identify which GUI elements we need to exercise to

reach the point of interest in the execution path for invoking the desired method. Figure 4.3

shows one of the outputs of Gator after we filter out results. From Figure 4.2 we see that

the first GUI callback event was onOptionsItemSelected in the org/hermit/audalyzer/Audalyzer class.

Figure 4.3 shows the output of our toolset, revealing that the associated GUI element is a

menu item with the title ‘Disclaimer’. That is, we need to first invoke the application menu

and select the ‘Disclaimer’ item. We then automate GUI interactions based on these results,

using the A3E [31] app exploration tool: given the sequence of GUI element names, A3E

exercises the sequence and “lands” the app at the error point, with no user intervention.

After reaching the error point at runtime, we killed Audalyzer, i.e., forced the app

onto an exit path. Finally, we restarted the app to verify whether the changes made in

‘isAccepted’ were persistent, i.e., the value of the isAccepted field was still true (it was not—

this is precisely the problem). We now describe the general techniques for achieving di-

rected transition and exiting.

72

4.2 Evaluation

We have conducted experiments on five most downloaded applications from

Google play. Our target method was chosen from a kill-and-restart(KR error) dataset [131].

The results are shown in Table 4.1. Column 4 denotes the time taken by AndroidArrow, and

column 5 represents number of events reported by AndroidArrow.

4.3 Conclusion

Effective fault localization requires generating optimum sets of inputs. In this

chapter, we present AndroidArrow that exploits static object reference and data flow anal-

ysis to reveal GUI object-event sequences for a directed execution towards a target state,

eg., a method invocation. AndroidArrow not only facilitates a directed transition but also it

does in an optimal way, that is finding the shortest valid path.

73

Chapter 5

User Defined Deep Linking

In the web, deep linking refers to the use of hyperlinks to a specific piece of web

content (e.g., http://ulink.com/code/) on a website (e.g., http://ulink.com). Web deep links are in-

strumental to many fundamental user experiences: navigating to a web page from another,

bookmarking it, and sharing it with others. They have also been crucial for many impor-

tant services; for example, search engines use deep links to crawl web pages and to map

search results to appropriate landing pages. Historically, mobile apps did not have any

equivalent deep links, making the aforementioned tasks impossible for individual pages

within the apps. As VentureBeat rightly put, “Imagine a web without URLs. That’s what

the mobile app world looks like now [July, 2014]” [112].

To address this, mobile deep links have been introduced in recent years. Mo-

bile deep links are URIs that point to specific locations in a mobile app. A mobile deep

link can launch an app that is already installed on a user’s mobile device (similar to

loading the home page of a website) or it can directly open a specific location within

74

the app (similar to deep linking to an arbitrary web page). For example, the URI fan-

dango://thelegomovie 159272/movieoverview directly navigates to the page with the details of

the “The Lego Movie” in the Fandango app. Today, all major mobile platforms, including

Android, iOS, and Windows, support mobile deep links.

Even though mobile deep linking is an important first step towards randomly

accessing any arbitrary location within an app, it lacks many useful properties of web

deep linking. First, unlike web deep links, mobile deep links require nontrivial developer

effort–several lines of codes per unique deep link—resulting in a low adoption rate even

within the top apps [108]. Second, unlike its web counterpart, mobile deep links have

poor coverage—a small number of locations within an app, predefined by the developer,

are directly accessible via deep links (details in 7.4). Finally, today’s deep links are defined

statically by developers to facilitate navigation to a target page given its link; the dual

process of dynamically determining the link for a given page is not possible even if a deep

link exists to that page.

We have developed uLink, a lightweight approach that addresses the above prob-

lems. uLink is compatible with existing mobile deep links (i.e., the underlying mobile OS

handles them in the same way); but it requires very minimal developer effort, it supports

dynamic link creation, and it achieves significantly higher coverage than existing mobile

deep links. All this enables many novel user experiences that so far existed only in the web

world.

One key challenge uLink addresses is improving coverage—creating links to any

app location (referred to as app view or view hereafter), including to the ones that depend

75

(a) An independent view (b) A view dependent on previ-
ous view

(c) A view dependent on UI ac-
tion (on “POLLEN”)

Figure 5.1: Examples of views uLink can support.

on previous views or on user interactions. uLink uses two key mechanisms. The first

mechanism is shortcut. uLink continuously monitors for explicit data dependency between

successive runtime views in an app. In Figure 5.1, view (a) launches view (b), by providing

the location “New York, NY” selected by the user in (a). In some cases, e.g., if (a) and (b)

are separate Android activities (i.e., pages), uLink can transparently capture the data trans-

ferred from (a) to (b) and encode it in the link to (b). This allows uLink to quickly invoke

the link to go to (b), without first going to (a). More importantly, it improves coverage to

views that depend on data from previous views (location in this example).

Shortcuts do not cover all app views. The view shown in Figure 5.1(c) is created

by the user by tapping on the “POLLEN” tab, and there is no explicit data transfer between

(b) and (c) for uLink to capture—both views are within the same Android activity. To create

links to such views, uLink uses a limited form of record and replay. uLink continuously

76

records UI actions in the current page and encodes them in the link (we call this a shortcut-

and-replay link). When the link is invoked, uLink first directly navigates to the most recent

shortcut-reachable view (e.g., (b) in Figure 5.1), and then replays the UI actions to navigate

to the target view.

uLink’s record and replay mechanism is very different from existing record and

replay techniques that have been successfully used to repeatedly navigate to arbitrary lo-

cations of an application for desktop, server [48, 126, 100, 63, 88, 86], web [94, 82], and

mobile platforms [57, 68]. Compared to a traditional record and replay systems, uLink’s

record and replay is (1) lightweight and universally deployable—this is because it records

and replays only UI events, which, as we show later, is often sufficient to recreate a target

view with high fidelity; (2) fast—this is because uLink does not replay a whole session;

rather it replays UI events only after reaching the most recent shortcut-reachable view;

and (3) user-friendly—during link creation, a user does not have to specify the starting

point of recording (it is implicitly given by the most recent shortcut-reachable view) and

during link invocation, replay happens in the background to give users a true click-and-go

experience.

Another challenge uLink addresses is reducing developer effort. uLink is imple-

mented as a library that developers can include in their apps. The library transparently

interposes data dependency between views and UI events with very minimal developer

effort. For the shortcut-only deep links, which are the only ones supported by existing

mobile deep links, uLink needs no effort from the developer, except for including the li-

brary in their app (as opposed to several lines of code per deep links in existing mobile

77

deep links). For shortcut-and-replay deep links, which are not supported by existing mo-

bile deep links, developers need to write one line of code per event handler. Our evaluation

with existing apps shows that the overall overhead is minimal.

The final challenge uLink addresses is identifying links that may not be correctly

open in some later point in time. This is not surprising since even a full featured record

and replay tool cannot guarantee reproducibility of the target view due to many nonde-

terministic factors. Broken links are common on the web as well. A ulink may not open

correctly e.g., if the target view opens a file that is deleted after the link is created, if a

user is not logged into the app, if some UI events cannot be correctly captured or replayed

(e.g., Android does not provide APIs for applying long taps on list items), etc. However, it

is important that the user gets a consistent experience—when she bookmarks a view, she

should know if the bookmark is indeed valid—whether she will be able to open the link

in the future on not, and if not, why it might fail. An important contribution of this disser-

tation is to develop efficient techniques to provide such feedback to users when a ulink is

created or opened.

We have implemented uLink as an Android library and evaluated it with 34 (of

1000 most downloaded) Android apps. While existing mobile deep links require in the

order of 20–30 LoC per deep link, uLink can support shortcut-only links (a superset of deep

links) to all pages with an average of 8 LoC. Overall, uLink achieved 70% links coverage

and provided accurate user feedback (especially for links with file system dependencies).

We also found that ulinks remain reasonably stable over time with new app versions and

updates in app contents.

78

In summary, we make the following contributions. (1) We develop uLink, a mo-

bile app deep linking mechanism that requires much less developer effort, but provides

significantly more coverage than existing mobile deep linking. (2) We develop techniques

to predict if a ulink may become broken in future, and if so, under what conditions this

might happen. (3) We evaluate uLink with 34 real apps.

5.1 Motivation and Goals

In this section, we motivate the need for uLink, set our goals and review related

work.

5.1.1 uLink in Action

We motivate uLink with a few concrete scenarios. Our goal here is to demonstrate

some of what uLink can enable, and we leave details of its design, challenges, solution, and

implementation in next sections of the chapter.

Developer experience. For ease of deployment, uLink is implemented as a user-level li-

brary, similar to existing analytics libraries such as Localytics [8], Flurry [4], and Appsee [27].

The developer includes the uLink library in the app and this alone readily makes the

app uLink-enabled, with shortcut-only links (Figure 5.1(a) and Figure 5.1(b)). To enable

shortcut-and-replay links (Figure 5.1(c)), the developer adds one line of code in every UI

event handler of the app.

79

uLink library and companion services. As the user uses a uLink-enabled app, the uLink

library continuously tracks explicit data flow between app views (e.g., intents transferred

between Android activities) and UI events. At any point of time, the user can request

a ulink to the current app view by shaking the device. An external companion service,

typically a first-party service, can request to be notified each time a user saves a new link

or it can request uLink to automatically create links to all pages the user visits within

specific types of apps (e.g., all 3rd party apps). We have implemented two such companion

services: Bookmarks, which stores all links the user wishes to save and invoke later, and

Stuff-I-Have-Seen, which indexes contents and links to all pages the user visits in all apps

and, like a web search engine, allows the user to search the content and to directly navigate

to any content of interest by using the associated uLink.

User experience. Here are few scenarios a user can experience with a uLink-enabled app

and companion services.

(1) In a recipe app, the user can bookmark any page containing her favorite recipes. She

can later invoke the ulink from the Bookmark service to directly open the page.1

(2) She can create macro-like ulink for frequent tasks in an app. For example, in a library

app, she can go to the “renew book” page, select all books, extend the return date by one

more month, and finally hit the “renew” button, and create a ulink to capture the whole

sequence of actions. Later, she can invoke the ulink (from the Bookmark service) to renew

all her books with one single click.

(3) She can use the Stuff-I-Have-Seen service, which runs in the background to transparently

1In theory, these bookmarks can also be shared with friends, in the same way we share web links.

80

index contents of all app pages the user visits such as recipes, news articles, etc. along with

their ulinks. Later, the user can use the app to search for a recipe she read in some app in

the past, and click on the ulink of the result to directly open the app page.

For implementations of these scenarios see §5.3.2.

5.1.2 uLink Goals

Our overall goal is to enable mobile deep links that are similar to web deep links

in terms of functionalities and convenience. To provide useful and user-friendly links,

uLink should satisfy the following requirements: (1) A user should be able to create a link

dynamically, like web links, by specifying only the target app view. (2) uLink should have

good coverage—a user should be able to create ulinks to most, if not all, views of an app. (3)

Invoking a ulink should be fast, and it should produce a consistent app view, despite minor

changes in the app or its contents.

To be practical and reach a large population of smartphone users, (1) uLink should

require minimal developer effort to make an app uLink-enabled. (2) uLink should incur min-

imal runtime overhead and have no impact on the app’s experience. For ease of deployment,

uLink should not require changing the mobile OS or rooting the device. (3) uLink should

be compatible with existing mobile deep links so that the underlying OS can offer the same user

experience. For example, if a user generates a link for an app and later uninstalls the app

and invokes the link, the OS will notice that the target app is missing and will redirect the

user to the app store to install the app (this procedure is currently in place for deep links).

By definition, uLink must capture correct links. Our notion of correctness tries to

be as close as possible to that of today’s web URLs. As for web URLs, the correctness of a

81

link depends on the backend providing the content (the app or the web site publisher). For

instance, a link to a news article will work as long as the app or web publisher does not

remove the corresponding data object from their database or does not change the object

identifier. We cannot control the app (or web site) backend, so we aim for correctness

under the assumption that the backend has not deleted a link’s content. On the other hand,

over time, links may break or point to different content also for other reasons. In general,

the content of a link may vary across users, devices, time, and location (and sensors in

general). We classify links into two broad categories:

• Immutable from client-side: links whose content remains the same, across users,

devices, time and location. These links are unlikely to break over time. For in-

stance, http://www.dictionary.com/browse/uri?s=t always points to the definition of the

word “uri”.

• Mutable from client-side: these are links whose content is dynamic and may change

depending on the device (e.g., web sites using the device’s file system), user (e.g.,

personalized web sites), time (e.g., news web sites), location (e.g., weather web sites),

and sensors in general. For example, a link to a news web site’s top stories will show

different content during the day. The content of www.foreca.com/United States/Washington/Seattle

will change over time, but it will always show the weather for Seattle. Instead that of

https://www.wunderground.com/ will automatically adapt to the current location. Mu-

table links can sometimes break. For instance, a Facebook URL saved on a device

where the user is logged in, may fail when opened on a device where the user is

currently logged out; same for a link to the content of the Amazon cart.

82

These examples show that links can be ambiguous; a priori, it is not always clear

whether the content referenced by a link will change and whether a link may break. On the

other hand, as the web shows, users are accustomed to what a URI can or cannot capture,

and, to how different web sites behave. For instance, users expect the Foreca link above to

always show the weather for Seattle, and the Wunderground one to adapt to the current

location. We expect uLink will provide a similar, natural experience, and users will learn

to deal with mutable app links.

uLink supports both immutable and mutable links. As for web URLs, uLink aims

to provide best effort links, as consistent as possible with the app behavior. For instance, in a

news app the page showing the “Daily Top Stories” will show different news stories every

day. If a user saves a link to such page, also the link will show different content every day.

A restaurant app page showing the “Nearby Restaurants” uses the GPS sensor to establish

the user’s current location. A link to such page will also adjust to the current location. On

the other hand, we acknowledge that app links may arise new types of ambiguity which

we discuss in §5.5.

As in the web, app links may sometimes break. uLink promptly detects when

a link cannot be safely saved or replayed, and provides detailed feedback to the user or

to the application capturing such links on the user behalf. Fundamentally, uLink cannot

guarantee 100% coverage of an app views because of the deployment constraints (mini-

mal development effort and ease of deployment) it must satisfy. In §5.2.3, we enumerate

uLink’s possible failure cases and explain what the feedback contains.

83

5.1.3 uLink Approach

We now briefly describe how uLink achieves the goals listed above; the details

will be described in the next section. uLink is implemented as a library that a developer

includes in the app with minimal effort. The library continuously monitors various data

dependencies and UI events of the current view so that, anytime, it can dynamically create a

link with the dependencies encoded in it. Figure 5.2 shows two examples of ulinks: the first

ulink points to page 598 in a Kindle book, and the second encodes the sequence of actions

for requesting a lift in the Lyft app (the result is the dialog for entering payment). After

being saved, a ulink can later be invoked to quickly access the view, by taking shortcuts to

views that depend only on data encoded in the link (e.g., book page), and/or by replaying,

in the background, the UI events encoded in the link (a clickable button in the second link

in Figure 5.2). This approach gives uLink high coverage of dependent views, which are

not supported by existing mobile deep links. The overhead of shortcut-and-replay links

is reduced by recording and replaying only UI events (button clicks, checkbox selections,

etc.), which, as we will show later, is sufficient to recreate the target page with high fidelity

in many cases.

5.2 System Design

This section describes how uLink was designed to meet the aforementioned goals:

high coverage and speed (§5.2.2) while ensuring minimal developer effort (§5.2.4).

84

Shortcut-only link

Shortcut-and-replay link

3ef6166c-c4f7-414a-b5dc-3171b886385c com.amazon.kindle

com.amazon.kcp.reader.StandAloneBookReaderActivity #Intent;launchF

lags=0x10000000;component=com.amazon.kindle/com.amazon.kcp.reader.St

andAloneBookReaderActivity;S.guid=3677b7ae-48e6-44ec-94de-

2f903adfcef2;B.is_book_read=false;end 1449695280292

3d809180-c373-4fbc-aee0-007c7c13530f me.lyft.android

me.lyft.android.ui.MainActivity #Intent;action=android.intent.action.MAI

N;category=android.intent.category.LAUNCHER;launchFlags=0x10600000;comp

onent=me.lyft.android/.ui.MainActivity;l.profile=0;end 1449695292100

{button_request_lyft, clickable_type}

Unique identifier

App name

Intent + input parametersTimestamp

UI events to replay

(resource id + resource type)

Activity name

Figure 5.2: Examples of shortcut-only and shortcut-and-replay links.

5.2.1 Overview

Mobile apps consist of a set of pages, where each page typically contains a set of

UI elements such as buttons, checkboxes, lists, or menus. Each UI element can have an

associated event handler, which is invoked when the element is interacted with. The whole

of a page may not be viewable to the user at once; we call a part of the page shown in

the current screen a view. A page may contain many views: the default view is what is

shown on the screen when the user navigates to the page (Figure 5.1(b)), and the user can

navigate to a different view within the same page by UI interactions such as selecting a

tab (Figure 5.1(c)), choosing a date from a date picker control, filling out a search box and

clicking on a search button, etc. A UI interaction can also lead from a view to the default

view of a separate page.

Mobile apps are stateful and pages/views can have state dependencies. A page

can use some data generated in a previous page. For example, the page in Figure 5.1(b)

85

needs the location selected by the user in the previous page (in Figure 5.1(a)). A view can

also depend on other views (e.g., one tab uses a flag set in another tab). Finally, a view can

also depend on the sequence of UI actions starting from the default view. For example, the

view in Figure 5.1(c) is obtained by tapping on the “POLLEN” tab in the default view.

Using this terminology, we identify three broad classes of links a user may cap-

ture in an app (listed in increasing order of complexity to support them). A user-defined

link can link to the following states in an app:

1. Stateless view: A view whose state does not depend on states created in previous

pages (e.g., a page showing weather, as in Figure 5.1(a)). It can be created without

any input parameter, or a set of statically-defined parameters that do not depend on

previous pages/views.

2. Stateful view: A view whose state depends on app states created in previous pages

(e.g., showing breathing forecast at a location selected in the previous page, as in Fig-

ure 5.1(b).

3. UI-driven view: A view created by UI events generated on the same page (e.g., Fig-

ure 5.1(c), created by tapping on the “POLLEN” tab in Figure 5.1(b)).

Existing mobile deep links support stateless views only. They can pass static

parameters to target views, but cannot observe the internal state of the app (i.e., they live

outside the app). This is precisely the reason why they cannot cover stateful or UI-driven

views that depend on states (e.g., location selected by the user) and UI events (e.g., tapping

on a particular tab) inside the app.

86

Page Inputs

Interception uLink Query API

Ulink

Creation

ulink = view URI + event list

URIV3 + {e6, e7}

open(ulink)

Ulink Execution

save_ulink

Page

Launcher

Event

Replay

...i6i5i4i3i2i1

V1 V3v2

URIV1 URIV2 URIV3

Save link

to here

Shortcut

Generation

Ulink ValidationUI Events

Capture

Figure 5.3: uLink system architecture.

In contrast, uLink supports links to all the three types of views and thus achieves

its high coverage goal. Figure 5.3 shows the entire system architecture, including the

Query API (§5.3). In the following, we discuss the techniques we propose for creating,

executing and validating ulinks.

5.2.2 Improving View Coverage

We first describe how uLink supports links for stateful and UI-driven views (not

supported by deep links).

Links for stateful views

Stateful views depend only on data from previous pages. By definition, a link to

a stateful view points to the default view of its page.

uLink uses a novel technique called shortcuts to generate links to stateful views.

87

We observe that a page in an app is usually instantiated through a launcher method re-

sponsible for rendering the page in the foreground (startActivity(intent,options) in Android

and prepareForSegue:(uiStoryboardSegue) in iOS). This method usually expects as input a

description of the page to render and possibly other parameters, which are not known to

processes external to the app. This is equivalent to the query string in a web URL (e.g.,

in https://uLink.com/index.php?title=uLink details&action=edit the query string is the part of the

URI after ‘?’).

Our key insight is that uLink can program user-defined links by demonstration: by

observing how views are assembled during user interaction (V1, V2 and V3 in Figure 5.3),

uLink can learn how to re-construct them. Specifically, uLink continuously intercept all

messages (i1, i2, etc.) sent to the page launcher method so to infer message structures

and input parameters, necessary to render a view. uLink encodes the message structure

and input parameters in a URI generated for the view (URIV 3). To open a saved ulink,

the uLink library simply invokes the page launcher method with properly structured mes-

sages assembled using the parameters stored in the URI. In this way, uLink can shortcut to

the default view of any page in the app.

Assuming the link is opened under the same conditions (e.g., file system, sensors,

and so forth) as when it was created, this approach guarantees accurate and safe, stateful

links. They are accurate because this approach is goal-oriented. When a user requests cap-

turing a link to the current view, the link is derived directly based on what app state was

provided to that view. They are safe because this process does not risk breaking the pro-

gram logic. We discuss later what happens if the link is opened under conditions different

88

from those at creation time.

The above idea is simple and can be implemented by overloading the launcher

method of the framework page classes (e.g., startActivity method of Android Activity classes).

Links for UI-driven views

The above technique of intercepting data passed between pages does not capture

UI events within a page and hence is not sufficient to recreate a UI-driven view. To support

such views, uLink adopts a limited form of record and replay.

uLink continuously monitors UI events triggered during user interactions, and

event handlers that are fired. To reduce overhead, uLink monitors UI events only in the

current view; when the user moves to a different view, the UI events of the previous view

are discarded. This approach does not compromise coverage since uLink can directly nav-

igate to the default view of the current page by using a shortcut-only link to the (stateful)

view. To create a link to a UI-driven view, uLink encodes two pieces of information in the

link: (1) input parameters to launcher method of the current view (same as shortcut-only

links), and (2) UI events that lead the user from the page’s default view to the current view.

When the link is invoked, uLink first launches the page’s default view by using its input

parameters, and then replays the UI events to navigate to the target view. The UI events

are replayed in the background, and so the user sees the same click-and-go experience as

shortcut-only links. We call such links shortcut-and-replay links.

Mobile app contents can be dynamic. For example, suppose a page’s default view

shows a list of restaurants. User clicks on the second item “Kabab Palace” to generate a

view with the details and menu of the restaurant, and saves a link to the view. Now sup-

89

pose, after a month, the app updates its contents and the same restaurant “Kabab Palace”

appears as the fifth item in the list. To deal with such changes, unlike traditional record and

replay systems, uLink prioritizes content over UI structure during replay—it will search

the list to find “Kabab Palace”; if it exists, uLink will click on it irrespective of its position

in the list. Only if “Kabab Palace” does not appear in the list anymore, uLink will fall back

to structural replay and click on the second item of the list. Such fallback is useful to deal

with highly dynamic contents, such as a link to the top news story, which may change

frequently.

We also observe that compared to record and replay tools, this approach does

not require any recording start point, and it is much faster. Imagine a task where the user

searches through old news by first entering some keywords and then specifying a date

range, thus landing on the page with the news matching the specified criteria. Assume

the user wants to save a link to this page with the results. A traditional record and replay

tool (i) would require the user to specify the start point of the task (i.e., the page where

the keywords were entered) and (ii) would replay every single user action to re-create the

search results, i.e., entering the search string, clicking on the Start date button, pressing the

search button, etc. Instead, uLink intercepts the parameters needed to generate the search

result page and, through a single function call, loads the page.

uLink does not need to record the time gaps between separate UI events. Instead

uLink replays the sequence of recorded UI events such that each UI event is fired after the

previous event has been dispatched, as notified by the device framework (e.g., on Android

through the onUserInteraction callback). In this way, it is also possible to remove user-

90

induced delays or idle periods.

Note that, on the other hand, uLink’s record and replay is limited compared to

existing record and replay systems: it captures only UI events (button clicks, checkbox

selections, etc.), which, as we will show later, is sufficient to recreate the target page with

high fidelity in many cases. Capturing IO and sensor access operations would bring us

closer to the ideal world of deterministic replay, but monitoring these events would lead to

unsupportable overheads in terms of annotations that developers would have to provide,

in terms of OS modifications or in terms of runtime overhead. By capturing only UI events,

uLink hits a sweet spot between existing lightweight but low-coverage deep links and

heavyweight but high coverage full-blown record and replay.

Limitations

Since uLink captures only data passed through page’s launcher methods and UI

events within a page, there will be cases where uLink won’t be able to correctly open a

link at a later point in time. For example, consider an eReader app ulink that opens a

book (stored in the local device) at a specific page (saved in a configuration file). The link

will fail if the book is removed from the device or it may lead to a different page of the

book if the page number in the configuration file is modified after the link is created. As

mentioned before, taking a snapshot of all resources that a link might depend on, can be

prohibitively expensive.

To address this, uLink incorporates a feedback mechanism. Intuitively, uLink

tracks all dependencies that it may fail to capture in the link. This gives users (or applica-

tions on their behalf) an idea about whether the link can be faithfully invoked in the future,

91

and if not, why. Using the feedback, users can rely on their own judgment to decide how

to use the link. Such feedback can also be useful to deal with link ambiguity (as described

in §5.1.2). For example, while creating a bookmark for later consumption, uLink may no-

tify the user that the view depends on her location, which uLink is not capturing in the

link. Knowing this, the user may or may not save the link in her favorites depending on

whether she expects to invoke the link from a different location.

5.2.3 Link Validation

uLink provides feedback to users (or an application on their behalf) at the time

of link creation and of link execution. To be more concrete, suppose a user navigates from

Page1 to Page2 of an app, and wishes to create a link to Page2. Can the link be invoked later

to correctly see the same content? The answer depends on whether the pages access any

external resource such as a file (outside the parameters explicitly transferred from Page1

to Page2’s launcher method). Let us consider the four cases in Figure 5.4, with different

dependencies from external resources.

Case (a) No external dependencies: uLink can correctly open Page2, by providing the

parameters stored in the link to the launcher method of Page2.

Case (b) Page2 reads an external resource: (1) uLink may not be able to correctly open

Page2, or (2) it may be able to open the page, but with potentially different content. This

may happen if the content of the external resource is modified after the link is created. For

example, if Page2 plays a specific music file from the local device, a link to the page will

fail if the music file is deleted from the device. Similarly, if Page2 shows content of a local

file, a link to the page will show different content if the file is modified after the link is

92

Page

1

file

r

Page

2

Page

1

Page

2

Page

1

file

Page

2
w

Page

1

Page

2

file
r

a) d)b) c)

Figure 5.4: uLink can replay correctly a link to page 2 in case a), c) and d), and in case b) if
the file doesn’t change after link creation.

created.

Case (c) Page2 writes an external resource: uLink can correctly open Page2, since the con-

tent of the external resource does not affect the content of Page2. So Page2 remains unaf-

fected even if the external resource is modified after the link is created.

Case (d) Page1 reads an external resource: uLink can correctly open Page2. If the external

resource somehow affects the content of Page2, its value must propagate through the data

passed from Page1 to Page2, which uLink correctly captures. Note that, in order to capture

possible changes to the external resource Page 1 depends on (which may affect the value

passed to Page2), the reference to the value (e.g., filename) and not the value itself should be

passed from Page 1 to Page 2. Whether link arguments are passed by value or by reference

is up to the application, and ulinks behave accordingly.

Of all the cases above, Case (b) is the only case where uLink may not be able to

correctly open a link to Page2. Ideally, preventing such behavior would require recording

contents of all the external resources as well, which can be prohibitively expensive. uLink

therefore does not try to prevent such behavior, and rather notifies users or the companion

services at link creation or execution time that the link may not be replayed correctly if a

specific resource is modified. We call this process link validation.

93

Lightweight dependency tracking. The key challenge in supporting link validation is

that it must happen during user interaction, at minimal overhead and with minimal changes

to the app. A possible approach, which requires no changes to the app, is to monitor I/O

and sensors by instrumenting generic OS-provided APIs (e.g., system calls). However,

this is not ideal because it needs instrumentation of the framework and incurs runtime

processing and storage overhead. Another approach is to inject the monitoring logic in the

app and track information flow in the app (similar to taint tracking [49]); however, this

requires nontrivial development effort and incurs high runtime overhead. Our solution

is to rely on an offline automated analysis of the application to generate an app-specific

summary of resource dependencies of each event handler. Once the summary is built of-

fline, it is installed on the device (by the uLink library downloading it from the cloud), and

consulted each time a link is saved or opened. By design, this approach cannot be as ac-

curate as heavyweight API instrumentation, taint tracking or other approaches requiring

OS modifications, but it provides a first, practical approximation of the problem while not

compromising our goals of low overhead and minimal developer effort.

To frame the problem, we first define the following terms. We collectively call re-

sources entities external to the app that can change arbitrarily, after a link is created. These

include files, databases, and sensors. Our definition of “change” means any type of mod-

ification to the content or properties of the resource. For example, a file content can be

“changed” by overwriting the file or by modifying one of the attributes such as read/write

permissions. As discussed in §5.1.2, we do not monitor the network because, as with web

URLs, we have no control on links that break due to the app (or web publisher) backend

94

operations, such as deleting a data object or modifying an object identifier.

We call source APIs and sink APIs, the APIs the application framework provides to

get or put data, respectively, into such resources. In particular, we consider the following

categories: file system read and write, database read and write, and sensor read operations.

The list of such APIs can be extracted using tools such as SuSi [12]. Finally, we collectively

call callbacks event handlers triggered, synchronously or asynchronously, by the app (e.g.,

in response to interacted UI elements) or by the framework (e.g., app lifecycle events).

Static analysis. Our first effort on generating offline app summaries is to rely on static

analysis of the app. We generate the call graph of the app, and then recursively traverse it

to find out a connected path from a callback to a source or a sink API. If we find any con-

necting path, we add the mapping <callback,source> or <callback,sink> to the summary.

Online, each time a link is saved, the uLink library logs which callbacks have been invoked

to generate the app state. In this way, uLink can use the summary to look up whether any

of such link-required callbacks has dependencies on external resources, and report that in

the feedback. Note that once the uLink library is added to the app, the developer effort

required for the feedback generation is zero, because all link-required callbacks are logged

directly by the library.

This approach proved quite robust, meaning that we didn’t encounter any case

in which a resource that was accessed by a link was not caught by the summary. How-

ever, we found it too conservative because of its coarse-granularity. For example, knowing

that a specific callback reads some file is not sufficient to infer whether this operation may

or may not compromise the correctness of the link. If that file doesn’t change after link

95

creation, then the link will work correctly. If the file has changed, the link may or may

not work. However, the problem is that online, with our restricted monitoring setup, we

cannot capture the identifiers of the modified resources.

Static + dynamic analysis. To address this, we augment static analysis of the app with

dynamic analysis. To exemplify, let us consider the file system resource. Our key insight

is that while we do not know the file identifiers online, we can capture them offline and

leverage them to establish callback relationships. We run each app using a Monkey (such

as the Android [66] or Windows Phone [87] UI automation tools). We collect logs of all

invoked callbacks as well as traces of file system accesses (using strace-like utilities). We

then intersect read and write operations that share files with the same identifiers. The

obtained file-relationships are added to the summary. For example, the dynamic analysis

may produce a trace where callback c1 reads file f, and callback c4 writes to file f, so a c1→

c4 file-relationship is added to the summary.

Note that a perfect dynamic analysis would deem static analysis unnecessary.

However, existing Monkeys have less than ideal coverage; we therefore primarily rely

on static analysis to generate summaries for all callbacks and refine the summaries with

more fine grained information whenever they are available from dynamic analysis (i.e.,

whenever the Monkey exercises the event handler).

Once we have generated the summaries, we use them online in the following

way. As the user interacts with the apps, the uLink library continuously monitors all call-

backs invoked due to user interaction, and keeps a log only of the callbacks that led to a

file system or database write. When a link previously saved is opened, the link-required

96

callbacks (recorded when the link was saved) are processed using the summary. Any link-

required callbacks associated with file system (or database) writes can be safely ignored

(as in Case (c) in Figure 5.4). Instead, any link-required callbacks associated with file sys-

tem (or database) reads can be ignored only if they have no relationship with other write

callbacks that were logged after the link was saved. In fact, this means that re-creating the

link state requires reading a file (or a database) that was modified in the past, after the link

was saved (as in Case (b) in Figure 5.4). If such file (or database) dependency is found,

uLink generates a feedback report including details about the identified root cause, i.e.,

the callback information and the source/sink API. Using the example above, suppose that

the link-required callbacks of the saved link include callback c1, and that the callback log

contains c4. Because c1 has a file dependency on c4, the link correctness may be compro-

mised.

Note that, we cannot keep an indefinite logs of all write callbacks, for all apps. We

approximate by keeping a runtime log for a maximum period of time (currently an hour).

Our intuition is that writes that are older than that period are likely to have been absorbed

by the system (e.g., changes in preferences) so that they can be safely forgotten.

Our implementation currently provides fine-grained feedback only for the file

system, while detects database changes only at the granularity of read/write (through

static analysis). However, the same approach can be applied to databases by intercepting

database APIs in the app framework (offline, during dynamic analysis). For sensors, fine-

grained analysis of read/write operations is less critical because with the exception of a

few sensors (e.g., microphone) sensor operations are always reads. This also means that

97

links cannot break because of changes in the sensor values. However, sensors can cause

link ambiguity, which we discuss in §5.5. Finally, since it happens offline the dynamic

analysis could also be improved by adopting heavyweight tools such as taint tracking [49].

Other failure types. A captured link may fail also due to technical limitations of our

system or of the app framework on which it runs. For instance, on Android, it is possible

to track long tap UI events for items in a list, but the framework doesn’t provide an API

for replaying such events (while it does for single tap events). A link may also fail because

of developer errors. Record and replay requires the developers to add one line of code per

each event handler. If the developer forgets to instrument them all, a link may fail. Such

kind of problems are captured by the uLink library when re-creating the link state and

feedback is provided.

5.2.4 Developer Effort

uLink is implemented as an application library. To make her app uLink-enabled,

a developer includes the uLink library and extends the uLinkPage class provided by uLink,

instead of the original Page class provided by the underlying framework (this is needed

to overload the framework’s page launcher method). Once the library is added, shortcut-

only links are readily enabled.

To support shortcut-and-replay links, uLink requires app developers to add one

line of code in each UI event handler of the app. This effort is larger but still small

(see§5.4.1). Moreover, since this process is rather mechanical, the logging statements could

also be injected automatically through a source-to-source transformation tool. Table 5.1

98

Change Dev effort (LoC) Enabled links
Add uLink library, extend
from uLink-provided
Activity

1 per main
Activity class

shortcut-only links

Log event handlers 1 per UI event
handler

shortcut-and-
replay
links

Table 5.1: Developer effort to add uLink in Android apps.

summarizes the developer effort for the two types of ulinks in Android.

5.3 Implementation and Use Cases

This section provides details on our Android implementation of uLink, and de-

scribes three companion services we have built leveraging ulinks.

5.3.1 uLink Library

We have implemented uLink on Android 5.1.1. On Android, pages, called Activi-

ties, are started by taking a direct Android Intent. Activity classes are created by extending

one of 13 Activity classes provided by Android. An activity can be launched by supplying

an Android Intent, which is essentially a passive data structure containing an abstract de-

scription of an action to be performed. To transparently capture the intents, so that a target

activity can be directly launched by supplying the necessary intent, uLink uses the follow-

ing tricks: (1) it provides one uLinkActivity class for each of the framework-provided Activity

classes, with the same external interfaces, so that developers can extend the uLinkActivity

class, instead of the framework-provided Activity classes, to create a new Activity class.

(2) The launcher methods of the uLinkActivity classes are instrumented to dynamically cap-

ture the intents provided to them, and to encode them in a link generated for the views in

99

the page.

The above tricks can be used in other platforms as well. For example, in iOS,

Scenes extend NsObject.UIResponder.UIViewController, and, in Windows, Pages extend Sys-

tems.Windows.Controls.Page. So the uLink library for those platform could provide replace-

ment classes to be extended by developers to create app pages.

Developer effort. To enable shortcut-only links, each main Activity must extend the cor-

responding uLink-provided Activity class. By main Activity, we mean activities that im-

plements one of the 13 Android Activity classes. App developers often create one or a few

customized main Activity classes that extend from the framework-provided classes and

use them to instantiate all other activities, and hence the overhead is rather small (§5.4.1).

To support shortcut-and-replay links, uLink requires app developers to invoke

the trackEventHandler(view, view type) method of the uLink library, each time a UI event

handler is fired. Developers provide the corresponding View object (i.e., UI Element) that

raised the event and the its type. Due to the specific design of Android, a View object can be

of many types, such as a button, a list item or a textbox. For some types of UI event handler,

such as click event handlers, this information can be captured through the framework by

probing the View objects inside an Activity (effectively its UI tree) when it is first loaded

and assigned trackers. Since Click handlers are the most common type of handlers, this

would be a significant reduction in the developer effort. We are currently exploring this

approach. Table 5.1 summaries the developer effort needed for the two different types of

link.

To support the generation of summaries for link validation, for the static and dy-

100

namic analysis of Android apps we generated the call graphs using the Soot[109, 98] anal-

ysis framework. Since Android applications do not have a traditional Main entry point,

we created a dummy entry point leveraging the approach of Flowdroid [29]. We used the

Android source-sink APIs listed by SuSi [12]. This list includes 26,322 source and sink

APIs available from Android 4.2. We selected 2280 sources and sinks and grouped them

into six categories: file system, database, resources, media, camera, and sensors.

Query API. uLink provides the following API that an application or companion service

can use to programmatically generate or invoke links. (1) getLinkToCurrentView(): Returns

a link to the current view. (2) getLinkOnCondition(condition, callback): Registers a callback,

which will be invoked with a link and content of the current view, when the current view

matches a condition. For example, for the Stuff-I-Have-Seen service described below, the

condition can be “when the view belongs to a 3rd party app and the user has spent more

than 5 seconds on it”. (3) openLink(link): Opens the specified link. If the app is not currently

installed, it takes the user to the app store to install it. The ulink object ulink (pageURI,

events, callbacks) contains the page URI, the list of events for replay (possibly empty), and

the list of link-required callbacks (i.e., callbacks that were invoked when the link was first

saved).

5.3.2 Companion Services using uLink

We implemented three Android services demonstrating different uses of ulinks.

101

Bookmark. Being able to bookmark links to an arbitrary state in an app is useful for

various purposes. (i) When launched, mobile apps always start from the same entry page.

Even if a user always only cares about the content appearing on a certain page, say the

third, she must always go through the first and second page to reach her target. A user

that uses such app every day, perhaps multiple times, would benefit from being able to

create a shortcut to the target page. (ii) When interacting with an app, a user may find

some content she wants to save for later. (iii) Most users have tasks that repeat identical

every day or every so often, such as monitoring the price of an item to purchase, ordering

a pizza or checking whether new interesting houses are on the market. These tasks are

likely to always take the same user inputs (e.g., number and type of pizzas). Users would

benefit from being able to record such repetitive tasks and automate their execution. (iv)

Filling forms in mobile apps is notoriously painful. Having the ability to record user inputs

(e.g., login information, search parameters, etc.) for specific app pages can improve user

productivity. We built Bookmark (left-hand side of Figure 5.5) that collects links to content,

actions, tasks a user wishes to capture for fast recall. Each time a user shakes her phone, a

link to the current view is saved into the Bookmark.

Stuff-I-have-Seen. Users browse lots of content inside their apps (e.g., hotels to book,

restaurants to visit, news article to read), and sometimes would like to be able to search

through “all the stuff they have seen”, and not through all the content those apps (or the

web) offer. We built Stuff-I-Have-Seen (right-hand side of Figure 5.5), reminiscent of sim-

ilar work for the web [47], for desktop applications [80], and for entire computers [45].

102

Figure 5.5: Bookmark (left) and Stuff-I-have-Seen (right) services we have built using
uLink.

This service transparently logs contents the user sees in her apps, it indexes such content

and provides basic search capability. The app contents (i.e., texts appearing in the UI ele-

ments in the app page) are obtained by processing the app’s UI tree. For indexing it uses

the Apache Lucene library[1]. Semantics analysis (currently not implemented) could also

be performed locally [53] or using the cloud (as in Google’s Now on Tap [58] and Bing

Snapp [111]). The app currently tracks eBay product details, Kayak searches, NPRNews

news, Spotify’s songs and artists, and Kindle’s books.

360-IFTTT. IFTTT [5] is a popular app that allows users to “program” <if-do> recipes

such as “If it rains, remind me to take an umbrella”. Currently these recipes are built using

open APIs and web sites. With uLink, recipes can tap into app’s content and actions. We

103

App Category Description Downloads Total uLink LoC
LoC shortcut-only shortcut-and-replay

NPR News News & Magazines News reader 1M-5M 13,114 2 18
AnkiDroid Education Flash card manager 1M-5M 45,959 7 66
Book Catalogue Productivity Book list manager 100K-500K 41,587 8 228
Vanilla Music Music & Audio Music player 500K-1M 15,518 4 79
K9-Mail Communication Email client 5M - 10M 67,721 4 75
eBay Shopping e-Commerce app 100M-500M 500,251 6 368
Lyft Transportation Taxi service 1M-5M 356,894 1 30
Spotify Music & Audio Streaming music service 100M-500M 523,999 12 430
Amazon Shopping e-Commerce app 10M-50M 418,503 10 235
Amazon Kindle Books & Reference e-Book reader 100M-500M 432,040 13 346
BBC News News & Magazines News reader 10M-50M 398,835 12 170
Watch ESPN Sports Live sports 10M-50M 452,437 5 125
AccuWeather Weather Weather update 50M-100M 392,707 20 132
Aldiko Book Reader Books & Reference e-Book reader 10M-50M 239,967 6 198
ASTRO File Manager Productivity File manager 50M-100M 393,712 10 231
Photo Editor by Aviary Photography Photo editor 50M-100M 340,653 3 181
Booking.com Hotel Reservations Travel & Local Hotel reservations 10M-50M 317,012 5 491
APUS Booster+ Productivity System utility 10M-50M 29,923 7 75
Compass PRO Tools Utility 5M-10M 167,415 3 68
Dictionary.com Books & Reference Dictionary software 10M-50M 388,963 32 229
Duolingo Education Language tutorial 10M-50M 253,975 2 190
Hulu Plus Entertainment Live streaming 100K-500K 411,272 11 204
KAYAK Flights, Hotels & Cars Travel & Local Hotel, flight, & car manager 10M-50M 380,609 6 390
MakeMyTrip-Flights Hotel Travel & Local Hotel, & flight 5M-10M 421,598 15 345
Dictionary-Merriam-Webster Books & Reference Dictionary software 10M-50M 217,013 3 71
Music Player for Android Music & Audio Music player 10M-50M 89,411 5 79
Retrica Photography Camera & photoeditor 100M-500M 266,428 8 172
SPB TV Media & Video Streaming TV 10M-50M 318,170 5 163
the Weather Weather Weather update 10M-50M 273,724 7 167
TuneIn Radio Music & Audio Streaming radio 100M-500M 340,260 19 276
Advanced Task Killer Productivity System utility 50M-100M 12,843 6 50
WebMD for Android Health & Fitness Health app 5M-10M 319,537 7 170
Yahoo! News & Magazines News reader 10M-50M 395,316 10 260
Zillow Lifestyle Apartment finder 10M-50M 404,068 11 344

Average 283,572 8.4 195.8

Table 5.2: The 34 Android apps to which we added the uLink library and the developer
effort required. (First 5 apps are open source.)

built 360-IFTTT. Users can specify simple “if” conditions based on location and time. “Do”

actions are specified by executing the desired task with the app (once), saving the ulink in

the Bookmark (by shaking the phone), and copying the ulink into 360-IFTTT.

5.4 Evaluation

In this section, we evaluate uLink on five metrics: developer effort, coverage, cor-

rectness of link validation, link consistency over time (i.e., whether the links remain valid over

time and across newer app versions), and runtime overhead and performance. We report the

results for both shortcut-only and shortcut-and-replay links. Our evaluation is based on 34

104

Android apps, shown in Table 5.2. We first tested the library with three apps (NPRNews,

Lyft, eBay) and later integrated it into 31 more apps, without any changes to the library,

confirming the generality and applicability of our approach.

5.4.1 App Dataset and Developer Effort

The uLink library was integrated successfully in a total of 34 apps. Among the top

1000 Android apps, we selected apps based on popularity and compatibility with Android

5.0 from a variety of app categories with the exclusion of games (they are not in scope of

our link-based scenarios) and native code apps. Five of the apps are open source, and

hence we could modify their source code to include uLink. For the other apps, we used

Soot [109, 98] for Dalvik bytecode instrumentation. The limiting factor in integrating uLink

into closed source apps was not the complexity of the logic for injecting our changes, but

the recurrence of bytecode obfuscation in apps. Once instrumented, we verified that they

worked with 5 random links to 5 different pages.

The fact that we were able to integrate uLink through an automated instrumen-

tation process is a first proof of how easy and mechanical the required changes are. In

addition, we counted the lines of code (LoC) that were changed or added to integrate the

shortcut-only or shortcut-and-replay variants of uLink. Table 5.2 shows the results. For

comparison the table also reports the size of each app’s codebase. To obtain an estimate

for closed source apps, we counted the LoC after decompiling the app to Java source code

using the dex2jar [15] and jd-gui [6] tools.The numbers do not give an exact count for LOC,

but they provide a good approximation.

On average, shortcut-only required to change only 8.4 LoC in the app code. The

105

0

20

40

60

80

100

NPR

News

Lyft Amazon

Kindle

Duolingo BBC

News

TuneIn

Radio

#
 l

in
k
s

Shortcut-only links

With-replay links

Unsupported links

Figure 5.6: uLink link coverage in 6 apps (NPR News is open source, others are closed
source).

smallest effort was 1 LoC (Lyft) and the largest 32 LoC (Dictionary.com). Recall that today’s

deep links can support only stateless links. Shortcut-only provides a superset of deep links,

with a much smaller developer effort. To give some comparison points, we inspected the

code of two open source apps that support deep links. Ankidroid exposes one deep link

which is handled in 35 LoC. Wikipedia also exposes one deep link coded in 23 LoC. With

less than a third of this developer effort, uLink enables deep links to most app page views

(as we will show in the next experiment), and preserves application state.

The developer effort for shortcut-and-replay is higher (196 LoC in average) be-

cause it depends on the number of event handlers in the app, but the changes are still

relatively few (on average 0.07% LoC of the entire codebase need to be changed) and are

rather mechanical. As discussed in §5.3, in the Android framework, at least the very pop-

ular Click handlers could be handled automatically, without developer hints, with an ex-

pected reduction of the LoC by a third.

Needless to say, if the uLink library could be added to the Android framework, it

would require zero developer effort.

106

App Link description Dependency Same conditions Altered conditions
Ground truth uLink Ground truth uLink

Amazon Kindle Open a book page r db, r pref same db & pref Yes Maybe (r db, r pref) del db, w pref No (r db, w pref) Maybe (r db)
Amazon Kindle Sync books with cloud w db, w pref same db & pref Yes Yes del db, w pref Yes Yes
Photo Editor by Aviary Open a photo r file same files Yes Yes del files No (r file) No (r file)
Lyft Share referral code w pref same pref Yes Yes del pref Yes Yes
Lyft Request a lift loc same loc Maybe (loc) Maybe (loc) different loc Maybe (loc) Maybe (loc)
NPR News Open a story r/w cache in db same cache Yes Yes del cache Yes Yes
NPR News Add news to playlist r/w db same db Yes Maybe (r/w db) del db Yes Maybe (r/w db)
NPR News Locate nearest station loc same loc Maybe (loc) Maybe (loc) different loc Maybe (loc) Maybe (loc)
eBay View product r db same DB Yes Maybe (r db) del db Yes Maybe (r db)
WebMD Refill a prescription camera, r pref same loc Maybe (camera, Maybe (camera, different Maybe (camera, Maybe (camera,

through Wallgreens loc same pref r pref, loc) r pref) loc, del pref r pref, loc) r pref)
Vanilla Music Play a song r file, w pref same files & pref Yes Yes (r file) del files, w pref No (r file) No (r file)
AnkiDroid View a card r db, r pref same db & pref Yes Maybe (r db, r pref) del db, w pref No (r db, r pref) Maybe (r db, r pref)
Book Catalogue Reset hint w db, w pref same db & pref Yes Yes del db, w pref Yes Yes
Book catalogue Manually add a book w db same db Yes Yes del db Yes Yes
Merriam-Webster Dict. View word of the day w pref same pref Yes Yes del pref Yes Yes
Dictionary Free Search a word w pref same pref Yes Yes del pref Yes Yes
Summary Decision (Yes, No, Maybe): Wrong: 2 (6%) Same as ground truth: 24 (75%) Conservative: 6 (19%)

Accuracy No/Maybe feedback: Complete: 23 (88%) Incomplete: 3 (12%)

Table 5.3: uLink feedback for various links with dependencies on sensors, file system and
database (r=read, w=write, db=database, pref=preferences).

5.4.2 Coverage

We evaluate whether uLink can provide high coverage of an app views. We pick

6 apps and manually enumerate all possible views in them. We are careful to report only

unique views (e.g., if a menu for adjusting screen zoom appears in three different views,

we count it as one link rather than three). Then, we manually save links to every such

view, and open them to verify whether the result is correct. In these tests we do not vary

the operating conditions (e.g., same file system) so if links fail it is because of technical

limitations of uLink or of the app framework.

Figure 5.6 reports the results. Across the 6 apps we found that on average there

are 55 views one may want to reference through a link. uLink provides coverage for 71% of

them. Compared to the state-of-the-art where, if apps have deep links, it is no more than

a handful of links, this is a significant improvement. In particular, shortcut-only alone

(which comes with a tiny developer effort of 8 LoC, see Table 5.2) provides an average of

19 links per app and successfully enables links to almost all page’s default views in the

tested apps. Hence, with a much smaller developer effort, uLink provides much higher

107

coverage.

The unsupported links are mainly due to failures in replaying UI events. Most

failures are an artifact of binary instrumentation. In fact, for NPR News, the only open

source app here, the coverage is 91%. In closed source apps, instrumentation fails to log

custom event handlers (in the real world, the developer would provide the correct anno-

tations), so some UI events (although captured) cannot be replayed. Other reasons for link

failures were the following: i) there are UI elements to which the developer did not as-

sign a resource identifier so they cannot be replayed (this was the reason for the 9% failed

links in NPR News), ii) there are some special UI events (e.g., list long click) for which

the Android framework does not provide a replay API, and iii) there are page views that

are displayed in a browser (in Kindle) which cannot be reached by uLink. Although not

100%, uLink provides a good coverage. With the framework’s support we are optimistic

this coverage can become close to 100%.

5.4.3 Correctness of Link Validation

To evaluate whether uLink can discover external dependencies of links and cor-

rectly report when the link may fail, we conduct a controlled experiment with 16 links

in 11 apps with dependencies on file system, sensors and databases.2 The links emulate

what a real user would like to save in such apps, such as shortcuts to relevant pages (e.g.,

hourly news, product pages) or to recurrent actions with saved inputs (e.g., sync the book

list, refill a prescription, locate nearest radio stations). To verify the dependencies reported

2For clarity of analysis, we further distinguish read/write operations on preferences and cache. These
resources can be easily recognized as their names remain constant across apps.

108

by uLink, we change the resources after links are created, and examine if the link can open

the original app view. For instance, in the Vanilla Music app, we save a link for playing a

song stored on the SD card, delete the song (from the app) and open the link. Each link is

opened twice: (1) in the same conditions: after creating the link, we interact with the app

for a while and then open the saved link, and (ii) in altered conditions: after creating the

link, we force a change in the resource(s) the link depends on and then open the link.

Table 5.3 shows the results. In analyzing them, recall that currently uLink mon-

itors file system dependencies at fine-granularity, but database and sensor dependencies

at coarse granularity. The table reports the ground truth and the uLink’s output for both

conditions. “Yes” means that the link can be safely opened, “No” means that the link

won’t work, and “Maybe” means that the link may not work (if the resource it depends

on is modified). For No and Maybe, uLink provides a feedback on the root cause. Over-

all, uLink is wrong in only 2 out of 26 test cases (marked in bold in the table). In 75% of

the cases it agrees with the ground truth, and in the remaining 19% of the cases it takes

a conservative decision, mainly due to the lack of details on database read/writes. For

instance, the “open a Kindle book” link requires reading the database. As uLink cannot

yet track whether those reads have been affected by previous writes, it fires a warning. For

links requiring reading the file system, uLink can be more accurate. For instance, the open

photo link in Aviatar requires reading a file (the photo). In the same conditions, uLink cor-

rectly detects the link will work. In the altered conditions, uLink captures that the photo

has been deleted and understands the link-required callbacks have a dependency on that

operation, thus correctly concluding the link won’t work. In No/Maybe situations, the

109

0 50 100 150 200 250

Consistent

Not consistent

Days
Ly
ft

Ly
ft

Ly
ft

Ly
ft

Sp
ot
ify

Sp
ot
ify

Sp
ot
ify

Sp
ot
ify

eB
ay

eB
ay

eB
ay

eB
ay

View activity reminders

Select a message to view

Search motor vehicles

Browse songs

View top lists

View new releases

Generate referral code

Make a payment

Edit profile

0 50 100 150 200 250

Figure 5.7: uLink across different app versions over time (green = link opened correctly,
red = link failed).

feedback is complete in most cases (88%).

Overall, uLink is able to provide accurate feedback. With the addition of fine-

grained database analysis we expect the accuracy to be close to 100%. The services con-

suming ulinks can further decide how to interpret this feedback, especially in Maybe situa-

tions. For instance, “Stuff-I-have-seen” may be less conservative and treat Maybe verdicts

as Yes. Another service for automating recurrent user tasks (e.g., refill prescriptions) may

be more conservative and treat them as No.

5.4.4 Consistency over Time

We now explore whether ulinks are reliable over time, in the face of i) app up-

dates, and ii) app content changes. To evaluate consistency across different app versions,

we downloaded several older versions of some of our apps and tested whether ulinks

saved in the oldest version could be opened correctly in the latest versions. We tested 3

different links in Spotify (9 versions covering 7 months), in eBay (4 versions covering 4.5

months) and in Lyft (4 versions covering 1 month). Figure 5.7 reports our findings. For

110

Spotify, 2 out of 3 links worked for the entire period; one link broke after the 3rd version

update. Upon investigating further, we found that the cause was the removal of a UI ele-

ment in the page layout. The second failure we noticed was for an eBay ulink which did

not work for an intermediate version. In this case, uLink could not load the UI element

and the app showed a dialog instead, but there was no crash. This study shows that links

are relatively stable over a short period of time—there was no single failures for 50 days

after the link creation.

Then we investigated how uLink copes with app contents updates. We created a

set of 10 links from 5 different apps (NPR News, Vanilla Music, Spotify, Book Catalogue

and eBay). We selected common links such as viewing an eBay item, viewing the top NPR

news, playing a song in Vanilla Music or viewing the top releases in Spotify. Then for 4

weeks (8 weeks for NPR News), at least once day, we ran a script that would open each

of the links, and save a screenshot of the resulting page and debug logs. By inspecting

the saved screenshots and logs, we observed that all 10 links, except 1, provided correct

results for the entire duration of the experiment. Note that some of the content were no longer

available in the app itself; but the app backend still maintained the content and hence uLink could

retrieve it, highlighting the benefit of uLink. The failed link was for viewing a specific top

news in NPR News. After 4 weeks, the link returned an empty page: the news item was

not available anymore in the app backend with the same news ID.

111

Replay time (ms) Replay log size
App and link description (& UI events) (bytes)

RERAN uLink RERAN uLink
TuneInRadio: Stream a radio station 5,351 (4) 1,105 (1) 7,480 651
VanillaMusic: Go to a song and play it 7,762 (4) 982 (1) 6,880 693
NPRNews: Search news for some dates 17,345 (5) 1,392 (0) 11,296 984

Table 5.4: Comparison of uLink and the record and replay RERAN tool in terms of replay
time, number of replayed UI events and log size.

5.4.5 System Overhead and Performance

The uLink library is 245 kB bytes big so it adds a small storage overhead to

existing apps. The computation overhead is also minimal and processing occurs asyn-

chronously to the app execution with no app slowdown. ulinks are typically 100–150 bytes

(the average size of the links used in Table 5.3 is 136 bytes).3 For shortcut-and-replay links,

uLink needs to log UI events. We executed AnkiDroid, a relatively I/O intensive app, for 10

minutes, and measured a callback log size of only 432 kB. With an hour time windows the

cost is a few MBytes. We conclude uLink is a lightweight system.

When opening a ulink, if the app targeted by the link is already running (in fore-

ground or background), the delay is the page rendering time. If the app is not running,

uLink needs to first start the app and then render the page, so the delay includes the app

loading time (typically 1–2 seconds depending on the app) and the page rendering time.

We executed a simple experiment to verify that uLink’s overhead on an app page render-

ing time is negligible. We took five apps and created three links for each. We measured

the uLink page rendering overhead as the difference between the 1) the average time nec-

essary to open each link and achieve a stable page with the uLink-enabled app, and 2) the

3The size of ulinks mainly depends on the size of the intent objects captured by input interception. Ac-
cording to Android guidelines, this is maximum 1 MB. However, to keep links small, rather than saving large
objects in the URI, the objects can be saved in storage and their reference be included.

112

time the unmodified app takes to load the same page. As we are interested in comparing

the page rendering times, we kept the app running in both conditions, but ensured the

cache was cleared after each test. Moreover, when measuring the uLink rendering delay,

we ensured the Activity targeted by the ulink was cleared on the stack (i.e., when the ulink

is opened, we force a call to OnCreate). To measure the rendering time, we measured the

time between the first call of OnCreate and the time when the root view of the Activity was

inflated (i.e., all UI elements in the page are rendered). Across the 15 tests, the mean delay

was 28 ms.

In the previous test, we considered shortcut-only links. To evaluate the delay of

shortcut-and-replay links we use RERAN [57], a record and replay tool for Android, as a

baseline. Table 5.4 shows three example tasks with three different apps. We recorded the

tasks with both systems, stored the log (a link in the case of uLink) and then replayed each

task (open the link in the case of uLink). We report execution time, number of replayed UI

events and size of the logs. The tasks are ordered by increasing number of clicks. uLink

is from 5 up to 13 times faster than RERAN. More importantly, while in RERAN the re-

play time increases as the task’s complexity increases (number of visited pages and clicks),

with uLink it remains fairly constant. Likewise, the RERAN log sizes are at least 10 times

larger—for uLink, replay log is essentially the link itself, which is quite small (last column).

Finally, the average replay time with uLink is 1.2 seconds, which is what users would ex-

pect as page loading time.

Overall, these experiments show that uLink is a lightweight system and provides

an acceptable user experience.

113

5.5 Limitations

We discuss key limitations of our work.

Link ambiguity. It is not always possible to correctly understand a user’s expectations

when saving a link. For example, after saving a link to the “Nearby restaurants” view,

when the user invokes this link later on, does she expect to see the restaurants near the

current location or near the location the link was recorded at? Or let us consider the NPR

News app: when clicking on the first news item in the list of “Hot Daily News”, a view

showing the selected news story will be displayed. If a user saves a link to this view, does

she want to save a link to that specific news article or to the top daily news (i.e., the first

item in the list)? As discussed in §5.1.2, such link ambiguity is not unique to uLink, but

we expect more of such cases with mobile apps. As for web URLs, practice will help users

understand what links can or cannot capture, on a per app basis. However, the system

can help identify ambiguous situations and prompt the user for clarification. Our system-

generated feedback is a first step towards this goal.

Unwanted replay. How can we prevent users from buying the same Amazon item twice

by mistakenly clicking twice the same app link? We think such problems cannot be re-

solved without help from the app developer, in the form of annotations for pages or UI

elements which should be excluded from link capture (or request user confirmation) or by

providing some app semantics so the system can generated link descriptions and promptly

warn the user.

114

Security and ulink sharing. Users can share web URLs. From a technical point of view,

users can share share also ulinks. However, to make this viable, uLink needs to address

at least two problems. First, it needs to handle cases in which a user may receive a link

for a not-installed app or from an app with a different version than the installed one. Sec-

ond, security and privacy issues must be addressed: What if the shared link is malicious?

What if the shared link makes changes to the app’s preference? What if the share link con-

tains personal information such as login information or home address? Link encryption,

cloud-aided link security analysis, user/developer opt-out policies can help alleviate these

issues.

App pages revisitation. By default, uLink always provides the most updated content

that a ulink references (which is also the case for the majority of web URLs). Revisiting

app content is currently not supported, but it could be enabled by relying on a caching

infrastructure and diffing tools similar to what proposed for the web [17, 18, 105].

Technical limitations. We currently only support capturing of UI elements that have a

unique resource identifier associated with them. Moreover, we rely on the Android frame-

work APIs to programmatically replay UI events. For UI events for which Android pro-

vides only the screen coordinates (e.g., random touches on screen), uLink can only mimic

that action across devices with similar resolutions. Finally, uLink cannot handle certain

types of gesture such as swipes, pinch and zooms due to the lack of support from the An-

droid framework. These limitations have little impact on most apps and for our use cases.

However, they can be a problem for use cases involving games.

115

uLink largely relies on the parameters passed between app pages through intents.

If the syntactic structure of the program changes, mostly due to new app versions, uLink

will be unable to reflect those changes. This means that old ulinks captured may not work.

Changes in app versions can be tracked with cloud support so to automatically detect

broken links (this is also important for link sharing).

Fine-grained app summaries. uLink currently provides fine-grained summaries only for

file system operations. For the file system we were able to leverage OS utilities (strace). For

databases it is necessary to instrument the Android framework and app APIs to track the

information flow. Taint-tracking can also improve the precision of our approach.

5.6 Conclusions

uLink is a novel approach to enable deep links in mobile apps. uLink is dis-

tributed as a small library that developers include in their apps with tiny changes. Com-

pared to deep links, uLink provides higher coverage of an app views with less developer

effort. uLink goes beyond the state-of-the-art: it provides links that are stateful and that

can be specified by a user on demand (unlike deep links), and it achieves these benefits

without incurring large resource overheads or modifying the OS (unlike record and replay

systems). Although usability is not a goal of our system, uLink provides the first elements

towards that goal: fast experience, no specification of a session start point, feedback for

links that may not work properly. We implemented uLink on Android and used it with

30+ apps with very promising results.

116

Chapter 6

Application Recovery from Faults

As smartphones and tablets continue to increase in popularity [91, 90], more and

more critical software (e.g., financial, military, medical apps) shifts to these new platforms.

Unfortunately, smartphone software (from the OS to libraries to apps) has a high defect

rate [78] due to many factors, including the novelty and rapid evolution pace of smart-

phone software, the low barrier to entry for publishing software via app marketplaces, as

well as the myriad devices and user-specific configurations on which it is running. Main-

taining certain functionality (such as the ability to place phone calls) is critical on smart-

phones, and unlike on desktop systems, we cannot always rely on network connectivity

for downloading and applying a patch to fix the bug. Hence there is a strong impetus

for self-healing smartphone software. In this chapter, We take a step towards this by pre-

senting an approach for automating patch construction to recover from and prevent future

crashes in Android apps.

Our approach is more suitable for smartphone apps than, say, desktop or server

117

programs, due to the compartmentalized nature of smartphone apps: many pieces of func-

tionality, e.g., GUI elements, can be turned off without affecting user experience [31]. Our

implementation first employs dynamic analysis to detect when an app has entered an er-

ror state and to identify the offending part of the app; then it implements recovery, either

by eliminating transient faults and continuing to run at full functionality, or rolling back

to a safe state followed by sealing-off the offending part and operating in a limited mode

while avoiding further crashes. An example would be a bug in the auto-completion code

that crashes the smartphone’s Dialer app whenever the user tries to dial a number: when

we detect the crash, rather than rendering the whole app inoperable and unable to place

emergency (911) calls, we create and apply a patch to turn off auto-completion, hence

containing the damage and allowing the Dialer app to continue to run (albeit with some

limitations). While this is an incipient form of self healing in smartphone software, it is

compelling nevertheless.

Exceptional conditions or bugs have many causes, and manifest in a variety of

ways: unhandled exceptions, assertion failures, system overload; our framework detects

several such exceptional conditions and reacts accordingly, depending on whether the

fault is transient or persistent.

As the context of the error may be different in different situations, it is unreason-

able/infeasible to expect the smartphone user to know how to circumvent the error and

keep the app functional. Hence our system automatically detects the error and changes

the app’s behavior to respond to these circumstances so that most of the normal app work-

flow is not hampered. The approach is centered around several techniques which facilitate

118

self-healing: (1) extracting a high-level model of app operation which captures legal app

transitions as a graph; (2) continuous monitoring to detect crashes; (3) identifying and

sealing-off the offending app component through app bytecode rewriting.

Although crash prevention has value and is preferable, smartphone software

bugs are a fact of life, so in this work we will outline our ideas regarding recovering (po-

tentially limited) functionality, as follows. Using the statically-constructed model and the

crash point, the app goes to a “rollback” point and depending on the nature of the fault

(transient or persistent) it creates appropriate conditions, potentially via seal-off, to avoid

future crashes.

We have implemented a prototype that equips Android apps with the aforemen-

tioned self-healing functionality; we have chosen Android as a target due to its leader

status [71]. Our framework is robust, running on actual phones and supporting widely

popular apps such as K-9 Mail and Facebook Mobile. Moreover, our approach does not

require access to the app source code or modifications to the kernel or libraries; rather we

rely on static analysis and rewriting at the bytecode level.

We have evaluated our implementation on a set of bugs in real-world, popular

Android apps running on Motorola Droid Bionic phones. Experiments show that our im-

plementation manages to successfully perform self-healing without prohibitive overhead,

and the self-healing process is accomplished very efficiently, in less than one minute.

We expect that the fault information revealed by our system could provide feed-

back to the app developers to help them develop bug-fixing patches.

119

6.1 Approach

We first present discuss self-healing in the context of the Android platform and

then present our approach in detail.

Self-healing in the context of Android apps Self-healing computing systems’ capabili-

ties include inferring (1) ways of detecting failures (e.g., due to system malfunctions such

as exceptions, violations of operational constraints), and (2) strategies for applying correc-

tions to restore (some or all) system functionality. The key concept behind our self-healing

mechanism in Android is that an app must resume to a normal GUI state after the app ex-

periences a failure. Hence, it is key that we discover a model (set of GUI states) beforehand,

so during recovery the app can be driven to an appropriate state and avoid future crashes.

For the purpose of this work, we focus on two types of Android app faults: transient and

persistent. Transient faults occur when operations fail as a result of resource unavailabil-

ity and will disappear if the operation executes again if the resource becomes available;

a simple and effective recovery strategy for these is re-execution. Persistent faults do not

go away via re-execution, e.g., because they are due to errors in application logic; in such

cases, sealing-off the offending operation is an effective recovery strategy.

Our approach consists of the following phases:

• Model construction and rollback point identification. In this phase we identify

discrete, safe and unsafe points in the app (which form the basis for our approach),

as well as transitions between them, using static analysis.
• Detection. In this phase, our framework performs dynamic analysis on systems’s

behavior and app output (e.g., system-wide resource usage, app method calls, GUI

120

elements, privileged actions) to detect crashes and identify faulty components.
• Recovery. Our recovery mechanism works in two phases. First, after a crash point

is detected, we identify a safe rollback point and if needed (depending on the nature

of the fault), we seal off the bytecode associated with the crash point by using the

model to identify the faulty part of the binary and then rewrite the bytecode to avoid

future execution of code associated with the crash point. Second, we restart the app

to a nearby safe point so that users can continue their work and interaction with the

app.

6.1.1 Architecture

Figure 6.1 shows our system architecture, centered around detecting crashes and

in response applying seal-off patches. A model is constructed first, via static analysis on the

app (bytecode); the model includes rollback (resume) points where the app will be driven

when recovering from a fault. Next, the app is executed, either manually by users or auto-

matically via systematic exploration tools and its execution log is monitored via dynamic

analysis. When a failure is detected, we employ bytecode rewriting (code generation and

instrumentation) to create a patch. We apply the patch via bytecode rewriting; the patch

seals off the functionality responsible for the crash, yielding a self-healing capable app. We

now describe our system’s operation in detail.

6.1.2 Model Construction and Rollback Point Identification

The app model forms the basis for identifying safe and unsafe points in the app.

Safe points will be used for rollback and unsafe points will be sealed off. The model,

121

Model	

Dynamic	

Analysis	

Log	

App	

Self-­‐healing	

Capable	
 App	

Seal-­‐off	

Patch	

Figure 6.1: System architecture.

named Static Activity Transition Graph (SATG [31]), is a transition graph where nodes are

app screens (“activity” = GUI screen in Android parlance) and edges represent possible

transitions between screens (which will take place, e.g., as the user navigates around us-

ing the GUI). For example, a directed edge from activity A to activity B points to a valid

transition from A to B as a result of the user exercising a GUI object associated with A.

Note that SATG construction is not a contribution of this work, but the SATG is

nevertheless essential to identifying rollback points and taking recovery actions: in the

case of a fault, we calculate the nearest “safe” activity that can be used as a rollback point.

122

A	

C	
 B	

D	
 Crash	

E	

Ac+vity	

Figure 6.2: Our static analysis infers B as the rollback point when the app crashes at point
D.

Static analysis is important because it reveals the sequence of callbacks associated with ac-

tivity transitions: invoking these callbacks (which in normal user interaction corresponds

to exercising a sequence of GUI elements) allows us to reach the rollback point. Figure 6.2

shows a SATG constructed with our A3E tool [31]. Here the root node A is the initial ac-

tivity. Each edge to the next node is labeled with the callbacks or events triggering that

transition. For example Event 1 is responsible for the transition from activity A to activity

B. Suppose the app crashes at activity D (marked in the figure). From the SATG we can see

that activity D was reached via activity B, so activity B is the nearest safe point to restart

the app. More generally, rollback points can be obtained via a backward traversal from a

crash point.

123

Systema(c	
 Explora(on	

NewsListAc(vity	

HourlyNewsAc(vity	
 PlaybackService	
 onHandleIntent	
 playCurrent	
 prepareThenPlay	

Start	
 Monitoring	

App	
 	

Excep(on:	

Illegal	
 State	

	

	

Recovery	

Seal-­‐off	
 Method	

via	
 Binary	
 Rewri(ng	

Rebuild	
 App	

Binary	
 Restart	

Monitoring	

News	
 Play	
 Back	

Service	
 Started	

Mehod	
 1	
 Mehod	
 2	
 Mehod	
 3	

Figure 6.3: Example: fault point detection and rollback in the NPR News app.

6.1.3 Detection

We now discuss what we detect —classes of faults in Android app—and how we

detect them via monitoring.

What we detect We begin by presenting several common classes of Android apps faults,

along with app names that contain these faults (in certain versions). Note that these faults

are not particular to Android, as they affect other smartphone platforms as well.

(a) Resource Shortage/Unavailability. Unlike the desktop or server platforms, resource

availability cannot be taken for granted. For example, smartphone multitasking is

much more restrictive: when an app is not in focus it is placed on a stack and essen-

tially put to sleep, its resources taken away and assigned to apps in focus. Apps not

properly designed to work with this kind of behavior may experience failure because

of resource shortage.

(b) Unhandled Exceptions. These failures are mostly due to poor programming prac-

tices and inadequate testing that result in failure to anticipate and handle the poten-

tial exceptions raised by the app or the system (e.g., NPR News, SoundCloud, K-9

124

Mail).

(c) Crashes due to Semantic Errors. This is a broad class of errors; for example the app

fails to accepts certain types of input that otherwise should be accepted and dealt

with by the program. For example, an app crashes because the input file is not in the

correct format or broken, hence the app crashes instead of generating appropriate

warnings (APV PDF Viewer).

(d) Crashes due to Loss of Network Connectivity. Most Android apps communicate

with remote servers. Even the apps which do not require a network to carry on their

functionality may still require network access for loading advertisements. However,

Internet connectivity might be intermittent, hence apps must deal with situations

where network access is temporarily unavailable (e.g., Facebook Mobile).

(e) Permission Violations. In Android, access to sensitive resources is protected by a

set of permissions. When the app tries to access resources or functionality it does not

have permission for, the OS will terminate the app.

(f) IPC errors. Inter Process Communication (IPC) is heavily used in Android for isola-

tion and security. Apps must abide by the IPC communication protocol; failure to do

so may lead to apps being terminated.

How we detect Currently our detection strategy relies on Android’s system-wide log-

ging facility (logcat). In Android, the Dalvik VM constantly monitors the app and when a

fault is encountered, the VM reports the potential cause of error and the associated meth-

ods or callback into the logcat. To implement monitoring, we add a listener in the Dalvik

VM’s logging system and in the event of a fault, we isolate the exact method and activity

(screen) responsible for the fault.

125

6.1.4 Recovery

Example: recovering from a bug in NPR News We first illustrate how our system recov-

ers from an actual bug in the NPR News app (Figure 6.3). App execution starts from the

root activity, NewsListActivity. The A3E systematic explorer clicks a menu button to get the

hourly news update, which takes the app to HourlyNewsActivity. Then A3E plays the radio

stream repeatedly. This initiates a service component, PlaybackService. At this time the

program enters an illegal state and crashes; the crash is captured in the log. Analyzing the

log, our system finds that the closest method associated with the crash is prepareThenPlay

in the service class PlaybackService. This concludes the online fault detection phase. Next,

in the recovery phase, we apply a seal-off patch to prepareThenPlay, as described next.

Constructing seal-off patches We sketch the construction of the bytecode patch (insert-

ing code in the app via binary rewriting, achieving seal-off) in Figure 6.4. Suppose er-

roneousMethod is the method associated with the fault. First, we surround the original

method code with a generic exception handler. Upon failure, the handler will just return

(because the original method’s return type is void), thus preventing executing the erro-

neous code. Custom code can be added at this point, e.g., to perform more extensive

checkpointing. In general, though, the returned value will have to be of the same type as

the original mehtod’s return type, hence we create a return object of the appropriate type.

Next, for methods containing activities (recall that an activity roughly corresponds

to a screen in Android), we apply a similar technique, inserting a try/catch block around

the onCreate virtual method from the Activity class. The onCreate method is called when

126

// inside the faulty method
void erroneousMethod(T param)
{

// surround method with try/catch block
try
{

// original method code
}
catch(Exception e) //generic exception handler
{

// write custom exception handling code
return;

}
}

// inside the activity
@Override
protected void onCreate(Bundle savedInstanceState)
{

// Surround with generic try−catch block
try
{

// initialize activity and load GUI components
}
catch(Exception e)
{

// write custom error handling code
// refresh the activity
startActivity (getIntent ());

}
}

Figure 6.4: Code sketch of patch construction.

the activity is loaded (i.e., the screen is displayed). If the sealed-off method execution

generates further exceptions, the handler will catch the exception and refresh the activity.

Thus the activity will remain operational. With the above technique, we gain two advan-

tages: first, by sealing off just the actual problematic method we are ensuring the least

amount of functionality loss; second, we are limiting the functionality seal-off only in the

time of an actual fault—the rest of the time the app will behave normally. We thus imple-

ment a demand-driven approach, with self-healing taking over only when necessary, and

minimizing operational limitations.

127

The general technique Our failure detection is dynamic hence it takes an actual execu-

tion to find and recover from a crash. When the system is used “in the wild,” users interact

with the app as they normally do, and if the app crashes, users will experience a small de-

lay due to recovery. For this dissertation, however, we used an automated exploration tool

we develop in prior work, A3E [31] to drive the execution, so we could reliably drive the

app into a state where it crashes. In the background, we constantly monitor the VM log for

events that may indicate failure (Section 6.1.3).

When a failure does occur, we determine the finest granularity level for inserting

our fault-avoiding code. Note that we have several options here. First, we could mark the

entire current activity as the potential fault point and deny access to the activity; but this

is not realistic, as an activity contains many other GUI features that may be completely

unrelated to the fault observed. Second, we could limit the functionality of the associated

GUI object. For example, if the crashing GUI object is a button we can disable it. But this

may be also unrealistic. For example, for some inputs the button code may fail, but it will

work on other inputs. Third, we can operate (seal off) at the method level. Therefore, the

method is the finest seal-off granularity; we employ this granularity level in our approach

by assigning the fault to the crashing method. For example, in Figure 6.3 we will seal-

off the third method, prepareThenPlay (using the patching procedure explained above)

because it is on the lowest level of the exception trace.

Once a crash point is reached, we rollback and resume the app. The rollback point

depends on whether the crash is transient or persistent.

For transient errors (generated in response to external events such as illegal sensor

128

data, unexpected shared memory deletion by the Android OS, background services shut-

down due to low energy, network unavailability, resource shortage, etc.) the rollback point

is the point of the crash. The idea is that after rollback and restart these transient environ-

mental exceptions may not be raised and the app can resume its functionality normally.

For persistent errors (e.g., unhandled exceptions, semantic errors, IPC communi-

cation errors, unauthorized access), we rollback to an earlier point (previous node in the

SATG) and use bytecode rewriting to seal off the faulty method in the faulty SATG node.

While this limits functionality, it ensures that the app will not call the offending method

again.

6.2 Implementation

Platform We implemented our approach and conducted experiments on a Motorola Droid

Bionic phone, running Android 2.3.4 (note, however, that the test results can also be achieved

by running the app in the emulator).

Tools For model construction we used the SATG extraction component (static analysis-

based) of A3E. To drive exploration, we used the systematic exploration component of

A3E. Bytecode rewriting was done using the smali Dalvik assembler/disassembler [11].

We wrote the main instrumentation code in Java.

In our current setup the phone was “tethered” to a laptop; this was necessary for

running A3E, smali, and initiating rollback/restart. However, we expect that in the future

the approach will run solely on the phone, as we envision it should run “in the wild,” with

129

no tethering required.

130

App Version Bug Type Size
Kinst. KBytes

Facebook Mobile 1.6.0 Network Unavailability 173 3,000
NPR News 2.1b Semantic Error 21 70
K-9 Mail 4.0.0.3 Unhandled Exception 157 2,300
SoundCloud 1.2.2 Unhandled Exception 48 250
APV PDF Viewer 0.2.7 Semantic Error 3 1,100

Table 6.1: Examined apps.

6.3 Evaluation

Examined apps. For evaluation we chose several sizable, popular Android apps that con-

tained known bugs. In Table 6.1 we present the apps: version, type of bug, and app size.

According to Google Play, each app was highly popular, with more than 1 million down-

loads. We have evaluated our approach in terms of effectiveness, i.e., can the system re-

cover from actual bugs in popular sizable apps? and efficiency, i.e., is the overhead of our

approach acceptable?

Effectiveness Our approach was effective at performing self-healing in response to three

categories of bugs encountered in five popular apps.

Efficiency Our approach incurs a one-time overhead for model extraction, via static anal-

ysis, to enable rollback point detection. The second column of Table 6.2 shows the static

analysis time for each app. Model extraction time is solely depending on the app’s binary

size and code complexity, and as it is a one-time cost incurred before running the app, we

believe that the 34–94 seconds figure is acceptable.

We drove the apps to crash points via systematic exploration. Depending on

131

the bug, exploration time will vary, though techniques such as targeted exploration [31]

or fast-forwarding record-and-replay [79] can significantly accelerate the procedure. The

time-to-crash is presented in the third column of Table 6.2. For example, for Facebook

Mobile, the actual fault was in the initial login screen, hence the systematic exploration

time (4 seconds) was much lower than for the other apps.

As mentioned in Section 6.1.4, self-healing might require bytecode rewriting (if

seal-off is involved) and always requires rollback and restart. The bytecode rewriting time

(performed only once after the crash, for non-transient bugs) depends on the size of the

app. This time is shown in the fourth column of Table 6.2: 13–44 seconds. Facebook

Mobile required no rewriting because it experiences a transient bug, hence the ‘0’ figure

for rewriting time. Finally, the time required for rollback and restart is shown in the last

column of Table 6.2. The rollback time involves uninstalling the current version, installing

the modified app, and rolling back to the nearest safe point within the app. While just

rolling back requires very little time (in our case not more than 1 second), uninstalling the

current faulty app and reinstalling the modified app takes longer, 3–8 seconds. However

this is much shorter than any manual rollback and restart because not only a human would

require longer time to uninstall and reinstall but also a human would restart the app from

the home screen and therefore would take longer to reach the former point (the point

where the app was before the crash). As we rollback to the nearest safe point, we can

ensure faster exploration to the safe state. As shown in the last column of Table 6.2, our

automated rollback required at most 9 seconds for the apps. Hence the total self-healing

time is 9–50 seconds, which we believe is acceptable.

132

App Static Systematic Self-healing
analysis exploration Bytecode Rollback

(time-to-crash) rewriting and restart
(seconds) (seconds) (seconds) (seconds)

Facebook Mobile 86 4 0 9
NPR News 53 22 22 9
K-9 Mail 94 52 44 6
SoundCloud 51 16 17 4
APV PDF Viewer 34 7 13 4

Table 6.2: Efficiency measurements results.

For transient faults, recovery is faster because we do not rewrite the app: a sim-

ple rollback is usually enough to resume normal behavior. For example, our examined

version of Facebook Mobile failed when there was no network connectivity. A rollback

restored the app and as the connectivity was reestablished, the app resumed its normal

operation. Hence recovery was faster than for the other apps, as no bytecode rewriting

was performed. Note that app performance is not affected by seal-off, since only a specific

part of a method’s bytecode (i.e., the prologue) is rewritten.

6.3.1 Limitations

Our prototype is subject to several limitations that we intend to address in future

work.

First, mobile apps tend to be GUI-centric, so upon rollback and restart we only

lose GUI state such as previously-entered data, or selected items. For more stateful sce-

narios, we will have to perform more sophisticated healing operations (e.g., more sophis-

ticated fault detection analyses and more extensive checkpoint and rollback).

Second, our approach is reactive (responds to bugs after they manifest), rather

133

than proactive. We expect that, using techniques such as consistency constraints or invari-

ant checking, we can detect and fix errors before they develop into full-fledged crashes.

Third, in our current implementation, the phone was tethered to a laptop. There

is however no fundamental hurdle to running the approach entirely on the phone. We used

tethering for systematic exploration (which will not be necessary when apps crash “in the

wild”); and to benefit from existing app rewriting support offered by desktop tools.

6.4 Conclusions

We have presented an approach that uses automatic error detection and patch

construction towards providing a certain degree of self-healing capabilities to Android

apps. We use dynamic analysis to identify crash points, static analysis to identify rollback

points, and binary rewriting to seal off methods associated with crash points so that apps

can continue to function even after a crash, albeit with limited functionality. Through

experiments on actual bugs in several popular apps, we show that our approach is effective

and reasonably efficient.

134

Chapter 7

Related work

Over the years an extensive amount of research has been conducted focusing on

fault localization and program recovery on the runtime. We compare our approaches with

other research works regarding the differences we have found in the design, implementa-

tion, and application.

7.1 Program Exploration

The work of Rastogi et. al. [93] is most closely related to ours. Their system,

named Playground, runs apps in the Android emulator on top of a modified Android soft-

ware stack (TaintDroid); their end goal was dynamic taint tracking. Their work introduced

an automated exploration technique named intelligent execution (akin to our Depth-first

Exploration). Intelligent execution involves starting the app, dynamically extracting GUI

elements and exploring them (with pruning for some apps to ensure termination) accord-

ing to a sequencing policy authors have identified works best—explore input events first,

135

then explore action providers such as buttons. They ran Playground on an impressive

3,968 apps and achieved 33% code coverage on average. The are several differences be-

tween their approach and A3E. First, they run the apps on a modified software stack on

top of the Android emulator, whereas we run apps on actual phones using an unmodi-

fied software stack. The emulator has several limitations [25], e.g., no support for actual

calls, USB, Bluetooth, in addition to lacking physical sensors (GPS, accelerometer, cam-

era), which are essential for a complete app experience. Second, Playground, just like our

Depth-first Exploration, can miss activities, as Table 4 shows—hence our need for Targeted

Exploration which uses static analysis to find all the possible activities and entry points.

Third, their GUI element exploration strategy is based on heuristics, ours is depth-first;

both strategies have advantages and disadvantages. Fourth, since we ran our experiments

on actual phones with unmodified VMs we could not collect instruction coverage, so we

cannot directly compare our coverage numbers with theirs.

Memon et. al.’s line of work on GUI testing for desktop applications [130, 129, 84]

is centered around event-based modeling of the application to automate GUI exploration.

Their approach models the GUI as an event interaction graph (EIG); the EIG captures the

sequences of user actions that can be executed on the GUI. While the EIG approach is

suitable for devising exploration strategies for GUI testing in applications with traditional

GUI design, i.e., desktop applications, several factors pose complications when using it

for touch-based smartphone apps. First, and most importantly, transitions associated with

non-activity elements cannot be easily captured as a graph. There is a rich set of user input

features associated with smartphone apps in general (such as gestures—swipes, pinches

136

and zooms) which are not tightly bound to a particular GUI object such as a text box or

a button, so there is not always a “current node” as with EIG to determine the next ac-

tion. For example, if the GUI consists of a widget overlapped on a canvas, each mod-

eled as graphs, then the graph corresponding to the widget and the canvas combined

has a set of nodes of size proportional to the product of number of nodes in the wid-

get and canvas graphs; this quickly becomes intractable. Moreover, the next user action

can affect the state of the canvas, widget, both, or neither, which again is intractable as it

leads to an explosion in the number of edges in the combined graph. For example, activ-

ity com.aws.android.lib.location.LocationListActivity in the WeatherBug app contains different

layouts, each containing multiple widgets; a horizontal swipe on any widget can change

the layout, hence with EIGs we would have to represent this using a bipartite graph with

a full set of edges among widgets in the two layouts. Second, as mobility is a core fea-

ture of smartphones, smartphone apps are built around multimodal sensors and sensor

event streams (accelerometer, compass, GPS); these sensor events can change the state of

the GUI, but are not easily captured in the EIG paradigm—many sensors do not exist on

desktop systems and their supported actions are far richer than clicks or drags. Modeling

such events to permit GUI exploration requires a different scheme compared to EIG; our

event library (Section 2.5.3) and dynamic identification of next possible states allows us

to generate multimodal events to permit systematic exploration. Third, Android app GUI

state can be changed from outside the app, or by a background service. For example, an

outside app can invoke an activity of another app through a system-wide callback which

in the EIG model would a spontaneous transition into a node with no incoming edge. The

137

behavior of the callback requests can certainly modify GUI states. Hence creating lists of

action sequences that can be executed by a user on an interface will lead to exploring only

a subset of GUI states. This is the reason why, while constructing the SATG, we analyze

activities that accept intent filters and take appropriate action to design exploration test

cases automatically. GUITAR [30] is a GUI testing framework for Java and Windows ap-

plications based on EIG. Android GUITAR [99] applies GUITAR to Android by extending

Android SDK’s MonkeyRunner tool to allow users to create their own test cases with a

point-and-click interface that captures press events. In our approach, test case creation is

automated.

Yang et. al. [128] implemented a tool for automatic exploration called ORBIT.

Their approach uses static analysis on the app’s Java source code to detect actions asso-

ciated with GUI states and then use a dynamic crawler (built on top of Robotium) to fire

the actions. We use static analysis on app bytecode to extract the SATG, as activities are

stable, but then use dynamic GUI exploration to cope with dynamic layouts inside activ-

ities. They achieved significant statement coverage (63%–91%) on a set of 8 small open

source apps; exploration took 80–480 seconds. We focus on a different problem domain:

large real-world apps for which the source code is not available, so exploration times and

coverage are not directly comparable.

Anand et al. [21] developed an approach named ACTEVE for concolic generation

of events for testing Android apps whose source code is available. Their focus is on cover-

ing branches while avoiding the path explosion problem. ACTEVE generated test inputs

for five small open source in 0.3–2.7 hours. Similarly, Jensen et al. [72] have used concolic

138

execution to derive event sequences that can lead to a specific target state in an Android

app, and applied their approach to five open source apps (0.4–33KLOC) and show that

their approach can reach states that could not be reached using Monkey. Our focus and

problem domains are different: GUI and sensor-driven exploration for substantial, popu-

lar apps, rather than focusing on covering specific paths. We believe that using concolic

execution would allow us to increase coverage (especially method coverage), but it would

require a symbolic execution engine robust enough to work on APKs of real-world sub-

stantial apps.

Monkey [24] is a testing utility provided by the Android SDK that can send a

sequence of random and deterministic events to the app. Random events are effective

for stress testing and fuzz testing, but not for systematic exploration; deterministic events

have to be scripted, which involves effort, whereas in our case systematic exploration is

automated. MonkeyRunner [23] is an API provided by the Android SDK which allows

programmers to write Python test scripts for exercising Android apps. Similar to Monkey,

scripts must be written to explore apps, rather than using automated exploration as we do.

Robotium [59] is a testing framework for Android that supports both black-box

and white-box testing. Robotium facilitates interaction with GUI components such as

menus, toasts, text boxes, etc., as it can discover these elements, fire related events, and

generate test cases for exercising the elements. However, it does not permit automated

exploration as we do.

Troyd [73] is a testing and capture-replay tool built on top of Robotium that can be

used to extract GUI widgets, record GUI events and fire events from a script. We used parts

139

of Troyd in our approach. However, Troyd cannot be used directly for either Targeted or

Depth-first Exploration, as it needs input scripts for exercising GUI elements. Moreover, in

its unmodified form, Troyd had a substantial performance overhead which slowed down

exploration considerably—we had to modify it to reduce the performance overhead.

TEMA [103] is a collection of model-based testing tools which have been applied

to Android. GUI elements form a state machine and basic GUI events are treated as key-

words like events. Within this framework, test scripts can be designed and executed. In

contrast, we extract a model either statically or dynamically and automatically construct

test cases.

Android Ripper [20] is a GUI-based static and dynamic testing tool for Android.

It uses a state-based approach to dynamically analyze GUI events and can be used to auto-

mate testing by separate test cases. Android Ripper preserves the state of the application

where state is actually a tuple of a particular GUI widget and its properties. An input

event triggers the change in the state and users can write test scripts based on the tasks

that can modify the state. The approach works only on the Android emulator and thus

cannot mimic sensor events properly like a real world application.

Several commercial tools provide functionality somewhat related to our approach,

though their end-goals differ form ours. Testdroid [34] can record and run the tests on mul-

tiple devices. Ranorex [92] is a test automation framework. Eggplant [106] facilitates writ-

ing automated scripts for testing Android apps. Framework for Automated Software Testing

(FAST) [115] can automate the testing process of Android apps over multiple devices.

Finally, there exist a variety of static [110, 61, 97, 60] and dynamic [62, 49] analysis

140

tools for Android, though these tools are only marginally related to our work. We apply

static analysis for SATG construction but our end goal is not static analysis. However,

our replayable traces can fit very well into a dynamic analysis scenario as they provide

significant coverage.

7.2 Dynamic Program Slicing

Zhou et. al. [136] and Zeng et al. [132] mentioned the use of program slicing in

their analysis of Android applications. Although they used traditional bytecode slicing to

achieve entirely different goals. Zhou et. al. used slicing for mining sensitive credentials

inside the application, and Zeng et. al. used slicing to generate low level C equivalent

code. In their paper, they created slices at the bytecode level and only considered slicing

to reveal data dependence at the byte-code level, which is imprecise as it does not count

for the features Android represents such as inputs from the callbacks, and sensors.

Although we find several works of program slicing on the Java bytecode level tar-

geted for single entry sequential Java programs [120, 116, 7, 102] none of those addresses

event-based models that we find in Android programs.

More recently Wang et.al. [117, 119] showed several applications of program

slicing for native programs such as delta debugging, deterministic replay, relevant input

analysis.

141

7.3 GUI Event Generation

Automated input generation for Android platforms through static and dynamic

analysis are getting focus in recent years. Machiry et. al. presented a system called Dyn-

odroid [28] where they examine the app on top of a VM. They also instrument the whole

Android framework to monitor the apps. But their approach differs from ours as we can

directly drive the execution to a certain part of the program by extracting inputs only ap-

plicable to that particular run.

Linares-Vasquez et. al. [83] showed another approach to generating actions for

GUI-based executions. They record app runs and from the traces, they mine GUI-object

input sequences to produce the inputs. While this method is more precise due to the in-

volvement of Dynamic analysis, they require actual applications runs and cannot exploit

the static analysis to prune paths that are not useful.

7.4 User Defined Deep Linking

We compare uLink with other related approaches and explain why they are not

sufficient to achieve our goals. Table 7.1 summarizes the discussion below.

Mobile deep links. As mentioned in 5, existing mobile deep links require nontrivial

developer effort, have poor coverage, and are statically defined; therefore they do not

satisfy many of our goals. We now elaborate on these limitations.

Mobile deep links require nontrivial developer effort. As an example, the open

source Wikipedia app for Android has one deep link and it requires 23 LoC to handle

142

the associated intent. As a consequence, a small number of mobile apps, even among the

top ones, expose deep links. An estimate by URX from 2014 says that 19% of the top 100

Android apps expose deep links (and only 11% have deep links for Android, iOS and

iPad [108]). To confirm, we analyzed 13,848 Android apps downloaded in the month of

May 2015 and covering all app categories.1

Existing mobile deep links have poor coverage—a small number of locations, pre-

defined by developers, within an app are directly accessible via deep links.This is due to

two key reasons. Developer’s effort to support deep linking increases almost linearly with

the number of unique deep links, and hence apps tend to expose very few deep links. It is

unlikely that developers will open up all possible deep links in the app. Another more fun-

damental reason is that while deep links are stateless, mobile apps are stateful—an app’s

current view may depend on data from a previous view (e.g., location selected in a previ-

ous page) or as a result of specific user interactions (e.g., doing a search, selecting an item)

on the current page. Thus, reaching the view may not be possible without transferring

states from previous views or without applying the UI interactions. The stateful nature of

apps also implies that even if deep links are free and a developer includes deep links to

each and every page in an app and with a large number of supported input parameters,

existing deep links, due to their statelessness, would not be able to capture and preserve

user data generated in an app during interaction.

1We counted deep links by looking in app manifest files for declarations of intent filters complying with
the Android specifications for deep links [22]. Our counts can be over-estimates, since we did not verify if the
app actually supports the deep links.

143

System Dynamic Convenience Coverage Dev Ease of
links in user exper effort deployment

URLs Yes High Good None Yes
Web Macros Yes Low High None Yes
Deep links No - Low Some Yes
Record& Replay Yes Low High No No
uLink Yes High Good Little Yes

Table 7.1: uLink goals and comparison with the state-of-the-art.

Record and replay. Record and replay techniques can record macros that can later be

replayed to navigate to an arbitrary location of an application for desktop, server [48, 126,

100, 63, 88, 86], web [26, 94, 69, 81, 82], and mobile platforms [57, 68]. One might consider

using such macros as links. A full blown record and replay mechanism can have very

good coverage, but it is not suitable to be augmented to support ulinks for several reasons.

First, these systems are too heavyweight to be used in the wild. Recording and replaying

all sources of nondeterminism has prohibitive costs on mobile devices [54] (e.g., special

hardware support or virtual machine instrumentation). There are tools that successfully

record and replay smartphone apps by relying only on the sensor and UI event streams [57,

68], but they are still heavyweight and they require either a rooted phone or changes to

the mobile OS, thus limiting their applicability to consumers’ phones, at scale. Second,

record and replay can be slow, especially when the user uses the app for a long period of

time before arriving to the current view, and hence the replay phase needs to replay many

user interactions. Finally, existing record and replay tools require the user to explicitly

specify when a recording starts and ends—an unacceptable user experience when a user

dynamically wants to generate a link to the current app page (e.g., for bookmarking it).

Commercial tools. Several startups today offering mobile deep linking. AppLink [2], mo-

bile.deep.linking [10], and deeplink.me [3] allow app developers to define deep links to spe-

144

cific pages in an app, such as the homepage, product pages, and shopping cart, exactly like

with a web site. When the app link is clicked, if the app is not installed, the user is directed

to the app store or to the equivalent web page. In addition to enabling app deep linking,

URX [13] also crawls web pages and constructs deep linking metadata to be leveraged by

app developers. For example, if the site contains any information or news about a par-

ticular music, it can readily generate a deep link to a supported music player to play that

song. Although these approaches all contribute to building effective deep linking inside

app content, all of them require significant developer effort, they are statically defined,

and have the same limitations of deep links (low coverage and no support for stateful and

UI-driven views).

7.5 Recovery from Faults

Self-healing and automated patch construction have been studied in many con-

texts, from clusters of Internet servers [101, 37] to web browsers [89]. Demsky et al. [44]

use formal specifications for data structures that allow integrity properties in data struc-

tures to be monitored and data structures to be repaired in case the specification is violated.

Perkins et al. [89] introduced a system named ClearView that monitors an application’s ex-

ecution to learn application invariants, detect failures, and in case of failure automatically

constructs and applies a patch to heal the application. ClearView has been applied to Fire-

fox with a high degree of success and resilience to attacks. Sidiroglou et al. [96] developed

an approach named ASSURE that employs rescue points to recover from unanticipated

failures in desktop/server Linux applications. ASSURE utilizes online code injection and

145

restores program execution to a rescue point where existing error handling mechanism

is used to inject fault recovery code. Candea et al. [38] have proposed “microreboots”

(rebooting small components instead of entire applications) as a recovery technique for

Internet services. Sultan et al. [101] and Bohra et al. [37] use remote DMA to perform peer

monitoring and take-over in a cluster. to provide seamless service to clients. However,

to the best of our knowledge, we are the first to study self-healing on the smartphone

platform.

Wei et al. [123] proposed an automated patch generation technique based on con-

tracts. Their approach is limited to systems built using the design-by-contract pattern.

Although their strategy has shown promising results, smartphone apps are not developed

using design-by-contract.

Weimer et al. [124] demonstrated a fully automated, genetic programming ap-

proach for finding and fixing bugs. Their tool, GenProg, identifies legal program variants

for positive test cases and they generate fixes with the means of structural differences and

delta debugging upon the correct program variant for the faulty input. Michail et al. [85]

proposed a scheme to use user-generated bug reports to predict future bugs in a software

execution path to warn the users to avoid that path. Their scheme is based on predicting

the presence of faults in a particular execution based on previous reports from the users.

The work of Kim et al. [75] generates automatic patches from already existing patches

written by human developers. They manually inspected the human written patches and

automatically develop the repair code by identifying common fix patterns. Their approach

requires manual effort and might not be always practical to employ in a quick succession

146

which is required in mobile platforms with shorter update cycle. In contrast to these three

efforts, our approach does not rely on test cases or bug reports, but rather reacts dynami-

cally to a set of predefined errors.

Dallmeier et al.’s approach [43] automatically extracts anomalies in object behav-

ior and generate patches accordingly. This idea may be useful on smartphone apps, but it

does not guarantee sealing-off faulty code in a deterministic manner, e.g., random events

can occur in a particular executions and the same set of faults can manifest differently.

Carzaniga et al. [39] employ code rewriting to work around API-related faults in

web applications. They have showed their approach in popular web APIs such as Google

maps and YouTube. While the are similarities (e.g., event-driven) between smartphone

and web apps, there are significant differences: smartphone apps are centered around rich

gestures and sensors, so it is unclear how their approach would translate to smartphones.

147

Chapter 8

Future Work

We have shown that there is a practical need for conducting static and dynamic

analysis for fault localization and application recovery. We also demonstrated some appli-

cations that can directly benefit from our work. Nevertheless, a wide range of possibilities

exists to continue further the research works presented in this dissertations. In this chapter,

we outline some future directions.

8.1 Improvements

Dynamic slicing Several opportunities exist to improve further the slicing mechanism

presented in this dissertation. For example, analyzing the Android Framework will yield

more precise slicing. Furthermore, generating slices for particular slicing criteria might not

reveal an exact set of inputs, since Android is heavily gesture-centric. Different types of

gestures are handled in a variety of ways and precise slicing cannot be carried out possibly

without discovering their patterns.

148

App self-healing Application recovery strategies can be informed by mining bug repos-

itories. Learning the most common error pattern will aid the researchers to design more

efficient test cases and error routines. Such tactics, once applied can render self-healing

more effective.

8.2 Program Analysis Applications

Application profiling Automatic exploration techniques presented in this dissertation

can be further extended by adding functionality to measure various application, system,

and user specific information. For instance, monitoring information leakage can be useful

to identify app vulnerabilities. Automatic exploration can also be an excellent tool for test

automation.

Undo computing Undo computing [76] has been proposed to recover from such at-

tacks and state corruption bugs by identifying both the benign user actions and the ma-

licious/buggy actions, and then restoring the system to a “clean” state where only the

legal changes are kept, and the malicious/buggy actions are undone. So far undo comput-

ing has only been studied on server systems; however, those techniques cannot be easily

applied to Android due to differences in platform, app construction, and overhead per-

formance tolerance. Android application slicing techniques can be proven fruitful in this

regard.

Relevant input analysis Understanding the role that input values play during execu-

tion is critical for understanding program behavior, including for finding and reproducing

149

vulnerabilities. For example, Samsung’s security patch list [95] includes vulnerabilities

triggered by certain GIF, bitmap, JPEG, or file-path inputs. Furthermore, on mobile plat-

forms, relating app inputs to app behavior is particularly complicated, because mobile

apps are event-oriented, that is, they revolve around processing event streams. Dynamic

slicing strategies can aid to better understanding of the input patterns.

Improving dynamic taint analysis Dynamic taint analysis has managed to find leaks

in desktop, server, and Android applications, but it is prone to several issues: it can be

rendered ineffective, e.g., via control dependence attacks; it can be imprecise, a condition

know as “taint explosion”; and it might not be very effective in helping developers/users

fix a leak, once a leak has been found. These shortcomings can be addressed using our

results in control influence and value propagation chains [118].

Proactive error checking In Chapter 6 we mainly discussed reactive approaches to recov-

ery. However, proactive measures can also be taken into consideration. This may require

both static and dynamic methods to learn application behavior hence identify the most

common patterns of faults prior to app runs (or at least prior to crashes).

150

Chapter 9

Conclusions

Smartphone apps are getting into people’s lives in every possible way. For this

reason, any crash or security vulnerability in apps has a large effect. We believe that tradi-

tional (or manual) techniques for application analysis and testing for faults, bugs, errors,

and leaks inside an app are wither insufficient or unreliable. Other specific challenges im-

posed by the smartphone platform are technical difficulties such as unique sets of inputs,

dependency on sensors, distinct IPC mechanism, shorter update cycle, etc. For all of these

reasons, we argue that application analysis approaches need to be automated and must

employ software engineering tactics such as static and dynamic analysis.

In this context, the thesis makes the following contributions:

• We present individual strategies that aid to the discovery of unseen faults by gen-

erating high coverage test cases, which cannot be obtained by manual means. As

apps get updated frequently, developers need to rely on the manual techniques that

render poor coverage. Our novel breadth-fast and targeted exploration strategy not

151

only yields a higher percentage of coverage but also explores them efficiently by ex-

ploiting the constructed app model.

• Upon the discovery of faults, we move further by implementing a toolset (AndroidArrow),

that produces UI events to trigger target methods. AndroidArrow attempts to trigger

the target by finding the optimum path transition and generates the necessary event

sequences along with their associated GUI objects.

• uLink, a user-defined deep-linking framework was designed to recreate stateful ap-

plication links. uLink can reinstate the full graphical state by directly rendering the

corresponding app page and performing the exact sequence of actions.

• AndroidSlicer, an approach to implementing program slicing on Android. Our slic-

ing algorithm adapts distinct Android characteristics such as event-based callbacks,

gesture-based inputs, and IPC message passing mechanism through intent objects.

• Finally, we have shown a conceptual model of self-healing Android apps. We gener-

ate recovery routines to throttle app failure on the fly to ensure the app does not get

interrupted on the run.

We expect this thesis will provide a solid foundation for future research. We also

believe it will continue to aid researchers and developers with their smartphone applica-

tion analysis tasks.

152

Bibliography

[1] Apache lucene. http://lucene.apache.org/.

[2] Applinks. http://www.applinks.org.

[3] Deeplink. https://www.deeplink.me.

[4] Flurry. http://www.flurry.com.

[5] Ifttt. https://ifttt.com/recipes.

[6] JD-GUI. http://jd.benow.ca/.

[7] jSlice. http://jslice.sourceforge.net/.

[8] Localytics. http://www.localytics.com/.

[9] Mobile deep linking. https://en.wikipedia.org/wiki/Mobile_deep_linking.

[10] mobile.deep.linking. http://www.mobiledeeplinking.org.

[11] Smali: An assembler/disassembler for Android’s dex format. http://code.google.
com/p/smali/.

[12] susi. http://sseblog.ec-spride.de/tools/susi/.

[13] URX. http://www.urx.com.

[14] 6.1B Smartphone Users Globally By 2020, Overtaking Basic Fixed
Phone Subscriptions, June 2015. http://techcrunch.com/2015/06/02/

6-1b-smartphone-users-globally-by-2020-overtaking-basic-fixed-phone-subscriptions/.

[15] dex2jar. Retrieved on 08/09/2016.

[16] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system for
android apps. In FSE ’13, 2013.

[17] Eytan Adar, Jaime Teevan, and Susan T. Dumais. Large scale analysis of web re-
visitation patterns. In Proc. of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08, pages 1197–1206. ACM, 2008.

153

[18] Eytan Adar, Jaime Teevan, Susan T. Dumais, and Jonathan L. Elsas. The web changes
everything: Understanding the dynamics of web content. In Proc. of the Second ACM
International Conference on Web Search and Data Mining, WSDM ’09, pages 282–291.
ACM, 2009.

[19] Hiralal Agrawal and Joseph R Horgan. Dynamic program slicing. In ACM SIGPLAN
Notices, volume 25, pages 246–256. ACM, 1990.

[20] Domenico Amalfitano, Anna Rita Fasolino, Salvatore De Carmine, Atif Memon, and
Porfirio Tramontana. Using gui ripping for automated testing of android applica-
tions. In ASE’12, pages 258–261.

[21] Saswat Anand, Mayur Naik, Mary Jean Harrold, and Hongseok Yang. Automated
concolic testing of smartphone apps. In FSE ’12, pages 1–11.

[22] Android Developers. Enabling Deep Links for App Content. http://developer.

android.com/training/app-indexing/deep-linking.html.

[23] Android Developers. monkeyrunner. http://developer.android.com/tools/

help/monkeyrunner_concepts.html.

[24] Android Developers. UI/Application Exerciser Monkey, August 2012. http:

//developer.android.com/tools/help/monkey.html.

[25] Android Developers. Android Emulator Limitations, March 2013. http://

developer.android.com/reference/android/content/Intent.html.

[26] Vinod Anupam, Juliana Freire, Bharat Kumar, and Daniel Lieuwen. Automating
Web Navigation with the WebVCR. In Proc. of the 9th International World Wide Web
Conference on Computer Networks : The International Journal of Computer and Telecom-
munications Netowrking, pages 503–517, 2000.

[27] Appsee. https://www.appsee.com/.

[28] Aravind MacHiry, and Rohan Tahiliani, and Mayur Naik. Dynodroid: An input
generation system for android apps. In FSE ’13, 2013.

[29] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for an-
droid apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14, pages 259–269, New York, NY, USA, 2014.
ACM.

[30] Atif Memon. GUITAR, August 2012. guitar.sourceforge.net/.

[31] Tanzirul Azim and Iulian Neamtiu. Targeted and depth-first exploration for sys-
tematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’13, pages 641–660, New York, NY, USA, 2013. ACM.

154

[32] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru.
An empirical analysis of the bug-fixing process in open source android apps. In
CSMR’13.

[33] Ravi Bhoraskar, Seungyeop Han, Jinseong Jeon, Tanzirul Azim, Shuo Chen, Jaeyeon
Jung, Suman Nath, Rui Wang, and David Wetherall. Brahmastra: Driving apps to
test the security of third-party components. In 23rd USENIX Security Symposium
(USENIX Security 14), pages 1021–1036, 2014.

[34] Bitbar. Automated Testing Tool for Android - Testdroid., January 2013. http://

testdroid.com/.

[35] Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: A general
approach to android framework modeling. In Proceedings of the 4th ACM SIGPLAN
International Workshop on State Of the Art in Program Analysis, SOAP 2015, pages 19–
25, 2015.

[36] Matthias Böhmer, Brent Hecht, Johannes Schöning, Antonio Krüger, and Gernot
Bauer. Falling asleep with angry birds, facebook and kindle: A large scale study
on mobile application usage. In Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and Services, MobileHCI ’11, pages
47–56, New York, NY, USA, 2011. ACM.

[37] A. Bohra, I. Neamtiu, P. Gallard, F. Sultan, and L. Iftode. Remote repair of operating
system state using backdoors. In ICAC’04, pages 256–263, 2004.

[38] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Armando
Fox. Microreboot: A technique for cheap recovery. In OSDI’04, pages 3–3, Berkeley,
CA, USA, 2004. USENIX Association.

[39] Antonio Carzaniga, Alessandra Gorla, and Mauro Perino, Nicolòand Pezzè. Auto-
matic workarounds for web applications. In FSE ’10, FSE ’10, pages 237–246, 2010.

[40] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-
derstanding data lifetime via whole system simulation. In Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13, SSYM’04, pages 22–22, Berke-
ley, CA, USA, 2004. USENIX Association.

[41] CNET. Android reclaims 61 percent of all U.S. smartphone sales,
May 2012. http://news.cnet.com/8301-1023_3-57429192-93/

android-reclaims-61-percent-of-all-u.s-smartphone-sales/.

[42] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A sys-
tematic survey of program comprehension through dynamic analysis. Software En-
gineering, IEEE Transactions on, pages 684–702, 2009.

[43] Valentin Dallmeier, Andreas Zeller, and Bertrand Meyer. Generating fixes from ob-
ject behavior anomalies. In ASE ’09, ASE ’09, pages 550–554, 2009.

155

[44] Brian Demsky and Martin Rinard. Data structure repair using goal-directed reason-
ing. In ICSE’05, pages 176–185, 2005.

[45] David Devecsery, MIchael Chow, Xianzheng Dou, Jason Flinn, and Peter M. Chen.
Eidetic systems. In 11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 14), pages 525–540, 2014.

[46] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for
battery-powered mobile systems. MobiSys ’11, pages 335–348, 2011.

[47] Susan Dumais, Edward Cutrell, JJ Cadiz, Gavin Jancke, Raman Sarin, and Daniel C.
Robbins. Stuff i’ve seen: A system for personal information retrieval and re-use. In
Proc. of the 26th Annual International ACM SIGIR Conference on Research and Develop-
ment in Informaion Retrieval, SIGIR ’03, pages 72–79. ACM, 2003.

[48] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. Revirt: Enabling intrusion analysis through virtual-machine logging and re-
play. In In Proceedings of the 2002 Symposium on Operating Systems Design and Imple-
mentation (OSDI), volume 36, pages 211–224, 2002.

[49] William Enck, Peter Gilbert, Byung gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol Sheth. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’10), pages 393–407.
USENIX Association, October 2010.

[50] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA 2003:
Workshop on Dynamic Analysis, pages 24–27, Portland, Oregon, May 9, 2003.

[51] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna, and David Wagner.
A survey of mobile malware in the wild. In Proceedings of the 1st ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, pages 3–14, New
York, NY, USA, 2011. ACM.

[52] Min Feng and R. Gupta. Detecting virus mutations via dynamic matching. In Soft-
ware Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages 105–114,
Sept 2009.

[53] Earlence Fernandes, Oriana Riva, and Suman Nath. My OS ought to know me better:
In-app behavioural analytics as an OS service. In Proc. of HotOS XV, 2015.

[54] Jason Flinn and Z. Morley Mao. Can deterministic replay be an enabling tool for
mobile computing? In Proc. of the 12th Workshop on Mobile Computing Systems and
Applications, HotMobile ’11, pages 84–89. ACM, 2011.

[55] Gartner, Inc. Gartner Highlights Key Predictions for IT Organizations and Users
in 2010 and Beyond, January 2010. http://www.gartner.com/it/page.jsp?id=

1278413.

156

[56] Gartner, Inc. Gartner Says Worldwide PC Shipment Growth Was Flat in Second
Quarter of 2012, July 2012. http://www.gartner.com/it/page.jsp?id=2079015.

[57] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. RERAN:
Timing- and Touch-sensitive Record and Replay for Android. In Proc. of the 2013
International Conference on Software Engineering, ICSE ’13, pages 72–81. IEEE Press,
2013.

[58] Google. Now on Tap. https://support.google.com/websearch/answer/6304517?
hl=en.

[59] Google Code. Robotium, August 2012. http://code.google.com/p/robotium/.

[60] Google Code. Androguard, January 2013. http://code.google.com/p/

androguard/.

[61] Google Code. Android Assault, January 2013. http://code.google.com/p/

android-assault/.

[62] Google Code. Droidbox, January 2013. http://code.google.com/p/droidbox/.

[63] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans
Kaashoek, and Zheng Zhang. R2: An Application-level Kernel for Record and Re-
play. In Proc. of the 8th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’08, pages 193–208. USENIX Association, 2008.

[64] Jessica Guyn. Facebook users give iPhone app thumbs down. Los Angeles
Times, Jul 21 2011. http://latimesblogs.latimes.com/technology/2011/07/

facebook-users-give-iphone-app-thumbs-down.html.

[65] S. Hao, Ding Li, W.G.J. Halfond, and R. Govindan. Estimating android applications’
cpu energy usage via bytecode profiling. In Green and Sustainable Software (GREENS),
2012 First International Workshop on, pages 1–7, 2012.

[66] Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
PUMA: Programmable UI-Automation for Large Scale Dynamic Analysis of Mobile
Apps. In Proc. of MobiSys, pages 204–217. ACM, June 2014.

[67] Cuixiong Hu and Iulian Neamtiu. Automating gui testing for android applications.
In AST ’11, pages 77–83, 2011.

[68] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. Versatile yet lightweight record-
and-replay for android. In Proc. of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015,
pages 349–366. ACM, 2015.

[69] Darris Hupp and Robert C. Miller. Smart bookmarks: Automatic retroactive macro
recording on the web. In Proc. of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07, pages 81–90, New York, NY, USA, 2007. ACM.

157

[70] IDC. Android and iOS Surge to New Smartphone OS Record in Second Quarter,
According to IDC, August 2012. http://www.idc.com/getdoc.jsp?containerId=

prUS23638712.

[71] IDC. Android Pushes Past 80% Market Share While Windows Phone Shipments
Leap 156.0% Year Over Year in the Third Quarter, Novemeber 2013. http://www.

idc.com/getdoc.jsp?containerId=prUS24442013.

[72] Casper S. Jensen, Mukul R. Prasad, and Anders Møller. Automated testing with
targeted event sequence generation. In Proceedings of the 2013 International Symposium
on Software Testing and Analysis, pages 67–77, 2013.

[73] Jinseong Jeon and Jeffrey S. Foster. Troyd: Integration Testing for Android. Techni-
cal Report CS-TR-5013, Department of Computer Science, University of Maryland,
College Park, August 2012.

[74] Jinseong Jeon and Kristopher Micinski and Jeffrey S. Foster. Redexer, September
2013. http://www.cs.umd.edu/projects/PL/redexer/index.html.

[75] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch
generation learned from human-written patches. In ICSE ’13, ICSE ’13, pages 802–
811, 2013.

[76] Taesoo Kim, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Intrusion re-
covery using selective re-execution. In 9th USENIXSymposium on Operating Systems
Design and Implementation, OSDI2010, October 4-6, 2010, Vancouver, BC, Canada, Pro-
ceedings, pages 89–104, 2010.

[77] Bogden Korel and Janusz Laski. Dynamic program slicing. Information Processing
Letters, 29:155–163, October 1988.

[78] A. Kumar Maji, Kangli Hao, S. Sultana, and S. Bagchi. Characterizing failures in
mobile oses: A case study with android and symbian. In ISSRE’10, pages 249–258,
2010.

[79] L. Gomez, I. Neamtiu, T.Azim, and T. Millstein. Reran: Timing- and touch-sensitive
record and replay for android. In ICSE ’13, 2013.

[80] Oren Laadan, Ricardo A. Baratto, Dan B. Phung, Shaya Potter, and Jason Nieh. De-
jaview: A personal virtual computer recorder. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 279–292, 2007.

[81] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. Coscripter: Automat-
ing & sharing how-to knowledge in the enterprise. In Proc. of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08, pages 1719–1728, New York, NY,
USA, 2008. ACM.

[82] Ian Li, Jeffrey Nichols, Tessa Lau, Clemens Drews, and Allen Cypher. Here’s What
I Did: Sharing and Reusing Web Activity with ActionShot. In Proc. of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pages 723–732, 2010.

158

[83] Mario Linares-Vásquez, Martin White, Carlos Bernal-Cárdenas, Kevin Moran, and
Denys Poshyvanyk. Mining android app usages for generating actionable gui-based
execution scenarios. In Proceedings of the 12th Working Conference on Mining Software
Repositories, MSR ’15, pages 111–122, 2015.

[84] Atif M. Memon. An event-flow model of gui-based applications for testing. Software
Testing, Verification and Reliability, pages 137–157, 2007.

[85] Amir Michail and Tao Xie. Helping users avoid bugs in gui applications. In ICSE
’05, ICSE ’05, pages 107–116, 2005.

[86] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously record-
ing program execution for deterministic replay debugging. In ISCA ’05, pages 284–
295.

[87] Suman Nath, Felix Xiaozhu Lin, Lenin Ravindranath, and Jitendra Padhye. Smar-
tAds: bringing contextual ads to mobile apps. In Proc. of MobiSys, pages 111–124,
2013.

[88] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. Parallelizing
security checks on commodity hardware. SIGPLAN Not., 43(3):308–318, March 2008.

[89] Jeff H. Perkins, Sunghun Kim, Sam Larsen, Saman Amarasinghe, Jonathan Bachrach,
Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou, Greg Sullivan,
Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin Rinard. Automatically
patching errors in deployed software. In SOSP ’09, SOSP ’09, pages 87–102, New
York, NY, USA, 2009. ACM.

[90] Pew Research Center. Report: Mobile Tablet Ownership 2013. http://

pewinternet.org/Reports/2013/Tablet-Ownership-2013.aspx.

[91] Pew Research Center. Report: Smartphone Ownership 2013. http://pewinternet.
org/Reports/2013/Smartphone-Ownership-2013.aspx.

[92] Ranonex. Android Test Automation - Automate your App Testing,
January 2013. http://www.ranorex.com/mobile-automation-testing/

android-test-automation.html.

[93] Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: automatic security
analysis of smartphone applications. In CODASPY, pages 209–220, 2013.

[94] Alex Safonov, Joseph A. Konstan, and John V. Carlis. End-user web automation:
Challenges, experiences, recommendations. In Proc. of WebNet 2001 - World Confer-
ence on the WWW and Internet, Orlando, Florida, October 23-27, 2001, pages 1077–1085,
2001.

[95] Samsung Mobile Security Blog. Samsung Android Security Updates, Nov 2015.
security.samsungmobile.com/smrupdate.html.

159

[96] Stelios Sidiroglou, Oren Laadan, Carlos R. Perez, Nicolas Viennot, Jason Nieh, and
Angelos D. Keromytis. Assure: Automatic software self-healing using rescue points.
In ASPLOS’09.

[97] SONY. APK Analyzer, January 2013. http://developer.sonymobile.com/

knowledge-base/tool-guides/analyse-your-apks-with-apkanalyser/.

[98] Soot. Soot: A Framework for Analyzing and transforming Java and Android appli-
cations. http://sable.github.io/soot/.

[99] SourceForge. Android GUITAR, August 2012. http://sourceforge.net/apps/

mediawiki/guitar/index.php?title=Android_GUITAR.

[100] Sudarshan M. Srinivasan, Srikanth Kandula, Srikanth K, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: A lightweight extension for rollback and deter-
ministic replay for software debugging. In In USENIX Annual Technical Conference,
General Track, pages 29–44, 2004.

[101] F. Sultan, A. Bohra, S. Smaldone, Y. Pan, P. Gallard, I. Neamtiu, and L. Iftode. Recov-
ering internet service sessions from operating system failures. Internet Computing,
IEEE, 9(2):17–27, 2005.

[102] Attila Szegedi and Tibor Gyimothy. Dynamic slicing of java bytecode programs. 2013
IEEE 13th International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 35–44, 2005.

[103] T. Takala, M. Katara, and J. Harty. Experiences of system-level model-based GUI
testing of an Android application. In ICST ’11, pages 377–386.

[104] Sriraman Tallam, Chen Tian, Rajiv Gupta, and Xiangyu Zhang. Enabling tracing of
long-running multithreaded programs via dynamic execution reduction. In Proceed-
ings of the 2007 International Symposium on Software Testing and Analysis, ISSTA ’07,
pages 207–218, New York, NY, USA, 2007. ACM.

[105] Jaime Teevan, Edward Cutrell, Danyel Fisher, Steven M. Drucker, Gonzalo Ramos,
Paul André, and Chang Hu. Visual snippets: Summarizing web pages for search
and revisitation. In Proc. of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’09, pages 2023–2032. ACM, 2009.

[106] TestPlant. eggPlant for mobile testing., January 2013. http://www.testplant.com/
products/eggplant/mobile/.

[107] Tim Strazzere. The New NotCompatible: Sophisticated and evasive threat harbors
the potential to compromise enterprise networks, November 2014. https://blog.

lookout.com/blog/2014/11/19/notcompatible/.

[108] URX Blog. How Many of the Top 200 Mobile Apps Use Deeplinks? http://blog.

urx.com/urx-blog/how-many-of-the-top-200-mobile-apps-use-deeplinks.

160

[109] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java Bytecode Optimization Framework. In Proc. of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON ’99,
pages 13–. IBM Press, 1999.

[110] Various. SCanDroid, January 2013. https://github.com/scandroid/scandroid.

[111] VB. Microsoft beats Google to the punch: Bing for Android update
does what Now on Tap will do. http://venturebeat.com/2015/08/20/

microsoft-beats-google-to-the-punch-bing-for-android-update-does-what-now-on-tap-will-do/,
2015.

[112] VentureBeat. Imagine a web without URLs. That’s what the mo-
bile app world looks like now. http://venturebeat.com/2014/07/08/

imagine-a-web-without-urls-thats-what-the-mobile-app-world-looks-like-now/.

[113] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, pages 447–458, New York, NY, USA, 2014.
ACM.

[114] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick
Tague. A5: Automated analysis of adversarial android applications. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices,
SPSM ’14, pages 39–50, New York, NY, USA, 2014. ACM.

[115] W. River. Wind River Framework for Automated Software Testing., January 2013.
http://www.windriver.com/announces/fast/.

[116] Tao Wang and Abhik Roychoudhury. Dynamic slicing on java bytecode traces. ACM
Trans. Program. Lang. Syst., pages 10:1–10:49, 2008.

[117] Yan Wang, R. Gupta, and I. Neamtiu. Relevant inputs analysis and its applications.
In Software Reliability Engineering (ISSRE), 2013 IEEE 24th International Symposium on,
pages 268–277, Nov 2013.

[118] Yan Wang, Iulian Neamtiu, and Rajiv Gupta. Generating sound and effective mem-
ory debuggers. In Proceedings of the 2013 International Symposium on Memory Manage-
ment, ISMM ’13, pages 51–62, New York, NY, USA, 2013. ACM.

[119] Yan Wang, Harish Patil, Cristiano Pereira, Gregory Lueck, Rajiv Gupta, and Iulian
Neamtiu. Drdebug: Deterministic replay based cyclic debugging with dynamic slic-
ing. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation
and Optimization, CGO ’14, pages 98:98–98:108, New York, NY, USA, 2014. ACM.

[120] Wang, T. and Roychoudhury, A. Using compressed bytecode traces for slicing java
programs. 2004.

161

[121] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. Profiledroid:
multi-layer profiling of android applications. Mobicom ’12, pages 137–148, 2012.

[122] Xuetao Wei, Iulian Neamtiu, and Michalis Faloutsos. Whom does your android app
talk to? In GLOBECOM’15.

[123] Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz, Bertrand Meyer, and
Andreas Zeller. Automated fixing of programs with contracts. In ISSTA ’10, ISSTA
’10, pages 61–72, 2010.

[124] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. Auto-
matically finding patches using genetic programming. In ICSE ’09, ICSE ’09, pages
364–374, 2009.

[125] Bin Xin and Xiangyu Zhang. Efficient online detection of dynamic control depen-
dence. In ISSTA’07, ISSTA ’07, pages 185–195, New York, NY, USA, 2007. ACM.

[126] Min Xu, Rastislav Bodik, and Mark D Hill. A ”flight data recorder” for enabling
full-system multiprocessor deterministic replay. In ISCA ’03, pages 122–135.

[127] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static
control-flow analysis of user-driven callbacks in android applications. In Proceedings
of the 37th International Conference on Software Engineering - Volume 1, ICSE ’15, pages
89–99, Piscataway, NJ, USA, 2015. IEEE Press.

[128] Wei Yang, Mukul Prasad, and Tao Xie. A grey-box approach for automated gui-
model generation of mobile applications. In FASE’13, pages 250–265.

[129] Xun Yuan and Atif M. Memon. Using GUIrun-time state as feedback to generate test
cases. In ICSE ’07, pages 396–405, 2007.

[130] Xun Yuan and Atif M. Memon. Generating event sequence-based test cases using
gui run-time state feedback. IEEE Transactions on Software Engineering, pages 81–95,
2010.

[131] I. Neamtiu Z. Shan, T. Azim. Finding resume and restart errors in android applica-
tions. In In Proc. of OOPSLA ’16.

[132] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang, and
Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented pro-
gramming. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 487–498, 2013.

[133] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing algorithms. ICSE’03,
pages 319–329, May 2003.

[134] Xiangyu Zhang, Sriraman Tallam, and Rajiv Gupta. Dynamic slicing long run-
ning programs through execution fast forwarding. In Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT
’06/FSE-14, pages 81–91, New York, NY, USA, 2006. ACM.

162

[135] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and
evolution. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 95–109, May
2012.

[136] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Harvesting developer credentials
in android apps. In Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec ’15, pages 23:1–23:12, 2015.

163

