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Abstract 

 

PSYCHEDELICS AND NOVEL NON-
HALLUCINOGENIC ANALOGS FOR 
TREATING NEUROPSYCHIATRIC 
DISORDERS 
 

Psychedelic medicine is gaining rapid popularity for treating neuropsychiatric disorders such as 

depression, anxiety, PTSD and addiction.  Unlike current medications on the market, these 

compounds appear to act rapidly and in treatment-resistant populations. However promising, these 

therapeutics are hindered by the fact that they cause intense hallucinations, which can be dangerous 

and decrease accessibility to this type of medical care. We sought to determine if hallucinations 

are necessary to achieve the therapeutic effects, or if these two phenomena are dissociable. Using 

rodent behavioural paradigms, cell culture assays and human survey data, we demonstrate that 

both psychedelic microdosing and novel non-hallucinogenic psychedelic analogs may have 

therapeutic effects. 
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NEUROPLASTICITY AND MENTAL 
HEALTH 
 

 

 

 Prevalence and Impact of Mental Health Disorders 

Depression, anxiety and post-traumatic stress disorder (PTSD) are considered stress-related 

illnesses and are among the leading causes of disability worldwide.1  In fact, over the last decade, 

cases have increased, and suicide rates now surpass the number of deaths caused by motor vehicle 

accidents.2 Finally, the number of diagnoses for these conditions have substantially increased since 

the beginning of COVID-19.3  

 

 Current Medications are Inadequate to Treat Stress-Related Illnesses 

In 2019, 18.5% of adults experienced depressive symptoms.4 Depression characterized by 

persistent sad or “empty” moods, feelings of hopelessness, irritability, feelings of guilt, decreased 

energy or fatigue, difficulty concentrating, difficulty sleeping, changes in appetite and weight and 

in severe cases, thoughts of suicide or death.5  Depression occurs with higher rates and severity of 

depression and anxiety in women.4  It is associated with diminished quality of life and increased 

disability.6  Currently, traditional antidepressants are the first-line treatment for depression.7 
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Like depression, generalized anxiety disorder (GAD) has a prevalence of 15% in the United 

States, and is characterized by restlessness, being easily fatigued, difficultly concentrating, 

irritability, muscle tension or sleep disturbance.8, 9  Given that both depression and anxiety have 

similar neuropathology, it is unsurprising that treatments for GAD are also antidepressants10 such 

as selective serotonin reuptake inhibitors (SSRIs)11, 12 or serotonin and norepinephrine reuptake 

inhibitors (SNRIs).13  

For decades, scientists thought low serotonin levels contribute to this depression—called 

the serotonin or monoamine hypothesis of depression—has led to the perpetuation of drugs that 

increase serotonin availability.14 There are different types of antidepressants on the market, 

including tricyclics, SSRIs, and SNRIs, all which generally aim to increase serotonin 

concentrations in the synaptic cleft. Until recently, there has not been a mechanistically novel 

pharmaceutical compound to treat depression in almost 30 years (Figure 1.2).  Side effects 

associated with these medications include reduced libido, weight gain, fatigue, and hypotension to 

Figure 1.2-1. Timeline of approved medications for depression and anxiety.   

Red represents tricyclics; light blue represents SSRIs; dark blue represents SNRIs; green represents psychoplastogens. 
Image created by Lindsay Cameron and Lee Dunlap. 
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name a few.15  Many patients discontinue treatment due to such side effects.16 This theory has not 

stood the test of time, with the primary caveat being that these drugs work rapidly to increase 

serotonin levels in the brain, but clinically take many weeks to start working. 

Given that antidepressants are the most common therapeutic medications in the United 

States,17 it is shocking how ineffective they are.  Approximately 30-40% of patient do not actually 

respond to medications on the market, and these patients are termed treatment-resistant.18, 19  

Though many patients discontinue treatment due to side effects, the majority of patients 

discontinue due to this lack of efficacy.20 Finally, these drugs take ~6 weeks to begin working, 

leaving no therapeutic options for those who are severely depressed or suicidal.21, 22 

More recently, scientists have supported the neurotrophic hypothesis of depression—a 

hypothesis which posits that a dearth of neurotrophins may result in atrophy and decreased 

function of cortical neurons.23   

 

 The neurotrophic hypothesis for depression and the prefrontal cortex 

Depression, anxiety and post-traumatic stress disorder (PTSD) are stress-related disorders 

characterized by atrophy of neurons in the prefrontal cortex (PFC), which has been found in rodent 

studies, as well as human post-mortem tissue.24, 25, 26, 27  Further, patients have shown decreased 

BOLD response in PFC regions,28 and increased cortical thinning.29, 30, 31, 32, 33 These decreases in 

activation in vmPFC are correlated with impaired fear responses.34  Ultimately, these disorders are 

thought to arise from a complex interaction of genetic, biochemical, and environmental (stress) 

variables.35 

Neurotrophins such brain-derived neurotrophic factor (BDNF)—which play crucial roles in 

growth and plasticity—are vital for the functioning of this brain region, and the neurotrophin 



 

 4 

hypothesis of depression posits that low levels of such neurotrophic factors may lead to neuronal 

atrophy in the PFC, subsequently manifesting as depression.23, 36 Exposure to chronic stress—

physical or social—decreases levels of BDNF in the PFC and hippocampus.37, 38  In patients with 

depression, there are significantly decreased levels of BDNF,39, 40, 41, 42 which subsequently 

increase again after treatment.43, 44, 45, 46, 47  Post-mortem studies of patients who received chronic 

(but not acute) treatment with traditional antidepressants demonstrate increases in BDNF.37, 43, 44  

Infusion of BDNF induces rapid increases in function and growth of neurons.48,49  Binding of 

BDNF to the tyrosine kinase receptor B (TrkB) activates cell pathways related to survival and 

differentiation.50 In neurons, it promotes branching of dendrites and initiation/stabilization of 

synaptic contacts.49,50 Murine models expressing mutant TrkB receptors are resistant to treatment 

with traditional antidepressant compounds.51  

It should be noted that although substance use disorder (SUD) is not always considered a 

stress-related disorder, stress-related disorders puts one at risk for developing SUD52, 53 and these 

conditions commonly co-occur.54, 55  Exposure to stressors enhances drug self-administration and 

cause reinstatement of drug-seeking behaviour in animals who previously took the substances.56   

Though studies have demonstrated that various addictive substances—opiates, amphetamines, 

nicotine, etc.—all work on the limbic system in different ways, they all are associated with atrophy 

of prefrontal cortical neurons in the PFC.57  Of course, this calls into question if this atrophy is a 

cause, a result or simply correlated with drug seeking behaviour.  Studies have demonstrated that 

low serum levels of BDNF are highly correlated with alcohol and drug dependence.42   

The prefrontal cortex plays an integral role in the top-down regulation of emotion. As 

mentioned above, atrophy of neurons in the prefrontal cortex is highly associated with depression. 

Conversely, regrowth of neurons in this area is seen with treatment and is correlated with 
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amelioration of symptoms. There is ample evidence to suggest that the PFC is also implicated in 

drug seeking behaviour. Despite the fact that many addictive compounds exist with different 

mechanisms of action (opiates, amphetamines, cocaine, alcohol, etc), all are associated with 

atrophy and change of function of neurons in the prefrontal cortex.58   

The PFC consists mainly of excitatory pyramidal cells (80-90% of the population), with a 

smaller proportion of GABAergic interneurons (10-20%).59, 60  Each of these cell types can be 

further subdivided based on molecular markers, morphology, as well as physiological and 

molecular characteristics. Layer V pyramidal cells extend projections to subcortical areas and 

modulate their activity. Indeed, optogenetic activation of PFC terminals in the dorsal raphe (DR) 

increases motivated behaviours,61 activation of PFC terminals in the amygdala promotes anxiolytic 

behaviours,62 and activation of PFC terminals in the NAc reduces drug seeking behaviour.63 

Furthermore, infusions of BDNF to the infralimbic cortex in the absence of fear extinction learning 

is sufficient for enhancing extinction learning,64 suggesting that perhaps simply increasing BDNF 

levels in this region is enough for the expression of extinction behaviour. 

The PFC plays an integral role in modulating emotion-related behaviours, so it is 

unsurprising that atrophy of neurons in this region results in the development of pathologies like 

depression, anxiety, PTSD and SUD. 

 

 Ketamine and mental health 

Within the last few decades, data has emerged that sub-anesthetic infusion of ketamine is capable 

of promoting rapid-acting antidepressant responses, within hours of administration.65, 66, 67, 68, 69, 70, 

71 In addition, ketamine infusions appear to be effective for treatment-resistant populations.72  

Compared to traditional antidepressants that take approximately 6 weeks to demonstrate efficacy, 
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and do not work in treatment-resistant populations, ketamine revolutionized the field of psychiatry. 

Compounds that are fast-acting therapeutics, like ketamine, capable of rapidly promoting 

structural and functional neural plasticity are referred to as psychoplastogens. 

 Pioneering studies by the Duman lab demonstrate that ketamine rapidly restores spine 

growth and function in the prefrontal cortex.73  While depressed patients show reduced activity in 

the PFC,74 this is rapidly reversed after ketamine treatment.71, 75, 76  In rodents, chronic stress causes 

neuronal atrophy in the PFC,77, 78 which is rapidly reversed after ketamine infusion. Furthermore, 

ketamine restores neuronal function through increases in glutamate transmission in the PFC of 

rodent models.73, 79, 80  Ketamine likely works through a BDNF-mediated mechanism, as infusion 

a BDNF-sequestering antibody into the PFC blocks ketamine’s antidepressant effects.81  

Optogenetic inhibition of the PFC blocks ketamine’s antidepressant-like behavioural effects in 

rodent models, while optogenetic stimulation replicates it.82  Moda-Sava and colleagues 

demonstrate that the spine growth in the PFC caused by ketamine administration is necessary for 

sustained antidepressant effects.83  In 2019, the FDA approved Esketamine: a nasal spray version 

of S-ketamine to help with treatment-resistant depression (Figure 1.2).84 

 As promising as ketamine sounds, there are three major issues with its use as a therapeutic.  

Firstly, ketamine is addictive,85, 86, 87, 88, 89 and evidence shows that there is overlap in the circuitry 

between its antidepressant and addictive effects.90  Secondly, due to this abuse potential, ketamine 

is administered in clinics under supervision. For this reason, ketamine therapy is expensive and 

therefore inaccessible to populations who may need it most. Ketamine is not something you can 

take home and keep in your medicine cabinet.  Finally, the therapeutic effects of ketamine are 

transient, lasting only 7-14 days.66, 69   
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 In sum, the discovery of ketamine as a rapid-acting antidepressant has revolutionized the 

field of psychiatry. However, there still appears to be some drawbacks associated with this therapy. 

We can harness the information that scientists have learned from ketamine to develop better and 

longer-lasting therapeutics. 

 

 

 Psychedelics for treating mental health disorders 

Studies with psychedelics have produced similar results as ketamine in being rapid-acting and 

effective in treatment-resistant populations.  Much of what is known of psychedelic therapy stems 

from studies done in the Brazilian churches Santo Daime, Barquinha and União do Vegetal, where 

ayahuasca—containing the psychedelic N,N-dimethyltryptamine (DMT)—is administered for 

religious ceremonies. Studies in these groups revealed that ayahuasca is useful for treatment-

resistant and recurrent depression.91, 92 

 Studies using other psychedelics such as psilocybin have also demonstrated to be effective 

rapidly and in treatment-resistant populations.93, 94, 95, 96 Treatment with psychedelic compounds is 

able to increase BDNF mRNA in the cortex.97  Remarkably, these effects are reported to last for 

years after a single administration.98  Moreover, there is low abuse potential for psilocybin,99 and 

no physical dependence or withdrawal.100  In fear extinction studies, a model of post-traumatic 

stress disorder (PTSD), MDMA facilitates fear extinction learning.101  Around this time, MDMA 

was granted the Breakthrough Therapy Designation by the FDA for treating PTSD102, 103 and 

showed promising effects in Phase 3 trials in humans.104 

Human work using psychedelic substances is fraught with administrative hurdles, not to 

mention the fact that having a true placebo group is very difficult: for example, if patients are 

administered LSD or saline, they will very likely know which substance they got based on if they 
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have a hallucinatory experience. From this, they can extrapolate if they will anticipate therapeutic 

responses. Using rodent models may circumvent these issues since they do not have a preconceived 

notion of acquiring a therapeutic effect from the substance.  

When I began my PhD, there were a handful of studies that demonstrated the efficacy of 

psychedelic substances as rapid-acting antidepressants that were effective in treatment-resistant 

populations. Few people had any mechanistic insight into how these compounds worked to achieve 

this in the brain. For my PhD, I endeavoured to understand if these studies held up in rodent models 

(in lieu of placebo-controlled human studies), how they worked, and if hallucinations were 

necessary for their therapeutic action. 
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PSYCHEDELICS INCREASE PLASTICITY IN 
THE MEDIAL PREFRONTAL CORTEX AND 
REDUCE DEPRESSIVE-RELATED 
BEHAVIOURAL PHENOTYPES IN RODENTS 
 

 

Psychedelic compounds have been used by humans for thousands of years and may be some of the 

oldest drugs known to our species. These compounds have been used for spiritual ceremonies, and 

often leave individuals feeling “spiritually enlightened.”1   Now, these compounds are gaining 

traction in the clinic for treating depression2,3,4,5 and anxiety6; however mechanistic studies of their 

action on the nervous system are lacking.  

For many of the studies in this dissertation, we chose to study the compound DMT.  The 

structure of DMT constitutes the core structure of several tryptamine, ergoline and iboga 

psychedelics (Figure 2.2.1-2), and because of this many of the effects we observe in these studies 

can be hypothesized to extend to the entire family of psychedelics. 
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Figure 2.2.1-1. DMT (highlighted in red) constitute the skeleton of classic psychedelic compounds. 
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 Effects of psychedelics in rodent models of mental health 

There are several studies in humans suggesting that psychedelics and ayahuasca may have 

therapeutic potential for treating anxiety and depression. Given the challenges of studying 

psychedelics in humans with a proper placebo control, our group opted to test these compounds in 

rodent models. Using rodent models can be incredibly advantageous for two reasons: firstly, 

rodents do not have preconceived expectations of a drug’s effect, which partially allows one to 

study the drugs’ efficacy without placebo effects. Secondly, tools that are available for studying 

rodents are far superior for assessing changes on a cellular and circuit level than are currently 

available in humans.  Prior to our study in 2018, there were very few rodent studies assessing the 

effects of psychedelics for mood and anxiety.  An important study by Pic-Taylor and colleagues 

found that ayahuasca was both incredibly safe at high doses (at least 50x) and produced anxiolytic 

and anti-depressive like responses.7 These animals displayed no significant signs of weight or 

alterations to the organs. In fact, the largest problem in this study was due to the solubility of the 

compound and the volume that had to be administered, which would cause stomach expansion, 

compression of the diaphragm and subsequent asphyxiation. Ayahuasca is a mixture of many 

compounds including three different types of harmala alkaloids—potent MAO inhibitors—so our 

study sought to determine the effects of DMT alone.  
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 Effects of acute DMT treatment on animal behaviors relevant to 

depression and anxiety 

2.2.1 Acute DMT demonstrates antidepressant efficacy in rodents 

The forced swim test (FST) is a common test used to test antidepressant efficacy. Typically, an 

animal is placed in a tank of water for a period of 6 minutes, and the time the animal spends either 

swimming (motivated behavior) or immobile/floating (unmotivated behavior) is quantified. 

Things like chronic stress or chronic corticosterone paradigms which induce depressive-like states 

typically increase the amount of immobility in this test and conversely antidepressants increase the 

swimming (motivated) behaviours. 

 In this study, drug-naïve animals were first subjected to a pretest in which they spent 6 

minutes in a Plexiglas cylinder full of water, then dried off and returned to their home cage.  

Animals the received a dose of 10 mg/kg of DMT or VEH at 23.5, 6 and 1 h prior to the test phase 

Figure 2.2.1-1. Acute doses of DMT (10 mg/kg) elicit an antidepressant response in the forced swim test comparable to ketamine (10 

mg/kg). (a) Experimental design of the forced swim test. (b) Quantification of different forced swimming behaviors.  

N = 6 rats per condition. Data represents mean ± SEM. *p < 0.05, **p < 0.01. One-way ANOVA with Tukey post-hoc test.  

VEH = vehicle (saline), DMT = N,N-dimethyltryptamine, KET = ketamine, ns = not significant. 
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(Figure 2.2.1-2a). Importantly, animals fully returned to normal home cage and grooming 

behaviour by 30 mins after dosing.  This dosing paradigm has proven effective for a wide range 

of antidepressant compounds.8  Indeed, DMT administration decreased the time spent immobile 

comparable to the fast-acting antidepressant ketamine, and significantly compared to vehicle 

(Figure 2.2.1-2b). 

 

 

2.2.2 Effects of DMT treatment on animal behaviors relevant to anxiety 

Drug-naïve rats were given either DMT (10 mg/kg) or VEH 1 h before a novelty-induced 

locomotion (NIL) assay for 45 minutes.  Animals were then given 2 days off to ensure the drug 

was completely cleared from their system and subsequently reinjected (consistent with what they 

were dosed previously) and exposed to the elevated plus maze (EPM) for 5 minutes.  

In the NIL paradigm, animals that were administered DMT moved significantly less 

distance than animals that had been administered VEH (Figure 2.2.2-1b,c). In addition, they 

display reduced number of rearings and small decrease in the time spent engaging in stereotypies 

(Figure 2.2.2-1e-h). There was no difference in the amount of time the animals spent in the center 

vs the margins of the apparatus (Figure 2.2.2-1d). 

In the EPM task, animals that were injected with DMT spent less time in the open arms 

and had overall fewer entries to these areas (Figure 2.2.2-1i,j). The total distance and velocity 

between treatment groups was not significant in this task (Figure 2.2.2-1k,l).  Together, these data 

suggest that acute DMT may be mildly anxiogenic. 
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Figure 2.2.2-1. Exploratory behavior and anxiety is impacted by an acute dose of DMT (10 mg/kg). (a) Timeline of behavioral 

tests. Drug-naïve animals were dosed 1 h prior to the novelty-induced locomotion test. After the completion of that experiment, 

these same animals were given 2 days of rest before being administered DMT 1 h prior to the elevated plus maze test. (b) Novelty-

induced locomotion was quantified as total distance traveled in 1 min bins over time. Two-way repeated measures ANOVA. (c)  

total distance traveled over the entire 45 min experiment. Unpaired two0tailed t-test. (d) The proportion of time spent on the margin 

of the arena versus the center was determined. Two-way ANOVA with Sidak post-hoc test. (e,f) The number of vertical movements 

(e) (i.e., rearing) and total time spent rearing (f) were quantified. Unpaired two-tailed t-test. (g,h) The number of stereotypies (g) 

and total time spent engaged in stereotypies (h) were quantified. Unpaired two-tailed t-test. (i−l) Anxiety levels were measured 

using the elevated plus maze. The percentage of time spent in the open arms (i) as well as the number of open arm entries (j) was 

quantified. There was no difference between the treatment groups with respect to the total distance moved (k) or average velocity 

(l). Unpaired two-tailed t-test.  

N = 8 rats per condition. Data represents mean ± SEM. *p < 0.05, **p < 0.01. VEH = vehicle, DMT = N,N-dimethyltryptamine, 

KET = ketamine, ns =not significant. 
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2.2.3 Effects of DMT treatment on animal behaviors relevant to fear learning 

To determine if acute psychedelic administration was able to facilitate fear conditioning, we 

administered DMT (10 mg/kg) prior to fear conditioning training. After 1 h, the rodents’ behaviour 

returned to normal and we put the animals in a chamber and administered 3 tone-shock pairings 

(80 dB white noise, 30 s presentations paired with a 0.8 mA, 2 s shock, Figure 2.2.3-1a). We 

found that although DMT-treated animals froze more immediately after training this effect did not 

persist (Figure 2.2.3-1b). There was no difference in freezing levels during context or cue testing. 

This suggests that acute DMT administration does not enhance the persistence of the fear memory.  
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Figure 2.2.3-1. Acute dose of DMT (10 mg/kg) prior to fear conditioning does not affect contextual or cued fear memory. (a) 

Experimental design for the fear conditioning experiment. (b) DMT increased immediate freezing following foot shocks, but had 

no effect on either contextual or cued fear memory. Pre-training and post-training represent the 2 min immediately before and 

after the presentation of shocks, respectively. Two-way ANOVA with Sidak post-hoc test. Contextual freezing was determined over 

the course of the entire 10 min session. Unpaired two-tailed t-test. Cued freezing was assessed as the percentage of time spent 

freezing during the eight tone presentations. Unpaired two-tailed t-test.  

N = 8 rats per condition. Data represents mean ± SEM. *p < 0.05, **p < 0.01. VEH = vehicle, DMT = N,N-dimethyltryptamine, 

KET = ketamine, ns =not significant. 



 

 25 

Next, we sought to determine if acute DMT administration enhanced cued fear extinction 

(Figure 2.2.3-2a). Animals were trained with 3 tone-shock pairings (described previously), then 

after a day of rest, animals were administered DMT (10 mg/kg) 1 h prior to tone extinction training. 

We found no difference in extinction training between animals treated with VEH or DMT (Figure 

2.2.3-2b,c). On the 4th day, animals were tested to see if they remembered the extinction training 

from the previous day. We found that animals that were treated with acute DMT retained the 

extinction/safety memory better than those that were administered VEH (Figure 2.2.3-2d,e). 

Whether this results from weakening of the fear memory or strengthening of the safety memory 

remains unclear, but the overall effect is a decreased fear response after DMT administration. 

Finally, we examined the effects of DMT in contextual fear extinction. After a fear 

conditioning (6 shocks of 1.0 mA, 2 s each, no tone pairings), animals were given a day off, then 

administered an acute dose of DMT (10 mg/kg) 1 h prior to contextual fear extinction training for 

3 days (Figure 2.2.3-2f). Freezing levels were measured each day. On the test day, animals 

administered DMT did not show differences from animals administered VEH (Figure 2.2.3-2g,h).  

This suggests acute doses of DMT do not facilitate context fear extinction. 
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Figure 2.2.3-2. Acute dose of DMT (10 mg/kg) facilitates cued, but not contextual, fear extinction. (a) Experimental design for the cued 

fear extinction experiment (N = 16 (VEH), N = 16 (DMT)). Following cued fear conditioning in context A, animals were dosed and 

subjected to one session of cued extinction training in context B on day 3. On day 4, the DMT-treated group demonstrated significantly 

lower freezing responses in the absence of drug. (b) Fear conditioning prior to drug treatment demonstrates that there is no difference 

between the two treatment groups, two-way ANOVA with Sidak post-hoc test. (c) Cued extinction during training day 3 demonstrates that 

administration of DMT 1h prior to training does not impair the initial recall of the fear memory but does enhance within session 

extinction. Two-way ANOVA with Sidak post-hoc test. (d) Percentage of time spent freezing during each of the eight auditory 

presentations on the test day (day 4). (e) Total percentage of time spent freezing during all eight auditory presentations on the test day 

(day 4). (f) Experimental design for the context extinction experiment (N = 8 (VEH) N = 8 (DMT)). Animals were fear conditioned in 

context A, and dosed prior to contextual extinction training (days 3−5). On day 6, contextual fear memory was assessed in the absence 

of drug. (g) Percentage of time spent freezing during the entire 10 min session on each of the extinction days. Both treatment groups 

effectively extinguish contextual fear memories over time. The extinction day had a significant effect of freezing levels (p = 0.0073) as 

analyzed using a repeated measures two-way ANOVA. (h) Individual data points for the contextual extinction test in the absence of drug 

on day 6.  

N = 8 rats per condition. Data represents mean ± SEM. *p < 0.05. VEH = vehicle, DMT = N,N-dimethyltryptamine, KET = ketamine, 

ns =not significant. 
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 Psychedelics increase structural and functional plasticity in the medial 

prefrontal cortex 

Studies have demonstrated that compounds capable of restoring neuronal structure and function 

have tremendous therapeutic value.9  Given the therapeutic responses we saw in rodent behavioural 

paradigms, we sought to determine if there were changes to the structure and function to the PFC, 

an area of the brain responsible for motivation by exerting top-down control to other brain regions 

involving fear and reward.10 

 

2.3.1 Psychedelics increase growth of cortical neurons 

Using primary neuronal cultures, we demonstrate that cortical neurons can grow in response to 

application of psychedelics, including DMT.  Dendritic outgrowth (as measured by Sholl analysis, 

Figure 2.3.1-1), spine number and synapse number are all increased in vitro after application of 

compound (Figure 2.3.1-2a-d).11  In addition, we found that spine number was also increased in 

Figure 2.3.1-1. Schematic of Sholl analysis. Rat embryonic cortical neurons are cultured in a dish, treated with drug on their 3rd 

day in vitro (DIV3), fixed and stained on DIV6. Sholl analysis is done by making concentric circles from the centre of the cell body 

at regular intervals. Each time the circle intersects with a neuronal process, that is counted. If neurons are more branched, they 

will have more intersections. This can be plotted as the number of intersections by the distance from the centre of the cell. The 

maximum number of intersections at a given distance is referred to as the Nmax.   
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mPFC neurons in vivo, after a 24 h treatment with 10 mg/kg DMT (Figure 2.3.1-2e,f).11 This 

effect was comparable to ketamine-treated animals with no differences between apical and basal 

spine growth (Figure 2.3.1-2f).  

 

Figure 2.3.1-2. Psychedelics promote structural growth in cortical neurons. (a) Chemical structures of psychedelics. (b) 

Representative tracings of cortical neurons (DIV6) treated with compounds. (c) Sholl analysis demonstrates that psychedelics 

increase dendritic arbor complexity. N = 39–41 neurons. (d) Maximum number of crossings (Nmax) of the Sholl plots in (c), one-

way ANOVA with Dunnett’s post-hoc test.   (e)	Representative images of Golgi-Cox-stained pyramidal neurons from the PFC of 

rats 24 h after receiving a 10 mg/kg dose of DMT. (f) Quantification of spines from (e), demonstrating that DMT (10 mg/kg) 

increases spinogenesis in vivo to a comparable extent as ketamine (10 mg/kg). N = 11–17 neurons. 

 

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as compared to vehicle control 

using a one-way ANOVA with Dunnett’s post-hoc test.   Scale bars, 30mm. VEH = vehicle, DMT = N,N-dimethyltryptamine,  

DOI = 2,5-dimethoxy-4-iodoamphetamine, LSD = lysergic acid diethylamide, KET = ketamine, ns =not significant. 

 

Data in (c, d) was generated by Calvin Ly (Ly et al., Cell Reports, 2018), though I have replicated this as well since the paper’s 

publication.11 
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2.3.2 Psychedelics increase the function of neurons cortical neurons 

To determine if psychedelic compounds changed the function of cortical neurons in addition to 

structure, we injected female Sprague-Dawley rats (~8 weeks old) with either saline or DMT (10 

mg/kg). Twenty-four hours after injection, animals were transcardially perfused with ACSF and 

cells were patched and data was analyzed for spontaneous excitatory post synaptic currents 

(sEPSCs). We found that both the frequency and amplitude of sEPSCs were increased after 

treatment with DMT (Figure 2.3.2-1).11  

 

  

a sEPSC amplitudesEPSC frequency b

Figure 2.3.2-1. Psychedelics promote functional plasticity. (a) Whole-cell voltage-clamp recordings of layer V pyramidal neurons 

from slices obtained 24 hr after DMT treatment (10 mg/kg and 1 mg/kg) demonstrate that DMT increases both spontaneous 

excitatory postsynaptic current (sEPSC) frequency and amplitude). (b) Representative traces for the 10 mg/kg experiments 

quantified in (a). 

 

N = 11–38 neurons from 3 animals.  Probability distributions were compared using a Kolmogorov-Smirnov test. VEH = vehicle, 

DMT = N,N-dimethyltryptamine. 
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 Conclusion and Discussion 

The results from this study suggest that acute DMT (10 mg/kg) has antidepressant effects and 

facilitates fear extinction. We postulate that this is due to increasing the growth and function of 

neurons in the prefrontal cortex. 

 The antidepressant-like effects found in this study are congruent with the previous study 

by Pic-Taylor using ayahuasca.7  This also mirrors human studies in which ayahuasca has been 

shown to decrease depression.2,3,4,5  

 Interestingly, we found that acute DMT treatment was anxiogenic. Pic-Taylor and 

colleagues found ayahuasca to be anxiolytic7; however both these studies suffer from impaired 

locomotion of animals at the high doses. Alternatively, the difference in anxiety-like behaviours 

may be attributed to the fact that this group used an ayahuasca brew—containing many harmala 

alkaloids as well—which themselves were able to produce an anxiolytic effect, or the combination. 

Unfortunately, the exact dose of DMT in this study is difficult to determine based on the nature of 

the tea, so this may also be attributed to differences in dose.  

Effects of DMT may be acutely anxiogenic, however it is unclear if humans—who would 

have a cognitive understanding that they would undergo a psychedelic experience—would 

experience this same reaction. Studies using ayahuasca indicate significant decreases in 

hopelessness and panic-like parameters in humans using a double-blind investigation.5  As stated 

before, it is extraordinarily difficult to properly run a placebo-controlled experiment when studying 

psychedelics in humans.  

The DMT study facilitating fear extinction learning is designed to mirror current human 

clinical trials in which patients are given a psychedelic coupled with psychotherapy (ie. a 

psychoplastogen with ‘training’). Though no trials exist investigating DMT or ayahuasca for PTSD 
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treatment, it has been suggested by experts12 and there are anecdotal reports of individuals self-

medicating using the tisane.13  Several psychedelics, including MDMA,14 psilocybin15 and 

ketamine16 have demonstrated efficacy in accelerating fear extinction learning in rodents. In 

humans, MDMA was given breakthrough therapy status by the FDA in 2017 and has been proven 

to be highly efficacious in human clinical trials.17  

Increases in dendritogenesis, spinogenesis and synaptogenesis were seen after acute DMT 

treatment. Complementary to this, increases in sEPSCs can be due to an increase in the number of 

synapses—which would be congruent with the spinogenesis data—but may also suggest an 

increase in presynaptic release frequency. Both changes in structure and in function have been 

found after treatment with ketamine in similar paradigms.18 

 

2.4.1 Advances in the field of psychedelic medicine 

Our paper demonstrates therapeutic efficacy of psychedelics in rodent models of antidepressant 

efficacy and related neuropsychiatric disorders. Since the release of this paper, several more 

studies have followed up, demonstrating therapeutic efficacy in rodent behavioural paradigms for 

other psychedelic compounds, particularly psilocybin.19 Of interest, a recent paper by the Kwan 

group demonstrated that not only did a 1 mg/kg dose of psilocybin create increases in spine density 

in vivo which persist and are correlated with antidepressant responses.19  This group also 

performed miniature excitatory postsynaptic current (mEPSC) recordings and found both an 

increase in amplitude and frequency in layer 5 pyramidal neurons in the cortex.19 

 In this same vein, a recent unpublished article by de la Fuente Revenga and colleagues in 

BioRxiv demonstrates that psychedelics facilitate fear extinction learning and that this effect is 
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dependent on the presence of the 5HT2A receptor.20  Further discussion of psychedelics’ 

mechanism of action can be found in Chapter 5: Mechanism of Action. 

 Human studies continue to demonstrate long-lasting efficacy for both regular and 

ayahuasca-naïve individuals.21  Furthermore, there is evidence to suggest that DMT is capable of 

promoting neurogenesis in human hippocampal neurons in vitro and in vivo.22 
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 Methods 

 

2.5.1 Animals 

Sprague-Dawley rats were obtained from Charles River Laboratories (Wilmington, MA, USA), 

were housed two per cage, and were given ad libitum access to food and water.  Lights in the 

vivarium were turned on at 07:00 hours and turned off at 19:00 hours.  All experiments were 

performed on 8- to 14-week-old male rats.  Studies were performed during the light-on phase, with 

experiments taking place between 08:00 and 18:00 hours.  All experimental procedures involving 

animals were approved by the UC Davis Institutional Animal Care and Use Committee (IACUC) 

and adhered to principles described in the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals.  The University of California, Davis is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC). 

 

2.5.2 Drugs 

The DMT utilized in these studies was synthesized in our laboratory using the following 

procedure.  To an ice-cold solution of tryptamine (0.50 g, 3.1 mmol), 37% formaldehyde(aq) (0.66 

ml, 8.1 mmol, 2.6 equiv), and glacial acetic acid (0.89 ml, 15 mmol, 5.0 equiv) in MeOH (49 ml) 

was added sodium cyanoborohydride (0.39 g, 6.2 mmol, 2.0 eq.).  The reaction was stirred at room 

temperature for 5 h before being diluted with 1M NaOH(aq) (100 ml) and CH2Cl2 (50 ml).  The 

phases were separated and the aqueous phase was extracted twice with CH2Cl2 (50 ml).  The 

organic phases were combined, dried over Na2SO4, filtered, and concentrated under reduced 

pressure.  The unpurified material was dissolved in acetone (15 ml) and added to a boiling solution 

of fumaric acid (0.26 g, 2.2 mmol, 0.7 equiv) in acetone (50 ml).  A precipitate formed 
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immediately, and the solution was cooled to room temperature prior to being filtered.  The 

resulting white solid was triturated with cold solvent, filtered, and dried under reduced pressure to 

yield the pure compound as the fumarate salt (2:1 DMT:fumaric acid) (white solid, 0.48 g, 62%): 

TLC Rf (DMT free base) = 0.35 (9:1 CH2Cl2:MeOH with 1% NH4OH(aq)); 1H NMR (600 MHz, 

DMSO-d6) δ 10.8 (s, 1H), 7.5 (d, 1H , J = 7.9 Hz), 7.3 (d,  1H, J = 7.9 Hz), 7.1 (s, 1H), 7.0 (t, 1H, 

J = 7.9 Hz), 6.9 (dd, 1H, J = 7.9 Hz), 6.5 (s, 1H), 2.9 (t, 2H, J = 8.6 Hz), 2.8 (t, 2H, J = 8.6 Hz), 

2.4 (s, 6H) ppm; 13C NMR (100 MHz, DMSO) δ 168.5, 136.7, 135.5, 127.5, 123.2, 121.4, 118.7, 

111.9, 111.5, 100.0, 58.8, 43.9, 22.1 ppm; IR (diamond, ATR) ν 3483, 3146, 3107, 3045, 2927, 

2881, 1561, 1226, 749cm-1.  The compound was stored at -20ºC in the dark prior to use.  The 

prepared DMT was judged to be analytically pure by both LC-MS and NMR spectroscopy.  For 

each experiment, a solution of DMT•fumarate (2:1) in 0.9% sterile saline was freshly prepared and 

passed through a 0.2 μm syringe filter.  For all experiments, DMT•fumarate (2:1) was administered 

at 10 mg/kg via intraperitoneal injection using an injection volume of 1 mL/kg.  Ketamine•HCl 

was purchased from Fagron and administered at 10 mg/kg via intraperitoneal injection using an 

injection volume of 1 mL/kg. 

 

2.5.3 Novelty-Induced Locomotion (NIL) 

Rats were administered either DMT or vehicle 1 hr before exposure to the open-field apparatus.  

Animals were allowed to acclimate to the test room for 10 mins prior to being gently placed into 

the center of a Digiscan (Model RXYZCM(16)CCD) open field chamber and allowed to freely 

explore the chamber for 45 mins.  At the conclusion of the test, animals were returned to their 

home cages and the test chambers cleaned with 10% Nolvasan.  Horizontal motion, rotations, and 

stereotypies (repetitive beam breaks) were recorded in 1-min intervals for the duration of the test.  
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The margin of the arena was defined as being 10 cm from the wall.  The open field chamber 

measured 16.5” L x 16.5” W x 11.25” H and was illuminated to between 25 and 30 lux.   

 

2.5.4 Elevated Plus Maze (EPM) 

The EPM apparatus consisted of a plus-shaped black plastic platform positioned 50 cm above the 

ground.  Two opposite arms of the maze were bordered by vertical walls measuring 12.5” high, 

with the other two arms possessing unprotected edges.  Rats were administered DMT or vehicle 1 

hr before being placed into the center of the maze facing an open arm and allowed to explore freely 

for 5 min.  At the conclusion of the test, rats were returned to their home cages and the apparatus 

was cleaned with 10% Nolvasan.  Animal movement was recorded and analyzed during the trial 

using EthoVision XT (version 9) software. 

 

2.5.5 Fear Conditioning (FC) 

On day 1, animals were administered either DMT or vehicle 1 hr prior to conditioning.  They were 

placed in a fear conditioning apparatus (Med Associates) for 3.5 min prior to three presentations 

of auditory cues (80 dB white noise, 30 s), each co-terminating with a foot shock (0.8 mA, 2 s.) 

and spaced 90 s apart.  After the last shock, the animals remained in the chambers for an additional 

2 min before being returned to their home cages.  During fear conditioning, the apparatus was 

illuminated to 100 lux and did not contain any additional odor cues.  On day 2, contextual fear 

memory was assessed by exposing the animals to the conditioning context for 10 min before 

returning them to their home cages.  On day 3, cued fear memory was assessed by exposing the 

animals to a novel context (lights off, A-frame insert, floor insert, additional vanilla odor) for 2 

min prior to eight presentations of auditory cues (80 dB white noise, 30 s) spaced 30 s apart.  
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Freezing responses for cue testing (day 3) are presented as the percentage of time spent freezing 

over mins 2–6 (i.e., the first 4 presentations).  Fear conditioning experiments were performed 

between the hours of 08:00–11:00.  Freezing behavior was scored using Med Associates Video 

Freeze software (motion threshold = 18 au, detection method = linear, minimum freeze duration = 

30 frames).  The apparatus was cleaned with 70% EtOH in between trials.   

 

2.5.6 Cued Fear Extinction 

On day 1, drug-naïve animals were fear conditioned as described above, but in the absence of drug, 

and allowed to rest on day 2.  On day 3, the animals were administered either DMT or vehicle 1 

hr prior to extinction training.  Extinction training consisted of exposure to a novel context (lights 

off, A-frame insert, floor insert, additional vanilla odor) for 2 mins prior to 8 presentations of 

auditory cues (80 dB white noise, 30 s) spaced 30 s apart.  After the extinction training, animals 

were returned to their home cages.  The procedure was repeated on day 4 in the absence of 

drug.  Fear extinction experiments were performed between the hours of 08:00–11:00.  Freezing 

responses for cue testing (day 4) are presented as individual blocks (block 0 = first 2 mins, blocks 

1–8 = each minute following a presentation) and as the percentage of time spent freezing over 

mins 2–6 (i.e., the first 4 presentations).  Freezing behavior was scored using Med Associates 

Video Freeze software (motion threshold = 18 au, detection method = linear, minimum freeze 

duration = 30 frames).  The apparatus was cleaned with 70% EtOH in between trials.  

 

2.5.7 Contextual Fear Extinction 

First, animals were subjected to an optimal foreground contextual fear conditioning protocol.  Rats 

were placed into the fear conditioning apparatus for three mins before being subjected to six foot 
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shocks (1.0 mA, 2 s) spaced 58 s apart.  After initiation of the last shock, the animals remained in 

the chambers for an additional 2 min before being returned to their home cages.  The animals were 

allowed to rest on day 2.  On day 3, these drug-naïve rodents were administered either DMT or 

vehicle 1 hr prior being placed in the fear conditioning context for 10 min.  This procedure was 

repeated on days 4 and 5.  On day 6, the animals were placed in the fear conditioning context 

without receiving any injections.  Contextual fear conditioning experiments were performed 

between the hours of 08:00–11:00.  Freezing behavior was scored using Med Associates Video 

Freeze software (motion threshold = 18 au, detection method = linear, minimum freeze duration = 

30 frames) and reported in 1 min blocks and as the percentage of time spent freezing over the entire 

10 min session.  The apparatus was cleaned with 70% EtOH in between trials.   

 

2.5.8 Forced Swim Test 

The FST apparatus consisted of a clear Plexiglas cylinder measuring 80 cm tall, 20 cm in diameter 

and filled with 30 cm of 24 ± 1ºC water.  Fresh water was used for every rat.  Animals were 

subjected to a pre-test phase in which they were placed in the cylinder for 15 mins before being 

dried and returned to their home cage.  Twenty-four hours later, rats were again placed in the FST 

apparatus for 5 mins and their activity was video recorded.  Each rat received three administrations 

of DMT, ketamine, or vehicle at 23.5, 6, and 1 hr before the test phase. Each video was scored for 

immobility, swimming, and climbing behavior by a trained observer.  

 

2.5.9 Data Analysis 

Statistical analyses were performed using GraphPad Prism (version 7.0a) on aggregated data, but 

not on data presented as line graphs (i.e., Figure 2(b), Figure 4(b), and Figure 4(e)).  Comparisons 
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of DMT- and vehicle-treated groups were accomplished using a two-tailed student’s t-test.  As 

data from contextual extinction experiments (Figure 4(c) and 4(f)) displayed a bimodal 

distribution, a Mann-Whitney Test was used instead.  To analyze data from the FST (Figure 5(b)), 

which involved multiple comparisons, a one-way analysis of variance (ANOVA) was utilized with 

Tukey’s post hoc test.  All data are represented as means SEM, NS = not significant, *p < 0.05, 

**p < 0.01. 

 

2.5.10 Golgi-Cox Staining 

Female Sprague Dawley rats (~8 weeks old) were given an intraperitoneal injection of DMT, 

ketamine, or vehicle and sacrificed via decapitation 24 h later. Tissue was prepared following the 

protocol outlined in the FD Neurotechnologies Rapid GolgiStain Kit (FD Neurotechnologies) with 

slight modifications. Brains were stored in solution C for 2 months prior to slicing into 120 µm 

sections using a vibratome. These slices were placed onto microscope slides that were pre-coated 

with (3- aminopropyl)triethoxysilane. Slices were air dried for a week before staining. Slides were 

immersed in water twice for 2 minutes, DE solution for 10 minutes, and then water for 2 minutes. 

After this, slides were immersed sequentially in 25% ethanol for 1 minute, 50% ethanol for 4 

minutes, 75% ethanol for 4 minutes, 95% ethanol for 4 minutes, and 100% ethanol for 4 minutes. 

Slides were then briefly dipped into xylenes before being mounted using DPX Mountant For 

Histology (Sigma), air-dried, and imaged on a Zeiss AxioScope. Spines were traced in three 

dimensions using Neurolucida software (version 10) at 100x magnification. Data acquisition and 

analysis was performed by an experimenter blinded to treatment conditions. Data represents 

individual neurons taken from 3 different animals per treatment.  
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2.5.11 Electrophysiology 

Female Sprague Dawley rats (~8 weeks old) were given an intraperitoneal injection of DMT or 

vehicle. After 24 h, rats were anesthetized with isofluorane and transcardially perfused with ice-

cold artificial cerebrospinal fluid (ACSF), containing 119 mM NaCl, 26.2 mM NaHCO3, 11 mM 

glucose, 2.5 mM KCl, 1 mM NaH2PO4, 2.5 mM CaCl2 and 1.3 mM MgSO4. Brains were rapidly 

removed and 300 µm coronal slices from the mPFC were cut on a Leica VT1200 vibratome 

(Buffalo Grove, IL) with ice-cold ACSF solution. Slices were incubated in 32 °C NMDG solution 

for 10 minutes, transferred to room temperature ACSF, and held for at least 50 minutes before 

recording. All solutions were vigorously perfused with 95% O2 and 5% CO2. Spontaneous 

excitatory postsynaptic currents (sEPSCs) were recorded at -70 mV in 32 °C ACSF. Cells were 

patched with 3–5 MΩ borosilicate pipettes filled with intracellular solution containing 135 mM 

cesium methanesulfonate, 8 mM NaCl, 10 mM HEPES, 0.3 mM Na-GTP, 4 mM Mg-ATP, 0.3 

mM EGTA, and 5 mM QX-314 (Sigma, St Louis, MO). Series resistance was monitored 

throughout experiments; cells were discarded if series resistance varied more than 25%. All 

recordings were obtained with a Multiclamp 700B amplifier (Molecular Devices, Sunnyvale, CA). 

Analysis was performed with the Mini Analysis program (Synaptosoft, Decatur, GA) with a 4 pA 

detection threshold. Data represents individual neurons taken from 3 different animals per 

treatment. Data acquisition and analysis was performed by experimenters blinded to treatment 

conditions. 
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I couldn’t have done this alone. Thank you to all my collaborators who helped me get this far. 

Contributions are outlined below. 

 

Charles J. Benson performed behavioural experiments and LPC executed all data analyses with 

supervision from DEO.  Calvin Ly generated neuronal cultures, treated with psychedelic 

compounds and performed Sholl analysis with supervision from DEO.  LPC completed the Golgi-

Cox staining and analysis.  Lee E. Dunlap synthesized the DMT necessary for this experiment.   

 Olson Lab 

 University of California, Davis 

 

Jon Wong, Eden Barragan, LPC and John A. Gray performed the electrophysiology studies with 

input from LPC and DEO. 

 Gray Lab 

 University of California, Davis 
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PSYCHEDELIC MICRODOSING 
 

 

Psychedelic microdosing—the practice of taking subhallucinogenic doses of psychedelic 

compound every 2-3 days—is an increasingly popular practice, with individuals who participate 

in the practice claiming improvements in cognitive and emotional function.  The process was 

described by Ayelet Waldman in her book A Really Good Day: How Microdosing Made a Mega 

Difference in My Mood, My Marriage, and My Life1 and James Fadiman’s The Psychedelic 

Explorer's Guide: Safe, Therapeutic, and Sacred Journeys.2 Both of these sources describe the 

routine of microdosing and anecdotally claim improvements in cognitive and emotional function. 

The practice of psychedelic microdosing has become very popular, especially in places like Silicon 

Valley3 and as such, studies investigating both the therapeutic claims as well as the dangers 

associated with microdosing are imperative. 

 

 Human experiences with psychedelic microdosing 

To investigate the claims associated with human psychedelic microdosing, we launched an online 

survey to determine the prevalence and subjective effects of individuals who partake in 

psychedelic microdosing.4 The survey was described as an anonymous research study on 

“Recreational Drug and Alcohol Use” to prevent biasing the study towards participants with 

extensive knowledge and/or experience with psychedelics.  Participants were recruited via 
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snowball sampling through a number of outlets including social media (e.g., Facebook, Twitter, 

Instagram), our research group’s website (www.olsonlab.org), drug- and nondrug-related online 

forums (Reddit, Craigslist), as well as distribution of pamphlets across the UC Davis campus and 

community events (e.g., local farmers market).  Participants could choose to skip questions if they 

preferred. From April to August 2018, we sampled 2347 people. 

 It is important to understand that the following human survey data (in this Section 3.1) is 

from individuals who are both self-medicating and self-reporting. There is no placebo-controlled 

group in this study. 

 

3.1.1 Prevalence of psychedelic microdosing 

We found that many participants (59.41%, N = 2183) were familiar with the concept of psychedelic 

microdosing (Figure 3.1.1-1a), and a surprising number of individuals said they previously (13%) 

or actively (4%) participate in the practice (N = 2200, Figure 3.1.1-1b). 

 

Figure 3.1.1-1. Prevalence of psychedelic microdosing. (a) 59% of respondents indicated they are familiar with the practice of 

psychedelic microdosing. (b) 13% of respondents indicated they had microdosed at some point in their life and 4% indicate they 

currently microdose psychedelic compounds.   
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3.1.2 Demographics of individuals who participate in psychedelic microdosing 

Of the individuals that have experience with microdosing, the average age was 33.26 (N = 290, 

Table 3.1-1).  Of the microdosers that reported gender, males were significantly more likely to 

report engaging in this practice (64.16%, Table 3.1-1, χ2 = 31.81, df = 3, p < 0.001).  Although 

anecdotal reports suggest that microdosing may be more prevalent in the tech industry, we found 

this was not the case. In fact, we found no association with occupation and microdosing history 

(Table 3.1-1). 

 Education was significantly associated with microdosing practices, with less educated 

individuals reporting more frequent use (N = 1705, Table 3.1-1, χ2 = 26.49, df = 1, p < 0.01).  

Participants were divided into lower-income (<$50,000), middle-income ($50,000-

$99,999), and upper-income ($100,000+) households according to the definition of each group 

provided by the Pew Research Center.5 Participants from lower socioeconomic statuses were 

significantly more likely to engage in psychedelic microdosing (N = 1699, Table 3.1-1, χ2 = 11.43, 

df = 2, p<0.01).  

 Interestingly, 27% of veterans surveyed reported experimenting with psychedelic 

microdosing. This is a significantly greater proportion of veterans who microdose compared to the 

general population (Table 3.1-1, χ2=5.16, df=1, p=0.02). 

  

  



 

 48 

Table 3.1-1. Demographic characteristics of respondents (N=2437). 

 Total 
(n = 2437) 

% (n) 

Non-Microdosers 
(n = 2054) 

% (n) 

Microdosers 
(n = 383) 

% (n) 

Age (mean, SD) (1687) 35.62, 14.12 33.26, 14.15 
No Response n = 750 n = 657 n = 93 

    
Gender    

Male 50.09 (855) 47.17 (667) 64.16 (188) 
Female 48.74 (832) 51.76 (732) 34.13 (100) 
Other 0.47 (8) 0.53 (5) 1.02 (3) 
Prefer not to say 0.70 (12) 0.71 (10) 0.68 (2) 
No Response n = 730 n = 640 n = 90 

    
Employment    

Non-Tech Industry 40.99 (698) 84.53 (590) 15.47 (108) 
Tech Industry 9.04 (154) 79.87 (123) 20.13 (31) 
Student 30.48 (519) 80.27 (427) 17.72 (92) 
Retired 6.93 (118) 79.66 (94) 20.34 (24) 
Unemployed 12.57 (214) 82.24 (176) 17.76 (38) 
No Response n = 734 n = 644 n = 90 

    
Veteran Status    

Non-veteran 95.48 (1625) 96.03 (1355) 92.78 (270) 
Veteran 4.52 (77) 3.97 (56) 7.22 (21) 
No Response n = 735 n = 643 n = 92 

    
Education Level    

No High School Diploma 2.17 (37) 1.91 (27) 3.44 (10) 
High School or equivalent 31.73 (541) 29.28 (414) 43.64 (127) 
Associate or Bachelor 
degree 

42.99 (733) 43.64 (617) 39.86 (116) 

Master degree or higher 23.11 (394) 25.18 (356) 13.05 (38) 
No Response n = 732 n = 640 n = 92 

    
Income level    

< $49,999 66.89 (1133) 64.96 (914) 75.00 (219) 
$50,000 - $99,999 21.01 (357) 21.89 (308) 16.78 (49) 
> $100,000 12.30 (209) 13.15 (185) 8.22 (24) 
No Response n = 738 n = 647 n = 91 
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3.1.3 Common drugs used for psychedelic microdosing 

LSD and psilocybin were the most common drugs used for psychedelic microdosing (48.58% and 

26.18% respectively, N = 317, Table 3.1-2).  Individuals who selected “Other” (11.67%, n = 37, 

N = 317) reported using marijuana, cocaine, or a combination of psychedelic compounds (i.e., LSD 

and psilocybin or LSD and ayahuasca). We did not collect information regarding the dose or dosing 

regimen because previous work has demonstrated that users largely estimate the dosage reported.6,7  

Additionally, dosage can vary according to factors that cannot be controlled in survey studies, such 

as the compound used, the purity of the substance used, and the weight or body composition of the 

individual. 

 

Table 3.1-2. Psychedelics used in psychedelic microdosing (N = 383). 

 % (n) 

LSD 48.58 (154) 
DMT 1.58 (5) 
Psilocybin 26.18 (83) 
MDMA 11.99 (38) 
Poly-Drug Use 7.89 (25) 
Other 3.78 (12) 
No Response n = 66 

 
 

3.1.4 Subjective effects of psychedelic microdosing in humans 

People who participate in microdosing were likely to report an improvement in depressive 

symptoms (Improvement: 71.84%, Worsening: 4.77%, No Effect: 23.42%; N = 316, Table 3.1-3, 

χ2 = 227.32, df = 2, p<0.001). In addition, we found that although both males and females were 

likely to report an improvement in symptoms, males were more likely to report positive outcomes 

(χ2 = 13.57, df = 2, p < 0.001). This difference may have been driven by a greater proportion of 
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improvement in males, and a greater percentage of females reporting worsening of symptoms 

(11.00% of responses, compared to 1.61% in males). 

 

Table 3.1-3. Effects of psychedelic microdosing by gender (N = 383). 

 Total sample  
(n = 383) 

% (n) 

Male  
(n = 188) 

% (n) 

Female  
(n = 100) 

% (n) 

Gender not specified 
(n = 95) 
% (n) 

Depression     
Improvement 71.84 (227) 77.96 (145) 65.00 (65) 56.67 (17) 
No Effect 23.42 (74) 20.43 (38) 24.00 (24) 40.00 (12) 
Worsening 4.75 (15) 1.61 (3) 11.00 (11) 3.33 (1) 
No Response n = 67 n = 2 n = 0 n = 65 

     
Anxiety     

Improvement 56.55 (177) 61.20 (112) 53.00 (53) 40.00 (12) 
No Effect 30.35 ( 95) 28.42 (52) 29.00 (29) 46.67 (14) 
Worsening 13.10 (41) 10.38 (19) 18.00 (18) 13.33 (4) 
No Response n = 70 n = 5 n = 0 n = 65 

     
Memory     

Improvement 38.85 (122) 43.48 (80) 30.00 (30) 40.00 (12) 
No Effect 46.50 (146) 48.37 (89) 43.00 (43) 46.67 (14) 
Worsening 14.65 (46) 8.15 (15) 27.00 (27) 13.33 (4) 
No Response n = 69 n = 4 n = 0 n = 65 

     
Focus/Attention     

Improvement 58.97 (184) 66.30 (122) 44.44 (44) 62.07 (18) 
No Effect 26.28 (82) 22.83 (42) 32.32 (32) 27.59 (8) 
Worsening 14.74 (46) 10.87 (20) 23.23 (23) 10.34 (3) 
No Response n = 71 n = 4 n = 1 n = 66 

     
Sociability     

Improvement 66.56 (209) 70.11 (129) 60.00 (60) 66.67 (20) 
No Effect 22.29 (70) 21.74 (40) 21.00 (21) 30.00 (9) 
Worsening 11.15 (35) 8.15 (15) 19.00 (19) 3.33 (1) 
No Response n = 69 n = 4 n = 0 n = 65 

 

Microdosers were also likely to report improvements in anxiety (Improvement: 56.55%, 

Worsening: 13.10%, No Effect: 30.35%; N = 313, Table 3.1-3, χ2 = 89.89, df = 2, p < 0.001). 

There was a trend for a larger improvement in males, however this was not significant. 
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Individuals who responded to the survey item also reported significant improvements to 

memory (N = 313, Table 3.1-3, χ2 = 89.89, df = 2, p < 0.001). There was a significant difference 

in the observed difference between males and females (χ2 = 19.00, df = 2, p < 0.001), though this 

was likely to have been driven by a greater proportion of males reporting improvements and/or 

females reporting worsening of symptoms.  

Changes in attentional focus were also reported to be significant (N = 314, Table 3.1-3, χ2 

= 52.07, df = 2, p < 0.001). Again, this change was seen to be greater in males than females 

(NT=283, χ2=13.93, df=2, p<0.001).  

Finally, individuals who microdose reported a change in sociability (N = 314, Table 3.1-3, 

χ2 = 161.85, df = 2, p < 0.001), with males reporting significantly greater improvements than 

females (χ2 = 7.38, df = 2, p = 0.025).  

 

3.1.5 Physical changes associated with psychedelic microdosing 

Individuals could elaborate on any physical changes they experienced with a text response, which 

were subsequently analyzed for thematic content.  Two-thirds (65.63%) of responses were related 

to positive physical or emotional outcomes (e.g., “working out so body composition is improving”, 

“slight euphoria w/ on-set that lasts throughout initial peak 2-3 hrs”, “better workouts?”) and 

31.25% of responses cited negative outcomes (e.g., “occasional ‘swimmy’ vision”, “Memory is 

pretty bad”, “sweats”). Approximately half (49.21% ) of the responses were not related to changes 

in weight. 
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3.1.6 Deterrents to microdosing 

Individuals who discontinued the practice of psychedelic microdosing were asked why. 

Interestingly, the most cited reasons were related to the risk associated with taking illegal 

substances (N = 59, 24.28%), the difficulty of obtaining the drug (N = 55, 22.63%), or the cost (N 

= 20, 8:23%).  Interestingly, few people stopped the practice due to not achieving the effects they 

wanted (N = 12, 4.94%) or side effects (N = 10, 4.12%).  

 For the 36.80% of individuals that responded “Other” were prompted to elaborate with a 

text response. Themes that surfaced from these responses included: a desire to microdose 

infrequently (e.g., “It isn’t something I want to do everyday,” “It's not something I felt like doing 

all the time”), a fear of dependency (e.g., “Did not want to become addicted,” “The physical 

euphoria brought on a sense of dependency that isn't present on a normal dose”), aging (“Getting 

older,” “Gotten older, health issues”), and unstandardized dosing regimens (“Psilocybin is too easy 

to overdose without a standardized preparation. DMT has proved easier to administer in a threshold 

dose,” “LSD I got wasn't properly perforated making the proper dosing hard to do”). 

 

Table 3.1-4. Deterrents from microdosing (N = 383). 

 

 

 

 

 

 

 

  

 

Total Responses 
% (n) 

Too expensive 8.23 (20) 

Too difficult to obtain materials 22.63 (55) 

Too risky due to legal concerns 24.28 (59) 

Wasn't getting the effects I was hoping for 4.94 (12) 

Side effects 4.12 (10) 

Other 35.80 (87) 

No Response n = 140 
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This psychedelic microdosing survey was useful for collecting information on the demographics 

of individuals who participate in the practice and quantify the perceived changes. It must be openly 

acknowledged that these individuals are both self-medicating and self-reporting. For a further 

discussion of these results, please see Section 3.3 Conclusion and Discussion. 

 

 Psychedelic microdosing in rodent models 

At the beginning of this project, there were no academic articles on psychedelic microdosing and 

only a couple by the time this manuscript was published. We chose to study psychedelic 

microdosing in rodents because they do not have a preconceived notion of having a therapeutic 

outcome in response to a psychedelic drug, and therefore we can bypass the issue of placebo groups 

that commonly plagues human clinical trials.  

For this study, we gave rats low doses (1 mg/kg) of DMT or VEH on a chronic (~2 months), 

intermittent (every three days) schedule.8 After two weeks (5 doses), we began to test animals in 

behavioral paradigms from least to most stressful that were designed to test differences in mood, 

anxiety and cognitive function. A full schematic of the behavioral battery is outlined in Figure 

3.1.6-1. Both male and female young adult Sprague Dawley rats were used.  For assays in which 

there was no difference in sexes, data sets were combined. 
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Figure 3.1.6-1. Experimental design for testing the effects of chronic, intermittent, low doses of DMT on rats. Blue boxes indicate 

the days when drug was administered. Behavioral testing was performed on the days between doses. Gray boxes indicate days the 

animals spent in their home cages with no testing being performed. CLAMS = Comprehensive Lab Animal Monitoring System. 
 

There are several pieces of evidence that suggest that the 1 mg/kg dose used in this study 

was subhallucinogenic. Firstly, this dose only produces ~20% correct lever responding in drug 

discrimination tasks using Sprague Dawley rats trained to discriminate DMT from saline. 

Furthermore, it produces even fewer lever responses in rats trained to discriminate other 

hallucinogens such as (−)-2,5-dimethoxy-4-methylamphetamine (DOM, 0.5 mg/kg) or LSD 

(0.1 mg/kg) from saline.9 Secondly, a 1 mg/kg dose not produce drastic changes in body 

posture or behavior that is characteristic of a fully hallucinogenic 10 mg/kg dose.10 Finally, the 

1 mg/kg dose is calculated to be non-hallucinogenic based on allometric scaling11 of what is 

known to be a subhallucinogenic dose in humans.12 

  

3.2.1 Chronic, intermittent, subhallucinogenic doses of DMT do not produce changes 

in anxiety, as tested in NIL or EPM tests 

We tested both NIL and EPM to evaluate differences (if any) in animals that had been chronically 

administered subhallucinogenic doses of DMT. We found no significant difference in the total 
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distance travelled, the time spent in the margin vs the center, the time spent rearing or the number 

of time spent engaging in stereotypies (Figure 3.2.1-1a).  There was a significant increase in the 

number of rearings in animals that underwent the microdosing regime, which may be reflective as 

an anxiolytic behaviour. When these behaviours are z-scored using the method developed by 

Guilloux et al.13— a method which increases sensitivity and reliability of behavioural 

phenotyping—there is no difference in anxiety behaviours between control and DMT-treated 

animals (p = 0.08, Figure 3.2.1-1c). 

 In the EPM, DMT-treated animals did not display any signs of anxiety, as measured by 

both the time and number of entries to the closed or open arms (Figure 3.2.1-1b). These 

measurements were also z-scored and revealed no significant effect between treatment groups 

(Figure 3.2.1-1d).  Importantly, the treatment groups and sexes displayed similar levels of 

locomotion, as measured by the total distance travelled and velocity, so no ambiguity can be 

attributed to locomotor deficits (Figure 3.2.1-1e). 



 

 56 

 

3.2.2 Effects of psychedelic microdosing on animal behaviours relevant to fear 

learning 

After several weeks of psychedelic microdosing, we also tested contextual and cued fear memory 

following fear conditioning (Figure 3.2.2-1a). Prior to fear conditioning, rodents exhibited no 

freezing in response to the tone (Figure 3.2.2-1b).  Following training, both VEH and DMT-

treated animals exhibited similar amounts of freezing (p = 0.13, Figure 3.2.2-1c), suggesting that 

fear acquisition is no different between treatment groups.  The day afterwards, contextual fear 

Figure 3.2.1-1. Chronic, intermittent, low doses of DMT do not produce anxiogenic-like effects in rats. (a) Results from NIL assays 

for male and female animals treated with vehicle or microdosed with DMT. (b) DMT-treated and vehicle-treated groups display 

similar phenotypes in the NIL. (c) Results from EPM assays for male and female animals treated with vehicle or microdosed with 

DMT. (d) DMT-treated and vehicle-treated groups display similar phenotypes in the EPM. (e) Control experiments demonstrate 

that there is no difference in locomotor activity between the two treatment groups in the EPM.  

 

N = 12 rats per condition. Data represents mean ± SEM. *p < 0.05. VEH = vehicle (saline), DMT = N,N-dimethyltryptamine, 

EPM = elevated plus maze, NIL = novelty-induced locomotion, M = males, F = females, ns = not significant. 
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memory was assessed and no difference in contextual fear memory was observed (p = 0.32, Figure 

3.2.2-1d).  The following day, animals were administered DMT, as per their usual dosing regime, 

and allowed to rest in their home cage.  The following day, animals were subjected to cue 

extinction training, which consisted of a novel context (context B) and 8 tone presentations with 

no foot shocks. Twenty-four hours later, animals were subjected to the same novel context (context 

B) and freezing rates were assessed to determine if animals remembered the extinction training 

from the previous day.  Indeed, animals treated with chronic, intermittent low doses of DMT 

exhibited decreased freezing when testing fear extinction memory (p = 0.03, Figure 3.2.2-1f).  

Figure 3.2.2-1. Chronic, intermittent, low doses of DMT enhance fear extinction in rats. (a) Experimental design for the fear 

conditioning and extinction experiments. (b, c) DMT- and vehicle-treated groups displayed comparable levels of freezing in the 2 

min period before (b) receiving foot shocks.  Two-way ANOVA with Sidak’s post-hoc test. (c) DMT- and VEH-treated groups display 

similar freezing levels after receiving foot shocks. Two-tailed unpaired t-test. (d, e) Neither contextual fear memory (d) nor cued fear 

memory (e) were impaired by chronic,intermittent treatment with low doses of DMT. Two-tailed unpaired t-test. (f) DMT-treated 

animals exhibited enhanced cued extinction memory as compared to vehicle-treated controls. Two-tailed unpaired t-test. 

N = 11–12 rats per condition. Data represents mean ± SEM. *p < 0.05, **p < 0.01. VEH = vehicle (saline), DMT = N,N-

dimethyltryptamine, ns = not significant. 
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3.2.3 Effects of psychedelic microdosing on animal behaviours relevant to depression 

To determine if psychedelic microdosing had anti-depressant like effects in rodents, we subjected 

the rodents to a forced swim test, comprising of the typical pretest followed by the test portion the 

next day.  Though both male and female DMT-treated animals exhibited decreased immobility 

counts, only females were significant (p = 0.02, Figure 3.2.3-1a,b). Both males and females 

treated with psychedelic exhibited an increase in swimming (p = 0.04) and climbing behaviour (p 

= 0.05) compared to the VEH-treated groups (Figure 3.2.3-1c,d).  Each of these effects predict 

that chronic, intermittent, low doses of DMT may have antidepressant efficacy.  

 

Figure 3.2.3-1. Chronic, intermittent, low doses of DMT produce antidepressant-like effects in rats. (a) Psychedelic microdosing 

in rodents reduced immobility (p = 0.03), (b) though this was only significant in females (p = 0.02, males p = 0.37). This 

microdosing paradigm increased climbing (c), and increased swimming (d) in the FST.  

 

N = 11–12 rats per condition. Data represents mean ± SEM. *p < 0.05. VEH = vehicle (saline), DMT = N,N-dimethyltryptamine, 

FST = forced swim test,, M = males, F = females, ns = not significant. 
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3.2.4 Effects of psychedelic microdosing on animal behaviours relevant to working 

memory and sociability. 

We tested the effects of chronic, intermittent low doses of DMT on working memory using the 

spontaneous alternation (SALT) and short-term memory using novel object recognition (NOR) 

paradigms.  In SALT, deficits in spatial working memory or attention typically manifest as fewer 

alternations in this paradigm. However, we saw no difference between the VEH-treated and DMT-

treated animals (p = 0.93, Figure 3.2.4-1a, b).  

 Similarly, NOR is typically used to assess short term memory. Both groups spent more 

time exploring the novel object, and no differences were observed between treatment groups 

(familiar p = 0.65, novel p = 0.56, Figure 3.2.4-1c,d). 

 Finally, we assessed the impact of psychedelic microdosing on social preference using the 

3-chamber social approach assay in which the time spent with an object or another animal (drug-

naïve conspecific) is quantified. This assay revealed a preference for social behaviour for both 

treatments groups, which were not significant when compared (p = 0.20, Figure 3.2.4-1e). 
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Figure 3.2.4-1. Chronic, intermittent, low doses of DMT do not improve cognitive function or increase social interaction in rats. (a–

b) In the spontaneous alternation behavior (SALT) paradigm, DMT- and vehicle-treated groups displayed comparable levels of 

percent alternation (a) and total arm entries (b). Two-tailed unpaired t-test. (c–d) DMT- and vehicle-treated groups displayed no 

differences in novel object recognition as determined by the total time spent in the “sniff zone” of either the novel or familiar objects 

(c) or by comparing the discrimination indices (DI) between the groups (d).   A DI > 1, < 1, = 0 indicates a preference for the novel 

object, a preference for the familiar object, or no preference, respectively. Two-way ANOVA with Sidak’s post-hoc test (c) and two-

tailed unpaired t-test (d). (e) No differences were observed between treatment groups in the 3-chambered social approach with respect 

to the amount of time they spent in the “sniff zone” of either the conspecific or object. Two-way ANOVA with Sidak’s post-hoc test. 

 

N = 11–12 rats per condition. Data represents mean ± SEM. *p < 0.05. VEH = vehicle (saline), DMT = N,N-dimethyltryptamine, 

SALT = spontaneous alternation, NOR = novel object recognition, M = males, F = females, ns = not significant. 
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3.2.5 Effects of psychedelic microdosing on cortical structure and function 

At the end of the behavioural battery, we collected brain tissue to assess changes to neuronal 

structure. As indicated previously, stress-related disorders tend to decrease the spine density 

pyramidal neurons in the prefrontal cortex,14 while psychedelics tend to increase the spine density 

in the prefrontal cortex.21  We predicted that chronic, intermittent low doses of DMT would 

increase spine density in the prefrontal cortex, a phenomenon that would be consistent with the 

improvements in mood and anxiety.  Interestingly, we found that while males had no change in 

spine density (p = 0.98), females exhibited a decrease in spine density which was significant (p = 

0.03, Figure 3.2.5-1a,b).   
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Figure 3.2.5-1. Chronic, intermittent, low doses of DMT may affect structural plasticity in females. (a) Dendritic spine density on 

layer V pyramidal neurons is reduced following psychedelic microdosing in females as measured via Golgi-Cox staining. DMT: 

N= 20 cells from 2 animals; VEH: N = 20 cells from 2 animals.   This effect was not present in males. DMT: N=12 cells from 2 

animals; VEH: N = 21 cells from 2 animals. (b) Representative images of Golgi−Cox stained layer V pyramidal neurons in the 

PFC of rats. (c) There are no changes in early immediate genes after 2 months of psychedelic microdosing.  

 

Data represents mean ± SEM. *p < 0.05. Two-tailed unpaired t-test. VEH = vehicle (saline), DMT = N,N-dimethyltryptamine,  

ns = not significant. 
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 We used the other half of the tissue through ddPCR analysis to look at changes in gene 

expression for several immediate early genes, including FOS, EGR1, EGR2, ARC, BDNF and 

HTR2A. We found no significant changes in immediate early gene expression (Figure 3.2.5-1). 

 

3.2.6 Effects of psychedelic microdosing on metabolism and weight 

Over the course of the study, we observed that males treated with DMT—but not females—

exhibited significantly more weight-gain than their VEH-treated counterparts (182% versus 165%, 

p = 0.003, Figure 3.2.6-1a,b). To investigate this phenomenon, we completed a metabolic analysis 

using a Comprehensive Lab Animal Monitoring System (CLAMS). Despite gaining more weight, 

the DMT-treated male animals tended to eat less food (though this is not significant, p = 0.1349) 

than the VEH-treated controls (Figure 3.2.6-1c). There was no difference in female food 

consumption (p = 0.77).  These results cannot be explained by changes in activity, heat dissipation 

or respiratory exchange rate (RER, Figure 3.2.6-1d,e).   
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 We reasoned that perhaps there were changes to the body composition makeup of the 

rodents. For example, muscle weighs more than fat, and different fats also have different densities 

and weights. For this study, we used a second cohort of animals and saw a similar trend with 

weight gain in male psychedelic-treated rats (p = 0.03, Figure 3.2.6-2a). This difference in weight 

was detectable as early as 1 week into the experiment.  After 4 weeks of this intermittent dosing 

regimen, animals were sacrificed and fat pads were dissected and quantified as a percentage of 

total body weight (Figure 3.2.6-2b). There were no differences observed between treatment group 
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Figure 3.2.6-1. Males, but not females, exhibit significant physical changes after chronic, intermittent, subhallucinogenic doses of 

DMT. (a) DMT administered at 1 mg/kg every third day causes accelerated weight gain in male, but not female rats.  Error bars 

removed for clarity. (b) Percent weight gain over the course of a 7-week microdosing experiment.  (c) Average food intake over 

the course of 48 h following 7 weeks of DMT microdosing was not affected by DMT treatment. (d–f) Microdosing did not impact 

horizontal activity (d), vertical activity (e), dissipation of heat (f), or respiratory exchange rate (RER) (g).  

 

Data represents mean ± SEM. *p < 0.05. Two-tailed unpaired t-test. VEH = vehicle (saline), DMT = N,N-dimethyltryptamine, 

RER = respiratory exchange rate, ns = not significant. 
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for white (epidydimal, mesenteric, retroperitoneal, subcutaneous) or brown adipose tissue.  This 

suggests that DMT-induced body weight gain may be independent of adipose tissue content or 

composition.  

 Finally, we measured steroid levels in the serum of DMT-animals using mass 

spectrometry-based metabolomics profiling (Figure 3.2.6-3). A principal components analysis 

revealed large sex differences in steroid profiles, as expected. No statistical differences were found 

between treatment groups.  Taken together, there is a clear and significant increase in body weight, 

but the mechanism by which this occurs remains unknown. 

Supplementary Figure 5 | Chronic, intermittent, low doses of DMT increase weight in male rats, but not adiposity. a, Male rats were weighed and treated with 1 
mg/kg DMT or vehicle every third day for 4 weeks.  A significant difference was observed between the two groups (p = 0.026, two-way repeated measures ANOVA). b, At 
the conclusion of 4 weeks of dosing, the animals were sacrificed and their fat pads dissected and weighed.  Data are presented for each fat pad (or combination of fat 
pads) as a percentage of the total body weight.  No significant differences were observed between treatment groups. EPI = epididymal; RP = retroperitoneal; MES = 
mesenteric; SUB = subcutaneous; BROWN = brown fat; WAT = sum of white adipose tissue (EPI + RP + MES + SUB); TOTAL = sum of all fat pads.  n = 12 for each 
treatment group. Error bars represent s.e.m., ns = not significant, *p < 0.05.
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Figure 3.2.6-2. Chronic, intermittent, low doses of DMT increase weight in male rats, but not adiposity. (a) Male rats were weighed 

and treated with 1 mg/kg DMT or vehicle every third day for 4 weeks.  A significant difference was observed between the two 

groups (p = 0.026, two-way repeated measures ANOVA). (b) At the conclusion of 4 weeks of dosing, the animals were sacrificed 

and their fat pads dissected and weighed.  Data are presented for each fat pad (or combination of fat pads) as a percentage of the 

total body weight.  No significant differences were observed between treatment groups.  

 

N = 12 per group. Data represents mean ± SEM. *p < 0.05. Two-tailed unpaired t-test. VEH = vehicle (saline), DMT = N,N-

dimethyltryptamine, EPI = epididymal, RP = retroperitoneal, MES = mesenteric, SUB = subcutaneous, BROWN = brown fat,  

WAT = sum of white adipose tissue (EPI + RP + MES + SUB), TOTAL = sum of all fat pads, ns = not significant. 
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Supplementary Figure 6 | Chronic, intermittent, low doses of DMT produce minimal changes in serum steroid levels. a, We attempted to quantify 30 steroids in 
the serum of DMT-microdosed rats, however, 12 were below the limit of detection.  The 18 steroid analytes detected, MRM transitions, retention times (RT), declustering 
potentials (DP), collision energies (CE), entrance potentials (EP), and cell exit potentials (CEP) are listed. b, Principal components analysis revealed large differences 
between male and female samples.  Data collected for pooled samples at the beginning, middle, and end of the mass spectrometry experiment were consistent with each 
other and demonstrate minimal assay drift. c–d, Principal components analysis for male (c) and female (d) samples show that DMT-treatment produced minimal changes 
in serum steroid profiles.  Principal components analyses were log10 transformed and pareto scaled. e–f, Levels of three steroids in male (c) and female (d) samples were 
significantly changed (p = 0.05) following DMT microdosing.  For box plots: horizontal line = median, 50% quatile; lower hinge = 25% quartile; upper hinge = 75% quartile; 
lower whisker = smallest observation greater than or equal to lower hinge – 1.5 x IQR; upper whisker = largest observation less than or equal to upper hinge + 1.5 x IQR; 
Dots = outliers defined by being either greater than Q3 – 1.5 x IQR or less than Q1 – 1.5 x IQR. Q3 = third quartile; Q1 = first quartile; IQR = interquartile range = Q3 – 
Q1.
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Figure 3.2.6-3. Chronic, intermittent, low doses of DMT produce minimal changes in serum steroid levels. (a) We attempted to 

quantify 30 steroids in the serum of DMT-microdosed rats, however, 12 were below the limit of detection.  The 18 steroid analytes 

detected, MRM transitions, retention times (RT), declustering potentials (DP), collision energies (CE), entrance potentials (EP), 

and cell exit potentials (CEP) are listed. (b) Principal components analysis revealed large differences between male and female 

samples.  Data collected for pooled samples at the beginning, middle, and end of the mass spectrometry experiment were consistent 

with each other and demonstrate minimal assay drift. (c–d) Principal components analysis for male (c) and female (d) samples 

show that DMT-treatment produced minimal changes in serum steroid profiles.  Principal components analyses were log10 

transformed and pareto scaled. (e–f) Levels of three steroids in male (c) and female (d) samples following DMT microdosing are 

shown.  For box plots: horizontal line = median, 50% quartile; lower hinge = 25% quartile; upper hinge = 75% quartile; lower 

whisker = smallest observation greater than or equal to lower hinge – 1.5 x IQR; upper whisker = largest observation less than or 

equal to upper hinge + 1.5 x IQR; Dots = outliers defined by being either greater than Q3 – 1.5 x IQR or less than Q1 – 1.5 x IQR. 

Q3 = third quartile; Q1 = first quartile; IQR = interquartile range = Q3 – Q1.  
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 Conclusion and Discussion 

These studies—conducted in both humans and rodents—suggest that psychedelic microdosing 

may have therapeutic properties. Though there are a few subtle differences between the human 

and rodent data, the reports are strikingly congruent. 

 

3.3.1 Comparison of human and rodent microdosing experience 

Both humans and rodent studies suggest psychedelic microdosing may have there is therapeutic 

potential for treating depression and anxiety.  Interestingly, there is a distinct lack of anxiogenic 

effects (potentially even verging on the side of anxiolytic, p = 0.08) after psychedelic microdosing 

in rodents (Figure 3.2.1-1).  This contrasts to the fact that a single high dose of DMT may cause 

significant anxiogenic effects in both NIL and EPM tests (see Section 2.2.2: Effects of DMT 

treatment on animal behaviors relevant to anxiety).10 This mirrors the data collected by human 

participants which suggests that psychedelic microdosing may have anxiolytic properties (Table 

3.1-3). There is the potential that the anxiolytic response in humans is greater by having a more 

cognitive understanding of the practice in addition to potential placebo effects.15 

 Interestingly, our rodent study suggests that psychedelic microdosing may not prevent the 

establishment of learned fear, but can be used to facilitate cued fear extinction (Figure 3.2.2-1f). 

Given that fear conditioning and extinction is a model for PTSD, it is perhaps unsurprising that a 

significant portion of veterans report participating in this practice (Table 3.1-1). It should be noted 

that other psychedelic compounds, such as 3,4-methylenedioxymethamphetamine (MDMA) are 

excellent candidates for treating PTSD.  

 We predict that these therapeutic effects relevant to depression, anxiety and PTSD are the 

result of strengthening of specific circuits anchored in the PFC that exert top-down control over 
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other brain regions involved in fear and motivated behaviours.16,17, 18, 19 These behaviours far 

outlast the short half-life of DMT (approximately 15 mins),20 which suggests that the persistent 

effects from these drugs are due to changes in neural circuits.  

 

3.3.2 Excitability and function of cells in the mPFC 

Changes in brain structure and function are likely to depend on the total length of psychedelic 

treatment.  

Increases in function, as measured by sEPSCs, were measured at after a single 1 mg/kg dose 

of DMT in rats, suggesting that indeed this sub-hallucinogenic dose may be sufficient for 

enhancing neural activity (Figure 3.3.2-1).21  If true, this could strengthen top-down control of 

circuits involved in emotion, thus contributing to the therapeutic responses we see in these studies.  

However, this was after a single dose and does not consider repeated dosing regimens.  It 

appears that after multiple months of microdosing, this practice may result in a decrease in spine 

density (Figure 3.2.5-1), likely due to a homeostatic mechanism.  This may be caused by 

excitotoxicity of these cells, resulting in retraction.  Psychedelics are known to engage mTOR 

signaling,21 and overactivation of mTOR is proposed to contribute to both autism spectrum 

disorder (ASD)22 as well as Alzheimer’s disease (AD).23 

Figure 3.3.2-1. DMT increases both frequency (a) and amplitude (b) of sEPSCs in mPFC 24 h after dosing with a hallucinogenic 

(10 mg/kg) or subhallucinogenic (1 mg/kg) dose. 
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In the same vein, fully-hallucinogenic doses of LSD administered over 11 days appears to 

have antidepressant-like effects,24 however when it is administered chronically (>3 months), 

animals develop a persistent state of hyperactivation, anhedonia and social deficits.25  It should 

also be noted that the anxiolytic and antidepressant properties of these compounds were assessed 

earlier in this behavioural battery, and while increasing the stress of the paradigms. It is possible 

that this dosing regimen enhanced therapeutic properties for these earlier tests but as the animals 

are put through increasingly stressful situations, resilience to the stress decreases. 

Immediate early genes involved in growth and activation are not found after prolonged 

dosing of DMT.  Given the electrophysiology data, it is likely that immediate early genes are 

activated after a single acute dose, and this response is desensitized when DMT is administered 

chronically; in other words, this points again to a homeostatic mechanism. Further work assessing 

the effects of a single dose on immediate early genes and spine density are warranted, particularly 

given the electrophysiology data in Figure 3.3.2-1. 

There are no changes to 5HT2A receptor gene expression levels (Figure 3.2.5-1c) despite 

chronic administration of a 5HT2A receptor agonist for 2 months. This is congruent by previous 

work by Smith and colleagues which suggests that the 5HT2A receptor does not desensitize in the 

presence of DMT,26 which may explain why tolerance to DMT does not develop in humans.27 

These data indicate that desensitization may occur at the level of cell excitability rather than at the 

level of the 5HT2A receptor. 

It is possible that structural changes in the mPFC after chronic, intermittent low doses of a 

psychedelic (a decrease in spines, Figure 3.2.5-1) is unrelated to the therapeutic effects of 

psychedelic microdosing (Figure 3.2.1-1, Figure 3.2.2-1, Figure 3.2.3-1). Indeed, studies with 
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long-term intermittent use of ayahuasca (a tisane which contains DMT) is correlated with the 

thinning of the posterior cingulate cortex in humans,28 without increased risk for mental illness.29  

In all, it appears that psychedelic microdosing may have therapeutic effects, as seen in the 

rodent microdosing study and the subjective human reports. That said, there is still much work to 

be done to establish the potential risks and benefits associated with this practice. 

 

3.3.3 Advances in the field of psychedelic microdosing 

Here I will comment on advancements in the field of psychedelic microdosing since the 

completion of my studies. 

 A study by Higgens et al. describe enhanced motivation in “low performing” rats using 

two different food motivation tasks when microdosed with ketamine (1–3 mg/kg) or psilocybin 

(0.05–0.1 mg/kg),30 suggesting the practice may produce antidepressant effects in populations with 

anhedonia. This is comparable to our findings that psychedelic microdosing may enhance 

motivated behaviours in assays such as the forced swim test. 

 Horsley and colleagues examined psilocin and ketamine microdosing and assess anxiety in 

the EPM and found that higher doses of psilocybin produced an anxiogenic profile (0.075 mg/kg 

psilocin and 3 mg/kg ketamine).31  This differs from our findings that microdosing is anxiolytic in 

rodent models, and may be due to differences in drugs administered, animal models used, or overall 

length of dosing regimen. The Spanagal lab investigated microdosing in a model of alcohol relapse 

but found it did not have long-lasting effects.32   

There are several studies in humans, but for this dissertation, I will focus on studies that have 

investigated psychedelic microdosing on mental health specifically. Firstly, Hutten et al. 

demonstrated that LSD showed positive effects on mood, friendliness, arousal and decreasing 
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attentional lapses.33 At higher doses (20 mcg), LSD increased confusion and anxiety in volunteers. 

Other studies indicate that at similar doses, drug disliking and anxiety increase,34,35 and that 

patients can cycle between patterns of euphoric and depressive mood states.36 Interestingly, this 

cycling is thought to induce cognitive flexibility.37  Other online observational studies conclude 

lower measures of dysfunctional attitudes and negative emotionality while higher scores on 

wisdom, open-mindedness and creativity.38  

There are no studies to my knowledge which explicitly explore the relationship between 

psychedelic microdosing and exercise or physical health. There are anecdotal reports of improving 

workouts and individuals having more motivation for a healthier lifestyle.39,40,41 

A foundational study was released in eLife earlier this year, which suggests that though 

psychedelic microdosing improves mood, it is not significant from the placebo-treated group.42 

Impressively, they were able to use a Citizen Science-like platform and successfully blinded 

participants to the treatment they received. Since this study did not provide the study drugs—

participants were required to source their own substances—so the purity and exact dose was 

estimated by participants. This study investigated a large cohort of healthy individuals (240), 

however it is well-known that patients with more severe depressive symptoms are more likely to 

be responsive to medication.43 For this reason, it is possible that psychedelic microdosing may still 

hold therapeutic value for those suffering from mood disorders, though this warrants further 

investigation. 
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 Methods 

 

3.4.1 Survey Participants 

A total of 2368 individuals responded to the survey. Some responses were excluded because they 

were under 18 years of age (n = 9), and because they did not provide their consent (n = 12). Thus, 

2347 respondents were used in the remaining analyses. A total of 383 respondents reported having 

practiced microdosing, either previously or currently.  Responses for previous and current 

microdosers were combined, with the exception of the question regarding discontinuing the 

practice, which is only relevant to past users. Given the sensitive nature of the survey material, 

participants could decline to answer any question. Thus, we report the proportion of responses for 

each result below. The total number of potential responses for a given question is denoted as N 

Question (NQ); The total number of responses for a given question is denoted as N Total (NT); the 

subset of answers for a given question are denoted as ‘n’. Gender representation was relatively 

equal with 49% of participants being female (NT = 1707, n = 832). Participants ranged from 18 to 

99 years of age (mean = 35) and individuals represented various education and income levels, as 

well as diverse occupational experiences. 

 

3.4.2 Recruitment and Survey Distribution 

An anonymous online survey was used to sample 2347 people from April through August of 2018. 

Participants were recruited via snowball sampling through a number of outlets including social 

media (e.g., Facebook, Twitter, Instagram), our research group’s website (www.olsonlab.org), 

drug- and nondrug-related online forums (Reddit, Craigslist), and distribution of pamphlets across 

the UC Davis campus and community events (e.g., local farmers market). To prevent biasing the 
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study towards participants with extensive knowledge and/or experience with psychedelics, the 

survey was described as an anonymous research study on “Recreational Drug and Alcohol Use.” 

The survey was also designed such that each IP address could only take the survey once to avoid 

collecting multiple responses from the same participants. Individuals voluntarily participated in 

the study and did not receive compensation. The survey was approved by the University of 

California, Davis Institutional Review Board (IRB). 

 

3.4.3 Microdosing Survey Design 

After providing informed consent, participants were asked a series of questions related to their 

familiarity with psychedelic microdosing as well as their personal experience with the practice. 

Psychedelic microdosing was defined as “using multiple sub-hallucinogenic doses of a psychedelic 

compound on an intermittent basis for a minimum of at least 2 weeks.” Individuals who indicated 

that they currently microdose or have previously microdosed (n = 89 and n = 294 respectively, NT 

= 2200) were asked which drugs they used to microdose and what changes, if any, they perceived 

related to depression, anxiety, memory, focus/attention, sociability, and physical factors. Changes 

were reported for each construct using the following response options: improvement (positive 

effects), no effect, no noticeable effect and worsening of symptoms (negative effects). For clarity, 

“no effect” and “no noticeable effect” responses were combined. Additionally, individuals who 

reported previously engaging in microdosing were asked about factors that deterred them from 

continued engagement in this practice. The survey can be viewed in its entirety at 

10.6084/m9.figshare.9757901. 
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3.4.4 Statistical Analysis for Human Survey Study 

As participants could decline to answer any question, we report the number of responses, as well 

as the proportion of responses, for each result below. All statistical comparisons were made using 

completed responses and excluded cases where the question was not answered. Group responses 

were compared using Pearson’s chi-squared test with a significance level of p < 0.05. Given the 

exploratory nature of this work, descriptive statistics were used to characterize overall trends in 

the prevalence of microdosing and the use of psychedelic substances across various groups in our 

study. Regression models were used with 95% confidence intervals reported to identify and 

quantify the strength of associations. Statistical analyses were performed using RStudio (version 

1.0.143).  

 

3.4.5 Drugs used in Animal Microdosing Study 

Solid DMT•fumarate (2:1) was prepared as described previously10 and stored in the dark at -20ºC 

prior to use.  For each administration, a solution of DMT•fumarate (2:1) in 0.9% sterile saline was 

freshly prepared and passed through a 0.2 μm syringe filter.  For all experiments, DMT•fumarate 

(2:1) was administered at 1 mg/kg via intraperitoneal injection using an injection volume of 1 

mL/kg.  For our vehicle control, 0.9% sterile saline solution was utilized. 

 

3.4.6 Animals 

Male and female Sprague Dawley rats were obtained from Charles River Laboratories 

(Wilmington, MA, USA), were housed two animals of the same sex per cage, and were given ad 

libitum access to food and water.  The experiments began when the rats were 8 weeks of age.  

Lights in the vivarium were turned on at 07:00 hours and turned off at 19:00 hours.  Behavioral 
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experiments were performed during the light-on phase, with experiments taking place between 

08:00 and 18:00 hours unless otherwise noted.  Treatment groups were randomly assigned, but 

each cage housed one animal from the DMT- and one from the VEH-treated groups.  When 

appropriate, behavioral tests were counterbalanced to avoid systematic errors.  All experimental 

procedures involving animals were approved by the UC Davis Institutional Animal Care and Use 

Committee (IACUC) and adhered to principles described in the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals.  Over the course of one of the microdosing 

experiments, one animal began to exhibit signs of poor health, and was euthanized according to 

our IACUC protocol.  The University of California, Davis is accredited by the Association for 

Assessment and Accreditation of Laboratory Animal Care International (AAALAC).   

 

3.4.7 Tissue Collection 

After completion of the behavioral and metabolic experiments, the animals were sacrificed via 

decapitation.  Blood and brain tissue were collected for metabolomics, Golgi-Cox staining, and 

gene expression studies as described below. 

 

3.4.8 Novelty-Induced Locomotion (NIL) 

Rats were allowed to acclimate to the test room for 10 min prior to being gently placed into the 

center of an AccuScan Instruments (Columbus, OH) open field chamber (Digiscan Animal 

Activity Monitor model #RXYZCM(16)CCD) and allowed to freely explore the chamber for 45 

min. At the conclusion of the test, animals were returned to their home cages and the test chambers 

cleaned with 10% Nolvasan.  Horizontal motion, rotations, and stereotypies (repetitive beam 

breaks) were recorded in 1 min intervals for the duration of the test and analyzed using the program 
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Integra.  The margin of the arena was defined as being 10 cm from the wall. The open field chamber 

measured 41.9 cm L × 41.9 cm W × 28.6 cm H and was illuminated to between 25 and 30 lx.  

 

3.4.9 Novel Object Recognition (NOR) 

The NOR chamber measured 53.3 cm L x 53.3 cm W 34.3 cm H, was illuminated to between 25 

and 30 lx, and contained a pair of identical objects (either a 4 inch cone or a 3–4 inch jar filled 

with cement).  On the first day, rats were allowed to freely explore the objects for 10 min before 

being returned to their home cages.  After 24 h, rats were reintroduced to the NOR chamber, but 

one of the objects was replaced with a new, distinctly different object.  EthoVision XT (version 9) 

software was used to assess the subject rat’s preference for the novel vs the familiar object by 

quantifying the amount of time the nose point spent within the “sniff zone”—defined as a circle 

surrounding the object with a radius of 2 cm.  Additionally, a discrimination index (DI) was 

calculated as Time ExploringNovel Object – Time ExploringFamiliar Object / Total Time ExploringBoth 

Objects.  The entire apparatus was cleaned with 10% Nolvasan between trials.  

 

3.4.10 Spontaneous Alternation Behavior (SAB) 

Rats were placed on one arm of a T-maze facing the central node and allowed to freely explore for 

10 min.  Animal movement was recorded and analyzed by an experimenter blinded to treatment 

after the completion of the behavioral task.  Percent alternation was calculated by dividing the 

number of times the rodent sequentially accessed the 3 distinct arms of the maze by the total 

number of arm entries minus one.  The entire apparatus was cleaned with 10% Nolvasan between 

trials.  
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3.4.11 Elevated Plus Maze (EPM) 

The EPM apparatus consisted of a black plus-shaped plastic platform positioned 50 cm above the 

ground and illuminated to between 20 and 25 lux.  Two opposite arms of the maze possessed 

vertical walls measuring 31.75 cm high, with the other two arms being open with unprotected 

edges.  Rats were placed in the center of the maze facing an open arm and allowed to explore freely 

for 5 min.  At the conclusion of the test, rats were returned to their home cages and the apparatus 

was cleaned with 10% Nolvasan.  Animal movement was recorded and analyzed during the trial 

using EthoVision XT (version 9) software. 

 

3.4.12 Forced Swim Test (FST) 

The FST apparatus consisted of a clear Plexiglas cylinder measuring 40 cm tall, 20 cm in diameter 

and filled with 30 cm of 24 ± 1ºC water.  Fresh water was used for every rat.  Animals were 

subjected to a pre-test phase in which they were placed in the cylinder for 15 mins before being 

dried and returned to their home cage.  Twenty-four hours later, rats were again placed in the FST 

apparatus for 5 mins and their activity was video recorded.  Each video was scored for immobility, 

swimming, and climbing behavior by a trained observer blinded to treatment condition.  The 

dominant behavior of the animal (i.e., immobility, swimming, or climbing) was determined every 

5 sec and quantified as a “count.”  As the experiment lasted for 5 mins, the sum of the counts for 

all four behaviors equals 60. 

 

3.4.13 3-Chambered Social Approach 

The social approach apparatus consisted of three identical chambers separated by removable gates, 

with each chamber measuring 101.6 cm L x 33.3 cm W 33.7 cm H.  Each chamber was illuminated 



 

 76 

to between 25-30 lux and housed a cage for holding “social animals” or objects.  The cages 

restrained the movement of the social animals while still enabling interaction with the test animals.  

One day prior to the experiment, social animals were acclimated to the cages of the social approach 

chamber in two 15-min sessions.  On the test day, subject rats were habituated to the apparatus 

with no social animal or object present for 10 mins, before being gently corralled back into the 

center chamber and the gates closed.  A novel object was then placed in one of the adjacent 

chambers, and a social animal placed in the other chamber.  The gates were then opened and the 

subject rat was allowed to freely interact with the social animal or object, and their activity was 

video recorded.  EthoVision XT (version 9) software was used to assess the subject rat’s preference 

for social interaction.  Time spent in the “sniff zone” was quantified using the nose point of the 

animal.  The sniff zone was defined as 2 cm from the edge of the cage holding either the social 

animal or the object.  Social animals were the same sex and approximate age as subject rats.  The 

entire apparatus was cleaned with 10% Nolvasan between trials.  

 

3.4.14 Fear Conditioning 

Rats were placed in a fear conditioning apparatus (Med Associates model # MED-VFC2-SCT-R) 

for 3.5 min prior to three presentations of auditory cues (80 dB white noise, 30 s), each 

coterminating with a foot shock (0.8 mA, 2 s.) and spaced 90 s apart.  The fear conditioning 

apparatus consisted of a 30.5 cm × 24.1 cm × 21 cm internal soundproof chamber, with metal 

grated floors, an infrared camera, a sound generator, and a light source.  After the last shock, the 

animals remained in the chambers for an additional 2 min before being returned to their home 

cages.  During fear conditioning, the apparatus was illuminated to 100 lx and did not contain any 

additional odor cues.  The apparatus was cleaned with 70% EtOH in between trials.  All fear 
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conditioning and extinction experiments were performed between the hours of 08:00−11:00.  

Freezing behavior was scored using Med Associates Video Freeze software v2.25 (motion 

threshold = 18 au, detection method = linear, minimum freeze duration = 30 frames, which is equal 

to a 1 s freeze).  Pre-training was defined as the 3.5 min prior to receiving footshocks, while post-

training refers to the 2 min that the animal remained in the fear conditioning chamber after the last 

foot shock. 

 

3.4.15 Contextual Fear Memory 

On the first day after fear conditioning, contextual fear memory was assessed by exposing the 

animals to the conditioning context for 10 min and measuring their freezing behavior over this 

time.  The apparatus was cleaned with 70% EtOH in between trials. 

 

3.4.16 Cued Fear Memory and Extinction Training 

On the second day after fear conditioning, the animals were administered DMT and then placed 

back in their home cages.  On the third day after fear conditioning, cued fear memory was assessed 

by exposing the animals to a novel context (lights off, A-frame insert, smooth plastic floor insert, 

additional vanilla odor) for 2 min prior to 8 presentations of auditory cues (80 dB white noise, 30 

s) spaced 30 s apart.  Freezing responses for cue testing are presented as the percentage of time 

spent freezing during the last 4 auditory presentations.  Cued fear memory testing also served as 

cued fear extinction training.  The apparatus was cleaned with 70% EtOH in between trials. 

 

3.4.17 Cued Fear Extinction Memory 

On the fourth day after fear conditioning, the cued fear memory procedure was repeated. 
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3.4.18 Comprehensive Laboratory Animal Monitoring System (CLAMS) 

Rats were singly housed in CLAMS chambers (Columbus Instruments) for ~48 h and fed 

powdered chow diet (2018 Teklad Global 18% Protein Rodent Diet) ad libitum.  Cage sensors 

monitored food consumption as well as horizontal and vertical activity.  Oxygen consumption and 

carbon dioxide production were measured and used to calculate energy expenditure (i.e., heat 

dissipated) and respiratory exchange ratio (RER = VCO2/VO2).   

 

3.4.19 Tissue Collection Following Microdosing 

After CLAMS data were collected, the animals administered chronic, intermittent low doses of 

DMT as well as the vehicle controls were sacrificed via decapitation.  Blood and brain tissue were 

collected for metabolomics, Golgi-Cox staining, and gene expression studies as described below. 

 

3.4.20 Golgi-Cox Staining 

Brain tissue was prepared following the protocol outlined in the FD Neurotechnologies Rapid 

GolgiStain Kit (FD Neurotechnologies) with slight modifications.  Brains were stored in solution 

C for 2 weeks prior to slicing into 130 µm sections using a vibratome.  These slices were placed 

onto microscope slides that were pre-coated with (3-aminopropyl)triethoxysilane.  Slices were air 

dried for a week before staining.  Slides were immersed in water twice for 2 minutes, DE solution 

for 10 minutes, and then water for 2 minutes.  After this, slides were immersed sequentially in 25% 

ethanol for 1 minute, 50% ethanol for 4 minutes, 75% ethanol for 4 minutes, 95% ethanol for 4 

minutes, and 100% ethanol for 4 minutes.  Slides were then briefly dipped into xylenes before 

being mounted using DPX Mountant For Histology (Sigma), air-dried, and imaged on a Zeiss 

AxioScope.  Spines were traced using Neurolucida software (version 10) at 100x magnification.  
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Data acquisition and analysis was performed by an experimenter blinded to treatment conditions.  

Data represent individual neurons taken from 2 different animals per treatment.  Representative 

images were acquired with a 60x oil immersion objective (1.42 NA) using the 488 nm laser and 

transmission detector on an Olympus FV1000 confocal microscope. 

 

3.4.21 ddPCR 

Tissue from the PFC of rats subjected to chronic, intermittent, low doses of DMT or vehicle was 

removed and lysed using QIAzol Lysis Reagent (QIAGEN).  Extraction of RNA was 

accomplished using the RNeasy isolation kit (QIAGEN) following the instructions of the 

manufacturer.  The resulting RNA was converted to cDNA using the iScript cDNA Synthesis Kit 

(BioRad).  The cDNA was diluted 1:100 prior to droplet digital PCR (ddPCR).  Droplets 

containing cDNA, ddPCR master mix (BioRad), and TaqMan probes (ThermoFisher) were 

generated using the QX200 Droplet Digital PCR System (BioRad).  Following PCR amplification, 

the signal of the gene of interest (FAM-labeled) was quantified and normalized to the 

housekeeping gene ESD (VIC-labeled). Taqman probes included those for FOS (ThermoFisher, 

Rn02396759_m1), EGR1 (ThermoFisher, Rn00561138_m1), EGR2 (ThermoFisher, 

Rn00586224_m1), ARC (ThermoFisher, Rn00571208_g1), BDNF (ThermoFisher, 

Rn02531967_s1), HTR2A (ThermoFisher, Rn00568473_m1), and ESD (ThermoFisher, 

Rn01468295_g1). 

 

3.4.22 Metabolomics 

Blood was allowed to clot for 15 min at room temperature, centrifuged at 1,000 x g for 10 min at 

0ºC, and the resulting serum was transferred to a new tube and stored at -80ºC until analysis via 
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liquid chromatography-mass spectrometry.  Samples were extracted by the Shake and Shoot 

protocol44 with minor modification.  Briefly, samples were allowed to thaw on wet ice and then 

inverted five times to homogenize the serum.  To a 1 mL 96-well plate (Eppendorf, Hamburg, 

Ger.) was added 50 μL of sample serum followed sequentially by 25 μL anti-oxidant solution, 25 

μL of surrogate standards in methanol, 25 μL of CUDA and PHAU standards in methanol, and 

125 μL acetonitrile/methanol (1:1).  The plate was then vortexed for 30 s and centrifuged for 5 

min to pellet precipitated proteins in a Genevac EZ-2 centrifugal evaporator (Ipswich, UK).  

Supernatant was filtered through an Agilent PVDC 0.2 μm filter-plate (Santa Clara, CA).  The 

plate was then sealed and placed in the autosampler and maintained at 6ºC.  Extracted samples 

were analyzed for steroids by liquid chromatography-mass spectrometry (LC-MS/MS).  A Waters 

ACQUITY i-Class LC system (Milford, MA) was coupled to a Sciex 6500+ QTRAP (Redwood 

City, CA) operated in multiple reaction monitoring (MRM) mode. An Agilent InfinityLab 

Poroshell 120 EC-C18 (2.1 x 100 mm, 1.9 μm) column was used with an acetonitrile/water 

gradient.  Formic acid (0.1% v/v) was added to both mobile phases.  A full list of steroid analytes, 

MRM transitions, retention times, declustering potentials, collision energies, entrance potentials, 

and cell exit potentials can be found in Supplementary Figure 4a. 

 

3.4.23 Fat Pad Analysis 

Male rats were treated with DMT (12 rats) or vehicle (12 rats) every third day for 4 weeks, and 

weights were recorded at regular intervals.  At the completion of the experiment, the animals were 

sacrificed via decapitation and their fat pads dissected and weighed.  Fat pad weights are presented 

as a percentage of total body weight. 
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3.4.24 Statistical Analysis 

Statistical analyses were performed using GraphPad Prism (version 7.0a).  Descriptive statistics 

were used to describe the human survey data.  Populations were compared using a Pearson’s c2 

test (Fig. 1).  For rodent studies, appropriate samples sizes were estimated based on our previous 

experiences performing similar experiments in conjunction with a power analysis.  The data for 

males and females were analyzed together unless there were obvious sex differences.  Data 

analyses were performed by experimenters blinded to treatment conditions.  For most comparisons 

between DMT-treated and VEH-treated groups, a two-tailed Student’s t-test was utilized (Fig 3, 

Fig. 5, Fig. S2, Fig. S3, Fig. S4, Fig. S5, Fig. S7).  In the case of fear conditioning and fear 

extinction experiments (Fig. 4), a Mann-Whitney Test was used as a bimodal distribution was 

observed.  Similar results in rat fear extinction experiments have been observed by others45 and 

suggest that there are responders and non-responders to extinction training.  For Supplementary 

Figures S6a and S6b, a two-way repeated measures analysis of variance (ANOVA) and a two-way 

ANOVA with Sidak’s post hoc test were used, respectively.  A Grubbs’ test was used to verify 

obvious outliers.  For the social interaction test, a computer error caused us to lose data for one 

animal.  For the metabolomics studies, the ggplots2 package in R studio was used to create 

boxplots.  Principal components analysis was performed using MetaboAnalyst 4.0.  Microsoft 

Excel was used to perform two-tailed Student’s t-tests. 
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NON-HALLUCINOGENIC PSYCHEDELIC 
ANALOGS WITH THERAPEUTIC 
POTENTIAL 
 

 

Are hallucinations necessary for psychedelics to produce therapeutic effects? In other words, does 

a person need to experience hallucinations to have a therapeutic effect, or are hallucinations 

phenomena that happen in parallel to therapeutic effects? As promising as psychedelics might be 

for treating neuropsychiatric disorders, their notorious perceptual effects have greatly hindered 

their potential as therapeutics. 

 A foray into researching psychedelic microdosing provided some insight into the necessity 

of hallucinations (see Chapter 3), however this practice still uses hallucinogenic compounds, 

which can be subject to recreational use or impairments with incorrect dosing. As such, our lab 

initiated a structure-activity relationship (SAR) study which examines the various components of 

psychedelic compounds to determine moieties of the molecule that are necessary for the 

therapeutic effects, and which parts of the molecule contribute to the hallucinogenic effects. The 

goal was to find the optimal structure that could produce therapeutic effects without hallucinations. 
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 Structure-Activity Relationships (SAR) of psychedelic compounds 

There have only been several studies investigating the basic pharmacophore of hallucinogenic 

compounds, however there is only one study to our knowledge (described below) which 

investigates the optimal pharmacophore for psychoplastogenicity.  

 

4.1.1 Structure of the 5HT2A receptor binding pocket 

The indole ring core of tryptamine-based psychedelic compounds fits securely into the 5HT2A 

receptor via pi-stacking with amino acids in the receptor-binding region. The indole nitrogen forms 

a hydrogen bond with the serine on helix 6 (S2425.46).1 In tryptamine-based compounds, like 

serotonin, an aspartic acid (D1553.32) on helix 3 forms a salt bridge with the tertiary amine. 

Mutation of D1553.32 reveals that agonists can no longer interact with the 5HT2A receptor, 

deeming that the interaction here is critical for activation of the receptor.1 

 From this basic indole scaffold, Lee Dunlap from the Olson lab explored how changes in 

structure can change hallucinogenic and psychoplastogenic effects. Dunlap created a library of 

analogs with changes in methylation of the terminal amine, as well as looking at addition of 

electron withdrawing and donating groups at various positions around the indole. 

 

4.1.2 Role of the terminal amine group 

First, he explored increasing the methylation of the terminal amine group. He found that increasing 

methylation on the tertiary amine increased psychoplastogenic potential, as measured by neuronal 

growth and Sholl analysis (Figure 4.1.2-1).2  N,N-dimethyltryptamine (DMT) was found to be 

optimal, as methylation increases lipophilicity and allows the drug to cross the membrane and 

access a higher number of receptors. A trimethyl group on the terminal amine introduces a 
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permanent positive charge at the nitrogen such that it is not able to pass the membrane. This 

positively-charged salt version is discussed further in Chapter 5.  

 

 

 

4.1.3 Role of substitution on the indole ring 

 Finally, Dunlap investigated the substitution pattern along the isoDMT skeleton (Figure 4.1.2-1), 

which has similar properties for promoting plasticity to DMT. To investigate this, he created 

molecules with either a fluoride (small and electron withdrawing), methoxy (small and electron 

donating) or a benzyl ether (large and electron donating) substituent at either the 4-, 5-, 6-, or 7-

position on the indole ring. This is comparable to the 7-, 6-, 5-, or 4- position of DMT, respectively. 

Figure 4.1.2-1. Structural analysis of therapeutic vs. hallucinogenic properties. 
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He found that small, strongly electron donating groups, like methoxy-substitutions at the 4-, 5-, or 

6- position on the isoDMT scaffold were able to best potentiate growth in neuronal cultures.  This 

may explain the psychoplastogenic effects of compounds 5-methoxy-N,N-dimethyltryptamine (5-

MeO-DMT), psilocin (the active drug from the prodrug psilocybin) and bufotenin, as they all have 

small electron donating groups within their structures. When considering pharmacokinetics, the 

use of a methoxy-substituted compound instead of a hydroxy-substituted compound was clever, 

as it creates a more brain-penetrant version. 

 In summary, an indole core (preferably with a 4-, 5- or 6-substituted small electron 

donating group) with a dimethylated free amine is critical for psychoplastogenic effects, as 

measured by Sholl analysis.  Please refer to Chapter 5 for an in-depth discussion on mechanism 

of action. 

 

 Development of a non-hallucinogenic psychedelic analog 

4.2.1 Structurally similar compounds with different behavioural effects 

Since the discovery of psychedelic compounds in the mid-20th century, chemists have tweaked 

chemical structures to create hundreds of new versions of these compounds.3,4  Interestingly, not 

all these psychedelic analogs are hallucinogenic. In particular, a compound called 6-methoxy-N,N-

dimethyltryptamine (6-MeO-DMT) poorly substitutes for the psychedelic compound DOM in a 

drug discrimination assay.5  This compound is of particular interest given its structural similarity  

Figure 4.2.1-1. Comparison of the structures of 5-MeO-DMT and 6-MeO-DMT. Structural differences are highlighted. 
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to the highly hallucinogenic counterpart, 5-MeO-DMT. A comparison between structures of these 

two compounds can be seen in Figure 4.2.1-1. 

 To further investigate this phenomenon, we assessed the potential of 5-MeO-DMT and 6-

MeO-DMT using the head-twitch response (HTR) assay.  When animals are administered a 

serotonergic psychedelic, they exhibit a very stereotyped response known as a head-twitch (a quick 

head motion from side to side).  The potency for the number of head-twitches is highly correlative 

with the human hallucinogenic potency.6  

 Animals administered 5-MeO-DMT exhibit a dose-dependent increase in the number of 

head-twitches exhibited in this assay (Figure 4.2.1-2).  On the other hand, 6-MeO-DMT did not 

produce any head-twitches at any of the doses tested (1 mg/kg, 10 mg/kg, 50 mg/kg).  

 This data, in combination with previous studies,5, 7 suggests that the 6-substituted position 

of indole alkylamines may render a compound non-hallucinogenic.  

Figure 4.2.1-2. 5-MeO-DMT elicits a robust head-twitch response, whereas 6-MeO-DMT does not.  There is a more robust head-

twitch response in females.  

N = 3−8 mice per condition. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as 

compared to the vehicle control following a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), 5-MeO-DMT 

= 5-methoxy-N,N-dimethyltryptamine, 6-MeO-DMT = 6-methoxy-N,N-dimethyltryptamine. 
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 When these two compounds are tested side-by-side in an FST assay, we find that both 

compounds reduce the amount of time animals spent immobile when administered acutely, and 

these effects last for up to 1 week, the longest timepoint tested (Figure 4.2.1-3).  In fact, the non-

hallucinogenic analog appears to provide a more robust response than the hallucinogenic 

compound. It is possible that this effect is due to a lack of anxiogenic response associated with 

psychedelic use.8 

 

 

 

 

 

 

Figure 4.2.1-3. Animals treated with 5-MeO-DMT and 6-MeO-DMT display therapeutic effects comparable to ketamine.   

N = 12 mice per condition. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as 

compared to the vehicle control following a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), KET = ketamine, 

5-MeO-DMT = 5-methoxy-N,N-dimethyltryptamine, 6-MeO-DMT = 6-methoxy-N,N-dimethyltryptamine. 
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 Development of Tabernanthalog 

4.3.1 A brief history of ibogaine 

Using this knowledge, we sought to develop other psychedelic analogs. We started with the 

psychedelic ibogaine—an alkaloid found in the root from the West African plant tabernanthe 

iboga—which has purported anti-addictive effects. The root has been used for centuries for coming 

of age ceremonies and typically leaves individuals feeling more mature and spiritually 

enlightened.9  In the 1930s, ibogaine was sold under the name Lamberene in France as an 

antidepressant.10, 11 Unfortunately, ibogaine has a high affinity for hERG (human ether-a-go-go) 

channels in the heart which are responsible for the cardiac repolarizing current.12, 13 The blockage 

of this current results in heart attacks and ibogaine was subsequently pulled off the market in 1966.  

Later in the 1960s, the World Health Assembly classified ibogaine as a “substance likely to cause 

dependency or endanger human health.”  The drug was never legalized in the US and was deemed 

a Schedule I compound by the FDA in 1970.14  

 Howard Lotsof pioneered many of the original studies on ibogaine. In 1962, Lotsof was 19 

years old and a heroin addict. By accident, he came across ibogaine, tried it, and no longer had a 

desire to use heroin for years afterwards.15 This launched a series of academic and medical studies 

investigating the antiaddictive properties of ibogaine. Scientists verified ibogaine’s ability to 

attenuate opioid withdrawal,16 and diminish morphine17 and cocaine18 self-administration in rats.  

Subsequent studies demonstrated ibogaines efficacy in attenuating opioid withdrawal followed, in 

both humans and rodents.19, 20, 21, 22 

Synthetic routes to make ibogaine have been difficult. There are only three published 

synthetic routes for synthesizing racemic ibogaine. These routes have 9–16 steps with overall 

yields ranging from 0.1–4.8%.23  In fact, it is more efficient to extract ibogaine from raw materials 
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(the Tabernanthe iboga plant root), which requires enormous amounts of raw material, and 

associated extraction resources. Finally, ibogaine is lipophilic and drug formulation is quite 

challenging. Lipophilic drugs tend to accumulate in adipose tissue and release slowly over time, 

greatly extending the half-life of the compound,24, 25 which may contribute to the long ‘trips’ 

associated with this molecule.  Given these practical hurdles, the development of a safer, more 

rapid acting, and synthetically more efficient molecule is warranted. 

 Here, we deconstruct the skeleton of ibogaine to determine the therapeutic pharmacophore 

and modify the structure to increase safety.  

 

4.3.2 Development of ibogaine analogs 

We first began by deconstructing the ibogaine molecule into its component parts: the indole ring, 

the tetrahydroazepine ring and the isoquinuclidine.26 We kept the indole core and systematically 

modified the tetrahydroazepine and isoquinuclidine rings, deleting various bonds and adding 

Figure 4.3.2-1. Two sets of ibogaine analogs were created, incorporating either the isoquinuclidine or azepine moiety. 
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substituents (bigger vs. smaller, electron donating vs. electron withdrawing) until we came up with 

a library of 18 analogs to screen in Sholl analysis (Figure 4.3.2-1). 

We found that compound #13 increased growth of cortical neurons to a greater extent than 

other compounds tested (Figure 4.3.2-2). Perhaps unsurprisingly, it is structurally very similar to 

5-MeO-DMT.  We named this structure ibogainalog (IBG). 

 

 

  

Figure 4.3.2-2. Ibogaine analogs containing an azepine ring increase cortical neuron growth.  

N = 31−83 neurons per condition over three separate experiments. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, 

***p < 0.001, ****p < 0.0001, as compared to the vehicle control following a one-way ANOVA with Dunnett’s post hoc test. VEH 

= vehicle (saline), KET = ketamine, IBO = ibogaine, NOR = noribogaine. Compound numbers correspond to structures in Figure 
4.3.2-1. 
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4.3.3 Development of Tabernanthalog (TBG) 

Looking at the structure of IBG, it was apparent that it shared structural similarities to 5-MeO-

DMT.  We previously reported that 6-MeO-DMT was non-hallucinogenic (as tested in the HTR 

assay), so we created a new molecule with the structure of IBG, but with the methoxy group at the 

6-position on the indole (Figure 4.3.3-1). We named this compound tabernanthalog (TBG) based 

on its similarity to the natural product tabernanthine. Notably, by “tying down” the terminal amine 

group back to the indole, this conformationally restricts TBG in comparison to 6-MeO-DMT. 

Conformationally restricting molecules in such a way is known to increase potency and activity.27 

 We next tested to see if this compound increased structural plasticity as well, or if this 

structural tweak compromised its ability to increase neuronal growth.  We found that TBG was 

indeed capable of increasing growth of cortical neurons (Figure 4.3.3-2a), an effect which was 

blocked by pretreatment with the serotonin 2 antagonist ketanserin (Figure 4.3.3-2b).  In addition, 

treatment with TBG was able to increase growth of spines on cortical neurons in vitro (Figure 

Figure 4.3.3-1. Structural similarities between tabernanthalog (TBG), ibogainalog (IBG), 5-MeO-DMT and 6-MeO-DMT.  

Structural differences are highlighted. 
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4.3.3-2c) and in vivo using 2-photon imaging before and after drug treatment in a Thy-1 GFP 

mouse line (Figure 4.3.3-2d).  Specifically, this was due to an increase in spine formation, with 

no changes to spine elimination. 
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Figure 4.3.3-2. TBG promotes neural plasticity. (a) Maximum numbers of crossings (Nmax) of Sholl plots obtained from rat 

embryonic cortical neurons (DIV6). N = 31−38 cells.  (b) The effects of TBG (1 uM) on dendritic growth are blocked by the 5-HT2A 

antagonist ketanserin (KETSN, 10 uM). N = 23−28 cells.   (c) Representative images of secondary branches of rat embryonic cortical 

neurons (DIV20) after treatment with ibogaine, IBG and TBG for 24 h. Scale bar, 2 μm. TBG increases dendritic spine density on 

rat embryonic cortical neurons (DIV20) after treatment for 24 h.  N = 5−17 cells.  (d) Left: Schematic of the design of transcranial 

two-photon imaging experiments. Right top: Representative images of the same dendritic segments from the mouse primary sensory 

cortex before (day 0) and after (day 1) treatment. Blue, red and white arrowheads represent newly formed spines, eliminated spines 

and filopodia, respectively. Scale bar, 2 μm. Right bottom: DOI and TBG increase spine formation but have no effect on spine 

elimination. N = 100−200 spines per treatment group.  

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as compared to the vehicle control 

following a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), KET = ketamine, DOI = 2, 5-Dimethoxy-4-

iodoamphetamine, KETSN = ketanserin, IBO = ibogaine, NOR = noribogaine. 
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4.3.4 Hallucinogenic potential of tabernanthalog 

To determine if our SAR hypothesis about the hallucinogenicity was correct, we injected animals 

with either 10 mg/kg or 50 mg/kg of IBG or TBG.  Indeed, we found that IBG produced head-

twitches, whereas all doses tested of TBG did not (Figure 4.3.4-1a). 

In addition, I ran an HTR assay where I pretreated animals with vehicle (VEH), or TBG 

(50 mg/kg) for 15 mins, followed by an injection of 5-MeO-DMT (10 mg/kg).  TBG is able to 

block HTRs elicited by this dose of 5-MeO-DMT (Figure 4.3.4-1b), demonstrating engagement 

of the 5HT2A receptor in vivo.   

 

  

Figure 4.3.4-1. (a) TBG does not produce any head-twitches in the HTR assay.  (b) Pretreatment of animals with TBG (50 mg/kg) 

but not VEH, is able to abolish 5-MeO-DMT (10 mg/kg)-induced head twitches, demonstrating engagement of the 5HT2A receptor. 

The numbers 10 and 50 indicate 10 mg/kg and 50 mg/kg respectively. 

N = 4 mice per treatment group. VEH = vehicle (saline), +Ctrl = 5-MeO-DMT (10 mg/kg). IBG = ibogainalog, TBG = 

tabernanthalog 

a b 
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4.3.5 Solubility of tabernanthalog 

Solutions of ibogaine are notoriously difficult to prepare, as it is exceptionally lipophilic. Figure 

4.3.5-1b illustrates the difficulty of working with this compound and the extreme parameters 

needed to create an optimal drug formulation. 

We endeavoured to test the solubility of our novel compound in comparison to ibogaine 

and found that both IBG and TBG were much more soluble than ibogaine (Figure 4.3.5-1a).  This 

is likely due to the exclusion of the lipophilic isoquinuclidine moiety that is present within the 

ibogaine structure.  
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Figure 4.3.5-1. TBG and IBG are much more soluble than ibogaine in a variety of solvents. (a) The fumarate salts of TBG and 

IBG are readily soluble in saline (0.9%), whereas ibogaine hydrochloride is not. (b) Ibogaine hydrochloride exhibits limited 

solubility in various saline-based vehicles. Solutions of saline (0.9%) containing various percentages of co-solvents/additives were 

added to finely crushed ibogaine hydrochloride. All of our attempts to improve its solubility through pulverizing, sonication, and 

mild heating (<50 °C) were unsuccessful. Moreover, the addition of co-solvents (ethanol, dimethyl sulfoxide, glycerol), surfactants 

(Kolliphor), or hydrotropes (ATP) to the vehicle did not substantially improve its solubility. We confirmed the purity and identity 

of the ibogaine hydrochloride used in these studies through a combination of NMR, LC–MS, and X-ray crystallography 

experiments.  
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4.3.6 Pharmacokinetics of tabernanthalog 

To probe the kinetics of TBG, animals were injected IP with either 1 mg/kg, 10 mg/kg or 50 mg/kg 

of the compound and sacrificed 15 mins or 3 h later. Whole brains and livers were collected, dried, 

homogenized and extracted with methyl tert-butyl ether (MTBE). Quantification was 

accomplished using LC–MS and concentrations of TBG in the two organs were calculated. Several 

samples for the 10 and 1 mg kg−1 doses at the 3 h time point had TBG at levels below the limit of 

quantification (~5 nmol g−1). In those cases, the values were recorded as 0. 

 We found that TBG was minimally detected at 10 mg/kg, with low quantifications in liver 

and brain at even the early timepoints (Figure 4.3.6-1).  In contrast, 50 mg/kg TBG was detectable 

in high concentrations in both brain and liver at 15 minutes after dosing.  These high concentrations 

were cleared rapidly and undetectable 3 h later.  This suggests that the structural and behavioural 

changes measured 24 h (or later) after dosing are a result of structural changes to brain circuitry, 

not because the drug is still present in the animals’ systems. 

 

 

  

Figure 4.3.6-1. TBG (50 mg/kg) reaches high brain concentrations and is rapidly eliminated from the body.  
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4.3.7 Safety profile of tabernanthalog 

As indicated previously, ibogaine has therapeutic potential but has several safety concerns 

associated with its use. Here we systematically test TBG to assess the safety of this novel 

compound. 

 

4.3.7.1 Ibogaine blocks hERG channels significantly more than tabernanthalog does 

Ibogaine is known to potently inhibit hERG channels.12, 13 hERG channels are also known as 

Kv11.1 and are potassium channels responsible for the repolarizing current of the cardiac action 

potential.  

 To test the effect of TBG on hERG channels, we patch clamped HEK293 cells stabling 

expressing hKv11.1 and washed on drug while measuring current changes.  We found ibogaine 

potently inhibited hERG channels, while IBG and TBG did not (Figure 4.3.7-1a). In fact, TBG 

was almost 150x safer than ibogaine with respect to hERG channel inhibition. 

 To corroborate these data, we treated zebrafish with our compounds and looked for 

bradycardia and arrhythmias before and after treatment. Zebrafish express Zerg, an orthologue of 

hERG. We found that ibogaine significantly reduced heart rate, but IBG and TBG did not (Figure 

4.3.7-1b). 

 

4.3.7.2 Tabernanthalog does not have seizurogenic potential 

There are conflicting reports that ibogaine may have seizurogenic properties.28, 29  We tested this 

using a larval zebrafish expressing GCaMP5 to assess the seizurogenic potential of TBG. We 

found that treatment with ibogaine, IBG and TBG did not induce excessive neural activity (Figure 

4.3.7-1c).  
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4.3.7.3 Tabernanthalog causes minimal teratogenicity. 

Larval zebrafish were treated with ibogaine, IBG or TBG and monitored for viability and 

malformations over time (Figure 4.3.7-1d). At high doses (100 uM), ibogaine causes significant 

Figure 4.3.7-1. TBG is a safer iboga alkaloid. (a) Inhibition of hERG channels expressed in HEK293 cells. Data are mean ± s.d. IBO, 

ibogaine. (b) Unlike ibogaine, IBG and TBG do not increase the risk of arrhythmias in larval zebrafish. Sertindole (SI) was used as a 

positive control. bpm, beats per minute. (c) Transgenic larval zebrafish expressing GCaMP5G were immobilized in agarose, treated 

with compounds, and imaged over time. The known seizure-inducing compound PTZ was used as a positive control. IBO and TBG were 

treated at 50 μM .  N = 3−6 per condition, paired T-test between time 0 h and 1 h. (d) Compound-induced malformations and death over 

time N = 48 zebrafish for all treatment groups. (e) Proportion of viable and non-viable (malformed + dead) zebrafish following treatment 

with vehicle and TBG (66 μM) for 5 dpf (Fisher’s exact test: P = 0.3864). (f) Representative images of zebrafish treated with vehicle and 

TBG (66 μM) for 2 and 5 dpf are shown. Scale bar, 2 mm.  

*p < 0.05, ***p < 0.001.  VEH = vehicle (saline), IBO = ibogaine, NOR = noribogaine, IBG = ibogainalog, TBG = tabernanthalog.  

Data generated in panels b-c were generated by Robert J. Tombari (Olson Lab, UC Davis) and Matthew N. McCarroll (Kokel Lab, 

UCSF).  Panels d-f were generated by RJ Tombari and Bianca Yaghoobi (Lein lab, UC Davis). 
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malformations and increased mortality at 2- and 5-days post fertilization (dpf). At both these time 

points, the proportion of viable fish was significantly different than vehicle-treated fish. 

Noribogaine resulted in greater survival, but extreme malformations. In contrast, IBG and TBG 

resulted in significant viability compared to ibogaine. Importantly, at a dose of 66 uM, TBG-

treated animals are indistinguishable from vehicle-treated animals (Figure 4.3.7-1e,f). 

 

4.3.7.4 Tabernanthalog’s effects on target receptors 

We screened IBG and TBG against a series of serotonin and opioid receptor targets using 

functional assays in HEK cells to determine other potential side effects. Unlike ibogaine, IBG and 

TBG showed little or no opioid activity.26  IBG and TBG work as partial agonists at 5HT2A with 

good potency (Figure 4.3.7-2). Many 5HT2A agonists also hit 5HT2B receptors, which can lead 

to cardiac valvulopathy, however, IBG and TBG appear to act more like antagonists at 5HT2B 

(Figure 4.3.7-2). As predicted, IBG and TBG interact with more selective receptoromes than the 

less-conformationally restricted 5-MeO-DMT and 6-MeO-DMT (Figure 4.3.7-3). 

 A full screen against 81 potential targets reveals that TBG exhibits high selectivity for 

5HT2 receptors (Figure 4.3.7-4).  

 

The safety data presented here is corroborated with a phenotypic assay performed in zebrafish. 

IBO- or NOR-treated animals produced behavioural responses similar to the lethal control, 

whereas IBG- and TBG- treated animals produced behavioural profiles more similar to the vehicle 

control (data not shown in this dissertation, please refer to original manuscript).26 
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Figure 4.3.7-2. Concentration–response curves demonstrating the abilities of ibogalogs and related compounds to activate 

5-HT and opioid receptors. All compounds were assayed in parallel using the same drug dilutions. Graphs reflect 

representative concentration–response curves plotting mean and SEM of data points performed in duplicate or triplicate. 
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Figure 4.3.7-3. Pharmacological profiles of ibogalogs and related compounds. EC50 and Emax estimates from at least two 

independent concentration-response curves performed in duplicate or triplicate. log(Emax/EC50) activity relative to the system 

Emax. Inactive, inactive in agonist mode; N.D., not determined; blue boxes indicate that the compound exhibits antagonist activity; 

dark grey boxes indicate that the compound is inactive in agonist mode but not tested in antagonist mode; orange boxes indicate 

that the compound is an inverse agonist. Ibogalogs are more selective 5-HT2Aagonists than is 5-MeO-DMT.  
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Figure 4.3.7-4. Safety pharmacology Screen. TBG (10 uM) was tested on a wide range of targets by Eurofins Discovery. Assays were 

conducted in duplicate and results were averaged. Targes with >50% inhibition are highlighted in blue. 
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4.3.8 The effects of Tabernanthalog on behaviours relevant to depression 

Thus far, we have demonstrated that TBG is a safer iboga analog compared to ibogaine, is more 

water soluble and increases the growth of cortical neurons through a 5HT2A-mediated mechanism. 

We now sought to understand if therapeutic properties of ibogaine were retained in this novel 

analog.  We started by testing antidepressant efficacy using the forced swim test (FST), as several 

5HT2A agonists and ketamine display robust decreases in immobility in this test.30,31 

 We subjected animals to 7 days of unpredictable mild stress (UMS), which is known to 

induce behavioural depressive-like phenotypes in animals (Figure 4.3.8-1a). Indeed there are 

increases in immobility in the FST after UMS (Figure 4.3.6-1b). We then subjected animals to 

treatment with either VEH, TBG 10 mg/kg or TBG 50 mg/kg. We found only a dose of 50 mg/kg 

was able to rectify the behavioural deficits in the FST assay (Figure 4.3.8-1b).  Therefore, we did 

all subsequent assays at 50 mg/kg.  This data agrees with the pharmacokinetic data presented in 

Section 4.3.6, which shows that TBG minimally enters the brain at 10 mg/kg but is detectable at 

appreciable quantities when animals are treated at 50 mg/kg. 

 We next decided to determine the length of TBG’s effects, as well as its mechanism of 

action. We ran a simplified FST (Figure 4.3.8-2a), where animals were subjected to a pretest, 24 

Figure 4.3.8-1. Deficits in the forced swim test are rectified after a 50 mg/kg dose of TBG. (a) Schematic illustrating the stressors 

used as part of the 7-day UMS protocol. White and grey boxes represent the light and dark phases of the light cycle, respectively. 

(b) TBG rescues the effects of UMS on immobility.  

N = 6−11 mice per treatment group. Data are represented as mean ± SEM. **p < 0.01, as compared to the vehicle control following 

a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), TBG = tabernanthalog.  
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h later dosed with drug, and 24 h after that tested in the FST. We found that 24 h later, TBG 

reduced immobility in this test, indicating this compound has antidepressant efficacy. This effect 

is comparable to ketamine (3 mg/kg)-treated animals. Interestingly, if animals were administered 

4 mg/kg ketanserin 10 mins before the TBG, the therapeutic effect was abolished (Figure 

4.3.8-2b). This suggests that engagement of the 5HT2A receptor is necessary for TBG to elicit 

therapeutic behavioural changes. 

 When retested in the FST 1 week later, animals with TBG returned to baseline levels of 

immobility, unlike ketamine (Figure 4.3.8-2c). 

 

  

Figure 4.3.8-2. Animals treated with TBG display rapid-acting antidepressant properties compared to ketamine in the FST.  

(a) Schematic illustrating the experimental design of FST. (b) 24 h after treatment, animals treated with TBG display reduced 

immobility, compared to ketamine. This is blocked with pretreatment of 4 mg/kg ketanserin (KETSN). (c) The reduced immobility 

effects of TBG do not last up to the one-week timepoint, whereas the ketamine-treated animals do.  

N = 6−13 mice per condition. Data are represented as mean ± SEM. *p < 0.05, ****p < 0.0001, as compared to the vehicle 

control following a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), KET = ketamine, TBG = tabernanthalog. 
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4.3.9 The effects of tabernanthalog on behaviours relevant to addiction and drug-

seeking behaviour 

Ibogaine has gained a reputation as being able to help those with substance use disorders (SUD). 

Therefore, we decided to test TBG on alcohol- and heroin-seeking paradigms. 

 

4.3.9.1 The effects of tabernanthalog on alcohol seeking behaviour 

To assess the effects of TBG on alcohol-seeking behaviour, we used an intermittent-access, two-

bottle choice experiment in which animals were given intermittent access to both water and alcohol 

(20% ethanol (v/v) in water).  Mice underwent repeated cycles of intermittent access resulting in 

binge drinking and withdrawal for 7 weeks, which resulted in high alcohol consumption (11.44 ± 

0.76 g per kg per 24 h) and binge-drinking-like behaviour (3.89 ± 0.33 g per kg per 4 h). This 

generated high blood alcohol content equivalent to that of humans with alcohol use disorder 

(AUD). After establishment of this alcohol-preference, animals were injected with TBG 3 h before 

the next drinking session (Figure 4.3.9-1a). The amount of alcohol consumed was measured at a 

4 h, 24 h, 48 h and 120 h. 

 During the initial binge, there was a drastic reduction in alcohol intake, but not water intake, 

indicating a change in preference for water over alcohol (Figure 4.3.9-1b). This effect was 

significant for the entire first and second days but was no longer present by day 5 (Figure 4.3.9-1c).  

 A possible interpretation of these data is that there is a disruption of pleasure and this is not 

just blocking hedonic behaviour. To address this question, we preformed the same paradigm with 

a sucrose two-bottle choice paradigm (sucrose preference test; SPT). Similar to the alcohol two-

bottle choice assay, animals were exposed to the apparatus 3 h after injection, and sucrose 

preference was measured at a 4 h and 24 h timepoint. There was no difference in sucrose preference 
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between vehicle-treated and TBG-treated animals (Figure 4.3.9-1d). Importantly, there was also 

no difference in the total liquid consumed (Figure 4.3.9-1e).  

 Together, these data suggest that TBG administration transiently blocks hedonic alcohol-

seeking behaviour, without impairing basic their ability to perceive natural rewards. 

 

4.3.9.2 The effects of tabernanthalog on heroin seeking behaviour 

We next sought to determine the effects of TBG treatment on heroin-seeking behaviour. We used 

adult male and female Wistar rats, which were implanted with an intravenous jugular catheter. 

Animals began training on a fixed ratio 1 (FR1) schedule of reinforcement for 1 week (Figure 

4.3.9-2b). Operant chambers had an inactive lever and active lever. When the active lever was 

pressed, light cue and a tone (3.5 kHz for 5 sec) was played, and animals would receive 0.04 mg 

of heroin (50 ul over 2.85 sec; Figure 4.3.9-2a). Both levers would retract upon initiation of a 

Figure 4.3.9-1. TBG administration blocks alcohol self-administration. (a) Timeline of alcohol binge-drinking experiment. White 

and blue droplets represent 20% ethanol (EtOH) and H2O, respectively. (b) TBG acutely reduced ethanol consumption and 

preference during a binge-drinking session without affecting H2O intake. N = 19 animals per condition, two-tailed paired T-test. 

(c) Acute TBG administration decreased ethanol consumption for at least 48 h.  N = 19 animals per condition, two-way ANOVA 

with Sidak’s post-hoc test.  (d-e) TBG did not decrease sucrose preference (d) or reduce total liquid consumption (e) in a two-

bottle choice experiment. N = 4 animals per condition, two-way ANOVA with Sidak’s post-hoc test. 

Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, as compared to the vehicle control 

following a one-way ANOVA with Dunnett’s post hoc test. VEH = vehicle (saline), TBG = tabernanthalog.  
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heroin infusion and would remain retracted until the tone and light cues terminated.  After 6 

sessions on an FR1 schedule, animals progressed to a variable ratio 5 schedule (VR5) for 3 

sessions. The last stage was a variable ratio 15 (VR15) for five sessions. Each session lasted 2.5 

h.  For each of these paradigms, TBG (40 mg/kg) was administered 30 mins prior to being placed 

in the operant chambers. 

 When rats were administered TBG during the VR15 session, there was a significant 

decrease in the amount of lever-responding (Figure 4.3.9-2c) and heroin self-administered (Figure 

4.3.9-2d).  This effect did not last, as animals returned to the same number of lever presses by the 

next testing day (Figure 4.3.9-2b). 

 Rats then began extinction training (EXT, 1 h sessions) in which animals were placed in 

the same operant chambers (context) however no heroin was administered and no cues (light, tone, 

retraction of levers) occurred. Lever pressing resulted in no outcome for the rat, but all lever 

presses were recorded by the experimenter. Rats underwent 7 extinction sessions.  A second cohort 

of rats (drug-naïve) were administered TBG on the first day of extinction training. There was also 

a significant decrease in the amount of lever pressing for heroin (Figure 4.3.9-2e), but again, these 

animals had the same number of lever presses as drug-naïve animals by testing the next day 

(Figure 4.3.9-2b). 

 Finally, rats underwent a cue extinction test. During the cue extinction (CUE) test (1 h) the 

animals are placed in the operant boxes, and cues (light, tone, and lever retraction) were available 

each time the active lever was pressed on a VR5 schedule, however no heroin was administered. 

This test is critical because studies show that cue induced reinstatement is a correlate of relapse.32  

Animals administered TBG during the CUE portion of the experiment significantly decreased the 

lever pressing. Importantly, animals that had previously been administered TBG during the VR15 
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or EXT paradigm also demonstrated significantly less lever responding (Figure 4.3.9-2f), which 

was up to 2 weeks after their initial drug dose. 

  Importantly, when animals are injected with TBG during an identical study assessing 

sucrose preference instead of heroin, animals have transient decreases in responding, but during 

CUE testing, there is no changes to self-administration for natural rewards (please refer to 

manuscript ED Fig 8).26  This suggests that while there may be transient decreases in pleasurable 

experiences, TBG administration may have a more long lasting-effect on hedonic drug seeking 

without impairing pleasure of natural rewards. 

 

Figure 4.3.9-2. TBG reduced heroin-seeking behaviour. (a) Schematic of the design of the heroin self-administration experiments. 

(b) Heroin seeking over time. Coloured arrows indicate when each group received TBG. Vehicle was administered at all other 

time points to each group. SA, self-administration; EXT, extinction; CUE, cued reinstatement; FR1, fixed ratio 1; VR5, variable 

ratio 5; VR15, variable ratio 15. (c, d) TBG acutely reduced heroin self-administration—both lever pressing (c) and heroin intake 

(d). (e) TBG acutely reduced heroin-seeking when administered immediately before the first extinction session. The cued 

reinstatement (injection 1, vehicle; injection 2, vehicle) and extinction (injection 1, vehicle; injection 2, TBG) groups were 

compared, as they were matched for the number of withdrawal days between the last self-administration and first extinction 

session. (f) Acute TBG administration completely blocked cued reinstatement (purple bar). A single previous (12–14 d) 

administration of TBG during heroin self-administration or on the first day of extinction (blue and red bars, respectively) inhibited 

cued reinstatement.  

N = 7−8 rats per condition. Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,using a 

two-way repeated measures ANOVA with Sidak’s post-hoc test. VEH = vehicle (saline), TBG = tabernanthalog, SA = self-

administration, EXT = extinction training, CUE = cue reinstatement. 
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4.3.10 Abuse potential of tabernanthalog 

It could be argued that TBG merely “overrides” or “replaces” desire for hedonic substances (such 

as alcohol or heroin), and that TBG itself may be addictive. To test this, we ran a conditioned-

place preference assay (CPP).  

 On day 1, the amount of time the mice spent in each distinct side of a two-chamber 

apparatus was recorded. Next, vehicle and TBG were administered to mice on alternating days 

while they were confined to chamber A (Figure 4.3.10-1a, white box) or chamber B (Figure 

4.3.10-1a, grey parallel lines), respectively. Conditioning lasted for a total of 6 days. On day 8, 

preference for each distinct side of the two-chamber apparatus was assessed. 

 Animals administered 1 mg/kg of TBG did not display a preference for either the VEH- or 

TBG-paired side.  In contrast, animals administered 10 mg/kg or 50 mg/kg spent reduced time in 

Figure 4.3.10-1. High doses of TBG do not produce a conditioned place preference. (a) Schematic of the design of the conditioned 

place preference experiments. (b) A low dose of TBG  (1 mg/kg) did not produce conditioned place preference or conditioned  place 

aversion. Higher doses (10 and 50 mg/kg) produce a modest conditioned place aversion. (c) TBG does not produce any long-

lasting (>24 h) effects on locomotion. There is no statistical difference in locomotion between any pre- or post-conditioning groups 

(P = 0.9985, one-way ANOVA). White bars indicate groups before receiving TBG (that is, pre-conditioning), and blue bars indicate 

groups 24 h after the last TBG administration (that is, post-conditioning).  

N = 8 per condition.  Data are represented as mean ± SEM. *p < 0.05, as compared to the vehicle control using a two-tailed paired 

T-test. VEH = vehicle (saline), TBG = tabernanthalog, ns = not significant. 
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that the TBG-paired side (Figure 4.3.10-1b). This indicates that TBG may have a mild aversive 

effect at high doses, and therefore has a minimal recreational abuse potential. 

 This repeated dosing regimen had no effect on locomotion, as measured in the post-

conditioning test (24 h after the last dose; Figure 4.3.10-1c). 

 

4.3.11 The therapeutic effects of tabernanthalog are unlikely due to performance 

deficits 

Importantly, these behavioural results are unlikely to occur from a performance deficit, as there 

are no changes in locomotion (Figure 4.3.11-1). 

 Rats were subjected to novelty-induced locomotion (baseline) for 30 min. At that time, 

cocaine was administered and psychostimulant-induced locomotion (+ cocaine) was assessed for 

60 min. There were no differences between the vehicle- and TBG-treated groups with respect to 

total distance travelled or average velocity. Furthermore, there was no difference in thigmotaxis 

measured during the baseline period (that is, the percentage of time in the centre of the open field). 

 

 

 

Figure 4.3.11-1. Acute TBG administration does not cause changes in locomotion in the open field. 

N = 6−7 per condition.  Data are represented as mean ± SEM. *p < 0.05, as compared to the vehicle control following a two-way 

ANOVA with Sidak’s post-hoc test. VEH = vehicle (saline), TBG = tabernanthalog, ns = not significant. 
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 Conclusion and Discussion 

In this chapter, I discuss the development and testing of a non-hallucinogenic psychedelic analog, 

TBG.  This compound increases the growth of cortical neurons (dendrites and spines), appears 

safer than ibogaine and has therapeutic effects in rodent models of depression and SUD. 

 

4.4.1 Top-down control over circuits involved in depression and drug-seeking 

The PFC is a critical region of the brain responsible for goal-oriented behaviour and motivation 

by exerting a top-down control of subcortical regions involved in emotion. By increasing the 

growth and stimulating the neurons involved in these circuits, it may be possible to override 

depressive or drug-seeking behaviour. 

 Ketamine,33 psychedelics8,34 and non-hallucinogenic analogs26 increase the function of 

neurons in the prefrontal cortex via increases in amplitude and frequency of sEPSCs. Increases in 

frequency may be attributed to increases in synapse number or changes in the probability of 

release; our data suggests at minimum there is an increase in the number of spines/synapses if not 

changes in the probability of release as well.  Increases in amplitude of sEPSCs reveal there is a 

postsynaptic strengthening of signal after drug administration. Ketamine and psychedelics are both 

known in cause mTOR activation,33,30 and though it was not explicitly tested here, it is likely that 

non-hallucinogenic analogs are working via a similar mechanism.  

 Sub-anesthetic/therapeutic doses of ketamine increase spine density after administration.33 

A recent paper from the Liston lab demonstrates the necessity of spines in the therapeutic effects 

of ketamine by ablating newly-formed spines in the PFC after treatment. Indeed, abolishment of 

these spines fully blunted the long-lasting therapeutic effects of ketamine.35 Other fast-acting 
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antidepressants, such as psychedelics8,34 and their non-hallucinogenic counterparts, capable of 

increasing spine growth are hypothesized to function in a similar manner. 

 There are ample studies demonstrating that stimulation of the PFC is necessary for 

achieving antidepressant-like effects in the FST, both through optogenetic manipulations36, 37 and 

administration of ketamine (which is known to increase cortical activity).35  In addition, blocking 

activity of neurons in the PFC pharmacologically37 or through use of a BDNF-sequestering 

antibody38 all block behavioural antidepressant-like effects of ketamine.  These data suggest that 

rapid-acting antidepressants indeed work through structural growth and functional strengthening 

of neurons in the PFC.  Here, I present data that demonstrates that both psychedelic and non-

hallucinogenic compounds increase the growth and function of neurons in the frontal cortex, 

suggesting a convergent circuit-level mechanism of action for different types of psychoplastogens. 

Drug addiction is the transition from initial hedonic drug use to habitual and compulsive 

drug use and seeking, resulting from changes to specific neural circuits.39, 40  It has been 

demonstrated that the PFC plays an integral role in drug seeking behaviour. Human imaging 

studies describe hypofunction of the PFC contributes to loss of control over drug intake in humans 

with SUD.41, 42, 43 Conversely, humans who exhibit more self-control show a greater amount of 

activity in the dlPFC.44 

Seeking a less correlational and more causal relationship between the PFC and drug 

seeking behaviour, Chen et al. utilized a compulsive drug seeking model in which a subset of rats 

persists to seek cocaine despite noxious foot shocks.45  The authors illustrate how ex vivo intrinsic 

excitability of layer 5 pyramidal neurons is decreased after chronic cocaine use.  Further, 

stimulation of these neurons in prelimbic cortex (restoration of activity) is sufficient to prevent 

compulsive drug seeking, whereas inhibition of this area significantly increased compulsive drug 
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seeking. Other groups have demonstrated that increasing neural activity in infralimbic cortex (via 

infusing of AMPA) is sufficient to extinguish animals cocaine seeking.46 Together, this illustrates 

the integral role of PFC in modulating drug-seeking behaviour.  

 Therefore, increasing the growth and function of layer 5 pyramidal neurons in the PFC may 

have therapeutic effects over circuits involved in habitual drug seeking.  

 

4.4.2 Role of the 5HT2A receptor 

The 5HT2A receptor is the target of psychedelic compounds, and happens to be densely expressed 

in layer 5 pyramidal cells in the PFC.47, 48 Psychedelic compounds are active at 5HT2A receptors 

and are known to exert their hallucinogenic properties via this receptor.49, 5051 Interestingly, this 

receptor also appears to be necessary for the growth effects of cortical neurons.30  

TBG displays reasonable activation of 5HT2A receptors.  In both cellular and behavioural 

assays, the effects of TBG are blocked with pretreatment of ketanserin, a 5HT2A antagonist. And 

the fact that TBG is efficacious in the FST is consistent with the fact that other 5HT2A agonists 

have demonstrated potential for the treatment of depression.8, 34 A discussion on the mechanism of 

action and role of the 5HT2A receptor can be found in this dissertation in Chapter 5. 

Establishment of cortical populations containing the 5HT2A receptor and which 

subcortical circuits they modulate are warranted. 

 

4.4.3 Potential role of the 5HT1B receptor 

A recent paper came out suggesting that activation of 5HT1B receptors on PFC terminals in the 

NAc reduces compulsive drug seeking.52 Given that TBG is a full agonist at 5HT1B (albeit less 

potent than serotonin itself, Figure 4.3.7-2), this stimulation may contribute to TBG’s effects on 
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drug-seeking behaviour.  It is likely that this behaviour results from a combination of 5HT2A and 

5HT1B stimulation. 

 

4.4.4 Advances in the field of non-hallucinogenic psychedelic analogs 

Here I will comment on advancements in the field of non-hallucinogenic psychedelic analogs since 

the completion of my studies. 

 

4.4.4.1 Further studies with TBG 

Studies following the work in Section 4.3 assessed the deficits in elevated plus maze (EPM), 

whisker-dependent texture discrimination (WTD) and 4-choice odor discrimination and reversal 

task after UMS.  Lu and colleagues found that UMS produced anxiogenic behaviours, as assessed 

by the EPM, and deficits in the WTD and 4-choice paradigms.53 These deficits could be rectified 

with a 10 mg/kg dose of TBG (Figure 4.4.4-1b-d, f-h, j-l), but the rescue was blocked when 

KETSN (4 mg/kg) was pretreated 10 mins prior to TBG (Figure 4.4.4-1e,i,m).  This further points 

to the fact that TBG may be used to treat affective disorders, and this effect is likely mediated via 

5HT2A receptor engagement. 

Using in vivo imaging of cortical neurons (somatosensory cortex, barrel field, S1BF), Lu 

et al. also described a reduction of spines after UMS (Figure 4.4.4-2a), specifically via an increase 

in spine elimination with no changes to spine formation (Figure 4.4.4-2d,e). Administration of 

TBG increases spine formation with spine elimination rates comparable to control, resulting in an 

overall increase in spine density (Figure 4.4.4-2f,g). Interestingly, it enhances regrowth of 

previously-eliminated spines (Figure 4.4.4-2h).  Current studies via a collaboration with our lab 

are looking at KETSN’s ability to block the effects on spine dynamics. 
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Together, this suggests demonstrates that TBG is capable of rectifying circuits damaged 

by UMS anatomically and behaviourally.  

Figure 4.4.4-1. TBG rescues UMS-induced behavioral deficits in mice and is dependent on 5HT2A receptor activation. (a) Timeline of 

UMS, drug injection, and behavioral tests. (b) Schematic of the elevated plus maze (EPM) test. (c) Total distance traveled in EPM.  

(d) Time spent in the open arms. (e) TBG-mediated rescue of time in open arms is blocked by preadministration of ketanserin (KETSN), 

4 mg/kg, 10 mins before TBG injection. (f) Schematic of the whisker-dependent texture discrimination (WTD) task. The two colors 

represent distinct textures. (g, h) Texture preference during encoding and testing. Discrimination index is defined as the number of 

approaches to one texture (e.g., novel) minus the number of approaches to the other texture (e.g., familiar), divided by the total number 

of approaches. (i) TBG-mediated restoration of discrimination index is blocked by pretreatment with KETSN. (j) Schematic of the 4-

choice odor discrimination and reversal task. Each color symbolizes a distinct odor; only one is associated with the food reward (black 

circle).  (k, l) Number of trials taken to reach the performance criterion in the initial discrimination and reversal phase. The performance 

criterion is 8 correct choices out of 10 consecutive trials. (m) pretreatment with KETSN blocks TBG-mediated trials to criterion after 

chronic stress.  

N = 4−5 per condition.  Data are represented as mean ± SEM. *p < 0.05, **p < 0.01.  Ctrl = unstressed control group, TBG = 

tabernanthalog, UMS = unpredictable mild stress, UKT = unpredictable mild stress + ketanserin + TBG treatment. 
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Figure 4.4.4-2. TBG promotes spine formation that partially compensates for UMS-induced spine loss in the mouse cortex.  

(a) Timeline of dendritic spine imaging experiments. (b) Example of the same set of S1BF spines imaged before UMS, immediately 

after UMS, and after 1-day recovery. (c) Example spine imaging over the same time course but with post-stress TBG treatment. 

Arrow: eliminated spine; arrowhead: new spine; asterisk: filopodium. Scale bar: 2 μM. (d, e) Spine formation and elimination over 

7 days. Herein after filled circles represent data from S1BF and empty circles represent data from frontal cortex. (f, g) Spine 

formation and elimination over 1 day in control and during post-UMS recovery. (h) Percentage of spines eliminated during UMS 

that re-emerged during recovery. 

N = 4−5 per condition.  Data are represented as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.   

Ctrl = unstressed control group, TBG = tabernanthalog, UMS = unpredictable mild stress. 
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A recent study by Peters and Olson investigated the anti-addictive properties of TBG 

further, with the attempt to lengthen the therapeutic properties of the compound.54  Reports 

demonstrate that in humans, sometimes up to 3 doses are needed to have long lasting anti-addictive 

effects,55 so it is perhaps unsurprising that TBG may also need a multiple-dosing regimen.  

First, Peters and Olson used treated rats with either TBG (30 mg/kg) or VEH and exposed 

them to a progressive-ratio test to seek food or heroin. Typically, animals have much greater 

motivation for heroin-seeking, however this was diminished after TBG treatment and was 

comparable to food-seeking (Figure 4.4.4-3a). 

In the Section 4.3.9.2, I outlined how 40 mg/kg TBG had a transient effect on immediate 

heroin-seeking, and a mild long-lasting effect.  Peters and Olson attempted a repeated dosing 

regimen of TBG from 2.5 mg/kg, then 10 mg/kg, then 30 mg/kg spaced a few days apart (for a 

cumulative dose of 42.5 mg/kg). Using this regimen, TBG provided a long-lasting effect in 

reducing heroin use with no effect on food seeking for up to a week after administration (the 

longest timepoint tested; Figure 4.4.4-3b).   

Figure 4.4.4-3. TBG reduces motivation for heroin-seeking without impairing food seeking. (a) Two groups of rats were used to 

administer either TBG (30 mg/kg) or VEH prior to a progressive ratio test to seek food or heroin. (b) TBG significantly inhibits 

cued-relapse for heroin but not for food.  

Image adapted from Peters & Olson (2021).54 
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4.4.4.2 Discovery of AAZ 

Since the initial description of TBG,26 other non-hallucinogenic psychoplastogens have been 

described, including AAZ-A-154 (AAZ).  AAZ produces antidepressant-like effects in the FST 

and causes a transient increase in sucrose preference after treatment.56 It has yet to be determined 

if AAZ is efficacious in reducing drug-seeking behaviour. It is currently unclear if all 

psychoplastogens may treat these disorders, or if there is something unique about the ibogaine/5-

MeO-DMT backbone that lends TBG to treating these SUDs effectively. 

 

 

In summary, TBG appears to work across affective disorders, including animal behavioural tasks 

for antidepressant efficacy, anxiety, working memory, as well as both alcohol- and heroin-use 

disorders. Future work in addiction may explore the effects of TBG for treating nicotine, cocaine 

and methamphetamine use disorders.  

 Therapeutic strategies using circuit-based approaches to treating mental illness through 

enhancing PFC function may be beneficial for treating more than one SUD. 
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 Methods 

 

4.5.1 Data Analysis and Statistics 

Treatments were randomized, and data were analyzed by experimenters blinded to treatment 

conditions.  Statistical analyses were performed using GraphPad Prism (version 8.1.2) unless noted 

otherwise.  All comparisons were planned prior to performing each experiment.  Data are 

represented as mean ± SEM, unless otherwise noted, with asterisks indicating *p < 0.05, **p < 

0.01, ***p < 0.001, and ****p < 0.0001.  Boxplots depict the three quartile values of the 

distribution with whiskers extending to points that lie within 1.5 IQRs (interquartile range) of the 

lower and upper quartile. Observations falling outside this range are displayed independently.   

 

4.5.2 Drugs 

The NIDA Drug Supply Program provided ibogaine hydrochloride (IBO), noribogaine (NOR), 

heroin (diamorphine hydrochloride), and cocaine hydrochloride.  Other chemicals were purchased 

from commercial sources such as ketamine hydrochloride (KET, Fagron), ketanserin (KETSN, 

ApexBio), eugenol (Tokyo Chemical Industries), and 5-hydroxytryptamine (Sigma-Aldrich).  The 

fumarate salt of 5-methoxy-N,N-dimethyltryptamine (2:1, 5-MeO-DMT:fumaric acid) was 

synthesized in house as described previously2 and judged to be analytically pure based on NMR 

and LC-MS data.  For cell culture experiments, VEH = 0.1% (agonist studies) or 0.2% (antagonist 

studies) molecular biology grade dimethyl sulfoxide (Sigma-Aldrich).  For in vivo experiments, 

VEH = USP grade saline (0.9%).  Free bases were used for all cellular experiments while the 

fumarate salts of ibogainalog and tabernanthalog were used for the in vivo studies. 
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4.5.3 Animals 

All experimental procedures involving animals were approved by either the UCD, UCSF, UCSC 

or CU Anschutz Institutional Animal Care and Use Committee (IACUC) and adhered to principles 

described in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.  

The University of California, Davis (UCD), the University of California, San Francisco (UCSF), 

the University of California, Santa Cruz (UCSC), and the University of Colorado Denver, 

Anschutz Medical Campus (CU Anschutz) are accredited by the Association for Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC).  

 

4.5.4 Calculation of CNS MPO Score 

CNS MPO scores were calculated using a previously published method.57  Predicted pKa values 

were determined using Marvin Sketch (19.25.0). LogP and total polar surface area were predicted 

using Molinspiration (https://www.molinspiration.com/). LogD was calculated using the following 

equation LogD = LogP - LOG10(1+10(pka-7.4)). 

 

4.5.5 Dendritogenesis Experiments 

For the dendritogenesis experiments conducted using cultured cortical neurons, timed pregnant 

Sprague Dawley rats were obtained from Charles River Laboratories (Wilmington, MA).  Full 

culturing, staining, and analysis details were performed as previously described.2  

 

4.5.6 Head-Twitch Response (HTR) 

The head-twitch response assay was performed as described previously2 using both male and 

female C57BL/6J mice (2 per treatment).  The mice were obtained from Jackson Laboratory 
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(Sacramento, C.A.) and were approximately 8 weeks old at the time of the experiments.  

Compounds were administered via intraperitoneal injection (5 mL/kg) using 0.9% saline as the 

vehicle.  As a positive control, we utilized 5-MeO-DMT fumarate (2:1 amine/acid), which was 

synthesized as described previously.2  Behavior was videotaped, later scored by two blinded 

observers, and the results were averaged (Pearson correlation coefficient = 0.93). 

 

4.5.7 hERG Inhibition Studies 

All experiments were conducted manually using an EPC-10 amplifier (HEKA, Lambrecht/Pfalz, 

Germany) at room temperature in the whole-cell mode of the patch-clamp technique.  HEK293 

cells stably expressing hKv11.1 (hERG) under G418 selection were a generous gift from Craig 

January (University of Wisconsin, Madison).  Cells were cultured in DMEM containing 10% fetal 

bovine serum, 2 mM glutamine, 1 mM sodium pyruvate, 100 U/mL penicillin, 100 µg/mL 

streptomycin, and 500 mg/ml G418.  Before experiments, cells were cultured to 60–80% 

confluency and lifted using TrypLE and plated onto poly-L-lysine-coated coverslips.  Patch 

pipettes were pulled from soda lime glass (micro-hematocrit tubes) and had resistances of 2–4 

MΩ. For the external solution, normal sodium Ringer was used (160 mM NaCl, 4.5 mM KCl, 2 

mM CaCl2, 1 mM MgCl2, 10 mM HEPES, pH 7.4 and 290–310 mOsm).  The internal solution 

used was potassium fluoride with ATP (160 mM KF, 2 mM MgCl2, 10 mM EGTA, 10 mM 

HEPES, 4 mM NaATP, pH = 7.2 and 300–320 mOsm).  A 2-step pulse (applied every 10 sec) 

from -80 mV first to 40 mV for 2 sec and then to -60 mV for 4 sec, was used to elicit hERG 

currents.  The percent reduction of tail current amplitude by the drugs was determined and data 

are shown as mean +/- SD.  For all experiments, solutions of the drugs were prepared fresh from 

10 mM stock solutions in DMSO.  The final DMSO concentration never exceeded 1%. 
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4.5.8 Larval Zebrafish Heart Rate Experiments 

Zebrafish express Zerg, an orthologue of hERG, and many hERG inhibitors induce bradycardia an 

arrhythmia in zebrafish.58  Heart rate was recorded and calculated as reported previously59 with 

slight modifications (n = 3–9).  Briefly, 7 dpf zebrafish larvae were anesthetized with tricaine 

(Acros Organics) and immobilized in a lateral orientation using 1% low melt agarose (LMA, Gene 

Mate) dissolved in egg water.60  Tricaine was washed out and drug was added to 4 mL embryo 

media in a 6-well plate (final concentration = 50 µM).  Videos were collected at 30 frames per 

second (fps) using a Leica M80 scope with an ACHRO 1x nosepiece attachment and a Leica IC80 

HD camera.  Regions of interest (ROIs) were drawn around the atrium and ventricle of individual 

zebrafish and average pixel dynamics were calculated using the ImageJ plugin Time Series 

Analyzer V3.  This pixel change oscillation was graphically smoothed using the Savgol filter in 

SciPy.  Peaks were detected using the SciPy package “find_peaks”.  Peak time interval and BPM 

were calculated using custom code.  The arrythmia score was calculated as the ratio of atrium BPM 

to ventricle BPM (n = 6–18). 

 

4.5.9 Larval Zebrafish Seizure Experiments 

At 6 dpf, transgenic zebrafish larvae (Tg(elavl3:GCaMP5G)a4598)61 were anesthetized with 

tricaine and immobilized in a dorsal orientation using 1% LMA dissolved in egg water.  Tricaine 

was washed out and zebrafish were treated for 1 h with compounds (50 µM for IBO and TBG; 15 

mM for PTZ).  Videos were acquired using a Zeiss Axiozoom.V16, and GCaMP5G fluorescence 

was induced using a Lumencor sola light engine. Zen software V2 blue edition controlled an 

Axiocam 506 mono camera set to 33 fps.  Short videos (1–3 min) were acquired per condition.  
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Change in fluorescence intensity was calculated using ImageJ from an ROI drawn in the cerebellar 

region, and ∆F/F was calculated and visualized using custom functions. 

 

4.5.10 Larval Zebrafish Toxicity 

Tropical 5D wild-type larval zebrafish were obtained from the Sinnhuber Aquatic Research 

Laboratory (SARL) at Oregon State University (Corvallis, Oregon), and subsequent generations 

were raised at UC Davis.  Zebrafish husbandry, spawning, dechorionation of embryos, and 

exposures were performed as described previously.62  Chemical stocks were prepared at 100 mM 

in DMSO and diluted to 200 µM with embryo media.  This solution was diluted 2-fold into 

individual wells of 96-well plates housing larval zebrafish.  The final compound and DMSO 

concentrations were 100 µM and 0.1% (v/v), respectively.  Wells were covered with Parafilm M 

(Bemis, North America, Neenah, Wisconsin) then covered with the plate lid. Plates were 

maintained in an incubator at 28.5 °C with a 14 h light (~300 lux)/10 h dark cycle. Fish were 

statically exposed to compounds 6 h post-fertilization (hpf) through 5 dpf.  All compounds were 

tested for mortality/teratology in triplicate experiments (three experiments conducted on 

independent days using fish from independent spawns).  For each experiment, 16 fish were tested 

per concentration per compound (n = 48 fish/condition).  At 1, 2, 3, 4, and 5 dpf, fish were 

examined for mortality and developmental malformations using a Leica Stereo Microscope Model 

S6D (Leica, Germany) up to 4.5x magnification.   

 

4.5.11 Serotonin and Opioid Receptor Functional Assays 

Functional assay screens at 5-HT and opioid receptors were performed in parallel using the same 

compound dilutions and 384-well format high-throughput assay platforms.  Assays assessed 
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activity at all human isoforms of the receptors, except where noted for the mouse 5-HT2A receptor.  

Receptor constructs in pcDNA vectors were generated from the Presto-Tango GPCR library63 with 

minor modifications.  All compounds were serially diluted in drug buffer (HBSS, 20 mM HEPES, 

pH 7.4 supplemented with 0.1% bovine serum albumin and 0.01% ascorbic acid) and dispensed 

into 384-well assay plates using a FLIPRTETRA (Molecular Devices).  Every plate included a 

positive control such as 5-HT (for all 5-HT receptors), DADLE (DOR), salvinorin A (KOR), and 

DAMGO (MOR).  For measurements of 5-HT2A, 5-HT2B, and 5-HT2C Gq-mediated calcium 

flux function, HEK Flp-In 293 T-Rex stable cell lines (Invitrogen) were loaded with Fluo-4 dye 

for one hour, stimulated with compounds and read for baseline (0–10 seconds) and peak fold-over-

basal fluorescence (5 min) at 25°C on the FLIPRTETRA.  For measurement of 5-HT6 and 5-HT7a 

functional assays, Gs-mediated cAMP accumulation was detected using the split-luciferase 

GloSensor assay in HEKT cells measuring luminescence on a Microbeta Trilux (Perkin Elmer) 

with a 15 min drug incubation at 25°C.  For 5-HT1A, 5-HT1B, 5-HT1F, MOR, KOR, and DOR 

functional assays, Gi/o-mediated cAMP inhibition was measured using the split-luciferase 

GloSensor assay in HEKT cells, conducted similarly as above, but in combination with either 0.3 

µM isoproterenol (5-HT1A, 5-HT1B, 5-HT1F) or 1 µM forskolin (MOR, KOR, and DOR) to 

stimulate endogenous cAMP accumulation.  For measurement of 5-HT1D, 5-HT1E, 5-HT4, and 

5-HT5A functional assays, β-arrestin2 recruitment was measured by the Tango assay utilizing 

HTLA cells expressing TEV fused-β-arrestin2, as described previously63 with minor 

modifications.  Data for all assays were plotted and non-linear regression was performed using 

“log(agonist) vs. response” in Graphpad Prism to yield Emax and EC50 parameter estimates. 
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4.5.12 Safety Pharmacology Profiling Panel 

Eurofins Discovery (Taipei, Taiwan) screened TBG (10 µM) against their SafetyScreen87ä Panel 

and in their VMAT (Non-Selective) Human Vesicular Monoamine Transporter Binding Assay. 

 

4.5.13 Conditioned Place Preference (CPP) 

The CPP apparatus consisted of two chambers (18 cm L x 20 cm W x 35 cm H) connected by a 

corridor (10 cm L x 20 cm W x 35 cm H).  One chamber had a smooth floor and black walls while 

the second chamber had a mesh floor and patterned walls.  A block was placed in the corridor to 

restrict mice to a particular chamber.  On Day 1 (pre-conditioning), male C57/BL6J mice (9-10 

weeks old) were allowed to explore the entire apparatus for 30 min.  Mice were randomly sorted 

into treatment groups (TBG at 50 mg/kg, 10 mg/kg and 1 mg/kg), ensuring that their initial 

preferences for what would become the TBG-paired side were approximately equal.  Next, the 

mice were administered an intraperitoneal injection of either VEH (saline) or TBG 

(counterbalanced) immediately before being confined to one of the two chambers for 30 min.  The 

following day, the other treatment was administered, and the mice were confined to the opposite 

chamber for 30 min.  This sequence was repeated twice, such that all mice received 3 VEH-side 

pairings and 3 TBG-side pairings.  The mice were returned to their home cages in between 

treatment-side pairings.  On Day 8 (post conditioning), the mice were allowed to explore the entire 

apparatus for 30 min, and the time spent on the VEH- and TBG-paired sides was quantified using 

ANYmaze software (version 6.2).  The apparatus was cleaned with 70% ethanol between trials.  

Drug solutions were prepared fresh daily. 
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4.5.14 Pharmacokinetic Studies 

Male and female C57/BL6J mice (12 weeks old) were administered TBG via intraperitoneal 

injection at doses of either 50 mg/kg, 10 mg/kg or 1 mg/kg.  Mice were sacrificed 15 min or 3 h 

post-injection via cervical dislocation.  Two males and two females were used per dose/timepoint.  

Brain and liver were harvested, flash frozen in liquid nitrogen, and stored at -80°C until 

metabolomic processing.  Metabolites were extracted from tissue as described previously.64  

Briefly, whole brain and liver sections were lyophilized overnight to complete dryness, then 

homogenized with 3.2 mm diameter stainless steel beads using a GenoGrinder for 50 seconds at 

1500 rpm. Ground tissue was then extracted using 225 µL cold methanol, 190 µL water, 750 µL 

methyl tert-butyl ether (MTBE).  Seven method blanks and seven quality control (QC) samples 

(pooled human serum, BioIVT) were extracted at the same time as the samples. The nonpolar 

fraction of MTBE was dried under vacuum and reconstituted in 60 µL of 90:10 (v/v) methanol: 

toluene containing 1-cyclohexyl-dodecanoic acid urea (CUDA) as an internal standard. Samples 

were then vortexed, sonicated and centrifuged prior to analysis.  For analysis of TBG in liver and 

brain, samples were randomized prior to injection with method blanks and QC samples analyzed 

between every ten study samples. A six-point calibration curve was analyzed after column 

equilibration using blank injections, and then after all study samples. Blanks were injected 

following the calibration curve to ensure no tabernanthalog was retained on the column and carried 

over to samples.  Reconstituted sample (5 μL) was injected onto a Waters Acquity UPLC CSH 

C18 column (100 mm x 2.1 mm, 1.7 µm particle size) with an Acquity UPLC CSH C18 VanGuard 

precolumn (Waters, Milford, MA) using a Vanquish UHPLC coupled to a TSQ Altis triple 

quadrupole mass spectrometer (ThermoFisher Scientific, San Jose, CA).  Mobile phase A 

consisted of 60:40 v/v acetonitrile/water with 10 mM ammonium formate and 0.1% formic acid.  
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Mobile phase B was 90:10 v/v isopropanol/acetonitrile with 10 mM ammonium formate and 0.1% 

formic acid.  Gradients were run from 0–2 minutes at 15% B; 2–2.5 minutes 30% B; 2.5–4.5 

minutes 48% B; 4.5–7.3 minutes 99% B; 7.3–10 minutes 15% B. The flow rate was 0.600 mL/min 

and the column was heated to 65°C.  Mass spectrometer conditions were optimized for TBG by 

direct infusion. Selected reaction monitoring for the top five ions, with collision energy, source 

fragmentation, and radio frequency optimized for TBG.  Data were processed with TraceFinder 

4.1 (ThermoFisher Scientific, San Jose, CA). Organ weights were recorded.  The concentration in 

the brain was calculated using the experimentally determined number of mols of TBG in the whole 

organ divided by the weight of the organ. 

 

4.5.15 Spinogenesis Experiments 

Spinogenesis experiments were performed as previously described30 with the exception that cells 

were treated on DIV19 and fixed 24 h after treatment on DIV20.  The images were taken on a 

Nikon HCA Confocal microscope a with a 100x/NA 1.45 oil objective.  DMSO and ketamine (10 

µM) were used as vehicle and positive controls, respectively. 

 

4.5.16 In Vivo Spine Dynamics 

Male and female Thy1-GFP-M line mice65  (n = 5 per condition) were purchased from The Jackson 

Laboratory (JAX #007788) and maintained in UCSC animal facilities according to an IACUC 

approved protocol.  In vivo transcranial two-photon imaging and data analysis were performed as 

previously described.66  Briefly, mice were anesthetized with an intraperitoneal (i.p.) injection of 

a mixture of ketamine (87 mg/kg) and xylazine (8.7 mg/kg).  A small region of the exposed skull 

was manually thinned down to 20–30 µm for optical access.  Spines on apical dendrites in mouse 
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primary sensory cortices were imaged using a Bruker Ultima IV two-photon microscope equipped 

with an Olympus water-immersion objective (40x, NA = 0.8) and a Ti:Sapphire laser (Spectra-

Physics Mai Tai, excitation wavelength 920 nm).  Images were taken at a zoom of 4.0 (pixel size 

0.143 × 0.143 µm) and Z-step size of 0.7 µm.  The mice received an i.p. injection of DOI (10 

mg/kg) or TBG (50 mg/kg) immediately after they recovered from the anesthesia of the first 

imaging session.  The mice were re-imaged 24 h after drug administration. Dendritic spine 

dynamics were analyzed using ImageJ.  Spine formation and elimination were quantified as 

percentages of spine numbers on day 0. 

 

4.5.17 Antidepressant-Like Response Following Unpredictable Mild Stress (UMS) 

Male and female mice (8 weeks old) were subjected to 7 d of UMS, as described previously.67  

Briefly, the following stressors were utilized: Day 1: Light Phase = 30 min of restraint stress x 2; 

Dark Phase = home cage space reduction. Day 2: Light Phase = exposure to a new room + 30 min 

on the orbital shaker, sudden loud noise x 5, tail suspension for 6 min; Dark Phase = wet bedding. 

Day 3: Light Phase = exposure to new mice; Dark Phase = exposure to light. Day 4: Light Phase 

= social isolation; Dark Phase = tilted cage. Day 5: Light Phase = tilted cage, island isolation; Dark 

Phase = no bedding. Day 6: Light Phase = no bedding, random puff of air x 5–10; Dark Phase = 

foreign objects. Day 7: Light Phase = foreign objects, food deprivation; Dark Phase = food 

deprivation, continual exposure to loud music. Immediately following UMS, TBG or VEH were 

administered via intraperitoneal injection, and 24 h later the mice were subjected to a FST using 

the same procedure as described below. 
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4.5.18 Forced Swim Test (FST) in the Absence of UMS 

Male C57/BL6J mice (9-10 weeks old at time of experiment) were obtained from the Jackson Lab 

and housed 4–5 mice/cage in a UCD vivarium following an IACUC approved protocol.  After 1 

week in the vivarium each mouse was handled for approximately 1 minute by a male experimenter 

for 3 consecutive days leading up to the first FST.  All experiments were carried out by the same 

male experimenter who performed handling.  During the FST, mice underwent a 6 min swim 

session in a clear Plexiglas cylinder 40 cm tall, 20 cm in diameter, and filled with 30 cm of 24 ± 

1ºC water.  Fresh water was used for every mouse.  After handling and habituation to the 

experimenter, drug-naïve mice first underwent a pretest swim to more reliably induce a depressive 

phenotype in the subsequent FST sessions.  Immobility scores for all mice were determined after 

the pre-test and mice were randomly assigned to treatment groups to generate groups with similar 

average immobility scores to be used for the following two FST sessions.  The next day, the mice 

received intraperitoneal injections of TBG (50 mg/kg), a positive control (ketamine, 3 mg/kg), or 

vehicle (saline).  One additional group received ketanserin (4 mg/kg IP) 10 min prior to 

intraperitoneal administration of TBG (50 mg/kg).  The following day, the mice were subjected to 

the FST and then returned to their home cages.  One week later, the FST was performed again to 

assess the sustained effects of the drugs.  All FSTs were performed between the hours of 8 am and 

1 pm.  Experiments were video-recorded and manually scored offline.  Immobility time—defined 

as passive floating or remaining motionless with no activity other than that needed to keep the 

mouse’s head above water—was scored for the last 4 min of the 6 min trial.   
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4.5.19 Alcohol Consumption 

Male C57/BL6J mice (6-8 weeks old) were obtained from The Jackson Laboratory (Bar Harbor, 

ME) and were individually housed in a reverse light/dark cycle room (lights on 10:00pm–

10:00am).  Temperature was kept constant at 22 ± 2°C, and relative humidity was maintained at 

50 ± 5%.  Mice were given access to food and tap water ad libitum.  After one week of habituation 

to the vivarium, the two-bottle choice alcohol-drinking experiment was conducted as described 

previously.68  For 7 weeks, mice were given intermittent access in their home cage to alcohol.  On 

Mondays, Wednesdays, and Fridays, two bottles were made available for 24 h—one containing 

20% ethanol and another containing only water.  On Tuesdays, Thursdays, Saturdays, and 

Sundays, the mice were only given access to water.  After 7 weeks, mice were administered TBG 

(50 mg/kg) or vehicle (saline) via intraperitoneal injection 3 h before the beginning of a drinking 

session.  Ethanol (g/kg) and water (ml/kg) intake were monitored during the first 4 h (initial binge), 

the first 24 h, and the second 24 h.  Next, the mice were only given water for 48 h before the start 

of another drinking session when ethanol and water consumption was monitored.  The placement 

(right or left) of the bottles was altered in each session to control for side preference.  Spillage was 

monitored using an additional bottle in a nearby unused cage.  Alcohol preference was calculated 

as the ratio between alcohol/(water + alcohol).  Mice were tested using a counterbalanced, within 

subject design with one week of drug-free alcohol drinking regimen between treatments.  One 

mouse was excluded because the bottle was leaking. 

 

4.5.20 Sucrose Preference 

Male C57/BL6J mice were individually housed and subjected to a two-bottle choice experiment.  

First, mice were administered TBG (50 mg/kg) or vehicle (saline) via intraperitoneal injection 3 h 
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before the beginning of a two-bottle choice session.  During this 3 h period, mice were not given 

access to water in an attempt to increase their thirst.  At the start of the experiment, mice were 

given one bottle of water and one bottle of water containing 5% sucrose.  Sucrose solution and 

water intake were monitored during the first 4 h and the first 24 h.  Sucrose preference was 

calculated was calculated as the amount of sucrose solution consumed minus the amount of water 

consumed, divided by the total amount of liquid consumed. 

 

4.5.21 Heroin Self-Administration Behavior 

Subjects were age-matched male (n = 16) and female (n = 16) Wistar rats (Charles River). Rats 

were single housed in a temperature and humidity-controlled room with a 12 h light/dark cycle 

(7:00 A.M. lights on) with free access to standard laboratory chow and water. Two rats (one male 

and one female) were excluded from the final dataset due to defective catheters for a final n = 30 

rats. Rats were surgically implanted with an intravenous catheter as previously described.69  Heroin 

self-administration training began at least one week after surgery on a fixed ratio 1 (FR1) schedule 

of reinforcement. Operant chambers were equipped with both an active (heroin-delivering) and 

inactive lever, and each heroin infusion (0.04 mg, 50 μl, 2.85 s) was coupled with delivery of a 

light cue located above the active lever and a 3.5 kHz tone (5 s). Both levers retracted upon 

initiation of a heroin infusion and remained retracted during the tone + light heroin cue 

presentation. After six self-administration sessions (2.5 h) on FR1, rats progressed to a variable 

ratio 5 (VR5) for three sessions and continued to the final variable ratio 15 (VR15) for five 

sessions. Rats then began extinction training. Extinction training sessions (1 h) were conducted in 

the same operant chambers (context) where rats previously self-administered heroin, but in the 

absence of heroin and its tone + light cue. Both levers remained extended throughout the session, 
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and responding was recorded, but produced no consequence. After completing a total of 7 

extinction sessions, rats underwent a cued reinstatement test (1 h, withdrawal day 10–12). During 

the cue test, the heroin tone + light cues were available, but heroin was not. The first active lever 

press resulted in presentation of the heroin cues, and then cues were available on a VR5 schedule 

(active lever only) for the remainder of the test. Lever retraction occurred during cue presentation 

(as during self-administration). Injections of TBG (40 mg/kg i.p.) or vehicle (VEH) were 

administered on the third VR15 session, the first extinction session, and the cued reinstatement 

test. For each of these timepoints, TBG or VEH was injected 30 min prior to placement in the 

chamber. Treatment groups were balanced based on response rates, heroin intake, and sex. 

Behavioral sessions were conducted daily (weekdays only). Catheters were flushed after each self-

administration session with cefazolin and taurolidine citrate solution to prevent infection and/or 

catheter occlusion. Statistical tests were performed in Prism (GraphPad Prism, 

RRID:SCR_002798; V8.0) software. 

 

4.5.22 Sucrose Self-Administration Behavior 

Sucrose self-administration procedures were designed to mimic heroin self-administration 

conditions. Subjects were age-matched male (n = 24) and female (n = 24) Wistar rats (Charles 

River). Rats were single housed and had free access to standard laboratory chow and water 

throughout the experiment. Eight rats (seven males and one female) were excluded from the final 

dataset due to failure to acquire sucrose self-administration for a final n = 40 rats.  The final groups 

consisted of VEH, SA (2.5), SA (10), SA (40), Ext (40), and CUE (40).  The number of animals 

in each group was 7, 6, 7, 7, 7, 6, respectively (40 animals total).  At least one week after arrival 

and acclimation to the animal facility, sucrose self-administration training began on a fixed ratio 
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1 (FR1) schedule of reinforcement. Operant chambers were equipped with an active (sucrose-

delivering) and inactive lever, and each sucrose reward (45 mg pellet; Bio-Serv F0023) was 

coupled with the same tone + light cues used for the heroin study. Levers retracted upon pellet 

delivery and remained retracted during cue presentation (5 s). After six self-administration sessions 

(2 h) on FR1, rats progressed to a variable ratio 5 (VR5) for three sessions and continued to the 

final variable ratio 15 (VR15) for five sessions. Rats then began extinction training. Extinction 

training sessions (1 h) were conducted in the same operant chambers (context) where animals 

previously self-administered sucrose, but neither sucrose nor the sucrose cues were available. 

Responding on both levers was recorded during each session, but produced no consequence. After 

completing 7 extinction sessions, rats underwent a cued reinstatement test (1h). During the cue 

test, the sucrose tone + light cues were available, but sucrose was not. The first active lever press 

resulted in presentation of the sucrose cues, and then cues were available on a VR5 schedule (active 

lever only) for the remainder of the test. Lever retraction occurred during cue presentation (as 

during self-administration). Injections were administered on the third VR15 session, the first 

extinction session, and the cued reinstatement test. For each of these tests, TBG (2.5 mg/kg, 10 

mg/kg, or 40 mg/kg IP) or vehicle (VEH) was injected 30 min prior to placement in the chamber. 

The low (2.5 mg/kg) and intermediate (10 mg/kg) doses of TBG were tested only on the third 

VR15 sucrose self-administration session. The high dose (40 mg/kg) was tested at all three test 

time points. Statistical tests were performed in Prism (GraphPad Prism, RRID:SCR_002798; 

V8.0) software. 
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4.5.23 Open Field Test 

Naïve male (n = 7) and female (n = 6) Wistar rats (Charles River) were allowed to acclimate to the 

animal facility for at least one week after arrival. Spontaneous locomotion in response to a novel 

open field (44 cm long x 36 cm wide x 43 cm tall) was assessed 30 min after injection of vehicle 

or TBG (40 mg/kg, IP). Videos were recorded with an overhead camera connected to the tracking 

software EthoVision XT (Noldus, The Netherlands) for subsequent offline analysis. Rats were 

allowed to move freely in the open field for 30 min, then they were briefly removed from the 

apparatus to receive an injection of cocaine (15 mg/kg, IP). The rats were immediately returned to 

the open field for an additional hour to assess cocaine-induced locomotion. Each open field 

chamber was cleaned with Clidox-S in between sessions. Locomotion was tracked using 

EthoVision XT to assess the velocity (cm/s) and total distance traveled (m) during the baseline 

(first 30 min) and cocaine (last 60 min) phases separately.  Thigmotaxis was assessed as the 

percentage of time spent in the center of the apparatus (26 cm long x 18 cm wide; i.e., 9 cm 

perimeters) was also analyzed during the baseline period to determine if TBG alters anxiety in the 

open field. 

 

Data is available at the following DOI: 10.6084/m9.figshare.11634795. 
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I couldn’t have done this alone. Thank you to all my collaborators who helped me get this far. 

Contributions are outlined below. 

 

Alexander Pell and Zefan Q. Hurley synthesized all the ibogalog compounds.  Maxemiliano V. 

Vargas ran the simplified FST protocol to assess 5HT2A involvement and the length of TBG’s 

effects. LPC and DEO helped design all experiments. 

 Olson Lab 

 University of California, Davis 

 

Michelle Tija, Ju Lu and Yi Zuo performed the UMS and FST studies. LPC, Ju Lu and Yi Zuo 

also completed the in vivo spine imaging. All experiments were designed with LPC and DEO. 

 Zuo Lab 

 University of California, Santa Cruz 

 

LPC, Brandon M. Brown and Heike Wulff performed hERG channel patch clamp studies with 

guidance from LPC and DEO. 

 Wulff Lab 

University of California, Davis 
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LPC sacrificed animals; Zachary Rabow and Oliver Fiehn ran tissue samples for the metabolomics 

data with guidance from LPC and DEO. 

 Fiehn Lab 

University of California, Davis 

 

Robert J. (RJ) Tombari, Matthew N. McCarroll, and David Kokel designed and ran the zebrafish 

heart rate and seizure activity experiments with input from LPC and DEO. 

Kokel Lab 

University of California, San Francisco 

 

Robert J. (RJ) Tombari, Bianca Yaghoobi, Pamela Lein designed and ran the zebrafish toxicity 

assays with input from LPC and DEO. 

Lein Lab 

University of California, Davis 

 

Lauren J. Laskowski, Emilie I. Anderson, and John D. McCorvy helped with the receptor screening 

of TBG and related analogs with input from LPC and DEO. 

McCorvy Lab 

Medical College of Wisconsin 
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Yann Ehinger and Dorit Ron ran the intermittent two-bottle choice alcohol assay within input from 

LPC and DEO. 

 Ron Lab 

 University of California, San Francisco 

 

Jamie Peters designed and executed the heroin self-administration assays with input from LPC and 

DEO. 

 Peters Lab 

 University of Colorado, Boulder 
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MECHANISM OF ACTION OF 
PSYCHOPLASTOGENS 
 

 

Psychoplastogens such as psychedelics and non-hallucinogenic analogs are capable of increasing 

cortical neuron growth, strengthening synapses, and rescuing behavioural deficits. But how?  

 

 The Serotonin 2A Receptor 

The 5HT2A receptor is densely expressed on apical dendrites of layer 5 pyramidal cells in the 

mPFC.  Psychedelics and their non-hallucinogenic analogs require engagement with the 5HT2A 

receptor to increase the growth cortical neurons (Figure 2.3.1-2, Figure 4.3.3-2).1, 2   

 

5.1.1 Necessity of 5HT2A for psychoplastogen-mediated cortical neuron growth 

I chose to screen a set of hallucinogenic and non-hallucinogenic pairs of compounds that have 

significant structural similarities (Figure 5.1.1-1a): namely 5-MeO-DMT vs TBG, LSD vs lisuride 

(LIS), and DMT vs 6-fluoro-diethyltryptamine (6-F-DET).  5-MeO-DMT, LSD and DMT are all 

classic psychedelic compounds. I demonstrated the non-hallucinogenic potential of TBG in 
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Chapter 4.  Lisuride is non-hallucinogenic,3 and is approved to treat Parkinson’s disease in Europe 

and several other countries.4  Finally, 6-F-DET is non-hallucinogenic, as validated by a lack of 

hallucinogenic response in humans following an intramuscular injection.5 Importantly, 6-F-DET 

elicits positive changes in mood without hallucinations. 

Using Sholl analysis in rat cortical cultures, I screened all these compounds and found that 

psychoplastogens (1 uM) from both classes increased cortical growth, and this growth was blocked 

by a 15 min pretreatment with the 5HT2A antagonist, ketanserin at 10 uM (KETSN; Figure 

5.1.1-1b).   

KETSN is an antagonist and can hit other receptors when used in high concentrations,6 

particularly 5HT2C.  To test the necessity of 5HT2A specifically, we used cortical cultures 

Figure 5.1.1-1.  Both hallucinogenic and non-hallucinogenic compounds can increase growth of cortical neurons. (a) Panel of 

hallucinogenic and non-hallucinogenic pairs that were screened in this assay. (b) Pretreatment of cortical cultures with KETSN blocks 

psychoplastogen-induced growth.  Red represents hallucinogenic compounds, light blue represents non-hallucinogenic compounds. 

White, gray and navy represent controls.  
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generated from 5HT2A WT and KO lines.  Cultures generated from WT mouse embryos displayed 

similar growth patterns to those generated using our normal rat cortical cultures (Figure 5.1.1-2a). 

However, when mouse cultures were generated using 5HT2A KO mouse embryos, no 

psychoplastogens were able to promote growth (Figure 5.1.1-2b).   Administration of 

psychoplastogens to hippocampal cultures—which contain low expression levels of 5HT2A7,8—

demonstrate no changes to neuronal growth (Figure 5.1.1-2c). 

Importantly, serotonin itself (5HT) does not promote plasticity (Figure 5.1.1-1), and 

KETSN does not decrease it. Together, this suggests that 5HT2A is necessary for psychoplastogen-

induced growth.  

  

5.1.2 Necessity of 5HT2A receptor for behavioural effects of psychoplastogens 

We next sought to determine if the 5HT2A receptor was necessary for the therapeutic effects of 

psychoplastogens in behavioural paradigms. First, we ran a forced swim test with the psychedelic 

5-MeO-DMT, and either pretreated them with KETSN (4 mg/kg) or VEH 10 mins before drug.  

We found that animals treated with VEH + 5-MeO-DMT displayed decreased immobility, 

Figure 5.1.1-2. Sholls with both hallucinogenic and non-hallucinogenic compounds in (a) WT mouse cortical cultures, (b) 5HT2A 

KO mouse cortical cultures and (c) rat hippocampal cultures. 
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however animals that were pretreated with KETSN before 5-MeO-DMT fialed to display the same 

decrease in immobility (Figure 5.1.2-1).  This demonstrates that engagement with the 5HT2A 

receptor is necessary for the therapeutic behavioural effects of psychedelic compounds. 

Unfortunately, the 5HT2A KO and WT animals (on an S129 background) displayed 

excessive immobility at baseline in the FST, and consequently effects of any treatements were 

unable to be detected (data not shown).  It is common that with each subsequent test immobility 

increases (and antidepressants tend to block this increase). Typically, we see ~150-180 seconds of 

immobility for a 240 second period; however with this mouse line, the average time immobile was 

227 seconds immobile. These mice are immobile for nearly the whole assay. Therefore, when we 

do subsequent tests and see increases in immobility in untreated/VEH-treated animals, we are 

unable to see this change since they are already immobile. In this vein, even ketamine was unable 

to produce a response in this task.  For this reason, FST is unsuitable to use with this mouse line.  

Figure 5.1.2-1. Animals treated with 5-MeO-DMT (50 mg/kg) display reduced immobility in the FST. This effect is blocked with 

pretreatment of ketanserin (4 mg/kg). (a) Levels of immobility in the pretest display equal amount of immobility across treatment 

groups. (b) treatment with 5-MeO-DMT deceases immobility in the FST, and this effect is blocked with pretreatment of ketanserin. 

One way ANOVA with multiple comparisons with VEH/VEH group. 
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We next sought to understand the role of the 5HT2A receptor for ameliorating anhedonia-

like symptoms using a chronic corticosterone (CORT) model followed by a sucrose preference test 

(SPT; Figure 5.1.2-2).  For this study, we chose to evaluate the therapeutic effects of psilocybin 

due to its prevalence of use in clinics. We evaluated this in 5HT2A WT vs KO mice. 

We found an equal amount of sucrose preference between groups at baseline, and nearly all 

animals demonstrated a decrease in sucrose preference after CORT treatment (Figure 5.1.2-2b).  

WT and KO animals responded similarly to CORT treatment.  Next, animals were administered 

either psilocybin or VEH.  WT animals that were administered psilocybin had a recovery of the 

sucrose preference, comparable to the pre-CORT baseline test.  5HT2A KO animals displayed no 

such recovery of sucrose preference after administration of psilocybin; an effect which was 

comparable to both WT and KO animals being treated with VEH (Figure 5.1.2-2).  This 

demonstrates that the 5HT2A receptor is necessary for psilocybin-mediated return of sucrose 

preference. 

Figure 5.1.2-2. Treatment with psilocybin increases sucrose preference in WT but not KO animals. (a) Timeline of experiment. (b) 

Both WT and KO animals had comparable levels of SPT at baseline, and responded similarly to CORT treatment. (c) Only WT 

animals that were treated with psilocybin displayed an increased preference for sucrose after drug treatment. A Students T-Test 

was performed between post-CORT and post-drug for each treatment group. SPT = sucrose preference test, CORT = corticosterone 

(20 mg/kg) treatment, PSI = psilocybin, Sal = saline. 
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Current studies in or lab are now using this exact SPT paradigm with 5HT2A WT and KO 

animals using TBG to assess the necessity of 5HT2A engagement in the therapeutic effects of non-

hallucinogenic analogs.   

 

 5HT2A is required for changes in neuronal function 

To see if TBG has similar effects on cortical neuron function as traditional psychedelics, we 

injected 129S6/SvEv male mice with either vehicle (VEH), 5-MeO-DMT (50 mg/kg), or TBG (50 

mg/kg).  Animals were sacrificed 24 h later and neurons in the PFC were patched to assess 

sustained effects after drug administration. Administration of both 5-MeO-DMT (50 mg/kg) and 

Figure 5.1.2-1. 5HT2A receptors are necessary for increases in frequency and amplitude in mPFC neurons 24 h after treatment 

with psychedelics (5-MeO-DMT, 50 mg/kg) or non-hallucinogenic analogs (TBG, 50 mg/kg).  (a) sEPSC amplitude and (b) 

frequency in 5HT2A WT animals 24 h after treatment.  This effect on amplitude (c) and frequency (d) is blocked in 5HT2A KO 

animals. Error bars represent SEM. 
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TBG (50 mg/kg) caused increases in both the frequency and amplitude of sEPSCs in pyramidal 

cortical neurons (Figure 5.1.2-1a).  When we repeat this experiment in 2A KO animals, this effect 

is abolished ((Figure 5.1.2-1b).  This experiment highlights that both hallucinogen and non-

hallucinogen psychoplastogens can cause increased activity of neurons on the prefrontal cortex 

and this effect is dependent on 5HT2A. 
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 Conclusion and Discussion 

In this chapter, I demonstrate using pharmacological and genetic approaches the necessity of 

5HT2A receptor engagement for both growth of cortical neurons, changes in mPFC function as 

well as therapeutic effects.  Both ketanserin and 5HT2A KO animals show fully blunted effects 

when treated with psychedelics compared to their VEH-treated or WT counterparts. 

 A recent study came out suggesting that 5HT2A is not responsible for the therapeutic 

effects of psilocybin using the SPT,9 however this study had three major methodological flaws: 

1. A low dose of ketanserin (1 mg/kg) was used.  Ketanserin has poor brain penetrance (only 

about 30% receptor occupancy at this dose in mice),10 likely due to limited transport past 

the blood brain barrier in rodents.11 For this reason, a higher dose of ketanserin is advised.  

Furthermore, our lab has found that there is limited membrane permability, as determined 

by a PAMPA assay with quantification by LCMS (data not shown) and the clogP value for 

ketanserin is 2.81, which furthermore suggests a hindered ability to cross membranes.  

Since many of the 5HT2A receptors are intracellular,12,13 a higher dose of ketanserin is 

needed to reach the brain and fully block 5HT2A receptors.  The fact that the dose of 

ketanserin employed in this study does not block psychedelic-mediated HTR demonstrates 

this fact. 

2. Ketanserin is metabolized faster than psilocybin, and is therefore not able to block its 

effects.  Ketanserin’s halflife is 2-5 h,14,15 whereas psilocybin first must be converted to the 

active drug psilocin, which has effects for up to 8 h in rats and significant quantities of 

metabolites are found in the urine up to a week later.16  This is why using a KO animal line 

or more long-lasting antagonist when testing the necessity of 2A with psilocybin.  

Alternatively, ketanserin is fine to use if the halflife outlasts that of another psychedelic 
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being tested.  In addition to this, ketanserin was pretreated for 1 h prior to drug dosing, 

meaning that the drug would have been mostly metabolized prior to psilocybin 

administration.  

3. Ketanserin is a non-selective 5HT2A antagonist.  Ketanserin is about 10x more selective 

for 5HT2A over 5HT2C.6  Although ketanserin is an important starting point for cellular 

and behavioural studies, it is important to follow up these studies with genetic knockout 

lines. 

For these reason, we performed the SPT using 5HT2A KO animals. Using this genetic model, we 

found that 5HT2A was necessary for the therapeutic effects of psilocybin.   

 Other data by the Kwan group suggests that although ketanserin may block psilocybin-

induced changes to spine width, protrusion length and formation rate, ketaneserin is unable to 

block psilocybin-induced changes in spine density.17  Furthermore, though they blocked HTR with 

ketanersin pretreatment, they never blocked motivated behaviours in a mood-related paradigm. 

Recent data by Gonzalez-Maeso’s lab also demonstrates that 5HT2A receptors may be 

necessary for facilitated fear extinction learning,18 which utilizes similar circuits to those involved 

in depression.  Finally, a key study by Kometer and colleagues demonstrated that mood-enhancing 

effects of psilocybin are blocked by 5HT2A antagonism in human volunteers.19 Together, these 

demonstrate that circuit-level approaches for understanding the link between psychedelics, the 

5HT2A receptor and neuropsychiatric disorders may be fruitful. 

 

5.3.1 Intracellular signaling with the 5HT2A receptor 

How do psychedelics signal to create a therapeutic effect? As I mentioned in the introduction, 

simply increasing the amount of serotonin in the brain doesn’t have rapid-acting antidepressant 
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effects, and while 5HT itself is a full agonist at 5HT2A, it is not capable of promoting the same 

robust increases in dendritic growth seen with psychoplastogens (Figure 5.1.1-1).  If we look at 

downstream signaling events, we find that most psychedelics are actually partial agonists of the 

5HT2A receptor for both G-protein engagement and β-Arrestin signaling (see Appendix 2).  In 

terms of G-protein signalling, data from Bryan Roth’s group suggests that psychedelics appear to 

selectively signal through Gq pathways, and do not engage across a spectrum of G-proteins,20 

which suggests that it is not simply a shift in G-protein activation that is responsible for the 

therapeutic actions of psychedelics. 

 The 5HT2A receptor is the most highly expressed of all serotonin receptors,21 and it is 

densely expressed in layer 5 pyramidal neurons in the PFC.12,13 Integral to the discussion of 5HT2A 

necessity is the receptor distribution.  Experiments that classify psychedelics as partial agonists 

are typically performed in HEK cells, where receptors are uniformly expressed on the cell 

surface.22  However, 90% of 5HT2A receptors are located intracellularly on neurons in the PFC.12  

This is crucial, because psychoplastogens tend to be highly membrane permeable and have high 

MPO scores (data not shown). Although 5HT can fully stimulate receptors, it cannot pass cell 

membranes and thus can only stimulate 10% of receptors.  On the other hand, while 

psychoplastogens may be partial agonists, their membrane permeability allows them to stimulate 

the surface and intracellular receptors, thereby resulting in an overall larger response than just 5HT 

alone (for graphical schematic, please see Figure 5.3.1-1).  
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 To test this hypothesis, I ran an assay with psychedelics (psilocin and DMT) and charged 

versions of these compounds that are membrane impermeable (psilocybin and TMT). I found that 

both psilocin and DMT were able to stimulate cell growth in cortical neurons—as measured via 

Sholl analysis—whereas the membrane impermeable compounds were unable to stimulate growth 

(data not shown). However, when I electroporated these membrane impermeable compounds into 

cells, they were now able to stimulate growth, demonstrating that the target of these compounds is 

intracellular. 

Figure 5.3.1-1. Schematic of hypothesized mechanism for 5HT2A-mediated cell growth.  (1) Compounds stimulate 5HT2A.  

Molecules like serotonin cannot pass cell membranes and thus can only stimulate receptors on the cell surface. On the other hand, 

lipophilic molecules like LSD are able to pass the membrane and stimulate many more receptors internally. Each of these in turn 

will stimulate BDNF release (2), which will bind to TrkB in an autocrine fashion (3) transactivate these receptors, leading to 

downstream signalling events including mTOR activation (4), resulting inactivation of cell growth and survival pathways. 
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 Maxemiliano Vargas has since taken this project further.  He demonstrated that ketanserin 

(membrane permeable) can block this effect, but a membrane impermeable analog of ketanserin 

cannot. 

He demonstrated that serotonin cannot increase Sholls (same result as I show in Figure 

5.1.1-1).  He reasoned that if this hypothesis were true, then getting serotonin into the cortical 

neurons should be sufficient to increase cortical neuron growth.  To do this, he expressed the 

serotonin transporter (SERT)—a transporter that is typically found in serotonergic presynaptic 

terminals to reuptake serotonin at the synapses—on cortical neurons where it is not normally 

expressed.  Now that SERT was expressed on these cortical neurons and serotonin could be 

transported inside the cell, serotonin was now able to cause an increase in growth in neurons 

compared to vehicle. In a final experiment, Max showed that if you virally express SERT on 

cortical neurons in vivo, a burst of serotonin release can decrease immobility time in the FST, 

comparable to psychedelic-treated animals. This data suggests that the target is inside cortical 

neurons can modulate neuronal growth and rapid-acting antidepressant effects. My data 

demonstrates that this target is the 5HT2A receptor.  Psychedelics are lipophilic, can easily cross 

membranes, and engaging their target. On the other hand, membrane impermeable compounds 

such as serotonin are unable to cause a growth and therapeutic response due to the limited number 

of targets it can access. This may explain the lack of rapid-acting effects of current antidepressant 

agents, as simply increasing serotonin alone is not sufficient.i 

Future work will investigate the role of calcium signalling in these cells by using a 

membrane permeable calcium chelator to see if it is able to disrupt growth of cortical neurons. If 

 

i Max Vargas is preparing this manuscript for publication now. This data will be available in his manuscript and his 
dissertation.  
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this theory is true, it is possible that artificial transport of all 5HT2A receptors to the surface or 

overexpression of other Gq coupled receptors on cortical neurons along with stimulation may be 

able to replicate these growth patterns. 

 It is also possible that there are differences in the intracellular environment that allows 

growth when internal 5HT2A receptors are stimulated versus when extracellular receptors are 

stimulated. 
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 Methods 

 

5.4.1 Drugs 

The NIDA Drug Supply Program provided lysergic acid diethylamide (LSD).  Other chemicals 

were purchased from commercial sources such as ketamine hydrochloride (KET, Fagron), 

ketanserin (KETSN, ApexBio), 5-hydroxytryptamine (Sigma-Aldrich), Lisuride (Tocris).  The 

following drugs were synthesized in house, as described previously: 

• 5-methoxy-N,N-dimethyltryptamine (2:1, 5-MeO-DMT:fumaric acid)23 

• 6-methoxy-N,N-dimethyltryptamine (2:1, 6-MeO-DMT:fumaric acid)23  

• N,N-dimethyltryptamine (2:1, DMT:fumaric acid)24  

• 6-fluoro-diethyltryptamine (6-F-DET)25 

• Psilocybin (PSI) 

and judged to be analytically pure based on NMR and LC-MS data.   

For cell culture experiments, VEH = 0.1% (agonist studies) or 0.2% (antagonist studies) 

molecular biology grade dimethyl sulfoxide (Sigma-Aldrich).  For in vivo experiments, VEH = 

USP grade saline (0.9%).  For all cellular experiments, tabernanthalog freebase was used, while 

the fumarate salt of tabernanthalog was used for the in vivo studies. 

 

5.4.2 Animals 

All experimental procedures involving animals were approved by UCD Institutional Animal Care 

and Use Committee (IACUC) and adhered to principles described in the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals.  The University of California, Davis 

(UCD) are accredited by the Association for Assessment and Accreditation of Laboratory Animal 
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Care International (AAALAC). Animals were housed 2-5 animals of the same sex per cage, and 

were given ad libitum access to food and water.  The experiments began when the mice were 8-24 

weeks of age.  Lights in the vivarium were turned on at 07:00 hours and turned off at 19:00 hours.   

 

5.4.3 Dendritogenesis Experiments using Cultured Rat Neurons 

For the dendritogenesis experiments conducted using cultured cortical neurons, timed pregnant 

Sprague Dawley rats were obtained from Charles River Laboratories (Wilmington, MA).  Full 

culturing methods were previously described,1 as were staining and analysis details.23  For blocking 

studies, KETSN or DMSO (VEH) was treated 15 mins before drug application. 

 

5.4.4 Dendritogenesis Experiments using Cultured Mouse Neurons 

Animals were generated on IACUC approved breeding protocols. Pups born P0-P2 were 

sacrificed, and dissection was carried out as previously described.1  Cells were plated in mouse 

plating media, which consisted of  10% Horse Serum (Gemini Bioproducts), 1% sodium pyruvate 

(Thermo Fisher), 1% 1M HEPES (ThermoFisher), and 0.4% glucose in Minimum Essential 

Medium (ThermoFisher).  After 3 hours, a media was fully replaced with mouse maintenance 

media 2% B27 plus (ThermoFisher), 1% sodium pyruvate (ThermoFisher), 1% 1M HEPES 

(ThermoFisher) and 0.25% Glutamax (ThermoFisher) in Neurobasal (ThermoFisher). Cells 

treatments and fixation processes were previously described,1 as were staining and analysis 

details.23   
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5.4.5 Forced Swim Test (FST) 

Male C57/BL6J mice (9-10 weeks old at time of experiment) were obtained from the Jackson Lab 

and housed 4–5 mice/cage in a UCD vivarium following an IACUC approved protocol.  After 1 

week in the vivarium each mouse was handled for approximately 1 minute by a male experimenter 

for 3 consecutive days leading up to the first FST.  All experiments were carried out by the same 

male experimenter who performed handling.  During the FST, mice underwent a 6 min swim 

session in a clear Plexiglas cylinder 40 cm tall, 20 cm in diameter, and filled with 30 cm of 24 ± 

1ºC water.  Fresh water was used for every mouse.  After handling and habituation to the 

experimenter, drug-naïve mice first underwent a pretest swim to more reliably induce a depressive 

phenotype in the subsequent FST sessions.  Immobility scores for all mice were determined after 

the pre-test and mice were randomly assigned to treatment groups to generate groups with similar 

average immobility scores to be used for the following two FST sessions.  The next day, the mice 

received intraperitoneal pretreatment injections of vehicle (saline) or ketanserin (KETSN, 4 

mg/kg). 10 minutes later, animals were treated with 5-MeO-DMT (50 mg/kg) or vehicle (saline).  

The following day, the mice were subjected to the FST and then returned to their home cages.  All 

FSTs were performed between the hours of 8 am and 1 pm.  Experiments were video-recorded and 

manually scored offline.  Immobility time—defined as passive floating or remaining motionless 

with no activity other than that needed to keep the mouse’s head above water—was scored for the 

last 4 min of the 6 min trial.   

 

5.4.6 Sucrose Preference Test (SPT) 

Wildtype and 5HT2A KO 129S6/SvEv mice (male and female) ~6 weeks old were individually 

housed and subjected to a two-bottle choice experiment.  Animals were transferred to the vivarium 
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and given ~1w to adapt.  Throughout the experiment, animals were subjected to a two-bottle choice 

experiment in which animals are individually housed for 24 h and give access to two bottles, water 

and 1% sucrose with ad libitum access to food.   

On the first day of the experiment, animals were given the first two-bottle choice session. 

After the baseline, animals were put back in their group housing and administered 20 mg/kg of 

corticosterone in DMSO (CORT) daily for 10 days. 

 After the 10 days of CORT treatment, animals we subjected to the second two-bottle choice 

experiment (Post-CORT) for 24h and a preference for sucrose was calculated.  From this, treatment 

groups were randomly assigned and balanced to avoid systematic errors.  Animals were injected 

IP with either vehicle (saline) or psilocybin (10 mg/kg).  24h after this injection, animals were 

again subjected to the third two-bottle choice experiment (Post-Drug).  

Sucrose preference was calculated was calculated as the amount of sucrose solution 

consumed minus the amount of water consumed, divided by the total amount of liquid consumed.  

 

5.4.7 Electrophysiology 

Male wildtype 129S6/SvEv mice (~6 weeks old) were given an intraperitoneal injection of either 

5-MeO-DMT (50 mg/kg), TBG (50 mg/kg) or vehicle. After 24 h, mice were anesthetized with 

isofluorane and transcardially perfused with ice-cold artificial cerebrospinal fluid (ACSF), 

containing 119 mM NaCl, 26.2 mM NaHCO3, 11 mM glucose, 2.5 mM KCl, 1 mM NaH2PO4, 

2.5 mM CaCl2 and 1.3 mM MgSO4. Brains were rapidly removed and 300 µm coronal slices from 

the mPFC were cut on a Leica VT1200 vibratome (Buffalo Grove, IL) with ice-cold ACSF 

solution. Slices were incubated in 32 °C NMDG solution for 10 minutes, transferred to room 

temperature ACSF, and held for at least 50 minutes before recording. All solutions were vigorously 
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perfused with 95% O2 and 5% CO2. Spontaneous excitatory postsynaptic currents (sEPSCs) were 

recorded at -70 mV in 32 °C ACSF. Cells were patched with 3–5 MΩ borosilicate pipettes filled 

with intracellular solution containing 135 mM cesium methanesulfonate, 8 mM NaCl, 10 mM 

HEPES, 0.3 mM Na-GTP, 4 mM Mg-ATP, 0.3 mM EGTA, and 5 mM QX-314 (Sigma, St Louis, 

MO). Series resistance was monitored throughout experiments; cells were discarded if series 

resistance varied more than 25%. All recordings were obtained with a Multiclamp 700B amplifier 

(Molecular Devices, Sunnyvale, CA). Analysis was performed with the Mini Analysis program 

(Synaptosoft, Decatur, GA) with a 4 pA detection threshold. Data represents individual neurons 

taken from 3 different animals per treatment. Data acquisition and analysis was performed by 

experimenters blinded to treatment conditions. 
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 Contributions & Collaborations 

I couldn’t have done this alone. Thank you to all my collaborators who helped me get this far. 

Contributions are outlined below. 

 

Maxemiliano V. Vargas ran the FST assay to assess 5HT2A involvement for psychoplastogenic 

compounds. Seona D. Patel and LPC ran the sucrose preference assay.  LPC and DEO designed 

all experiments. 

Olson Lab 

 University of California, Davis 

 

LPC, Shekib Jami and John A. Gray helped to run the patch clamp studies in mouse cortical 

neurons with input from LPC and DEO. 

 Gray Lab 

 University of California, Davis 
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CONCLUSION, DISCUSSION &  
FUTURE DIRECTIONS 
 

 

 Psychedelics for Treating Mental Health Disorders 

An increasing number of reports1 suggest that psychedelics may have treatment potential for 

neuropsychiatric disorders like depression, anxiety and PTSD in humans.2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 

Impressively, several of these studies demonstrated that after treatment with these compounds, 

depression ratings dropped and remained consistently low for months after treatment.2 A 

cornerstone study by Agin-Liebes et al reported low depression levels as far as 3 years after their 

initial treatment.14 

Proper placebo-controlled trials with psychedelic compounds can be difficult to perform 

given the intense perceptual effects caused by these drugs and not in placebos.  Many of these 

studies have now been tested in rodent models of psychiatric disorders.15, 16, 17 

 Despite being promising therapeutics, psychedelic medicine remains hindered by their 

ability to cause perceptual disturbances. While it is intriguing to argue that hallucinations might 

be necessary to achieve a “spiritual transformation” and enlightenment, hallucinations may just 

occur in parallel and may therefore not be necessary for any therapeutic effect. This dissertation 

has explored whether hallucinations are necessary for the therapeutic action of psychedelics, or 

whether the two phenomena are dissociable.  



 

 176 

6.1.1 Psychedelic Microdosing 

One way to investigate whether hallucinations are necessary for the therapeutic effect of 

psychedelics is to explore psychedelic microdosing. This is the practice of taking chronic, 

intermittent, sub-hallucinogenic doses of psychedelic compounds with the aim to increase 

creativity and cognitive flexibility, while decreasing depression and anxiety.18, 19 

The studies outlined here in Chapter 3 suggest that psychedelic microdosing works in 

humans in an unblinded and self-medicating manner, but also in rodents who have no preconceived 

expectation of therapeutic action.  Several other studies in both humans20, 21 and rodents22 have 

emerged demonstrating that psychedelic microdosing may be efficacious.  My study demonstrated 

that the main reason people discontinued the practice was due to a difficulty or risk associated with 

obtaining the required materials.23 Indeed, Hutten and colleagues demonstrate that BDNF (as 

detected in blood plasma) increases in healthy volunteers after low doses of LSD.24 

In general, microdosing seems to be less robust in eliciting therapeutic responses than a 

fully hallucinogenic dose. Based on pharmacologic principles, it is very possible that taking a 

lower dose of a drug will receive a smaller therapeutic response (Figure 6.1.1-1).  Finding an 

appropriate dose for therapeutic action can be difficult. This could explain why so many rodent 

Figure 6.1.1-1. Schematic of a hallucinogenic versus a therapeutic response for psychedelic microdosing. The full coloured line 

represents a hallucinogenic dose, and the dotted gold line represents a microdose. Whether the therapeutic and hallucingenic 

responses can be separated (a) or not (b), decreasing the dose of this drug will ultimately decrease the response in subjects. 

a b 
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studies—where dose is tightly controlled—show more promising results than human studies. 

Human studies display more variability, likely because most of these studies are not from survey 

data, not clinical trials where dose and purity are tightly regulated. Furthermore, differences in 

body weight composition among individuals, as well as individual differences in metabolism and 

absorption may play a role in how participants respond to these drugs. Finally, many individuals 

who microdose have had previously experienced fully-hallucinogenic doses, which may alter both 

their response to the drug as well as their expectation. In summary, based on basic pharmacological 

principles, a higher dose would more effectively produce a robust therapeutic response.  

A report from Carhart-Harris and colleagues found that positive expectations about 

psychedelic microdosing could predict improvements in mental health.25 In the same vein, a 

foundational study came out this year by Szigeti and colleagues utilizing a clever citizen science 

approach to study microdosing psychedelics versus placebo.26 These researchers report that 

although participants who microdose show improved scores on emotional state, mood and 

creativity, these were not different than the placebo-treated group. This demonstrates that in 

healthy populations, the anecdotal beneficial effects of psychedelic microdosing may be explained 

by the placebo effect.  Although powerful, this study used healthy individuals and not those in a 

clinical population. It is possible that patients from a clinical population may respond more 

robustly to treatment. In fact, studies have demonstrated that the magnitude of therapeutic response 

to antidepressants depends on how severe depression was to start.27  

Many studies suggest that psychedelic microdosing appears to have therapeutic effects, 

though more research needs to be done to be conclusive. It is possible that a higher dose is needed 

to have more robust therapeutic effects; however, if we are investigating the necessity of 

hallucinations in achieving the therapeutic effects of psychedelics, it can be difficult to dose higher 
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without eliciting perceptual effects. Finally, psychedelics also hit 5HT2B which may lead to 

cardiac valvuopathies, so safety considerations should be explored more deeply. 

Interestingly, some studies have used low dose psilocybin (1 mg/70 kg) in lieu of a placebo-

control with the intention that doses this low would not be therapeutic.6  Although the researchers 

found a more dramatic decrease in depressive scores with higher doses, the low dose elicited 

physiological changes and was not compared to an inactive group or before-dosing scores.  While 

the data remains murky on the therapeutic efficacy of psychedelic microdosing, researchers should 

refrain from using low-dose psychedelic compounds in lieu of a proper placebo control.  

 

6.1.2 Non-hallucinogenic analogs as a novel class of psychoplastogens 

Though psychedelic microdosing may be effective, it is still using hallucinogenic compounds and 

is therefore subject to abuse and/or dosing mistakes. The development of novel non-hallucinogenic 

analogs would increase safety and accessibility of psychoplastogens. Development and testing for 

a new non-hallucinogenic analog is discussed in Chapter 4.  Since the publication of this work, 

other non-hallucinogenic analogs such as AAZ have been reported.28 These compounds appear to 

elicit rapid-acting antidepressant properties, have low abuse potential, minimally impair natural 

reward seeking, all while reducing hedonic drug seeking.29  Though these compounds have been 

validated as non-hallucinogenic by using a HTR and psychLight screening assays,28 it has yet to 

be seen if these compounds are truly non-hallucinogenic and therapeutic in humans.   

 An intriguing line of work would be to delineate a neural signature of hallucinations in 

rodent brains using fibre photometry, or better yet in vivo calcium imaging in the cortex followed 

by restimulation using three-dimensional scanless holographic optogenetics with temporal 

focusing (3D-SHOT; or similar method).30  Technical challenges include recording cells with an 
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imaging apparatus attached, as they impair the mouse’s ability to engage in HTR behaviour.  Using 

this method may shed light on different neural signatures of hallucinogenic and non-hallucinogenic 

compounds. Similar studies have found neural signatures of dissociation using anesthetics like 

ketamine31 (which do not produce a HTR). 

 

6.1.2.1 Mechanism of action for psychedelics and non-hallucinogenic analogs 

If the hallucinogenic and therapeutic properties are indeed dissociable, then you would expect two 

independent dose-response curves (as in Figure 6.1.1-1a). In effect, you would be pushing the 

hallucinogenic response to the right and/or the therapeutic response to the left.  In this way, you 

would be able to achieve therapeutic responses without hallucinations.  

 An alternative explanation might be that non-hallucinogenic analogs are “weaker” 

psychedelics. In other words, it is microdosing a weaker psychedelic.  If this were the case, we 

would assume that the therapeutic and hallucination response curves would both shift right. 

 An examination of the calcium data demonstrates that TBG is a partial agonist at 5HT2A, 

whereas a hallucinogenic analog like 5-MeO-DMT is a full agonist (Figure 4.3.7-2). This calcium 

data is measured in HEK cells expressing the 5HT2A receptor.29 If calcium were necessary for a 

therapeutic response, it might be that very high concentrations of calcium can cause hallucinations, 

but that lower amounts are sufficient for cortical growth and behavioural responses (Figure 

6.1.2-1).  This hypothesis would also fit with microdosing, as a subhallucinogenic dose of a 

hallucinogenic compound may still produce therapeutic effects. While this is a tempting 

explanation, not all non-hallucinogenic compounds have a decreased potency or efficacy 

compared to hallucinogenic drugs (for a list of cellular responses to psychedelic and non-

hallucinogenic compounds, please refer to Appendix 2). For example, DMT elicits a 20.4% 
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phosphoinositide hydrolysis response (compared to 5HT) and 6-F-DET elicits a 25% response.32 

In this vein, simply the magnitude of calcium release is not enough to explain the dissociation of 

psychedelic and hallucinogenic effects. Furthermore, something like serotonin itself—which is 

extremely potent and elicits a maximal calcium response—is not sufficient for growth of cortical 

neurons or a therapeutic effect. It is possible that there are differences in pharmacokinetics between 

compounds that create differences when tested in vivo. 

  It is possible that the differences between psychedelics and non-hallucinogenic analogs can 

be explained by differences in functional selectivity.  We know that serotonin (a full agonist at G-

protein/IP3 hydrolysis/Ca release) and ketanserin (an antagonist in these parameters) are both 

insufficient to cause neuronal growth and/or therapeutic effects.  Most psychedelics and non-

hallucinogenic compounds are partial agonists, so it is unclear how exactly how classic G-protein 

signalling would mediate this. Data from the Roth group using TRUPATH demonstrates that 

psychedelic compounds (LSD and 25CN-NBOH) as well as serotonin (5HT) are strongly biased 

to interact with Gq, G11 and G15 with little to no interaction with other G-proteins.33  Since both 

Figure 6.1.2-1. Non-hallucinogenic psychedelic analogs cannot be explained by simply weaker agonism of their target. Curves 

here are based off real data of calcium responses in HEK-cells. 
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psychedelics and 5HT share these signalling pathways, it is unlikely that the therapeutic responses 

could come from differential G-protein activation.  Furthermore, many psychedelics have a broad 

range of β-arrestin engagement, with something like LSD being a full agonist while lisuride and 

DMT barely engage β-arrestin at all (unpublished data, data not shown).  Taken together, there 

seems to be no commonalities between functional selectivity pathways and a compound’s ability 

to increase cortical neuron growth or a therapeutic response. 

 There is also ample evidence from the Gonzalez-Maeso group that psychedelic compounds 

engage signaling through a 5HT2A-mGluR2 dimer.34, 35  It is possible that this dimer complex 

signals or is stabilized by psychedelic interaction and this does not happen in the presence of a 

non-hallucinogenic analog.  It is also possible that signaling through this dimer actually initiates a 

therapeutic response—as all the compounds that the Gonzalez-Maeso group have tested are also 

psychoplastogens—and that hallucinations actually signal through another mechanism, perhaps 

just increases in neuronal activity, decrease the signal to noise.  

 Ultimately, I propose that it is the strength and number of receptors that are stimulated that 

will influence the cells’ response. The calcium schematic presented (Figure 6.1.2-1) is based off 

data measured in HEK cells expressing 5HT2A on the cell surface. In neurons, 90% of 5HT2A 

receptors are intracellular,36 and so compounds that can easily cross membranes to intracellular 

targets may have a greater response. In this vein, compounds like serotonin may elicit a maximum 

response of the receptor but only hit 10% of the receptors. On the other hand, psychedelic 

compounds may be partial agonists, but they can stimulate both intracellular and extracellular 

receptors, thereby evoking a greater overall response.  This hypothesis is being tested now, and 

further details are elaborated on in Chapter 5. 
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6.1.3 Coupling psychotherapy with psychedelic treatment 

Current psychedelic therapy for humans aims to couple drug intake with psychotherapy.  This 

approach aims to develop new thought and behavioural patterns while in a suggestive state.  To 

the best of my knowledge, no one has directly compared no-psychotherapy treatment to 

psychotherapy treatment in patients administered psychedelic compounds. This may be because 

patients need to be monitored during their experiences for safety purposes, but also a reflection of 

clinical trial ethics which aim to “bring no harm” to patients involved.37  

However, there have been studies in which patients received “standard support” or “high 

support” during their psychedelic experience.6   This study demonstrated that patients with high- 

support showed larger effects across 23 measures than the patient group that received standard 

support.   

A clinical trial in individuals with treatment-resistant depression suggests that social 

connectedness may be foundational for therapeutic change.  Watt and colleagues report that a 

primary symptom of patients with depression is disconnection from others, and that reconnection 

was a main theme that was reported after psychedelic use.38  Individual psychedelic therapy versus 

group therapy has not been explicitly tested, other than in an inconclusive meta review by Trope 

et al. which suggests it may be useful but warrants a properly controlled study.39  A primary goal 

of group therapy is to facilitate reconnection.40  In this vein, the psychedelic MDMA has been 

shown to increase sociability of rodents41 and cephalopods,42 though whether this socialization 

causally leads to decreases in depression (and related pathologies), whether these behaviours are 

controlled by an overarching neural mechanism, or whether they merely occur in parallel remains 

to be determined. 
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Regardless of sociability, the idea of “training” the mind while the brain is in a suggestable 

state remains open. Studies in our lab have demonstrated that psychedelic treatment before fear 

extinction training does not augment the training itself, but rather the animals seem to remember 

the training better when tested the next day.16  This paradigm nicely parallels with how PTSD is 

treated in the clinic today with MDMA.  Fear conditioning is established in one paradigm, 

administration of psychedelic and training (or therapy) occur in a different setting, and finally the 

establishment of that training appears to be better solidified when training occurs with psychedelics 

on board.  Other than fear extinction training, the augmentation of therapeutic effects with 

psychotherapy is difficult to test in murine models. Future studies in rodents may wish to 

investigate psychedelic treatment in group versus individually-housed animals, and human studies 

may wish to directly test the difference between individualized versus group therapy sessions. 

Some studies in rodents demonstrate a therapeutic effect without training,16 suggesting 

psychotherapy might not be necessary for treatment of depression.  For humans, monitoring for 

safety purposes while the patient is experiencing hallucinations would still be necessary. 

Interestingly, though psychedelic administration is paired with psychotherapy, ketamine infusions 

are not and yet still appear to be effective. It is possible that with non-hallucinogenic analogs of 

psychedelics, monitoring psychedelic sessions to monitor health of the patient are no longer 

necessary, thus creating a therapy that is cheaper to the patient and facility, and therefore more 

accessible.  That said, it is likely that psychotherapy may enhance the therapeutic effects of these 

compounds. 
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 The role of the prefrontal cortex in modulation of subcortical areas 

In this dissertation, I discuss the role of psychedelics in mediating therapeutic responses in rodent 

models.  Early reports in the Olson lab demonstrate that psychedelics cause increased 

dendritogenesis, spinogenesis and synaptogenesis in cortical cultures of neurons, and 

concomitantly increase their connectivity.43 Work by Dakic and colleagues also report increases 

in proteins associated with long-term potentiation and growth after organoids are treated with 

psychedelics like 5-MeO-DMT.44   

 The PFC is a region of the brain responsible for motivation and goal-oriented behaviour. 

This region is atrophied and has decreased function in depression, anxiety and addiction.45, 46, 47, 48, 

49, 50 Furthermore, there appears to be a decrease in the number of active synapses in this region,51 

which is concomitant with a decrease in BOLD signal in human imaging studies.52 Reports of 

psychoplastogen administration have demonstrated rapid restoration of structure and function of 

these neurons.17, 43, 73 

 Specifically, the ventral medial PFC (vmPFC), which includes the infralimbic cortex, 

densely innervates the nucleus accumbens (NAc) medial shell,53 an area known for responding to 

aversive stimuli.54  In addition, it innervates the hypothalamus,53 ventral tegmental area (VTA)55, 

56and the amygdala (AMY).57, 58  Studies have demonstrated a key role for the infralimbic cortex 

in the acquisition, extinction, and expression of fear memories.59, 60  Studies have shown that fear 

extinction increases excitability and activity of neurons in the infralimbic cortex, and consolidation 

of this extinction is protein-synthesis dependent.61, 62, 63, 64, 65  Finally, loss-of-function studies using 

either lesions or pharmacological inactivation demonstrate that infralimbic, but not prelimbic, 

cortex is necessary for consolidation of extinction learning.66, 67, 68, 69, 70  Interestingly, infusions of 

BDNF to the infralimbic cortex facilitates fear extinction in the absence of training,71 suggesting 
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that perhaps simply increasing BDNF levels in this region in the absence of training is enough for 

the expression of extinction behaviour. 

  

6.2.1 The role of the prefrontal cortex in modulating behaviours relevant to 

depression and anxiety 

In depression, neurons in the PFC are atrophied and have decreased excitability. Studies have 

demonstrated that ketamine—a compound capable of increasing activity in the PFC72—is capable 

of rapidly restoring structure and function to these neurons.73  Regrowth of structure and 

maintained activity changes are thought to be due to BDNF release; indeed, an infusion of a BDNF 

antibody to the PFC blocks the therapeutic actions of ketamine, as measured in rodent behavioural 

assays.74 Furthermore, activation of PFC terminals by optogenetics in subcortical regions is 

sufficient for restoring motivated behaviours.75 

 Like depression, elegant work from the Deisseroth lab has demonstrated that circuits 

mediating anxiety are also modulated by the vmPFC.76 Optogenetic activation of the vmPFC, but 

not dmPFC, facilitate anxiolytic responses in rodent models. 

 Work in the Olson lab suggests that psychedelic compounds increase the growth and 

function of cortical neurons after psychoplastogen treatment.43, 77  In addition, blockade with a 

TrkB antagonist antagonizes the growth of cortical neurons seen in culture experiments,43 

suggesting psychedelics—like ketamine—work through similar mechanisms. 
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6.2.2 The role of the infralimbic cortex in modulating behaviours relevant to 

substance use disorder 

There are many parallels between fear extinction learning and drug-extinction learning.78 

Infralimbic cortex is highly active during extinction training,79, 80 and activity in the infralimbic 

cortex prevents drug-primed reinstatement and inactivation of the infralimbic cortex results in 

spontaneous reinstatement of cocaine-seeking responses.81  In addition, inactivation of this region 

after extinction training results in a blunted extinction response.82  Interestingly, these extinction 

memories can be endogenously modulated via neuromodulators such as adrenaline82 and 

dopamine.83  There are also suggestions to suggest that the NAc medial shell may be strengthened 

by glutamatergic input from infralimbic cortex after extinction training.84  Similar to depressive-

like behaviours, infusion of BDNF into the mPFC reduces excessive drinking in ethanol-dependent 

mice.85, 86 

Both human and rat behavioural studies have described decision making tasks generally 

utilizing learning strategies encoding the relationship between action and consequence (goal-

directed) or stimulus-response associations (habitual). Evidence in humans and rats suggests that 

goal-directed action is typically governed by frontal cortical regions, whereas control of habitual 

actions is modulated by the striatum.87, 88 The prevailing idea is that infralimbic cortex may play a 

role in the original drug-seeking (goal-directed) behaviours, but over time this behaviour becomes 

governed by striatal loops. There is also evidence to suggest that the infralimbic cortex initiates 

some “stop” circuitry via projections to the NAc shell or AMY. 78, 81, 89 Indeed, optogenetic 

activation of infralimbic terminals in NAc blocks drug seeking behaviour.90  Importantly, different 

populations of cells appear to respond during hedonic drug seeking than when seeking more 

natural rewards like food or sucrose.91, 92  This suggests that a specific population may be targetable 
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to decrease drug use without impairing pleasure of natural rewards. We are able to see this in our 

experiments as TBG treatment is able to blunt self-administration of hedonic drugs like heroin or 

alcohol, without effecting sucrose or food seeking.29, 93 We postulate that this occurs due to 

differences in target populations of PFC neurons by TBG.  When using psychoplastogens for these 

types of studies, detailed thought should be given to when these compounds are administered in 

relation to the task at hand. 

In contrast, the prelimbic cortex is thought to promote drug seeking. Stefanik elegant 

demonstrated that bilateral optogenetic inhibition of prelimbic fibres in the NAc core inhibited 

drug seeking.94 In other words, this projection may drive drug seeking behaviour. Future work by 

this group also demonstrates that the basolateral amygdala (BLA)—which plays a key role in 

reinstatement of cocaine seeking—may drive activity in the prelimbic cortex.95  Inactivation of the 

prelimbic cortex in rats does not mediate consolidation of instrumental learning, but rather 

increased responding; this suggests the prelimbic cortex may mediate a form of inhibitory response 

control.96 Though most of the evidence seems to agree that activity in infralimbic cortex decreases 

drug seeking, there are clearly some discrepancies which the field has yet to investigate. This may 

have to be done systematically, with close attention and consistency with animal models, 

coordinates of viral injection, which viruses are being used, which cells are being infected, and 

which projections are being stimulated. 
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 Sex differences in responsivity to psychedelics 

There have been few studies that explicitly explore sex differences in responsivity to psychedelic 

compounds. I have noticed several different sex differences over the course of my studies, which 

I shall comment on below.   

 In humans, females have higher prevalence and severity of depression,97 and this is 

correlated with lower serum levels of BDNF than both male healthy and depressed individuals.98 

In studies with ketamine, there are sex differences with respect to the therapeutic response.99 

Evidence suggests the therapeutic potential may depend on the phase of estrus in females.100 

 

6.3.1 Sex differences in response to hallucinations 

In HTR assays, I have noticed a difference in the sensitivity of mice to psychedelic 

compounds, specifically that female mice exhibit far more HTRs than males.101  Both sexes 

consistently exhibit more head-twitches when administered a psychedelic compound, and trends 

across sexes are identical, but females exhibit nearly twice as many head-twitches as males. I have 

found this highly replicable over the years in many studies in the Olson lab.  Surprisingly, Alex 

Kwan’s group did not observe differences in HTR when he tested psilocybin in both sexes.17  Only 

one study in humans explicitly tested the effects of sex on the subjective experience of MDMA 

and found that women experience higher intensity of perceptual changes, thought disturbances and 

fear of loss of body control.102  

In most human and rodent studies, males and females are combined.  If attempting to study 

the effects of hallucinations in response to psychedelic compounds, attention to sex and 

hallucination intensity is advised. 
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6.3.2 Sex differences in therapeutic responsiveness 

In our hands, males and females have similar trends in response to psychoplastogens. For both the 

sucrose preference test and forced swim test, both males and females have similar magnitude of 

baselines, responses to stress, and rescued behavioural phenotypes after psychoplastogen 

treatment. 

 With regards to neuronal structure, I have found that females have a robust response to 

psychedelic administration in golgi analysis of spines and ephys,43 and this has been corroborated 

by Alex Kwan’s group who found that females often have a greater increase in the number of 

spines formed, and also show more robust changes in function.17  Interestingly, I also found that 

female rodents are more sensitive to chronic administration of psychedelics, as our psychedelic 

microdosing study suggested a decrease in the number of spines after treatment, perhaps from 

overactivation of these neurons.103  

 In trials with psychedelic microdosing, females consistently report improvements after the 

practice, though these scores are less positive than male counterparts.104 This may be due to 

differences in what females experience, however it may also be due to differences in reporting 

trends. 

 Female rats with circulating estrogen tend to have a higher response to stress, likely due to 

greater adrenergic and dopaminergic signaling,105, 106 and have more dysfunction in the PFC 

compared to male rats (however this trend is reversed if the females are ovariectomized).107, 108  
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 Health Risks of Psychedelic Medicine 

6.4.1 Health risks associated with acute psychedelic intake 

Hallucinations are expected after psychedelic intake, and for this reason, patients should be 

monitored to ensure their safety.  Commonly reported acute adverse reactions are strong feelings 

of dysphoria, anxiety or panic,109, 110 though these do not typically require pharmacological 

intervention and do not persist after the drug wears off.  This underscores the importance of 

monitoring patients while they undergo a psychedelic experience.  

A common side effect of psilocybin treatment is delayed onset for headaches and 

migraines.111  This is particularly interesting, since psilocybin has purported effects for treating 

cluster headaches.112 

 High doses of psychedelics can lead to cardiovascular issues, as 5HT2A plays a key role 

in platelet aggregation, smooth muscle contraction, thrombus formation and coronary artery 

spasms.113 Depending on the type and dose of psychedelic used, it is possible to elicit 

vasoconstriction, if 5HT1B receptors are also engaged.  Finally many psychedelics engage 5HT2B 

which can contribute to cardiac valvuopathy. Major clinical studies investigating psilocybin for 

depression have reported transient moderate increases in systolic and/or diastolic blood pressure 

after administration of psilocybin (systolic ~146 mm Hg; diastolic ~85 mmHg), as well as a slight 

increase in heart rate (~90 beats per minute).2, 3, 4, 5  Across these studies, only one participant 

reached high enough blood pressure to warrant sublingual nitroglycerin administration.6  Despite 

this event, the therapy session went otherwise smoothly, the participant had a positive experience 

and requested to participate in future sessions (which was denied).   

 The LD50 of DMT is 47 mg/kg when administered IP in rats and is estimated to be 

approximately 9 mg/kg for humans (extrapolating from rodent data).114, 115 When DMT is prepared 
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as ayahuasca, the LD50 is estimated to be 8 mg/kg. When a group of experienced DMT users were 

asked about the main risks of DMT, the most common problems reported were a “bad trip” (51%), 

psychospiritual problems (39%) or physiological problems (26%) which includes respiratory 

irritation or burns when smoking.116  

Similar findings have been reported for psilocybin use, though these reports suggest that 

effects may persist. In a study by Carbonaro et al, researchers found that psilocybin administration 

may result in persisting fear, anxiety, depression, and paranoia.117 In fact, 24% of participants 

reported these symptoms within a week after taking the drugs, and 10% of patients reported 

symptoms lasting over 12 months after the challenging session. The participants who sought 

treatment prior to their psilocybin experience was significantly more likely to experience 

symptoms and seek treatment after the session. In rats, the LD50 of IV psilocybin is above 250 

mg/kg.118  The lethal dose is estimated to be approximately 1000x the effective therapeutic dose.119 

 For LSD, the LD50 is 16.5 mg/kg when administered IV,120, 121 and no known human 

deaths have occurred due to LSD overdose. Last year, a woman took 55 mg of LSD intranasally—

mistaking it for cocaine—which ended up being 550x the regular dose of LSD. She blacked out 

and vomited several times but was otherwise healthy with no persisting effects other than a 

decrease in regular opioid use.122  In 1974, eight individuals took large amounts of LSD 

intranasally—again mistaking it for cocaine—and achieved concentrations of 1000-7000 

ug/100ml in blood plasma.  These individuals suffered collapse, vomiting, hyperthermia, coma, 

respiratory arrest, and some mild bleeding (due to platelet dysfunction). All patients recovered and 

had no persistent effects, but this appears to be the upper limit of LSD’s safety window.123  

 Ibogaine is less well tolerated in humans. The LD50 for ibogaine in mice is 263 

mg/kg.124At high doses, convulsions, nervous behaviour and limb paralysis occurs.124 Rodent 
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studies suggest it may contribute to cerebellar toxicity,125, 126 however several studies in primates 

were not able to replicate the results,127, 128 suggesting it may be specific to rodents.  As mentioned 

previously, the most clinically significant adverse effects are a decrease in heart rate.129, 130 

Ibogaine is known to block hERG channels responsible for cardiac repolarization, therefore 

causing long QT syndrome.131   For this reason, it is highly advised that patients with pre-existing 

cardiovascular conditions do not use ibogaine.  Litjens and Brunt reported in 2016 that 27 deaths 

occurred several days or even weeks after administration—likely due to the highly lipophilic 

nature of ibogaine, it can be sequestered in tissue and release slowly over time—all within patients 

that had pre-existing conditions.132 Alper and colleagues surveyed individuals between 1990 and 

2008 who took ibogaine and similarly found that deaths nearly all resulted from patients with 

preexisting cardiovascular conditions.133  Importantly, post-mortem studies of these patients 

revealed no neurotoxicity. 

 A meta analysis by Trope and colleagues revealed no reported cases in psychosis, suicide 

or other serious adverse events associated with psychedelic administration in clinical trials.39, 134, 

135  That said, many large psychedelic trials screen out individuals who have “co-existing 

psychiatric conditions”, which would include conditions such as schizophrenia.136 

Although it is thought that psychedelic-mediated hallucinations resemble psychosis seen 

in schizophrenia, there is little evidence to suggest that psychedelics can trigger the onset of 

schizophrenia. A large study of 130,000 adults in the United States revealed that there was 

insufficient evidence for a link between psychedelic use and lingering psychosis.137 Furthermore, 

there is little evidence to support the existence of hallucinogenic persisting perceptual disorder 

(HPPD) or ‘flashbacks’. Finally, controlled trials with psilocybin have not reported any cases of 

flashbacks or other visual disturbances.3, 138, 139  
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6.4.2 Health risks associated with chronic psychedelic intake 

Studies in Brazil have determined that long-term ayahuasca use is not associated with health 

risks140 and lifetime ayahuasca users actually scored significantly better on some 

neuropsychological tests than controls.140, 141  Similarly, Johansen and Krebs reported that lifetime 

use of psychedelic compounds was associated with increased mental health outcomes and 

decreased psychiatric treatment.142 Interestingly, Hendricks and colleagues conducted data from 

2002-2007 across 25,622 individuals charged with a felony and found that psychedelic use tended 

to promote abstinence from alcohol and other drug use, as well as increasing prosocial 

behaviour.143 

 One study found that regular psychedelic use increased the lifetime risk of panic attacks; it 

should be noted that phenylcyclohexyl piperidine (PCP; an addictive drug) was included in their 

definition of psychedelic and is known to cause dependence. 

 A study in rats assessing chronic psychedelic treatment (0.16 mg/kg LSD every other day 

for over 3 months) resulted in hyperactivity, hyperirritability, as well as increased anhedonia and 

social impairment. These behavioural traits lasted at least for 3 months after drug discontinuation. 

Gene expression analyses revealed brain wide changes to neurotransmitter systems as a result of 

this drug regimen. These behavioural changes resemble psychosis and has been proposed as a 

model of schizophrenia.144 

 Furthermore, psychoplastogens work through mTOR signaling, and overactivation of 

mTOR has believed to contribute to the development of autism145 or Alzheimer’s disease.146 

Further research is warranted to determine the exact risks associated with chronic use of 

psychedelic compounds.  
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 In sum, overuse of psychedelic compounds has potential to develop into persistent 

schizophrenia-like behaviour or other disorders. Likely, the frequency with which these drugs are 

used plays a major role in their long-lasting effects. Further studies are needed to investigate this. 

 

6.4.3 Abuse potential 

Classic psychedelics are not addictive,147, 148 and are not considered reinforcing.149  Animals do 

not self-administer psychedelic compounds, suggesting that they have low abuse potential.110, 150, 

151 Rhesus monkeys have mixed responses to psychedelics, some of which self-administer and 

some do not, suggesting that these compounds either have weak reinforcing effects or a mixture 

of reinforcing and aversive effects.152  

 

While acute use of psychedelic compounds do not typically result in long-lasting detrimental 

effects, chronic use of psychedelics may. For this reason, researchers should emphasize that these 

drugs be given under medical supervision and only used as needed, not on a regular basis. Most 

treatment regimens—ours included—typically involves a single dose (or a few doses) to achieve 

a long-lasting effect, thus minimizing issues related to chronic dosing. 
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 Conclusion and Discussion 

In this dissertation, I sought to understand if hallucinations were necessary in achieving the 

therapeutic effect of psychedelics, or if these two phenomena are dissociable. Using rodent models, 

I have demonstrated that the hallucinogenic effects are not necessary to achieve therapeutic 

responses, though this has yet to be tested in humans.  It is possible that although non-

hallucinogenic, the actual act of experiencing hallucinations may strengthen or augment the 

therapeutic effect. 

We posit that this occurs by increasing the growth and function of neurons in the prefrontal 

cortex, strengthening top-down control over subcortical regions involved in emotion.  
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Appendix 1 

 

ABBREVIATIONS 
 

 

25CN-NBOH  4-(2-((2-hydroxybenzyl)amino)ethyl)-2,5-dimethoxybenzonitrile 

3D-SHOT Three-dimensional scanless holographic optogenetics with temporal 

focusing 

5HT   5-hydroxytryptophan; serotonin 

5HT2A  Serotonin (5HT) 2A receptor 

5-MeO-DMT  5-methoxy-N,N-dimethyltryptamine 

6-MeO-DMT  6-methoxy-N,N-dimethyltryptamine 

6-F-DET  6-fluoro-diethyltryptamine 

AD   Alzheimer’s disease 

AMY   Amygdala 

ASD   Autism spectrum disorder 

AUD   Alcohol use disorder 

BDNF    Brain-derived neurotrophic factor 

BLA   Basolateral amygdala 

BOLD   Blood oxygen level dependent 

BROWN   Brown fat 

CLAMS  Comprehensive lab animal monitoring system 
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CPP   Conditioned place preference 

CUE   Cued extinction phase (heroin self-administration) 

DMT   N,N-dimethyltryptamine 

DOI   2,5-dimethoxy-4-iodoamphetamine 

DOM    2,5-dimethoxy-4-methylamphetamine 

dpf   Days post-fertilization 

EPI    Epididymal fat 

EPM   Elevated plus maze 

EXT   Extinction phase (heroin self-administration) 

FR1   Fixed ratio 1 phase (heroin self-administration) 

FST   Forced swim test 

GAD   Generalized anxiety disorder 

hERG   Human ether-a-go-go 

HPPD   Hallucinogenic persisting perceptual disorder 

IBG   Ibogainalog 

IBO   Ibogaine  

KET   Ketamine 

KETSN  Ketanserin 

KO   Knockout 

LCMS   Liquid chromatography, mass spectrometry 

MDD   Major depressive disorder 

MDMA  3,4-methylenedioxymethamphetamine 

mEPSCs  Miniature excitatory postsynaptic potentials  
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MES    Mesenteric fat 

MTBE   Methyl tert-butyl ether 

mTOR   Mammalian target of rapamycin 

NAc   Nucleus accumbens 
NIL   Novelty-induced locomotion 

NOR   Novel object recognition 

ns   Not significant 

PCP   Phenylcyclohexyl piperidine 

PFC   Prefrontal cortex 

PSI   Psilocybin 

PTSD   Post-traumatic stress disorder 

RER   Respiratory exchange rate 

RP   Retroperitoneal fat 

S1BF   Somatosensory cortex, barrel field 

SA   Self administration 

SAL   Saline 

SALT   Spontaneous alternation 

SD   Standard deviation 

SEM   Standard error of the mean 

sEPSC   Spontaneous excitatory postsynaptic currents 

SERT   Serotonin transporter 

SI   Sertindole 

SPT   Sucrose preference test 
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SNRI   Serotonin and norephinephrine reuptake inhibitor 

SSRI   Selective serotonin reuptake inhibitor 

SUB   Subcutaneous fat 

SUD   Substance use disorder 

TBG   Tabernanthalog 

TMAK   Trimethylammonium ketamine 

TMT   Trimethyltryptamine 

TrkB   Tyrosine receptor kinase B 

UMS   Unpredictable mild stress 

VEH   Vehicle 

vmPFC  Ventral medial prefrontal cortex 

VR5   Variable ratio 5 phase (heroin self-administration) 

VR15   Variable ratio 15 phase (heroin self-administration) 

VTA   Ventral tegmental area 

WAT    Sum of white adipose tissue 

WT   Wildtype 

WTD   Whisker-dependent texture discrimination 
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Appendix 2 

LITERATURE REVIEW OF DOWNSTREAM SIGNALING 
PATHS BY PSYCHEDELICS 
 

 

Type of Ligand 
Type of 

Agonist 
Cellular Response 

% efficacy 

compared 

to 5-HT 

Assay Type Cell Type Reference 

5-HT Agonist Increased Ca - FURA-2/AM 

“mammalian 

cells” (not 

specified) 

Pritchett et al, 1988 

5-HT Agonist 
Increased IP3 

hydrolysis 
- 

accumulation of IP and IP2 

(metabolite formation) 

“mammalian 

cells” (not 

specified) 

Pritchett et al, 1988 

5-HT Agonist  

inward current 

(depolarization) 
- 

patch clamp (voltage 

clamp at -70mV) 
xenopus oocyte Pritchett et al, 1988 

5-HT Agonist Increased Ca - Indo-1 (Ca sensitive dye) NIH3T3 Julius et al, 1990 

5-HT Agonist 

beta-arrestin 

dependent 

Internalization 

- 

beta-arrestin1 and beta-

arrestin2 KO cultures 

compared to WT; media 

Mouse 

embryonic 
Schmid et al, 2007 

2
1
3
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with serotonin caused 

internalization in WT (vs 

surface expression with no 

serotonin in media), no 

change in beta-arrestin 

lines/all 5-HT2A is on cell 

surface 

fibroblasts 

(MEFs) 

5-HT Agonist 

ERK1/2 

phosphorylation 

(activation) 

- Western blot 

Mouse 

embryonic 

fibroblasts 

(MEFs) 

Schmid et al, 2007 

5-HT 

Agonist 

ERK1/2 

phosphorylation 

(activation) 

- Western blot 

Mouse frontal 

cortical tissue 

15mins after 

injection 

Schmid et al, 2007 

5-HT Agonist IP Stimulation - IP Receptor stimulation NIH 3T3 cells Egan et al, 1998 

5-HT Agonist 
More [35S]GTPγS 

Bound 
- [35S]GTPγS Bound CHO cells Cussac et al, 2008 

5-HT Agonist Ca mobilization - Fluo-3  CHO cells Cussac et al, 2008 

6-F-DET Antagonist 
No detectable 

change 

25% at 

100uM 

Phosphoinositide 

hydrolysis 
PC12 Rabin et al, 2002 

Apomorphine Antagonist no change 0% Depletion of  [3H]PI CHO cells 
Newman-Tancredi et al, 

2002 

BOL-148 Antagonist 
No detectable 

change 
0% 

Phosphoinositide 

hydrolysis 
PC12 Rabin et al, 2002 

2
1
4
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Bromocriptine 
Partial 

agonist 
  ? Depletion of [3H]PI SH-SY5Y cells Mitchell et al, 1998 

Bromocriptine 
Partial 

agonist 
Decreased [3H] PI 69% Depletion of [3H]PI CHO cells 

Newman-Tancredi et al, 

2002 

Bromocriptine 
Partial 

agonist 

More [35S]GTPγS 

Bound 
85.1% [35S]GTPγS Bound CHO cells Cussac et al, 2008 

Bromocriptine 
Partial 

agonist 
Ca mobilization 61.4% Fluo-3  CHO cells Cussac et al, 2008 

Bromocriptine 
Partial 

agonist 
Decreased [3H] PI 79% Depletion of [3H]PI CHO cells 

Newman-Tancredi et al, 

2002 

Cabergoline 
Agonist Decreased [3H] PI 94%  Depletion of [3H]PI CHO cells 

Newman-Tancredi et al, 

2002 

Clozapine Agonist 
5-HT2A 

internalization 

 
Immunofluorescence NIH3T3 cells Willins et al, 1998 

Clozapine Agonist 
5-HT2A 

internalization 

 Biotin-trap internalization 

of receptors 
NIH3T3 cells Willins et al, 1998 

Clozapine 
 5-HT2A 

internalization 

 
Immunofluorescence Rat cortex Willins et al, 1998 

Clozapine 
 5-HT2A 

internalization 

 
Immunofluorescence 

Rat (Sprague 

Dawley) cortex 
Willins et al, 1999 

Clozapine Antagonist no ERK activation 0% ? 

Mouse 

embryonic 

fibroblasts 

(MEFs) 

unpublished data 

mentioned in Schmid et 

al, 2007 

2
1
5
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Clozapine Antagonist no ERK activation 0% ? 

Mouse frontal 

cortical tissue 

15mins after 

injection 

unpublished data 

mentioned in Schmid et 

al, 2007 

DMT Agonist 

[3H] inositol 

monophosphate 

formation 

90% 
3H] inositol phosphate 

formation 
NIH3T3 cells Smith et al, 1998 

DMT Antagonist? 

does not cause 5-

HT2A 

internalization 

N/A 5-HT2A internalization NIH3T3 cells Smith et al, 1998 

DMT Partial 

Agonist 
PI Hydrolysis 20.4% 

Phosphoinositide 

hydrolysis 
PC12 Rabin et al, 2002 

DOB 
Partial 

agonist 
Calcium release 74% FLIPR assay CHO cells Porter et al, 1999 

DOI Agonist 
Head Twitch 

Response 
100% Head Twitch Response in vivo mice Schmid et al, 2007 

DOI Antagonist? 
No internalization 

of 5-HT2A 
0% 

beta-arrestin1 and beta-

arrestin2 KO cultures 

compared to WT; media 

with serotonin caused 

internalization in WT (vs 

surface expression with no 

serotonin in media), no 

change in beta-arrestin 

lines/all 5-HT2A is on cell 

surface 

DOI is internalized despite 

beta-arrestin or not 

Mouse 

embryonic 

fibroblasts 

(MEFs) 

Schmid et al, 2007 

2
1
6
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DOI 
Partial 

Agonist 

ERK1/2 

phosphorylation 

(activation) 

24% Western blot 

Mouse 

embryonic 

fibroblasts 

(MEFs) 

Schmid et al, 2007 

DOI Agonist 

ERK1/2 

phosphorylation 

(activation) 

100% Western blot 

Mouse frontal 

cortical tissue 

15mins after 

injection 

Schmid et al, 2007 

DOI Agonist 
More [35S]GTPγS 

Bound 
93.6% [35S]GTPγS Bound CHO cells Cussac et al, 2008 

DOI 
Partial 

agonist 
Ca mobilization 81.3% Fluo-3  CHO cells Cussac et al, 2008 

DOI Agonist Internalization 74% 
[3H]ketanserin binding 

after drug treatment 
Rat brain Buckholtz et al, 1988 

DOI 
Partial 

agonist 
Calcium release 61% FLIPR assay CHO cells Porter et al, 1999 

DOI 
Partial 

agonist 
activity 1% 

patch spontaneous EPSCs 

(produces 10% EPSCs 

compared to 5HT)               

cortical neurons 
Aghajanian and Marek, 

1999 

DOM 
Partial 

Agonist 
PI Hydrolysis 77.4% 

 
PC12 cells Rabin et al, 2002 

DOM Agonist PI Hydrolysis 
almost 

100% 
[3H]Arachidonate release PC12 cells Rabin et al, 2002 

DOM 
Partial 

Agonist 
IP Stimulation 88% IP Receptor stimulation NIH 3T3 cells Egan et al, 1998 

2
1
7
 



 

 218 

Ketanserin Antagonist Internalization 0% Immunofluorescence HEK cells Raote et al, 2013 

Ketanserin Antagonist Internalization 0% Immunofluorescence GF-62 cells Berry et al, 1996 

Ketanserin Antagonist PI Hydrolysis 

0% 

"not 

change IP 

accumulati

on from 

basal" 

[3H]-IP accumulation  C6 glioma cells 
Sullivan Hanley and 

Hensler, 2002 

Lisuride 
Partial 

Agonist 
Decreased [3H] PI 75% Depletion of  [3H]PI CHO cells 

Newman-Tancredi et al, 

2002 

Lisuride Partial 

Agonist 
IP Stimulation 25% IP Receptor stimulation NIH 3T3 cells Egan et al, 1998 

Lisuride 
Partial 

agonist 

More [35S]GTPγS 

Bound 
40.7% [35S]GTPγS Bound CHO cells Cussac et al, 2008 

Lisuride 
Partial 

agonist 
Ca mobilization 48.6% Fluo-3  CHO cells Cussac et al, 2008 

Lisuride 
Partial 

agonist 
PI Hydrolysis 15.6% 

Phosphoinositide 

hydrolysis 
PC12 cells Rabin et al, 2002 

(R)-Lisuride 
Partial 

agonist 
Calcium release 14% FLIPR assay CHO cells Porter et al, 1999 

(S)-Lisuride 
Partial 

agonist 
Calcium release 20% FLIPR assay CHO cells Porter et al, 1999 

LSD 
Partial 

agonist 
PI Hydrolysis 32.3% 

Phosphoinositide 

hydrolysis 
PC12 cells Rabin et al, 2002 

2
1
8
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LSD 
Partial 

agonist 
IP Stimulation 32% IP Receptor stimulation NIH 3T3 cells Egan et al, 1998 

LSD 
Partial 

agonist 

More [35S]GTPγS 

Bound 
71.2% [35S]GTPγS Bound CHO cells Cussac et al, 2008 

LSD 
Partial 

agonist 
Ca mobilization 84.6% Fluo-3  CHO cells Cussac et al, 2008 

LSD Agonist Internalization 83% 
[
3
H]ketanserin binding 

after drug treatment 
Rat brain Buckholtz et al, 1988 

LSD 
Partial 

agonist 

Increased PI 

Hydrolysis 
15% IP Accumulation CHO cells Berg et al, 1998 

LSD Partial 

agonist 
AA Accumulation 30% 

[14C]arachidonic acid 

production 
CHO cells Berg et al, 1998 

LSD 
Partial 

agonist 
Calcium release 44% FLIPR assay CHO cells Porter et al, 1999 

MDL 100,907 Antagonist 
5-HT2A 

internalization 

   
Willins et al, 1999 

MDL 100,907 Antagonist No IP accumulation 0% IP accumulation NIH 3T3 cells Kehne et al, 1996 

Mianserin Antagonist 
5-HT2A 

internalization 

 
Immunofluorescence NIH3T3 Willins et al, 1999 

Olanzapine Antagonist 
5-HT2A 

internalization 

 
Immunofluorescence NIH3T3 Willins et al, 1999 

Olanzapine Antagonist 
5-HT2A 

internalization 

 
Immunofluorescence 

Rat (Sprague 

Dawley) cortex 
Willins et al, 1999 

2
1
9
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Pergolide Agonist Decreased [3H] PI 87%  Depletion of  [3H]PI CHO cells 
Newman-Tancredi et al, 

2002 

Pergolide Agonist 
More [35S]GTPγS 

Bound 
91.9% [35S]GTPγS Bound CHO cells Cussac et al, 2008 

Pergolide 
Partial 

agonist 
Ca mobilization 75.6% Fluo-3  CHO cells Cussac et al, 2008 

Psilocybin 
Partial 

Agonist 
PI Hydrolysis 33.8% 

Phosphoinositide 

hydrolysis 
PC12 Rabin et al, 2002 

Ritanserin Antagonist 
5-HT2A 

internalization 

 
Immunofluorescence 

 
Willins et al, 1999 

Roxindole Antagonist no change 0% Depletion of  [3H]PI CHO cells 
Newman-Tancredi et al, 

2002 

 

 

 

  

2
2
0
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