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SUMMARY

Aging is associated with tissue-level changes
in cellular composition that are correlated with
increased susceptibility to disease. Aging human
mammary tissue shows skewed progenitor cell po-
tency, resulting in diminished tumor-suppressive
cell types and the accumulation of defective epithelial
progenitors. Quantitative characterization of these
age-emergent human cell subpopulations is lacking,
impeding our understanding of the relationship be-
tween age and cancer susceptibility. We conducted
single-cell resolution proteomic phenotyping of
healthy breast epithelia from 57 women, aged 16-91
years, using mass cytometry. Remarkable hetero-
geneity was quantified within the two mammary
epithelial lineages. Population partitioning identified
asubset of aberrant basal-like luminal cells that accu-
mulate with age and originate from age-altered
progenitors. Quantification of age-emergent pheno-
types enabled robust classification of breast tissues
by age in healthy women. This high-resolution map-
ping highlighted specific epithelial subpopulations
that change with age in a manner consistent with
increased susceptibility to breast cancer.

INTRODUCTION

Adult tissue stem and progenitor epithelial cells generate differ-
entiated daughter cells for tissue remodeling and homeostasis
(Biteau et al., 2008; Mansilla et al., 2011). Evidence suggests
skewed stem cell function contributes to diseases of aging
(Sharpless and DePinho, 2007). Human breast epithelium,
comprised of apical luminal epithelium (LEP) and basal myoepi-
thelium (MEP) cell layers surrounded by a basement membrane,
undergoes remarkable growth and remodeling between puberty
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and menopause and during lactation, supported by stem and
progenitor cells. The greatest risk factor for breast cancer is
age and exclusively genetic explanations are inadequate (LaB-
arge et al., 2016; Stephens et al., 2012). Differentiation-defective
progenitor cells accumulate and tumor-suppressive MEPs
decline with age, while older LEPs display basal properties,
such as nuclear-localized YAP and MEP gene expression
(Chen et al., 2014; Garbe et al., 2012; Pelissier et al., 2014; Ski-
binski et al., 2014). We hypothesize that these age-associated
changes elevate cancer risk. Congruently, LEPs from women
with high cancer risk (e.g., BRCA1/2 carriers) show basal charac-
teristics, and luminal progenitors with a basal phenotype are
suggested cells of origin for murine mammary adenocarcinoma
(Lim et al., 2009; Molyneux et al., 2010; Proia et al., 2011). We
therefore sought to gain insight into molecular changes in the
mammary epithelium during aging and comprehensively catalog
age-emergent phenotypic diversity using mass cytometry (Ban-
dura et al., 2009) in samples from women aged 16-91 years old.

RESULTS

High-Dimensional Analysis of Cellular Heterogeneity
within Human Mammary Epithelia

To measure age-emergent phenotypic diversity in the human
breast, we used mass cytometry to obtain single-cell proteomic
profiles of cryopreserved normal primary human mammary
epithelial cell (HMEC) strains at passage four, from 44 women
of ages 16 to 91 years old (Figure 1; Table S1). A 29-antibody
panel recognizing human mammary epithelial lineage markers
and intracellular signaling proteins was used to establish high-
dimensional phenotypes of single HMECs (Figure S1; Table S2)
(dos Santos et al., 2013; LaBarge et al., 2007; Lim et al., 2009;
Regan et al., 2012; Taylor-Papadimitriou et al., 1989; Villadsen
et al., 2007). Simultaneous analysis of >20,000 HMECs from
each of the women from three age groups (<30 years, n = 16;
>30 years < 50 years, n = 13; and >50 years, n = 15) measured
29 protein epitope dimensions (Ds) (Figure 1A). Non-linear
dimensionality reduction, t-distributed stochastic neighbor
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Figure 1. Mass Cytometry Analysis of Human Mammary Epithelial Cells
(A) Summary of experimental design. 57 samples of HMECs from women aged 16 to 91 years old (comprising 13 uncultured breast epithelia samples and 44
primary cultured HMEC strains at passage 4 [p4]) were barcoded and stained using a panel of 29 antibodies labeled with isotope tags and analyzed using mass

cytometry.

(B) Strategy to analyze high-dimensional single-cell data and identify lineage and age-related phenotypic divergence.

See also Tables S1 and S2 and Figure S1.

embedding (tSNE) (Amir et al., 2013), created a 2D map of the
entire dataset at single-cell resolution with similar phenotypes
proximal to each other (Figure 1B). Distinct LEP (K19+/K7+/K8/
18+/CD133+) and MEP (K14+/K5/6+) cell populations were
distinguishable on the tSNE map (Figure 2A). Several signaling
markers showed lineage dependence, especially in MEPs;
CD44, YAP, phospho-epidermal growth factor receptor
(PEGFR), pStat1, pS6, and p-Phospholipase C Gamma 2
(pPLC+y2), previously implicated in myoepithelial function and
contractility (Pasic et al., 2011), were prevalent in the MEP cell
population (Figures 2A, S1B, and S1C). The partial superposition
of K14+ and K5/6+ cell population revealed the high degree of
heterogeneity. A small subpopulation of cells with low marker
expression also was noted, which may have corresponded to
the K14—/K19— epithelia previously described (Villadsen et al.,
2007), and it was not further examined.

To address how aging affects the human mammary epithe-
lium, we first demarcated LEP and MEP populations using a
manual K19 gate (Figure 2A). K19, K7, K8/18, CD133, and cKit
expression was high in LEPs, while K14 and K5/6 expression
was higher in MEPs (Figure 2B). LEPs exhibited higher phos-
pho-nuclear factor kB (pNF-«B), which is implicated in mouse
mammary epithelial proliferation and branching (Brantley et al.,
2001). MEPs had increased expression of basal markers (Axl,

1206 Cell Reports 23, 1205-1219, April 24, 2018

pS6, pPLGY2, pEGFR, CD44, pGsk3, and pStat1) involved in
myoepithelial homeostasis (Pasic et al., 2011). The phenotypic
space projections on the tSNE maps were similar among the
three age groups (Figure 2A), however, the expression levels of
a number of markers changed significantly with age (Figures
S2 and S3). The most prominent age-related difference was
observed in the LEP population, where K14 and YAP expression
increased and K19 and K7 decreased with age (Figures 2C
and S3B). Overall these results revealed remarkable phenotypic
heterogeneity within the mammary epithelia.

Intra-lineage and Age-Related Phenotypic Divergence

in HMECs

The tSNE map displayed regions of cell density (Figure 2A) and
K14, K5/6, pRb, and CyclinB1 expression within the MEP line-
age, indicative of distinct cellular subpopulations (Figures 2A
and S1C). Intra-lineage subpopulations were identified as
distinct clusters of cells with shared phenotypes using Pheno-
Graph (Levine et al., 2015) (Figures 3A and S4A). There were
four LEP (LEP1-LEP4) and nine MEP (MEP1-MEP9) clusters
(Figure 3B). One subpopulation, denoted double positive (DP,
between 120 and 503 non-doublet cells), co-expressed K14
and K19 in a separate phenotypic space between the LEP and
MEP populations. This DP population likely comprised epithelial



Figure 2. Collective tSNE Analysis Distinguishes Major Luminal and
Myoepithelial Lineages

(A) The raw data have been transformed with arcsinh with the cofactor of 5.
tSNE maps from HMECs at p4 from women <30 years old (merged and
subsampled at 50,000 cells, n = 16), >30 < 50 years old (n = 13), and >50 years
old (n = 15).

(B) Logy fold change of marker expression of LEP over MEP manually
gated from tSNE projection map in HMECs from women <30 years
old, >30 < 50 years old, and >50 years old. Data are log, of ratio of
median + SD.

progenitors (Villadsen et al., 2007). A small subpopulation of cells
with low marker expression was not further examined (<0.52 ion
counts per cell). The LEP3 cluster showed high levels of pRb and
CyclinB1, indicative of higher proliferation compared to the other
LEP subpopulations (reviewed in Giacinti and Giordano, 2006).
Clusters MEP4 and MEP7 expressed higher levels of CyclinB1
that correlated with higher DNA content (iridium intercalator
counts; Figure S4B) compared to the other MEP subpopulations.

Age-related changes in marker expression were observed
mainly within the LEP subpopulations. Heatmaps of marker
expression in each PhenoGraph cluster, in HMECs from women
>30 and <50 years old (Figure 3C) and women >50 years old (Fig-
ure 3D), were normalized to values from <30-year-old women to
highlight age-related changes. Increased K14 and decreased
K19 expression was observed with age in LEP2, LEP3, and
LEP4 clusters from women >30 and <50 years old and in all
LEP subpopulations from women >50 years old. In addition to
phenotypic changes with age, the abundance of the LEP clusters
significantly increased, whereas abundance of MEP2, MEPS5,
and MEPS8 clusters significantly decreased with age (Figure 3E).
This trend was observed at the individual level, with high inter-
sample heterogeneity (Figure 3F). We previously reported age-
related changes in LEP and MEP cells in vivo based on K14/
K19 staining, and 4 lineage markers (Garbe et al., 2012) did not
discern the degree of heterogeneity apparent in this new anal-
ysis. Prominent changes in marker expression and abundance
occurred in three of four LEP types as early as middle age, and
all four types change beyond 50 years. Indeed, the abundance
of LEP1 increased more than 3-fold. Decreased abundance of
MEP also was type specific.

Correspondence analysis (CA) provided a global understand-
ing of the relationships between all PhenoGraph clusters and the
age factor (Hardle and Simar, 2007). CA reduces high-dimen-
sional observations to a smaller set of explanatory components,
allowing visualization of data on each woman and PhenoGraph
subsets in the same space (Figure 3G). Women >50 years old
were associated with LEP1-4 subsets and women <30 years
old were associated with MEP1-9 subsets, probably reflecting
the relative abundance of those lineages with age. The DP sub-
set, which represents progenitor cells, was associated mainly
with older women. The first component, contributing 43.2%
and comprising mainly LEP1, captured the tendency of older
women to have more LEP (Figures 3G and 3H). The second
component (27.5%) provided a different ordering. Altogether,
there was a significant association between an age-dependent
luminal subset and the chronological age of the primary
epithelial cells.

Unsupervised agglomerative hierarchical clustering (Citrus)
was used to examine age-dependent changes in an orthogonal
manner. Multidimensional single-cell data were distilled to a hier-
archy of marker expression-related clusters, and cluster-specific
cell frequency changes were determined (Bruggner et al., 2014).
Seven clusters were identified (Figures 4A-4C) that were signif-
icantly more abundant with age (prediction error of 26% as

(C) K19 and K14 expression in LEP as a function of age. 250MK, 90P, 245AT,
173T, and an outlier 42P were excluded from the analysis.
See also Figures S1-S3.
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Figure 3. Age-Related Phenotypic Divergence in the Landscape of HMECs
(A) Heatmaps of marker expression in PhenoGraph clusters of HMECs from women <30 years old (Z score scale, merged, n = 16) (excluding 250MK, 90P and

245AT, 173T).
(B) tSNE projection of the PhenoGraph clusters identified with PhenoGraph identified in (A), colored by cluster.
(C and D) Heatmaps of marker expression in each PhenoGraph cluster in HMECs from (C) women >30 and <50 years old and (D) women >50 years old, normalized

to values from <30-year-old women.
(E) Plots of cell percentage in each PhenoGraph cluster (excluding 250MK, 90P and 245AT, 173T). Data are mean + SEM.

(legend continued on next page)

1208 Cell Reports 23, 1205-1219, April 24, 2018



estimated by cross-validation and a p value < 0.05 using a Stu-
dent’s t test) (Figure 4A; Figure S4D), all of which represented the
LEP compartment. Figure S4C illustrates the agglomerative
clustering. The LEP subpopulations that showed age-dependent
changes had specific marker expression signatures consistent
with acquired MEP/basal-like characteristics (Figures 4A and
4B; Figure S4G). The age-emergent LEP clusters were all higher
in K14 compared with the <30-year LEP. Cluster A, residing at
the apex of the hierarchy, was K19'°" and K14"9" (Figures S4E
and S4G). Clusters B, C, and D showed higher YAP, HER2,
cKit, Axl, pS6, pPLCvy2, pEGFR, CD44, pGSK3, pNF-«B, pAkt,
pERK1/2, pMEK1/2, pStat1, pStat3, and pStat5 expression
than <30-year LEP. Most of these markers are associated with
proliferation and migration and are mainly expressed in young
MEP. Each cluster had defining characteristics, e.g., cluster B
had the highest pRb and CyclinB1 expression that correlated
with higher DNA content (Figure 4B; Figure S4F). Only
cluster H decreased in abundance with age (Figures 4A, 4C,
and S4D), and it mapped to the MEP compartment of the tSNE
landscape. Those cells expressed low levels of K14, pSé6,
CyclinB1, and pRb (Figure S4F), possibly indicative of a
quiescent, terminally differentiated MEP.

Collectively, these results indicated that a subset of LEP
acquires a basal phenotype and accumulates while a subset of
MEP decreases in abundance with age.

Age-Emergent Epithelial Cells in Primary Breast
Epithelia

To confirm our findings, we conducted mass cytometry profiling
using the 29-antibody panel on epithelial cells (> 10,000 cells per
sample) derived from uncultured breast epithelia samples ob-
tained from 13 women of different ages (<30 years, n = 7 and
>50 years, n = 6; Table S1). As predicted by the HMEC analysis,
the tSNE map revealed extensive phenotypic heterogeneity in
the breast epithelia (Figure 5A; Figure S5A). Unsupervised clus-
tering identified four distinct phenotypes of LEP (LEP1-4), seven
types of MEP (MEP1-7), a DP subpopulation (between 13 and
719 non-doublet cells), and a low-expressing cell phenotype
(<18.32 ion counts per cell) (Figure 5B). Protein expression pat-
terns were consistent with these phenotypic designations and
with the HMEC analysis (Figure 5C). K19, K7, K8/18, CD133,
and cKit expression was high in LEP, while MEP showed higher
expression of basal markers (K14, K5/6, Axl, pS6, CD44, pEGFR,
and pStat1). The abundance of the LEP1 subpopulation signifi-
cantly increased, whereas the abundance of MEP2 significantly
decreased with age (Figure 5D), a trend also observed at the in-
dividual level (Figure 5E). Citrus analysis identified three clusters
that were significantly more abundant with age (Figure 5F; Fig-
ure S5B), all residing within the LEP compartment of the tSNE

phenotypic landscape. All three LEP clusters (A, B, and C)
showed age-dependent changes in specific marker expression
signatures, consistent with acquired MEP/basal-like character-
istics (Figure 5G; Figure S5C). To quantify the extent of acquired
MEP-like/basal phenotype, we calculated the geometric dis-
tance between the breast epithelia or HMEC LEP Citrus clusters
and their respective MEP populations. This demonstrated that
the LEP-MEP phenotypic distance was reduced by 26.7% and
32% in the breast epithelia and HMECs with age, respectively
(Figure 5H). Collectively, this finding supports the notion that
age-emergent epithelial cells derived from uncultured breast
epithelia samples showed phenotypes that matched those iden-
tified in the primary cultured HMECs.

Age-Emergent Phenotypes Predict Breast Tissue Age
In Vivo
As the K14"9"K19°% clusters from both breast tissue and
HMECs formed the apex of the age-dependent cluster hierarchy,
we hypothesized that the expression pattern of these cytokera-
tins could be used to predict the approximate age of normal
breast tissue. Human breast sections were stained with anti-
K14 and anti-K19 (<30 years, n = 52 [10 women]; >30 < 50 years,
n =86 [25 women]; and >50 years, n = 33 [15 women)]) (Figure 5I),
and a classification model was built using morphometric context
(Chang et al., 2013). At least 1,000 cells per section were
analyzed. This computational approach relied on automated
cell segmentation, with manual curation, to define different
epithelial cells prior to quantification of single-cell K14 and K19
levels and morphometric features. The machine learning-based
classification model correctly assigned more than 50% of the
samples into their correct age group, as compared with a
random guess of 33.3% (Figure 5J), based on the higher level
of K14 and lower level of K19 in LEP with age, as observed on
the tissue sections (Figure 5I). These data validated predictions
from the mass cytometry data, and the in situ analysis demon-
strated quantifiable age-related changes in LEP in breast tissue.
Next, we used age-dependent phenotypic divergence to build
a second classification model to test the hypothesis that age-
related changes in marker expression from our statistical anal-
ysis would generalize to an independent dataset. This second
model was based on the totality of the mass cytometry data,
and it was not restricted to K14 and K19. In general, classifica-
tion models use cross-validation to avoid testing hypotheses
suggested by the data (type Il errors). Using a training set of
5 HMECs each from women in the <30-year and >50-year age
groups, we successfully assigned 13/16 women <30 years old
and 12/15 women >50 years old (Figure 5K). The classification
performance was increased with the number of training samples
(Figure S6A). Strikingly, the HMEC strains that were incorrectly

(F) Intra-sample heterogeneity for each woman is represented graphically by a horizontal bar in which segment lengths represent the proportion of the sample

assigned to each cluster, colored accordingly (excluding 250MK).

(G) The first two components of correspondence analysis (CA), accounting for 70% of the co-association structure between PhenoGraph subpopulations and
different strains. Proximity among women and among clusters indicates similarity, however, only a small angle connecting a woman and a cluster to the
origin indicates an association. The angle between women <50 years old and LEP was statistically smaller than the angle between women <30 years old and
women >30 and <50 years old and LEP (t test, p < 0.001). PhenoGraph subsets are displayed as triangles and HMEC samples as circles.

(H) Contributions of the PhenoGraph subpopulations to CA-1 and CA-2.
See also Figure S4.
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Figure 4. Evidence of Age-Dependent Phenotypic Divergence in the
Luminal Population

The Citrus algorithm was applied to identify cell populations by hierarchical
clustering of phenotypically similar cells from an aggregate dataset from
all samples (excluding 250MK, 90P and 245AT, 173T). A defining charac-
teristic of each cluster is denoted as follows: cluster A, K14M9h/K19'W:
cluster B, proliferative LEP; cluster C, basal LEP; cluster D, pS6 luminal;
cluster E, Keratin'"; cluster F, Keratin-low S; cluster G, AxI"9": and cluster H,
sub-MEP.

1210 Cell Reports 23, 1205-1219, April 24, 2018

classified as “old” were derived from tissue peripheral to a
breast tumor, harbored a known high cancer risk mutation, or
had LEP proportions above the mean, while a >50-year HMEC
strain with decreased LEP proportion was incorrectly assigned
as “young.” Hence, the classification model validated the hy-
pothesis that subsets of luminal cells change with age and can
be used as age predictors, and it suggested that this information
could be a relevant indicator for cancer risk.

Age-Emergent Luminal Cells Acquire Increased Basal
Function

Next we investigated the functional consequences associated
with the age-related basal phenotypic changes in the mammary
luminal compartment. MEPs form cell-cell contacts with both
LEPs and other MEPs and adhere to the basement membrane
(Bergstraesser et al., 1995; Pitelka et al., 1973). These adhesive
properties are characteristic of MEP, whereas LEP-extracellular
matrix interactions are relatively minimal (Cerchiari et al., 2015).
We hypothesized that the increased basalness of older LEPs
would affect their cell adhesion and migratory capacity. Cell
migration kinetics was measured by real-time impedance in
LEP and MEP cells, sorted via fluorescence-activated cell sort-
ing (FACS), from 6 different primary HMEC strains. LEPs isolated
from women <30 years old migrated faster than isogenic MEPs
(Figures S6B and S6C). In contrast, LEPs from women >50 years
old migrated much slower and at a rate comparable to the
cognate MEPs (Figures S6B and S6C), consistent with increased
basal adhesion properties.

In addition, EGFR-mitogen-activated protein kinase (MAPK)
pathway activation (bEGFR, pMEK, pErk, and pAkt) was higher
in MEPs than in LEPs (Figure 2A; Figure S1), and it was higher
in the LEP clusters that changed in abundance with age (Fig-
ure 4B). Therefore, we evaluated age-dependent differences
in HMEC responses to EGF. HMECs from 3 women <30 years
old and 3 women >50 years old were treated with EGF com-
bined with vanadate, and signal transduction was measured
by mass cytometry (Figures S6D-S6F). Both LEPs and MEPs
exhibited EGFR pathway activation within the time course (Fig-
ure S1B); however, pStat, pEGFR, pErk, pMEK, and pPLCy2
levels were increased in LEPs from women >50 years old
compared to younger women. tSNE analysis revealed a sub-
population of HMECs with activated EGFR (Figure S6E). LEPs
derived from older women were more prevalent in this popula-
tion, consistent with increased EGF-signaling capacity (Fig-
ure S6F). Thus, older LEPs acquired myoepithelial-like adhe-
sion and migration characteristics, as well as an increased
EGF signaling.

(A) Boxplots of cell abundance in each age-related cluster and its represen-
tative tSNE phenotypic projection. Each data point on these graphs represents
the proportion of the cluster cell number compared to the total cell n umberin a
single sample. The log10 scale represents an abundance of cells from 0 to 1.
(B) Heatmaps of marker expression of each cluster normalized to LEP
from <30-year-old women for clusters A to G and MEP from <30-year-old
women for cluster H.

(C) Hierarchical tree of agglomerative clusters obtained with the Citrus anal-
ysis. Node sizes are scaled on the basis of frequency of cells in each cluster.
See also Figure S4.



Figure 5. Age-Related Phenotypic Divergence in Uncultured Breast Epithelia

(A) tSNE maps from dissociated uncultured breast epithelia from women <30 years old (merged and subsampled at 50,000 cells, n = 7) and >50 years old (merged
and subsampled at 50,000 cells, n = 6). The pGsk3 channel was removed from the analysis due to a technical issue.

(B) tSNE projection of the PhenoGraph clusters. The tSNE projection (right panel) of women <30 years old (blue) and women >50 years old (green) is shown.
(C) Heatmaps of Z score of marker expression in PhenoGraph clusters of uncultured breast epithelia from women <30 years old (merged, n = 7).

(D) Plots of cell percentage in each PhenoGraph cluster. Data are mean + SEM.

(legend continued on next page)
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Age-Dependent Phenotypic Divergence in the Luminal
Progenitor Population

We next asked whether the prominent age-related changes
in LEPs were the result of changes in luminal progenitors
(LPs). Luminal-biased progenitors expressing cKit (Lim et al.,
2009) were FACS enriched from HMEC strains derived from
3 women <30 years old and 3 women >50 years old at passage 4,
and they were analyzed by mass cytometry using 12 mammary
epithelial progenitor and lineage markers (Figure 6A). Unsuper-
vised agglomerative clustering identified two LP clusters that
were more abundant (A and B) and one cluster that was less
abundant (C) with age (Figure 6B; Figure S7A). These clusters
localized within the luminal compartment of the tSNE phenotypic
space, and they displayed specific marker signatures (Figure 6C;
Figure S7D): cluster A was K7™9" while cluster B was K19"9",
Both of these clusters displayed high expression of CD133,
cKit, HER2, and YAP, establishing an age-emergent LP marker
signature; thus, cKit+/CD133— and cKit+/CD133+ LP cells
were FACS enriched from HMECs at passage 4. A higher propor-
tion of cKit+/CD133+ LPs were present in older women (Fig-
ure 6D). The older cKit+/CD133+ LPs generated more acini in a
Matrigel/collagen 3D embedding assay (Figure 6E), which incor-
porated more 5-ethynyl-2’-deoxyuridine (EdU), a proxy for cell
proliferation (Figure 6F), compared to the corresponding younger
LPs. In addition, cKit+CD133+ LPs were more luminally biased
than cKit+CD133— LPs in younger women (Figure 6G; Fig-
ure S7B), as demonstrated by a higher proportion of K19+/
K14— cells in the organoids. In contrast, older cKit+CD133+
LPs showed a higher proportion of basal K14+/K19— cells (Fig-
ure 6H; Figure S7C). Overall, the older cKit+/CD133+ LPs had
higher clonogenic activity in vitro and gave rise to cells with
more MEP/basal-like characteristics, which is consistent with
the interpretation that altered LPs give rise to the LEPs that
bear the phenotypic hallmarks of aging mammary epithelial cells.

Aged Epithelial Cells Resemble Immortalized Epithelial
Cells

Normal epithelial cells must bypass tumor-suppressive barriers
to give rise to malignancies. Pre-stasis HMECs can be efficiently
immortalized in a two-step process that bypasses Rb function
(by CCND1 expression or CDKN2A knockdown) and reactivates
telomerase activity (indirectly by MYC expression), while incur-
ring no gross genomic changes (Garbe et al., 2014). Mass cy-

tometry analysis was conducted on 6 immortalized HMEC cell
lines and visualized by tSNE. Immortalization via CCND1 overex-
pression to bypass stasis was associated with a luminal subtype,
whereas knockdown of CDKN2A was associated with a basal
subtype, and age >60 years, independent of CDKN2A, favored
more luminal subtypes to emerge, consistent with our previous
report (Lee et al., 2015) (Figures 7A-7C). Strikingly, five of the
six immortal cell lines exhibited high expression of the basal
markers YAP, Axl, pS6, pPLCy2, pEGFR, CD44, and pGSK3
(Figures 7D and S7E), which is the same protein cluster observed
in the subset of LEPs that accumulated with age (Figures 4B
and 5G). Thus, the specific marker expression signatures found
in age-emergent LEP subpopulations resemble the immortalized
derivatives of older HMECs. This is consistent with the hypothe-
sis that accumulation of altered LPs and LEPs with basal traits
during mammary gland aging reflects a breast cancer suscepti-
bility phenotype.

DISCUSSION

At single-cell resolution, these data show the dynamic pheno-
typic heterogeneity of human mammary epithelia spanning eight
decades of life. Phenotypic diversity is present within all cell pop-
ulations, and en bloc-averaged behavior may not represent that
of individual cells (Altschuler and Wu, 2010). Mapping the normal
diversity of cellular phenotypes within an adult tissue is key to un-
derstanding organ-level function and cell-level functionality. Us-
ing unbiased computational analyses of 29-parameter mass cy-
tometry, we interrogated epithelial cell lineage diversity in HMEC
and uncultured human breast epithelia samples from 57 individ-
uals. We show that the mammary epithelium comprises a
complex population of cells residing in phenotypically and func-
tionally diverse states that change with age, and it is more dy-
namic and heterogeneous than previously perceived (Santagata
and Ince, 2014; Taylor-Papadimitriou et al., 1989; Villadsen et al.,
2007). This unique data resource provides a repository of single-
cell proteomic data combined with cell functional and in situ tis-
sue validation to better understand the aging process in mam-
mary epithelia. An important outcome of the high-dimensional
comparison, between breast epithelia and primary cultures of
HMEC strains, was the excellent correspondence between line-
age representation and phenotypes of aging. In general, a chal-
lenge of aging research in human tissues is that age-dependent

(E) Intra-sample heterogeneity for each woman is represented graphically by a horizontal bar in which segment lengths represent the proportion of the sample

assigned to each cluster, colored accordingly.

(F) Boxplots of cell abundance in each age-related Citrus cluster and its representative tSNE phenotypic projection.
(G) Heatmaps of marker expression of each cluster normalized to LEP from <30-year-old women for clusters A to C and MEP from <30-year-old women for

clusters D to G.

(H) The geometric distance was calculated using the square root of the sum of the squared differences between the median of each marker for each sub-

population.

(I) Representative human breast sections immunostained for K14 (red), K19 (green), and DAPI (blue) from a 17-year-old, 36-year-old, and 58-year-old woman (left

to right, respectively). Scale bar represents 100 um.

(J) Plots show classification performance of 171 breast sections from 50 women (<30 years n = 52, >30 < 50 years n = 86, and >50 years n = 33), analyzed using

morphometric context with increasing training set size.

(K) Plot shows Citrus classification performance using a training set of 10 women (<30 years n = 5, >50 years n = 5). The black and white circles indicate
whether an incorrectly assigned sample was from a peripheral non-tumor mastectomy (P), milk (MK), a tumor (T), or a tissue with no history, respectively. Data are

mean + SEM.
See also Figures S5 and S6.
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Figure 6. Evidence of Age-Dependent Phenotypic Divergence in HMEC Progenitors

(A) tSNE maps from FACS-enriched HMEC cKit+ progenitors from 3 women <30 years old and 3 women >50 years old (merged and subsampled at 50,000 cells).
The lower right tSNE map shows the spatial projection of women <30 years old (blue) and women >50 years old (green).

(B) Boxplots of cell abundance of age-dependent clusters identified with Citrus and their representative tSNE spatial projection.

(C) Heatmaps of marker expression of each cluster compared to the background.

(D) Proportions of cKit+CD133— and cKit+CD133+ as a function of age (n = 3; t test, young cKit+CD133— versus cKit+CD133+ p = 0.0046, and young
cKit+CD133+ versus old cKit+CD133+ p = 0.037).

(E) Acini formation potential of cKit+CD133— and cKit+CD133+ in Matrigel/collagen | gels as a function of age (n = 3; t test, p = 0.0123).

(F) Proportions of acini that were incorporating EdU as a function of age. Data are means + SEM. An acinus was quantified as EdU positive if at least one cell was
incorporating EdU (n = 3; t test, p = 0.0452). Data are means + SEM.

(legend continued on next page)
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changes can be cataloged (e.g., transcriptional, proteomic, and
biochemical), but it is difficult to study the functional conse-
quences of those changes. As shown here, age-related func-
tional changes in migration, EGF signaling, and 3D colony forma-
tion, which were predicted by measurements of the 29 epitopes
in breast epithelia, could be explored using primary cultures.
Further development of these types of approaches, which
combine careful primary HMEC culture with advanced analytical
instrumentation and computational analysis, represents a means
of accessing human tissue biology in a new and meaningful way.

Older women accumulate mammary multipotent progenitors,
the putative cancer cell of origin, with altered differentiation po-
tential, which we and others hypothesize is one of the mecha-
nisms that underlies increased susceptibility to breast cancer
with age (Choudhury et al., 2013; Garbe et al., 2012; LaBarge
et al., 2016; Proia et al., 2011). Their LEP daughters are not fully
lineage committed and acquire a basal phenotype. By using a
test set of appropriate size and machine-learning tools, we iden-
tified a unique subset of LEPs that accumulate with age, which
have skewed differentiation and a basal-like phenotype. These
age-emergent LEPs are more adherent to the extracellular matrix
(ECM), and they exhibit increased EGF signaling compared to
younger LEPs. An unsupervised classification model based on
these age-related markers validates the hypothesis that specific
age-related changes in LEP subpopulations are good age group
predictors. Concomitant age-related changes in LP cells support
the concept that the altered stem/progenitor cell populations
that accumulate during aging give rise to the age-dependent
LEP populations.

The unique constellation of protein levels and modification
states that enable classification of mammary epithelia according
to age constitutes a signature of aging in the mammary gland.
A primary component that distinguishes LEP clusters by age
is increased expression of the basal cytokeratin K14 with
decreased luminal K19 expression. In situ validation of the
mass cytometry-derived classification model, by K14 and K19
quantification in tissue sections of normal breast, robustly as-
signed most breast biopsy samples into their correct age group,
further supporting the observation that increased basalness of
the LEP compartment is a hallmark characteristic of aging breast
tissue. The reduction of LEP migration rate with age, approach-
ing that of MEP, was consistent with increased ECM engage-
ment. Change in the LEP-ECM binding energy is predicted to
impair the ability to maintain normal epithelial bilayers (Cerchiari
et al., 2015). Indeed, LEP-ECM interactions in older LEP could
inhibit the Hippo pathway (Cordenonsi et al., 2011) and activate
YAP/TAZ (Naylor et al., 2005), which may help explain our previ-
ous observation of increased nuclear YAP in post-menopausal
LEP in vivo (Pelissier et al., 2014).

Accumulation of stem/progenitor cells with skewed differenti-
ation and function is a hallmark of aging in a number of tissues
(Encinas et al., 2011; Garbe et al., 2012; Lugert et al., 2010),

and it may confer increased susceptibility to oncogenic events.
BRCA1 basal-like breast cancers may originate from cKit-ex-
pressing progenitors (Lim et al., 2009; Molyneux et al., 2010).
The key changes in the subpopulations of LPs that accumulated
with age involved a specific marker signature where cKit, CD133,
YAP, and HER2 expression was increased and CD44 expression
was decreased. These findings are congruent with the observa-
tion that cKit overexpression prevents normal differentiation in
murine mammary epithelial progenitors (Regan et al., 2012),
and they may explain the accumulation of cKit+ LPs with age.
CD133 (Prominin 1), another putative LP marker (Hilton et al.,
2014; Raouf et al., 2008), changed the most with age (increased
18.25- and 6.36-fold and decreased 5-fold in protein abundance
in each respective cluster compared to <30-year cKit+). In some
breast cancers CD133 positivity correlates with a restricted sub-
group of tumor stem cells in BRCA1-deficient mammary tumors
(Wright et al., 2008). YAP expression in LPs might result inincom-
pletely differentiated LEPs with basal traits (Pelissier et al., 2014).
Amplification of HER2 has been shown to play animportantrole in
the development and progression of certain aggressive types of
breast cancer (Ménard et al., 2000). Hence, these age-related
phenotypes correspond with the cancer-relevant hypothetical ef-
fects of cKit, CD133, HER2, and YAP marker expression signa-
ture. Older cKit+CD133+ LPs formed basal proliferative colonies
in 3D Matrigel/collagen gels, resembling the reported activity of
LPs from BRCAT1 carriers (Lim et al., 2009). Moreover, hormone
treatment in luminal breast cancer reduced estrogen receptor a
levels and promoted a cancer stem cell phenotype (CD133"9"
and CD44'°%) (Sansone et al., 2016). This observation correlates
well with the fact that augmented CD133"9" and CD44"" cell
proportion is associated with an increase in malignancy (Pece
et al., 2010) and probably breast cancer risk (Garbe et al.,
2012). The cKit+CD133+ LPs are considered potential cells of
origin for breast cancer, and we propose that their accumulation
with age represents an important facet of age-related suscepti-
bility to breast cancer. Moreover, based on the involvement
of these signature proteins (i.e., cKit, CD133, YAP, HER2, and
CD44) in a number of breast cancer-relevant contexts, it is
tempting to speculate that their dysregulation in older LPs also
is related to increased susceptibility to breast cancer with age.
We identified shared expression signatures between age-
emergent luminal cell subpopulations and immortalized deriva-
tives of older HMECs, which have overcome at least two major
barriers to tumor progression. Five of the six immortal cell lines
exhibited high expression of the core markers (YAP, Axl, pSé6,
pPLCy2, pEGFR, CD44, and pGSKS3 [inactivated when phos-
phorylated]), which defines a putative signature of transformed
HMECs that was also part of the core changes in normally aging
LEPs. All of those core markers were reported to have a role in
breast cancer progression (Gjerdrum et al., 2010; Kassis et al.,
1999; Kim et al.,, 2015; Ko et al.,, 2016; Louderbough and
Schroeder, 2011; Masuda et al., 2012; Yanai et al., 2015).

(G and H) Histograms represent log,-transformed ratios of K14 to K19 protein expression in single cells of acini (G) from a representative woman <30 years old
(240L, 19 years) and (H) from a representative woman >50 years old (029, 68 years). Histograms are heat mapped to indicate the phenotypes of K14—/K19+ LEP
(green), K14+/K19+ progenitors (yellow), and K14+/K19— MEP (red). Insets show representative HMEC organoids immunostained for K14 (red), K19 (green), and

DAPI (blue). Scale bar represents 50 um.
See also Figure S7.
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Machine-learning algorithms that we used to validate the aging
signature incorrectly classified nine young and middle-aged
primary strains as old. Six of those strains were from women
with mutations in BRCA1 or ATM, or they were derived from
normal-appearing tissue that was peripheral to a tumor, or they
were the normal cells cultured out directly from a tumor. It is
tempting to speculate that epithelia in women who are innately
at higher risk will exhibit an effective age that is older than the
chronological age. A similar idea was proposed by epidemiolo-
gists that took into account breast tissue age, using only mea-
sures of hormones and childbirths (Pike et al., 1983). Here we
provide evidence of a cell- and molecular-level manifestation
of this concept. A biological explanation of advanced effective
age in epithelia could be that molecular states that are associ-
ated with risk exert field effects (Deng et al., 1996), which alter
the epithelia through a dynamic and reciprocal communication
between stroma and epithelia. Ultimately, further investigation
may lead to the development of novel approaches for preven-
tion, patient stratification, and therapeutic interventions to com-
bat age-associated breast cancers.

EXPERIMENTAL PROCEDURES

Cell Culture and Uncultured Breast Epithelia

All cell culture was in M87A medium with 0.1 nM oxytocin (X) and cholera toxin
(CT) at 0.5 ng/mL (Garbe et al., 2009). Primary HMEC strains were generated
and maintained as described (Labarge et al., 2013). All tissues were obtained
with proper oversight from the Lawrence Berkeley National Laboratory institu-
tional review board. Breast tissue from reduction mammoplasty was manually
dissected to enrich for gland-containing material. Stromal tissue was sepa-
rated from epithelial fragments using a brief treatment with collagenase. The
uncultured breast epithelia samples were dissociated as single cells with
trypsin. All the pre-stasis HMEC strains were used at fourth passage
(Table S1). Fibroblasts were removed and collected separately by differential
trypsinization during the first passage. During the functional assay, HMECs
were treated with EGF (Sigma E-9644, 0.1 pg/mL) and sodium orthovanadate
(Sigma 13721-39-6, 12.5 mM) for 1 hr. Samples were harvested with TrypLE,
fixed with 1.6% paraformaldehyde (PFA) for 10 min at room temperature (RT),
and frozen as a pellet at —80°C for further analysis.

Antibodies Used for Mass Cytometry Analysis

Antibodies were obtained in carrier protein-free PBS and then prepared using
the MaxPAR antibody conjugation kit (Fluidigm), according to the manufac-
turer’s protocol. After determining the percentage yield by measurement of
absorbance at 280 nm, the metal-labeled antibodies were diluted in Candor
PBS Antibody Stabilization solution (Candor Bioscience) for long-term storage
at 4°C (Table S2). Antibodies were titrated and validated beforehand using
both positive and negative cell controls (Table S2; Figure S1). Extensive anti-
body validation has been performed and published previously (Chevrier
et al., 2017; Giesen et al., 2014).

Cell Barcoding and Antibody Staining

HMEQC strains were incubated with cisplatin (WR International, Cat# 89150-
634, 25 uM) for 1 min to assess cell viability (Fienberg et al., 2012), fixed in
1.6% PFA for 10 min at RT, and washed once with Cell Staining Media

(CSM, PBS with 0.5% BSA and 0.02% NaNj; with 0.03% saponin). The cells
were then resuspended in PBS, and DMSO stocks of the barcoding reagent
were added as described (Bodenmiller et al., 2012; Zivanovic et al., 2014).
The cells were incubated at RT for 30 min, washed three times with CSM,
and then pooled into a single FACS tube for staining with metal-labeled anti-
bodies for 1 hr at RT. A staining volume of 800 uL was used (~30 X 108
cells/mL). After antibody staining, the cells were washed twice with CSM
and once with PBS, and then incubated for 20 min at RT or overnight at 4°C
with an iridium-containing intercalator (DVS Sciences) in PBS with 1.6%
PFA. The cells were then washed three times with CSM and once with PBS,
diluted with water to ~10° cells/mL, and filtered through a 40-pm membrane
just before analysis by mass cytometry.

Data Analysis

The scale used before analysis is the arcsinh with the cofactor of 5 (x_transf =
asinh(x/5)). After gating out viable and iridium-labeled events, the data
were analyzed by applying tSNE. This non-linear dimensionally reduction
technique is implemented via Barnes-Hut approximations in the MATLAB
toolbox cyt (Amir et al., 2013). We used the default parameters (initial
dimensions, 110; perplexity, 30; and theta, 0.5). Each sample contained
20,000 cells, when merged, 320,000 cells from HMEC <30 years, 260,000 cells
from HMEC >30 < 50 years, and 300,000 cells from HMEC >50 years. In tSNE,
each cell is represented as a point in high-dimensional space. Each dimension
is one parameter (the expression level of each protein in our case).

The unsupervised PhenoGraph algorithm in cyt has been used to group cells
that are phenotypically similar and cluster these subpopulations using modu-
larity optimization (Levine et al., 2015). tSNE and PhenoGraph were performed
only on surface markers. A number of neighbors of 800 was selected. This
parameter was chosen based on prior knowledge of the underlying cell types.
Lower values for nearest neighbors result in an overclustering and higher
values an underclustering.

The Citrus toolbox in R was used to identify clusters that changed in abun-
dance with age (Bruggner et al., 2014) in an unsupervised manner. Therefore,
clusters were identified using a hierarchical clustering and linked to clinical
data for characterization. The minimal selected cluster size was 0.1% of the
total analyzed data. Stratifying clusters were learned by using regularized
unsupervised learning methods. Heatmaps were obtained with MATLAB and
Cytobank. The results were reproduced with strains obtained from reduction
mammoplasties (RMs) only.

Classification

Citrus was implemented in the PAM package for R and used nearest shrunken
centroids as a predictive model to identify properties that are predictive of
sample class. The prediction model was based on the initial training data
model. Therefore, new samples were mapped and later assigned to the initial
clusters for prediction. Using a training set of 5 HMECs from women <30 years
old and 5 women >50 years old (n = 10), Citrus efficiently assigned most of
the test set to young or old. The training set was changed to n = 8 and to
n = 12 with similar efficiency. After randomization of the training set, the
classification failed. The R code is found in the Supplemental Experimental
Procedures.

Classification Using Morphometric Context

Each image was represented as its Cellular Morphometric Context (Chang
etal., 2013), which was constructed as the histogram of cellular morphometric
subtypes derived from the cellular morphometric features (K14/K19 signals)
through K-Means (dictionary size = 1,024). Homogeneous kernel map
(Vedaldi and Zisserman, 2012) was then applied on the Cellular Morphometric

Figure 7. Aged Epithelia Resemble Immortalized Epithelial Cells

(A) tSNE map of immortalized HMECs (left, merged, 6,000 cells per sample, n = 6). Right: each color represents a strain.
(B) Five selected markers are shown (K19, K4, K7, Axl, and YAP), with knockdown of CDKN2A: p16sMY and overexpression of CCND1: D1MY.
(C) Plots show percentage of LEP and MEP in each strain according to the gating strategy.

(D) Heatmap of Z score of median of marker expression of each strain.
See also Figure S7.
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Context representation, so that linear support vector machine (SVM) (Yang
et al., 2009) could be adopted for efficient and effective differentiation among
age groups.

Statistical Analysis

GraphPad Prism, R, and MATLAB were used for all statistical analyses.
Standard linear regression and t tests were used. Grouped analyses were
performed with Bonferroni-Holm correction for multiple comparisons. Signifi-
cance was established when *p < 0.05, **p < 0.01, and ***p < 0.001.

DATA AND SOFTWARE AVAILABILITY

The accession number for the CyTOF data reported in this paper is Mendeley
Data: https://doi.org/10.17632/j7mrbgt3hh.1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,
seven figures, and two tables and can be found with this article online at
https://doi.org/10.1016/j.celrep.2018.03.114.
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Supplemental Information

Table S1. HMEC and uncultured breast epithelia samples (Related to Figure 1). HMEC
strains and uncultured breast epithelia samples were derived from reduction mammoplasty (RM),
peripheral non-tumor regions from mastectomy (P) tissues, milk fluids (Milk) and a tumor (T).

The name of the HMEC strain, the age at the time of surgery and the characteristics are indicated.



Table S2. Antibody panel (Related to Figure 1). A panel of 29 antibodies is shown, comprising
10 highly informative surface markers, 12 antibody probes against intracellular phosphorylation,
4 antibody probes against the Hippo pathway and 3 antibody probes against cell cycle and
apoptosis pathway. Each antibody clone, supplier, epitope and conjugated isotope is indicated.
All the antibodies have been previously validated and titrated. References for relevant pathways

in the regulation of HMEC are indicated.



Figure S1. Validation of the antibody panel (Related to Figure 1 and 2). The antibody panel
has been extensively validated and titrated (data not shown). The raw data has been transformed

with arcsinh with the cofactor of 5. (A) To illustrate the functionality of each metal-conjugated



antibody, representative biaxial plots show staining profiles of the antibodies used in women
<30y (merged, N=16), ranging from 10° to 10* ion counts per cell. (B) Heatmaps of marker
expression in HMEC from three <30y and >50y women treated with EGF and vanadate for
60min, manually gated after tSNE projection. At, t=0, 10, 30 and 60min cells were harvested and
analyzed with mass cytometry using barcoding and a panel of 23 antibody probes. The fold
change of marker expression is ranged from the lowest (green) to the highest (red). This
experiment validates the signaling pathway antibodies. (C) tSNE maps from HMEC from women
<30y (merged, N=16). Only 50°000 cells are subsampled for display. The marker expression is
ranged from O (blue) to 1400 ion counts (red). (D) Log, fold change in marker expression of LEP
over MEP manually gated from tSNE. Paired student t-test was performed on median of protein

expression in LEP vs MEP before logarithm transform, * p<0.05 N=16.



Figure S2. Luminal and
myoepithelial lineages exhibit
a phenotypic divergence in
women >30 and <50y (Related
to Figure 2). (A) tSNE maps
from HMEC from women >30y
and <50y (merged and
subsampled at 50’000 cells,
N=9). The marker expression is
ranged from 0 (blue) to 1400
ion counts (red). (B) Log fold
change in marker expression of
LEP over MEP manually gated
from tSNE. Four abnormal
samples were excluded: a
sample from milk fluid
(250MK), two samples bearing
BRCAT1 or ATM mutation (90P
and 245AT), and one sample
from a tumor (173T). Paired
student t-test was performed on
median of protein expression in
LEP vs MEP before logarithm
transform. The non-significance
was due to a lower sample
number (N=9) in addition to
age-related changes. Student t-
test * p<0.05 N=9.



Figure S3. Luminal and
myoepithelial  lineages
exhibit a phenotypic
divergence in women
>50y (Related to Figure
2). (A) tSNE maps from
HMEC from women >50y
(merged and subsampled
at 50’000 cells, N=15).
The marker expression is
ranged from 0 (blue) to
1400 ion counts (red). (B)
Linear regression of K7
and YAP expression in
LEP as a function of age.
(C) Log> fold change in
marker expression of LEP
over MEP manually gated
from tSNE. Paired student

t-test was performed on

median of protein
expression in LEP vs MEP
before logarithm

transform, * p<<0.05 N=15.






Figure S4. PhenoGraph analysis identified lineage-specific subsets (Related to Figure 3). (A)
Heatmaps of marker expression of each cluster identified with PhenoGraph of HMEC from
women >30 and <50y and women >50y with their associated p-values with Bonferroni-Holm
correction of student t-tests. (B) Plots show CyclinB1 (black dashed line), pRb (red plain line),
Iridium 191 labeling DNA (blue plain line) and Iridium 193 labeling DNA (green dashed line)
intensity (ion counts) in each cluster identified with PhenoGraph. LEP3, MEP4 and MEP7 had
the highest Cyclin B1 expression which correlated with higher Iridium intensity, thus DNA
content, as compared to the other clusters. (C) Scatter plot shows the expression of K14 and K19
in Citrus cluster A (red diamonds) and D (blue dots) to illustrate that cells from cluster D belong
to cluster A by hierarchical clustering and thus are superposed onto cells from cluster A. (D)
Plots of cell percentage in each Citrus cluster. Four abnormal samples were excluded: 250MK,
90P and 245AT, 173T. (E) Plots show the median expression of K19 and K14 in <30y LEP
(n=16) and the cluster A of the Citrus tree (N=40). t-test *** p<0.0001, * p=0.0433. (F) Plots
show CyclinB1 (black dashed line), pRb (red plain line), Iridium 191 labeling DNA (blue plain
line) and Iridium 193 labeling DNA (green dashed line) intensity (ion counts) in each cluster
identified with Citrus. (G) Heatmaps show the p-values with Bonferroni-Holm correction from

student t-tests of each marker expression of Citrus clusters vs LEP or MEP <30y.






Figure S5. High dimensional analysis of cellular heterogeneity within primary human
breast epithelia (Related to Figure 5). (A) tSNE maps of breast epithelia from women <30y
(merged, and subsampled at 50’000 cells, N=7) and women >50y (merged, and subsampled at
50°000 cells, N=6). The marker expression is ranged from 0 (blue) to 2750 ion counts (red). (B)
Hierarchical tree of agglomerative clusters obtained with the Citrus analysis. Node sizes are
scaled on the basis of frequency of cells in each cluster. Major cell compartments are contoured
on the basis of expression of canonical markers. (C) Heatmaps show the p-values with
Bonferroni-Holm correction from student t-tests of each marker expression of Citrus clusters vs

LEP or MEP <30y.






Figure S6. Evidence of newly acquired functional properties in luminal epithelial cells with
age (Related to Figure 6; experimental procedures; data analysis). (A) Citrus classification
performance using 8, 10 or 12 training samples. (B) Plots show the fold change of LEP cell
migration index (CI) slope normalized to MEP CI migration slope in women <30y and >50y
(N=3, p=0.0269). (C) Graphs show CI measured with xXCELLigence instrument every 15min for
25h in FACS sorted LEP and MEP from HMEC from three women <30y and from three women
>50y. (D) HMEC from three <30y and >50y women were treated with EGF and vanadate for
60min. Heatmaps of marker expression in LEP and MEP manually gated after tSNE projection.
Data was normalized to values from <30y women to highlight age-related changes. The log> fold
change is ranged from the lowest (blue) to the highest (red). (E) tSNE maps of HMEC from
women <30y at t=0, 10, 30 and 60min. pEGFR expression from the lowest (blue) to the highest
(red) is shown to highlight the movement of HMEC in the phenotypical space upon EGF
activation. (F) Density plots in the tSNE phenotypic space exhibited a stronger response in

women >50y upon EGF activation. Data are means +/- SEM.






Figure S7. Evidence of phenotypic divergence in luminal progenitors with age (Related to
Figure 6). (A) Visual representation of unsupervised hierarchical clustering of cKit+ progenitors
HMEC with Citrus (N=6). Node sizes are scaled on the basis of frequency of cells in each cluster.
Major cell compartments are contoured on the basis of expression of canonical markers. The
three clusters changing in abundance with age are shown. (B) Histograms represent logs-
transformed ratios of K14 to K19 protein expression in single cells of acini from two women
<30y (124, 29y and 160, 16y) and (C) from two women >50y (335R, 58y and 353P, 72y),
histograms are heat-mapped to indicate cells with the phenotypes of K14-/K19+ LEP (green),
K14+/K19+ progenitors (yellow), and K14+/K19- MEP (red). (D) Heatmap shows the p-values
with Bonferroni-Holm correction from student t-tests of each marker expression of Citrus clusters
vs LEP or MEP <30y. (E) Heatmap of marker expression of each immortalized strain, z-score
normalized and hierarchically ordered. The fold change of marker expression is ranged from the

lowest (black) to the highest (white).

Supplemental Experimental Procedures

Generation of immortal cell lines — Finite lifespan HMEC from specimens 184, 240L, 122L,
and 805P were obtained from reduction mammoplasty tissues or peripheral to mastectomy tissues
(i.e. 805P). HMEC were grown in M87A supplemented with CT at 0.5 ng/ml, and X (Bachem) at
0.1 nM. Retroviral vectors: The p16 shRNA was in the MSCV vector, c-Myc wsa in the pBabe—
hygro (BH2) or LXSN vector. Retroviral stocks were generated from supernatants collected in
MS87A medium. Strains 240L, 1221, and 805P at passage 3 or and 184 at passage 4 were
transduced with MSCV-pl6ésh or MSCV control and selected with puromycin. At the next
passage, after puromycin selection, the pl6sh transduced cells were transduced with c-Myc
pBabe-hygro (c-myc LXSN for 184) and selected with hygromycin. Vector only control pre-
stasis cells entered stasis at passage 12-15, whereas the immortalized lines continued to grow.

Mass cytometry analysis. The age of the strains were not known at the time of the experiment.
Cells were analyzed on a CyTOF mass cytometer (DVS Sciences) at an event rate of ~500 cells
per second. The settings of the instrument and the initial post-processing parameters were
described previously. For each barcoded sample several data files were recorded. The files were

concatenated using the Cytobank concatenation tool, normalized and debarcoded.



Flow Cytometry — HMEC at fourth passage were trypsinized and resuspended in their media.
For enrichment of progenitor, luminal or myoepithelial lineages, anti -CD133-PE-Vio615
(Myltenyi clone AC133, 1:50) anti -CD117-PE (BioLegend, clone 104D2, 1:200), or anti-
CD227-FITC (BD; cloneHMPV;1:50), anti-CD10-phycoerythrin (BioLegend; clone HI10a;
1:100), respectively, were added to the media for 25 minutes on ice, washed in PBS, and sorted
using FACS Vantage DIVA (Becton Dickinson).

Matrigel/collagen assay — 24-well plates were coated with 50uL of Matrigel as a bottom layer.
To create the matrigel/collagen mixture, 50’000 cells in 70uL of media were mixed with 15uL of
neutralization solution (100mM Hepes, pH 7.3 in 2X PBS), and 15uL of collagen solution
(Corning 354249, 8.69mg/mL), and 100uL of Matrigel for a final concentration of 0.67mg/mL of
collagen 1. After 3 weeks, gel smears were fixed in methanol:acetone.

Immunofluorescence — Matrigel smears were fixed in methanol:acetone (1:1) at -20°C for 20
minutes, blocked with PBS, 5% normal goat serum, 0.1% Triton X-100, and incubated with anti-
K14 (1:1000, Covance, polyclonal) and anti-K19 (1:10, Developmental Studies Hybridoma
Bank, clone Troma-III) overnight at 4°C, then visualized with fluorescent secondary antibodies
(Invitrogen) incubated with sections for 2 hours at room temperature. EQU was added to culture
media 4h prior to fixing cells, and was imaged with A647 click reagents (Invitrogen). Cells were
imaged with LSMS510 confocal microscope (Carl Zeiss). Image analyses were conducted using a
modified watershed method in Matlab software (Mathworks).

Immunostaining of tissue sections- Healthy breast tissue sections were obtained through
University of California Davis in accordance with all IRB procedures. Paraffin-embedded
sections were deparaffinized and antigen retrieved (Vector Laboratories) and stained with
primary antibodies to K14 (1:1°000; Covance; PRB-155P; visualized with A647 Zenon probes
from Invitrogen), and K19 (1:100; Abcam; AAHO07628). Cells were imaged with LSM710
confocal microscope (Carl Zeiss).

Classification using morphometric context- Each image was represented as its Cellular
Morphometric Context, which was constructed as the histogram of cellular morphometric
subtypes derived from the cellular morphometric features (K14/K19 signals) through K-Means
(dictionary size =1024). Homogeneous kernel map was then applied on the Cellular
Morphometric Context representation, so that linear support vector machine (SVM) could be

adopted for efficient and effective differentiation among age groups.



xCELLigence analysis- The lower xCELLigence chambers were filled with M87A media with
10% FBS and the upper chamber were filled with 4x10° cells in serum-free M87 media. Cell

Index (CI) and slopes were measured using the RTCA-DP instrument.

R code for Citrus classification-

library("citrus")
# Where the data lives
dataDirectory = "C:/Users/Fanny/Documents/Cytof/The ladies/"

# List of files to be clustered= your training set

fileList1 = data.frame(c("30 LadiesO1 B10 123.fcs","20 LadiesO1 E10 160.fcs",
"30 LadiesO1 C5 195L.fcs", "30 LadiesO1 B7 184.fcs", "60 LadiesO1 C3 191L.fcs",
"70 LadiesO1 F4 29.fcs", "70 LadiesO1 E8 122L.fcs","80 LadiesO1 F5 429ER.fcs"))

# List of files to be mapped= your entire test set
fileList2 = data.frame(c("20 LadiesO1 B11 407P.fcs", "20 LadiesO1 C9 399E.fcs",
"20 LadiesO1 E10 160.fcs", ... include all files... "100_LadiesO1 B2 805P.fcs")

# Read the data
citrus.combinedFCSSet1 = citrus.readFCSSet(dataDirectory,fileList1,fileSampleSize = 5000)
citrus.combinedFCSSet2 = citrus.readFCSSet(dataDirectory,fileList2,fileSampleSize = 5000)

# List of columns to be used for clustering

clusteringColumns = c(surface markers)
# Cluster first dataset
citrus.clustering = citrus.cluster( citrus.combinedFCSSet1, clusteringColumns,

minimumClusterSizePercent = 0.1)

# Map new data to exsting clustering



citrus.mapping = citrus.mapToClusterSpace(citrus.combinedFCSSet.new =
citrus.combinedFCSSet2, citrus.combinedFCSSet.old = citrus.combinedFCSSet1,

citrus.clustering)

# Large Enough Clusters

largeEnoughClusters = citrus.selectClusters(citrus.clustering)

# Clustered Features and mapped features
clusteredFeatures = citrus.calculateFeatures(citrus.combinedFCSSetl, clusterAssignments =

citrus.clustering$clusterMembership, clusterlds = largeEnoughClusters)

mappedFeatures = citrus.calculateFeatures(citrus.combinedFCSSet2 ,clusterAssignments =

citrus.mapping$clusterMembership, clusterlds= largeEnoughClusters)

# Labels

# Labels for training set

labels = as.factor(c("Young","Young","Young","Young","Old","Old","Ol1d","Ol1d"))
trainingLabels = as.factor(c("Young","Young","Young","Young","Old","Ol1d","Old","O1d"))
#Labels for test set

testinglLabels = as.factor(c(rep("<30",16),rep(">30<50",13),rep(">50",15)))

# Build Endpoint Model

citrus.endpointModel = citrus.buildEndpointModel(clusteredFeatures, trainingLabels)

# Calculate regularization thresholds
regularizationThresholds = citrus.generateRegularizationThresholds( features= clusteredFeatures,

labels=traininglabels, model Type="pamr",family="classification")

# Calculate CV Error rates
thresholdCVRates = citrus.thresholdCVs.quick( modelType="pamr", features=clusteredFeatures,

labels=trainingLabels, regularizationThresholds,family="classification")



# Get pre-selected CV Minima
cvMinima = citrus.getCVMinima("pamr",thresholdCVRates)

# Predict lables of testing data at CV.1se
predictions = citrus.predict( citrus.endpointModel, newFeatures=mappedFeatures)

[,cvMinima$cv.Ise.index]

# Contingency Table of results
table(predictions,testingLabels)
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