
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Large-Scale Code Clone Detection

Permalink
https://escholarship.org/uc/item/45r2308g

Author
Sajnani, Hitesh

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45r2308g
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Large-Scale Code Clone Detection

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Hitesh Sajnani

Dissertation Committee:
Professor Cristina Lopes, Chair

Professor André van der Hoek
Professor James A. Jones

2016

Portions of Chapter 3 c© 2016 IEEE
Portions of Chapter 4 c© 2016 IEEE

Portions of Chapter 5 c© 2015 Wiley & Sons, Inc.
Portions of Chapter 6 c© 2016 IEEE
Portions of Chapter 7 c© 2014 IEEE

All other materials c© 2016 Hitesh Sajnani

DEDICATION

To my parents, sisters, beloved wife, and pramukh swami maharaj.

ii

Contents

Page

LIST OF FIGURES vi

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Motivation . 2
1.2 Terminology . 4

1.2.1 Code Clone Terms . 4
1.2.2 Code Clone Types . 4

1.3 Problem Statement . 6
1.4 Research Questions . 7
1.5 Thesis . 8
1.6 Contributions . 9

2 Clone Detection: Background and Related Work 11
2.1 Why Do Code Clones Exist? . 11
2.2 Issues Due to Code Cloning . 14
2.3 Applications of Clone Detection . 14
2.4 Clone Detection Techniques and Tools . 16
2.5 Measures to Evaluate Clone Detection Techniques 19
2.6 Impact of Code Cloning on Software Systems 20
2.7 Chapter Summary . 22

3 SourcererCC: Accurate and Scalable Code Clone Detection 23
3.1 Problem Formulation . 24
3.2 Overview of the Approach . 28
3.3 Filtering Heuristics to Reduce Candidate Comparisons 30

3.3.1 Sub-block Overlap Filtering . 30
3.3.2 Token Position Filtering . 35

3.4 Clone Detection Algorithm . 36

iii

3.4.1 Partial Index Creation . 37
3.4.2 Clone Detection . 39
3.4.3 Candidate Verification . 42
3.4.4 Revisiting the Research Questions . 43

3.5 Implementation . 45
3.5.1 Parser . 45
3.5.2 Indexer . 49
3.5.3 Searcher . 50

3.6 Chapter Summary . 50

4 Evaluation of SourcererCC 51
4.1 Execution Time and Scalability . 53
4.2 Experiment with Big IJaDataset . 55
4.3 Recall . 57

4.3.1 Recall Measured by the Mutation Framework 58
4.3.2 Recall Measured by BigCloneBench 61

4.4 Precision . 65
4.5 Summary of Recall and Precision Experiments 67
4.6 Sensitivity Analysis of the Similarity Threshold Parameter 68
4.7 Manual Inspection of Clones Detected by SourcererCC 72
4.8 Threats to Validity . 78
4.9 Chapter Summary . 79

5 SourcererCC-D: Parallel and Distributed SourcererCC 80
5.1 Introduction . 80
5.2 Architecture . 82
5.3 Evaluation . 84

5.3.1 Evaluation Metrics . 84
5.3.2 Experiments to Measure the Speed-up 86
5.3.3 Experiments to Measure the Scale-up 88
5.3.4 Detecting Project Clones in the MUSE Repository 89

5.4 Chapter Summary . 93

6 SourcererCC-I: Interactive SourcererCC for Developers 95
6.1 Introduction . 95
6.2 A Preliminary Survey . 97
6.3 SourcererCC-I’s Architecture . 98
6.4 SourcererCC-I’s Features . 101
6.5 Related Tools . 104
6.6 Tool Artifacts . 106
6.7 Chapter Summary . 107

7 Empirical Applications of SourcererCC 108
7.1 Introduction . 109

iv

7.2 Study 1. A Comparative Study of Bug Patterns in Java Cloned and Non-
cloned Code . 112
7.2.1 Research Questions . 112
7.2.2 Study Design . 114
7.2.3 Study Results . 120
7.2.4 Conclusion (Study 1) . 130

7.3 Study 2. A Comparative Study of Software Quality Metrics in Java Cloned
and Non-cloned Code . 131
7.3.1 Research Questions . 131
7.3.2 Dataset . 132
7.3.3 Clone Detection . 132
7.3.4 Software Quality Metrics . 135
7.3.5 Summary of the Results . 135
7.3.6 Conclusion (Study 2) . 137

7.4 Threats to Validity . 138
7.5 Reproducibility . 140
7.6 Chapter Summary . 140

8 Conclusions and Discussion 142
8.1 Dissertation Summary . 142
8.2 The Surprising Effectiveness of the Bag-of-tokens model and Overlap Similar-

ity Measure in Clone Detection . 145
8.3 Lessons Learned During SourcererCC’s Development 146
8.4 Going Forward . 149

Bibliography 151

Appendices 161
A Subject Systems . 162
B Running SourcererCC-D Using Amazon Web Services (AWS) 164
C Experience Report on Using AWS . 167
D Cost of Running the Experiments Using AWS 169

v

List of Figures

Page

1.1 Type 1 Example Clone-pair . 5
1.2 Type 2 Example Clone-pair . 5
1.3 Type 3 Example Clone-pair . 6
1.4 Type 4 Example Clone-pair . 6

3.1 Code blocks represented as a set of (token, frequency) pairs 25
3.2 Methods from Apache Cocoon Project . 26
3.3 Growth in number of candidate comparisons with the increase in the number

of code blocks . 27
3.4 SourcererCC’s clone detection process . 29
3.5 Sample code fragment as input to the parser 46
3.6 Output produced by the parser . 46
3.7 Delimiters used in the output file produced by the parser 47
3.8 (Token, Frequency) pair representation in the output format 47

4.1 Summary of Results. F-Measure is computed using Recall (BigCloneBench)
and Precision . 68

4.2 Change in number of clones reported (top-center), number of candidates com-
pared (bottom-left), and number of tokens compared (bottom-right) with the
change in similarity threshold. 70

4.3 Sample code clones observed in the subject systems. 1A & 1B: Cross-cutting
Concerns; 2: Code Generation; 3: API/Library Protocols; 4A, 4B & 5A, 5B:
Replicate and Specialize; 6A & 6B: Near-Exact Copy 76

5.1 Shared-disk Architectural Style . 82
5.2 Shared-memory Architectural Style . 82
5.3 SourcererCC-D’s Clone Detection Process 83
5.4 Speed-up . 85
5.5 Scale-up . 86
5.6 Speed-up . 87
5.7 The number of clone-pairs detected increases exponentially with the increase

in number of code blocks . 88
5.8 Scale-up . 89
5.9 Size distribution of projects. Size is defined as Number of Files 91
5.10 Size distribution of projects. Size is defined as LOC 91

vi

6.1 Industrial Experience of Survey Participants 97
6.2 SourcererCC-I’s Architecture . 99
6.3 Eclipse’s screenshot showing clones detected using SourcererCC-I 105

7.1 Size distribution of projects. Size is defined as non-commented lines of code 115
7.2 Box plot showing defect density of cloned-code and non-cloned code. Note

that defect density of cloned-code is less than that of non-cloned code for all
the categories (left). For primary category, the defect density of cloned-code
is 3.7 times less than non-cloned code (center). For secondary category the
difference is zero (right), implying that most of the bugs in cloned code are of
secondary category which consists of least problematic categories in FindBugs. 121

7.3 Scatter plots of method size and bug patterns for only cloned, only non-cloned,
and all the methods (left-right) reveal no identifiable relationship. 125

7.4 Bug patterns in cloned code classified into various categories 126
7.5 Size distribution of the projects. The X-axis represents the number of Java

Statements in log scale (binned). The Y-axis shows the percentage of projects
in each bin. 133

7.6 Distribution of subject systems measured using the number of cloned methods.
The X-axis shows the binned number of clones in log scale. The Y-axis shows
the percentage of systems in each bin. 134

7.7 Distribution of subject systems measured using the number of non-cloned
methods. The X-axis shows the binned number of non-cloned methods in log
scale. The Y-axis shows the percentage of systems in each bin. 134

B.1 SourcererCC-D’s Implementation Architecture 165

vii

List of Tables

Page

3.1 Source Term Mapping . 26
3.2 Global Token Frequency Map . 38

4.1 Clone Detection Tool Configurations . 52
4.2 Execution Time (or Failure Condition) for Varying Input Size 54
4.3 Cloning Mutation Operators . 59
4.4 Mutation Framework Recall Results . 60
4.5 BigCloneBench Clone Summary . 62
4.6 BigCloneBench Recall Measurements . 63
4.7 Tool Recall and Precision Summary . 66
4.8 Impact of change in the similarity threshold value on: (i) the number of clones

detected; (ii) the total number of candidates; and (iii) the total number of
tokens compared. 71

5.1 Speed-up results . 87
5.2 Scale-up results . 88

7.1 Results. Correlation column shows Pearson correlation coefficient between
method size and # of bug patterns. Defect density (size control) shows defect
density of non-cloned code when (i) using the same number of non-cloned
methods as cloned code methods (Equal # Methods); and (ii) using non-
cloned methods whose LOC sums up to total cloned method LOC (Equal
LOC . 128

7.2 Software Quality Metrics . 136

A.1 Performance of the filtering technique by comparing the time taken and to-
tal number of comparisons done to detect clones with and without filtering
technique used . 163

viii

ACKNOWLEDGMENTS

One of the most important reasons I enjoyed my time at graduate school is because of my
relationship with my advisor - Prof. Cristina Lopes (Crista). My deepest gratitude to Crista
for these many years of guidance and patience in shaping me into an independent researcher.
She gave me the freedom to explore new research ideas, helped me when I faltered, and
always motivated me to do my best. I can’t think of a better mentor than Crista.

I thank my other committee members: Prof. André van der Hoek and Prof. James Jones
for their precious comments on the draft of this dissertation and many thought-provoking
conversations during my defense that helped me to make this dissertation better. Many
thanks to Prof. Nenad Medivdovic and Prof. Alex Ihler for being part of my advancement
committee.

I would like to express my appreciation to my mentors who have given me an industry
perspective on research during my internships. In particular, Prof. Chen Li at UCI; Ravindra
Naik and Arun Bahulkar at Tata Research; and Rob DeLine, Mike Barnett, Jacek Czerwonka,
and Wolfram Schulte at Microsoft Research.

I would like to express my gratitude to the many collaborators in the research community who
have helped me to develop my work. My deepest gratitude to Vaibhav Saini, my partner
in crime in developing SourcererCC. My thanks to Prof. Chanchal Roy for his constant
academic support. Thank you to Jeff Svajlenko and Prof. Roy for their excellent help with
the evaluation of SourcererCC. Thank you to Prof. Rainer Koschke for many supportive and
constructive comments in the early stages to improve my work.

During the course of my Ph.D., many close friends and family members stood by me through
my tough times. I am grateful to all my friends for their support. In particular, Neel, Purvesh
and Rupa for being there for me whenever I needed them. I am deeply indebted to my sisters
Puja and Neha (Nikky) for being such great friends and taking care of my parents back in
India while I was sailing through my graduate studies. I can’t thank them enough for all
the support and love they have given me. Soumya, my soul-mate, has truly been the most
exceptional partner I could wish for. She gave me all the motivation needed to get out of
graduate school. She made frequent trips to Irvine to help me through the tough times of
dissertation writing and presentation. I really admire her love for me and consider myself
blessed to have her in my life. Finally, I would like to thank my wonderful parents, who
have made countless sacrifices for the well-being and education of their children. They’ve
sacrificed their life to see me at where I am today. I wish I could learn to love the way they
love me. I dedicate this dissertation to them. I thank Lord Swaminarayan for blessing me
with such wonderful people in my life.

Funding Acknowledgment. For the majority of the time I was working on this disserta-
tion, I was supported by the National Science Foundation under Grant No. CCF-1218228.
Earlier in my graduate career, I was supported by NSF Grant No. CCF-1018374 and through
the Department of Informatics at UC Irvine.

ix

Relation to Prior Publications. I am grateful to the following publishers to incorporate
some of my previous work into this dissertation. Part of the material in Chapters 3 and 4 is
included with the permission of the IEEE and based on work in:

• Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C.; Lopes, C., “SourcererCC: Scaling
Code Clone Detection to Big-Code,” International Conference on Software Engineering
(ICSE), May 2016

Part of the material in Chapter 5 is included with the permission of the Wiley and Sons,
Inc. and based on work in:

• Sajnani, H.; Saini, V.; Lopes, C., “A Parallel and Efficient Approach to Large Scale
Clone Detection,” Journal of Software: Evolution and Process (JSEP), June 2015 vol.,
no. 27, pp. 402-429, doi: 10.1002/smr.1707

Part of the material in Chapter 6 is included with the permission of the IEEE and based on
work in:

• Saini, V.; Sajnani, H.; Kim, J.; Lopes, C., “SourcererCC and SourcererCC-I: Tools
to Detect Clones in Batch mode and During Software Development,” International
Conference on Software Engineering (ICSE), May 2016

Part of the material in Chapter 7 is included with the permission of the IEEE and based on
work in:

• Sajnani, H.; Saini, V.; Lopes, C., “A Comparative Study of Bug Patterns in Java
Cloned and Non-cloned Code” Source Code Analysis and Manipulation (SCAM),
2014 14th IEEE Working Conference on, pp.21-30, 28-29 Sept. 2014 doi: 10.1109/S-
CAM.2014.12

x

CURRICULUM VITAE

Hitesh Sajnani

EDUCATION

Doctor of Philosophy in Information and Computer Science 2016
University of California, Irvine Irvine, California

Master of Science in Information and Computer Science 2013
University of California, Irvine Irvine, California

Bachelor of Engineering in Computer Science 2007
Dharmsinh Desai Institute of Technology Nadiad, India

xi

ABSTRACT OF THE DISSERTATION

Large-Scale Code Clone Detection

By

Hitesh Sajnani

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2016

Professor Cristina Lopes, Chair

Clone detection locates exact or similar pieces of code, known as clones, within or between

software systems. With the amount of source code increasing steadily, large-scale clone

detection has become a necessity. Large code bases and repositories of projects have led

to several new use cases of clone detection including mining library candidates, detecting

similar mobile applications, detection of license violations, reverse engineering product lines,

finding the provenance of a component, and code search.

While several techniques have been proposed for clone detection over many years, accuracy

and scalability of clone detection tools and techniques still remains an active area of research.

Specifically, there is a marked lack in clone detectors that scale to large systems or reposito-

ries, particularly for detecting near-miss clones where significant editing activities may have

taken place in the cloned code.

The problem stated above motivates the need for clone detection techniques and tools that

satisfy the following requirements: (1) accurate detection of near-miss clones, where minor

to significant editing changes occur in the copy/pasted fragments; (2) scalability to hundreds

of millions of lines of code and several thousand projects; and (3) minimal dependency on

programming languages.

xii

To that effect, this dissertation presents SourcererCC, an accurate, near-miss clone detection

tool that scales to hundreds of millions of lines of code (MLOC) on a single standard machine.

The core idea of SourcererCC is to build an optimized index of code blocks and compare them

using a simple bag-of-tokens strategy, which is very effective in detecting near-miss clones.

Coupled with several filtering heuristics that reduce the size of the index, this approach is

also very efficient, as it reduces the number of code block comparisons to detect the clones.

This dissertation evaluates scalability, execution time, and accuracy of SourcererCC against

four state-of-the-art open-source tools: CCFinderX, Deckard, iClones, and NiCad. To mea-

sure scalability, the performance of the tools is evaluated on inter-project software repository

IJaDataset-2.0, consisting of 25, 000 projects, containing 3 million files and 250MLOC. To

measure precision and recall, two recent benchmarks are used: (1) a benchmark of real clones,

BigCloneBench, that spans the four primary clone types and the full spectrum of syntactical

similarity in three different languages (Java, C, and C#); and (2) a Mutation/Injection-based

framework of thousands of fine-grained artificial clones. The results of these experiments

suggest that SourcererCC improves the state-of-the-art in code clone detection by being the

most scalable technique known so far, with accuracy at par with the current state-of-the-art

tools.

Additionally, this dissertation presents two tools built on top of SourcererCC: (i) SourcererCC-

D: a distributed version of SourcererCC that exploits the inherent parallelism present in

SourcererCC’s approach to scale horizontally on a cluster of commodity machines for large

scale code clone detection. Our experiments demonstrate SourcererCC-D’s ability to achieve

ideal speed-up and near linear scale-up on large datasets; and (ii) SourcererCC-I: an inter-

active and real-time version of SourcererCC that is integrated with the Eclipse development

environment. SourcererCC-I is built to support developers in clone-aware development and

maintenance activities. Finally, this dissertation concludes by presenting two empirical stud-

ies conducted using SourcererCC to demonstrate its effectiveness in practice.

xiii

Chapter 1

Introduction

Code clone detection locates exact or similar pieces of code, known as clones, within or

between software systems. Clones are created for a number of reasons including copy-paste-

modify programming practice, accidental similarity in the functionality of the code, plagia-

rism, and code generation [104]. Code clone detection techniques and tools have long been an

area of research as software practitioners depend on them to detect and manage code clones.

Clone management is important in order to maintain software quality, detect and prevent new

bugs, and also to reduce development risks and costs [104, 103]. Clone research studies also

depend on the availability of quality tools [1]. According to Rattan et al., at least 70 diverse

tools have been presented in the literature [1]. While several techniques have been proposed

for clone detection over many years [89, 53, 94, 60, 6, 11, 74, 54, 69, 76, 58, 73, 93, 26, 122],

accuracy and scalability of clone detection tools and techniques still remains an active area

of research.

1

1.1 Motivation

With the amount of source code increasing steadily, large-scale clone detection has become

a necessity. Large code bases and repositories of projects have led to several new use cases

of clone detection including mining library candidates [51], detecting similar mobile appli-

cations [21], license violation detection [73, 39], reverse engineering product lines [44, 39],

finding the provenance of a component [31], and code search [65, 64]. While presenting new

opportunities for application of clone detection, these modern use cases also pose scalability

challenges.

To further illustrate the problem and its scale in practice, consider a real life scenario where

a retail banking software system is maintained by Tata Consultancy Services (TCS). A team

at TCS deployed the banking system for many different banks (clients) and maintained a

separate code base for each of these banks. After following this practice for a while, they

decided to form a common code base for all these banks to minimize expenses occurring due

to: (i) duplicated efforts to deliver the common features; and (ii) separately maintaining

existing common parts of different code bases.

As part of this bigger goal, the team decided to first identify common code blocks across all

the code bases. In order to assess the feasibility of using clone detection tools for this task,

the team1 ran CloneDR, an AST based commercial clone detection tool on ML0000, a single

COBOL program consisting of 88K LOC. The clone detection process took around 8 hours

on an IBM T43 Thinkpad default specification2 machine. Each bank’s code base (8 of them)

ran into many million lines of code spanning across thousands of such COBOL programs in

different dialects, posing a major scalability challenge. Faced with this challenge, the team

made another attempt that was unsuccessful with a tool called Simian before deciding not

to pursue this exercise further. More details about the case study are available at [120].

1The author was part of the team that carried out the analysis
2i5 processor, 8 GB RAM and 500 GB disk storage

2

This situation at TCS is not unique and in fact it represents the state of many companies

in the service industry that are now moving away from the green field development model

and adopting the packaging model to build and deliver software. In fact, as Cordy points

out, it is a common practice in industry to clone a module and maintain it in parallel [27].

Similarly in open source development, developers often clone modules or fork projects to

meet the needs of different clients, and may need large-scale clone detectors to merge these

cloned systems towards a product-line style of development.

While the above use cases are more pertinent to industry, researchers are also interested in

studying cloning in large software ecosystems (e.g. Debian), or in open-source development

communities (e.g. GitHub) to assess its impact on software development and its properties.

However, very few tools can scale to the demands of clone detection in very large code

bases [115, 103]. For example, Kim and Notkin [67] reflected how they wanted to use clone

detection tools for doing origin analysis of software files but were constrained by its speed due

to n-to-n file comparison. In his work on using clone detection to identify license violations,

Koschke [73] reflects the following: “Detecting license violations of source code requires to

compare a suspected system against a very large corpus of source code, for instance, the

Debian source distribution. Thus, code clone detection techniques must scale in terms of

resources needed”. In 2014, Debian had 43,0003 software packages and approx. 323 million

lines of code. In one of their studies to investigate cloning in FreeBSD, Livieri et al. [83]

motivate the need of scalable code clone detection tools as follows: “Current clone detection

tools are incapable of dealing with a corpus of this size, and might either take literally months

to complete a detection run, or might simply crash due to lack of resources.”

As a result, the opportunities presented by the modern use cases of clone detection, along

with the scalability challenges associated with them, certainly make clone detection an active

area of research in the software engineering research community.

3https://en.wikipedia.org/wiki/Debian

3

1.2 Terminology

The dissertation uses the following well-accepted definitions of code clones and their types [13,

104]:

1.2.1 Code Clone Terms

Code Fragment or Block: A continuous segment of source code, specified by the triple

(l, s, e), including the source file, l, the start line of the fragment, s, and the end line, e.

Clone Pair: A pair of code fragments that are similar, specified by the triple (f1, f2, φ),

including the similar code fragments f1 and f2, and their clone type φ.

Clone Class: A set of code fragments that are similar. Specified by the tuple (f1, f2, ..., fn, φ).

Each pair of distinct fragments is a clone pair: (fi, fj, φ), i, j ∈ 1..n, i 6= j.

Intra-Project Clone: A clone pair where code fragments f1 and f2 are found in the same

software system.

Inter-Project Clone: A clone pair where code fragments f1 and f2 are found in different

software systems.

Near-miss Clone: Code fragments that have minor to significant editing differences be-

tween them.

1.2.2 Code Clone Types

Type-1 (T1): Identical code fragments, except for differences in white-space, layout, and

comments. Figure 1.1 shows an example of a Type-1 clone pair.

4

if (a>=b) {

c=d+b; // Comment 1

d=d+1;

} else

c=d-a; // Comment 2

if (a >= b)

{

c = d + b; // MyComment 1

d = d + 1;

}

else

c = d - a; // MyComment 2

Figure 1.1: Type 1 Example Clone-pair

Type-2 (T2): Identical code fragments, except for differences in identifier names and literal

values, in addition to Type-1 clone differences. Figure 1.2 shows an example of a Type-2

clone pair.

if (a>=b) {

c=d+b; // Comment 1

d=d+1;

} else

c=d-a; // Comment 2

if (a >= y)

{

x = d + y; // MyComment1

d = d + 10;

}

else

x = d a; // MyComment2

Figure 1.2: Type 2 Example Clone-pair

Type-3 (T3): Syntactically similar code fragments that differ at the statement level. The

fragments have statements added, modified and/or removed with respect to each other, in

addition to Type-1 and Type-2 clone differences. Figure 1.3 shows an example of a Type-3

clone pair.

5

if (a>=b) {

c=d+b; // Comment 1

d=d+1;

} else

c=d-a; // Comment 2

if (a >= y)

{

x = d + y; // MyComment1

}

else {

x = d - a - 10; // MyComment2

}

Figure 1.3: Type 3 Example Clone-pair

Type-4 (T4): Syntactically dissimilar code fragments that implement the same function-

ality. They are also known as semantic or functional clones. Figure 1.4 shows an example

of a Type-4 clone pair.

int i, j=1;

for (i=1; i<= VALUE; i++)

j=j*i;

int factorial(int n)

{

if (n == 0)

return 1;

else

return n * factorial(n-1);

}

Figure 1.4: Type 4 Example Clone-pair

This dissertation is limited to the first three types of clones. Type-4 or semantic clones are

beyond the scope of this dissertation.

1.3 Problem Statement

While a few novel algorithms [50, 51, 83] in the last decade demonstrated scalability, they

do not support Type-3 near-miss clones, where minor to significant editing activities might

have taken place in the copy/pasted fragments. These tools therefore miss a large portion of

6

the clones, since there are more number of Type-3 clones in the repositories than the other

types [103, 106, 114]. Furthermore, the ability to detect Type-3 clones is most needed in

large-scale clone detection applications [103, 65, 21].

Many techniques have also been proposed to achieve a few specific applications of large-scale

clone detection [73, 65, 21], however, they make assumptions regarding the requirements of

their target domain to achieve scalability. For example, detecting only file-level clones to

identify copyright infringement, or detecting clones only for a given block (clone search) in a

large corpus. These domain-specific techniques are not described as general large-scale clone

detectors, and face significant scalability challenges for general clone detection.

The scalability of clone detection tools is also constrained by the computational nature

of the problem itself. A fundamental way of identifying if two code blocks are clones is

to measure the degree of similarity between them, where similarity is measured using a

similarity function. A higher similarity value indicates that code blocks are more similar.

Thus we can consider pairs of code blocks with high similarity value as clones. In other

words, to detect all the clones in a system, each code block has to be compared against every

other code block (also known as candidate code blocks), bearing a prohibitively O(n2) time

complexity. Hence, it is an algorithmic challenge to perform this comparison in an efficient

and scalable way. This challenge, along with modern use cases and today’s large systems

make large-scale code clone detection a difficult problem.

1.4 Research Questions

The problem stated above can be characterized in the form of the following research ques-

tions.

Research Question 1. [Design] - How can we be more robust to modifications in cloned

7

code to detect Type-3 clones?

Research Question 2. [Computational Complexity] - How can we reduce the O(n2)

candidate comparisons to O(c.n), where c << n?

Research Question 3. [Engineering] - How can we make faster candidate comparisons

without requiring much memory?

Research Question 1 has direct implication on the accuracy of the clone detection technique,

and Research Questions 2 & 3 focus on improving the scalability and efficiency of the clone

detection technique.

1.5 Thesis

The above research questions motivate the need for clone detection techniques and tools that

satisfy the following requirements: (1) accurate and fast detection of near-miss clones, where

minor to significant editing changes occur in the copy/pasted fragments; (2) scalability to

hundreds of millions of lines of code and several thousand projects without requiring special

hardware; and (3) minimal or no dependency on programming languages.

To that effect, I propose SourcererCC, an accurate, near-miss clone detection tool that scales

to hundreds of millions of lines of code (MLOC) on a single standard machine. The core

idea of SourcererCC is to build an optimized index of code blocks and compare them using a

simple bag-of-tokens4 representation, which is resilient to Type-3 changes. SourcererCC uses

several filtering heuristics from the Information Retrieval domain to reduce the size of the

index, which in turn, significantly reduces the number of code block comparisons to detect

clones. SourcererCC also exploits the ordering of tokens in a code block to measure a live

upper-bound on the similarity of code blocks in order to reject or accept a clone candidate

4Similar to the popular bag-of-words model [128] in Information Retrieval

8

with minimal token comparisons.

I can now state my thesis as follows.

SourcererCC improves the state-of-the-art in code clone detection by being the most scalable

technique known so far, with accuracy on a par with the current state-of-the-art tools.

CCFinderX [61], Deckard [55], iClones [40], and NiCad [28] are described as the state-of-the-

art in the literature as well as in recent clone detection benchmarking experiments [117, 118].

CCFinderX is the most popular and successful tool that has been used in many clone studies.

Deckard, iClones and NiCad are popular examples of modern clone detection tools that

support Type-3 clone detection. I evaluate the scalability, execution time and accuracy

(precision and recall) of SourcererCC against these four state-of-the-art tools.

To measure scalability, I evaluate the performance of the tools on a large inter-project soft-

ware repository IJaDataset-2.0 [3] consisting of 25,000 projects containing 3 million files and

250 MLOC.

To measure recall, I use two recent benchmarks: (1) a benchmark of real clones, Big-

CloneBench, that spans the four primary clone types and the full spectrum of syntactical

similarity in three different languages (Java, C, and C#); and (2) a Mutation/Injection-

based framework of thousands of fine-grained artificial clones. In order to measure precision,

I conduct blind user studies where five software engineering researchers validate 2,000 clone

pairs reported by the clone detection tools.

1.6 Contributions

In the process of investigating the above claims, this dissertation makes the following con-

tributions:

9

(i) An accurate and fast approach to clone detection that is both scalable to very large

software repositories and robust against code modifications. (Chapter 3)

(ii) SourcererCC, an accurate and fast clone detection tool based on the above approach that

scales to hundreds of millions of lines of code on a single standard machine. (Chapter 3)

(iii) Experiments to evaluate performance (scalability and execution time) and quality (recall

and precision) of SourcererCC against existing state-of-the-art tools. The results of these

experiments can be used as benchmarks for future clone detection tools and techniques.

(Chapter 4)

(iv) SourcererCC-D, a distributed version of SourcererCC that exploits the inherent paral-

lelism in the SourcererCC’s approach to efficiently scale to large software repositories on a

cluster of machines. (Chapter 5)

(v) SourcererCC-I, an interactive version of SourcererCC that is integrated with Eclipse IDE

to help developers in clone-aware development and maintenance activities. (Chapter 6)

(vi) Large-scale empirical studies conducted using SourcererCC to understand the relation-

ship between code quality (software metrics and bug patterns) and code clones. This demon-

strates SourcererCC’s applicability in practice. (Chapter 7)

10

Chapter 2

Clone Detection: Background and

Related Work

Code cloning has been a topic of inquiry for a long time and there is a large amount of

work done in this area. In this chapter, we review the research work in clone detection

by summarizing some of the most comprehensive surveys conducted in this field [104, 107,

71]. First, we discuss various reasons for the existence of clones. Second, we discuss the

implications of code cloning in software systems. Third, we highlight various applications

of clone detection research in the context of software engineering. Next, we review various

clone detection techniques and tools and discuss their strengths and limitations. Finally, we

conclude by reviewing the studies that assess the impact of code cloning on software systems.

2.1 Why Do Code Clones Exist?

While clones can be accidental, most often several factors contribute to the creation of code

clones. Below we summarize the main factors that lead to cloning in software systems,

11

according to the literature.

1. Cloning as a Way to Reuse

One of the most prominent ways to reuse code is through the copy-paste-modify programming

practice. This practice, in turn, creates clones. Kasper and Godfrey [63] found clones in

systems with similar functionality that later diverged significantly as the systems evolved.

They noticed that the developers often fork the repository of existing similar solutions and

then add or modify the code to adapt to the task at hand (e.g. in case of device drivers).

Furthermore, developers often face issues in understanding software systems in a new domain.

This forces them to use the example-oriented programming by copying and adapting code

already written in the system.

2. Cloning for Maintenance Benefits

Clones are introduced in the systems to reduce the risk of new code breaking the system.

Cordy [27] describes that in some domains (e.g. Banking and Insurance) developers are often

asked to reuse the existing code by copying and adapting it to the new product requirements

because existing code is already well tested.

In many real time applications and also in the financial domain (mainframe programs),

monolithic code is preferred over modularized code, as function calls are expensive. This

practice often leads to code duplication for performance reasons.

Sometimes clones can also be desirable due to separation of concerns. Rieger [101] points

out that since two cloned code fragments are independent of each other, they can evolve at

different paces providing separation of concerns. This might be desirable in the absence of

effective test strategies.

As software evolves, even code written with good abstraction may no longer represent a

single, common abstraction, but instead become condition-laden procedure which interleaves

a number of functionalities. In such scenarios, developers re-introduce duplication by in-

12

lining the abstracted code back into every caller to make the code maintainable.

3. Limitation of Programming Languages/Frameworks

Clones can be introduced due to the limitations of programming languages, especially when

the languages in question do not have sufficient abstraction mechanisms. For example,

many procedural language do not have features like inheritance, generic types, templates,

and parameter passing, making it difficult to write reusable code [10].

Clones can also be introduced by frameworks that use code generators to automatically

generate starter code. Some examples include generating getters and setters methods for

class attributes in Java, or generating classes to access database fields.

4. Software Development Practices

Software development practices often influence how code is written. For example, in practice,

developers are often subjected to pressure due to release deadlines in a project. These

deadlines often force developers to solve problems at hand by copy-pasting existing code and

adapting to current needs. Moreover, often in certain institutions or companies, developers

do not have ’write’ access to the reused code for policy reasons. In such cases, copying code,

and modifying it, is the only available option [27].

5. Cloning by Chance (Accidental Cloning)

Clones may also be introduced unintentionally. For example, libraries or APIs often have

a specific ordering of function calls or tasks to be performed to use them [63]. Such li-

brary usages may introduce accidental clones. Also, coincidentally, different developers may

implement the same logic in a similar way creating accidental clones.

13

2.2 Issues Due to Code Cloning

Code cloning can have severe impacts on the quality, re-usability and maintainability of a

software system. Below we list some of the well-known issues of having clones in the system.

(i) Code cloning may increase the probability of bug propagation if the original code frag-

ments contain a bug [81].

(ii) The process of cloning a code fragment can be error prone and may introduce new

bugs in the system [11]. For example, developers may accidentally miss updating all the

references of the modification often leading to inconsistent and incomplete changes in the

copied fragment.

(iii) If a bug is found in the cloned code, all of its similar counterparts need to be checked if

they contain a bug as it is likely that the bug may already be present at the time of reuse [92].

(iv) Cloning may also increase the size of a software. This may be an issue for systems with

hardware constraints, as hardware might need an upgrade with the increase in size of the

software [63].

(v) Cloning may break design abstractions or indicate lack of inheritance. Thus, parts of

code with cloning are sometimes difficult to reuse [92].

2.3 Applications of Clone Detection

Apart from maintenance benefits, there are several other benefits and applications of detect-

ing clones listed as follows:

14

1. Plagiarism Detection. Plagiarism detection is the process of locating instances of

plagiarism within source code. It is one of the areas where many clone detection techniques

have been effectively used [86, 52, 23].

2. Library or API detection. Burd and Munro [17] and Ishihara et al. [51] reflect that

frequent cloning of files or large code blocks may help in identifying potential candidates for

forming a libarary or an API.

3. Software Provenance Analysis. Clone detection can also be useful for identifying the

origin of software components. Julius et al. [31] recover provenance of software entities for

technical and ethical concerns using code clone detection in large software repositories.

4. Multi-version Program Analysis. Kim and Notkin [67] used clone detection as one of

the techniques to match program element across multiple versions to carry out Multi-version

program analyses.

5. Program Understanding. Clone detection can also be useful for program comprehen-

sion. For example, if the functionality of a code block is known, it helps to comprehend the

functionalities of other classes containing similar copies of that block [101].

6. License Violation and Copyright Infringement. Software copyright is used by

proprietary companies or even many open source foundations (e.g. Apache) to prevent the

unauthorized copying of their software. It is one of the most popular and practical uses of

modern clone detectors. Koschke [73] used a suffix tree based clone detection technique to

identify license violations by querying a code block against a large corpus of open source

software systems having different licenses.

7. Reverse Engineering Product Line Architecture. This is another modern use case

of clone detectors. The goal is to identify commonalities in the code bases to reverse engineer

the common features in the product and its derivatives. Hemel and Kosckhe [44] used code

15

clone detection techniques to identify the issues in the Linux code base because of increasing

fragmentation of Linux derivatives.

8. Code Search. Recently researchers have also used cloning for assisting code search [65,

64]. Keivanloo et al. [66] engage real-time clone detection within their code search process

to improve their performance. They use code blocks from the initial few results of a code

search query to detect similar code blocks in order to improve the recall of code search.

Detection of license violation, reverse engineering of product lines, and code search are some

of the modern use cases that require clone detectors to be highly scalable to very large

datasets.

2.4 Clone Detection Techniques and Tools

Several techniques have been proposed for clone detection over many years [89, 53, 94, 60,

6, 11, 74, 54, 69, 76, 58, 73, 93, 26, 122]. These techniques differ in many dimensions

ranging from the type of detection algorithm they use to the source code representation they

operate on. Techniques using various representations include Tokens [60, 6], Abstract Syntax

Trees (AST) [11, 74, 54], Program Dependence Graphs [69, 76], Suffix Trees [11, 58, 60, 73],

Text representations [28, 87, 26], and Hash representations [122]. Each of these different

approaches have their own merits and are useful for different use cases. For example, AST

based techniques have high precision, and are useful for refactoring of clones, but may

not scale. Moreover, token based techniques have high recall but may yield clones which

are not syntactically complete [14]. They are useful where high recall is important. An

excellent survey highlighting the strength and limitation of various clone detection techniques

is available at [107].

Below we provide a brief description of each of these techniques.

16

1. Text or String-based Techniques

Text/String-based techniques use basic text transformation (e.g. stop words removal, stem-

ming, etc.) on source code and use string matching algorithms to detect clones. These

techniques mostly differ from one another at: (i) the granularity of the matching unit; and

(ii) the string matching algorithms. For example, Cordy et al.’s NiCad [28] finds near-miss

clones using an efficient text line comparison technique based on longest common subse-

quence algorithm. Similarly, Marcus and Maletic [87] apply Latent Semantic Indexing (LSI)

on function text to identify high level concept clones.

2. Token-based Techniques

Token-based techniques differ from string-based techniques in that they use more sophisti-

cated transformation on the source code to construct a token stream. They mostly use a

lexical analyser to parse the source code, apply rule-based transformation, and generate a

stream of tokens. The presence of such tokens makes it possible to detect code portions

that have different syntax but have similar meaning and also filter out code portions with

specified structure patterns.

Baker’s Dup [6] and Kamiyo et al.’s CCFinderX [61] are two popular token-based clone

detectors. SourcererCC also uses this approach although with a very light-weight lexer to

have minimal dependency on the programming language.

3. Abstract Syntax Tree-based Techniques

AST-based techniques transform the source code into a parse tree and use graph or tree

matching algorithms to detect similar subtrees [11, 55, 74]. While these techniques are

precise, they often face scalability issues as parse trees are rich in information and hence

consume a high amount of memory. AST-based clone detectors are a popular choice for

building clone removal/refactoring tools.

17

4. PDG-based Techniques

PDG-based approaches work in a way similar to AST-based techniques except that they

represent the program in the form of a program dependence graph. PDG contains the

control flow and data flow information of a program and hence it carries more semantic

information than an AST. As a result, PDG-based approaches are more robust to insertion

and deletion of code, non-contiguous code, reordered statements, but similar to AST-based

techniques they are not scalable to large programs.

Komondoor and Horowitz [70] were the first to use PDG to detect clones. They represent a

program as a dependency graph, and transform the problem of clone detection into finding

isomorphic subgraphs over PDG. Krinke [77] extended their work to show how the k-length

pattern matching algorithm can be used for detecting maximal similar subgraphs in a more

efficient way.

5. Metrics-based Techniques

Metrics-based techniques characterize code fragments using a set of metrics. Code fragments

with similar metric values are identified as code clones. Cyclomatic complexity, function

points, lines of code, etc. are examples of possible metrics. Mayrand et al. [90] calculate 21

metrics for each function unit of a program and identify functions with similar metric values

as code clones. They found that metrics-based technique is more effective for detecting clones

at a high level of granularity (e.g. class or file-level).

6. Hybrid Approaches

Researchers have also combined multiple techniques or program representations to achieve

hybrid techniques for clone detection. For example, Jiang et al. [55] propose a hybrid ap-

proach to detect clones using AST and Local Sensitive Hashing technique (LSH). They first

compute vectors representing the structural information within ASTs in the Euclidean space

and then use LSH to cluster similar vectors. Vectors in the same cluster are considered

clones. They found that using LSH to compare vectors is much more efficient than compar-

18

ing the AST nodes. Koschke et al. [75] make use of token-based suffix trees to represent the

information in the ASTs. Hence, instead of comparing AST nodes directly, they compare

nodes of suffix tree representing AST nodes. This hybridization scales linearly in time, which

makes it very attractive for large systems.

Many of the above code clone techniques have been useful in software maintenance use cases

where a fragment of the code or smaller subset of the code clones have to be detected in

a project [107, 96, 53]. While previous research has mainly focused on identifying code

fragments on a per-project basis, several new use cases have emerged, identifying the need

for detecting all the clones in the system or a family of systems. These use cases including

detection of license violation [73, 39], reverse engineering the product lines [44, 39], finding

the provenance of a component [31], and even code search [65, 64] have redefined scalability.

This presents new research challenges for code clone detection techniques - How to scale to

large repositories while also being accurate?

2.5 Measures to Evaluate Clone Detection Techniques

There are several measures with which the tools can be evaluated or compared against each

other. These measures not only help evaluate the tools but also allow users to pick the right

one for a particular purpose of interest. These measures are also desirable properties of clone

detection tools and techniques.

Below we list some of the well-known measures used in the literature for comparing different

clone detection tools or techniques [55, 107, 109, 53]:

Precision. The tool should not detect instances of code blocks which are not clones i.e.,

low false positive rate.

Recall. The tool should be able to detect most or all of the clones of the subject system.

19

Robustness. The tool should be able to detect clones of various clone types including

near-miss clones with high precision and recall.

Scalability. The tool should be able to detect clones in large software systems and reposi-

tories with reasonable memory usage.

Execution Time. The tool should detect clones in a reasonable amount of time depending

on the size of the input.

Portability. The tool should have minimal dependency on the target platform or language

and should be easy enough to adapt to various languages and dialects.

2.6 Impact of Code Cloning on Software Systems

Impact of code cloning on software systems has long been a topic of inquiry. Traditionally

cloning has always been looked upon as a bad practice in the context of software maintenance.

While there are many negative effects of code cloning (see Section 2.2) [57, 38, 84, 77, 127, 59],

the widespread presence of clones has motivated researchers to dig deeper and understand

the usage scenarios.

Kasper et al. [63] presented eleven patterns by examining clones in two systems. They found

out that not all usage patterns have negative consequence and some may even have positive

consequence on quality.

Ossher et al. [96] looked at circumstances of file cloning in open source Java systems and

classified the cloning scenarios into good, bad, and ugly. These scenarios included good use

cases like extension of Java classes and popular third-party libraries, both large and small.

They also found ugly cases where a number of projects occur in multiple online repositories,

or have been forked, or were copied and divided into multiple subprojects. From a software

engineering standpoint, some of these situations are more legitimate than others.

20

Kim et al. [68] studied clone evolution in two open source systems. They found that most

of the clone pairs are short lived and about 72% of the clone pairs diverge within eight

commits in the code repository. They found that several clones exist by design and cannot

be refactored because of the limitation of programming language or it would require a de-

sign change. To that end, de Wit et al. [32] proposed CLONEBOARD, an Eclipse plug-in

implementation to track live changes in clones and offering several resolution strategies for

inconsistently modified clones. They conducted a user study and found that developers see

the added value of the tool but have strict requirements with respect to its usability.

Cordy [25] analyzes clones and intentions behind cloning of a financial institution system

and argues that external business factors may facilitate cloning. He notes that financial

institutions avoid situations that can break the existing code under any circumstances. Ab-

stractions might introduce dependencies, and modifying such abstractions induces the risk

of breaking existing code. Cloning minimizes this risk as code is maintained and modified

separately, localizing the risk of errors to a single module. Similarly, Rajapakse et al. [100]

found that reducing duplication in a web application only had negative effects on the mod-

ifiability of an application. He notes that after significantly reducing the size of the source

code, a single change required testing of a vastly larger portion of the system.

Rahman et al. [98] investigate the effect of cloning on defect proneness on four open source

systems. They looked at the buggy changes and explored their relationship with cloning.

They did not find evidence that cloned code is riskier than non-cloned code.

Brutnik et al. [16] use clone detection techniques in a novel way to find cross-cutting concerns

in the code. They manually identify five specific cross-cutting concerns in an industrial C

system and analyze to what extent clone detection is capable of finding them. The initial

results favorable and imply that clone detectors can certainly be used for building automated

“aspect miner”.

21

Sajnani et al. [110] conducted a comparative analysis of bug patterns in Java cloned and

non-cloned code on 31 Apache Java projects. They found that the defect density of cloned

code is in fact less 2 times less than of non-cloned code. Moreover, they found that about

75% of the times, a bug pattern is also duplicated when the code is cloned.

2.7 Chapter Summary

This chapter provided a brief overview of the research in the area of code clone detection.

Clone detection is an active area of research and there is a large amount of work in the

literature spanning from creating taxonomy of clones, to understanding the reasons behind

it, to developing tools and techniques to detect, remove and even manage clones. There are

measures designed and borrowed from information retrieval field to compare and evaluate

tools against each other.

While traditionally clone detection tools have been primarily designed for maintenance tasks,

several modern use cases have posed new challenges in this area. This has revived the interest

of the community in building accurate and scalable clone detection tools and techniques

that can efficiently scale to large software repositories and systems. It is also the motivation

behind the development of SourcererCC and other tool suites presented in this dissertation.

22

Chapter 3

SourcererCC: Accurate and Scalable

Code Clone Detection

Part of the material in this chapter is included with the permission of the IEEE and based

on our work in:

• Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C.; Lopes, C., “SourcererCC: Scaling

Code Clone Detection to Big-Code,” International Conference on Software Engineering

(ICSE’16), May 2016

This chapter introduces SourcererCC, a token-based accurate near-miss clone detector that

exploits an optimized index to scale to hundreds of millions of lines of code (MLOC) on a

single machine. SourcererCC compares code blocks using a simple and fast bag-of-tokens

strategy which is resilient to Type-3 changes. We describe SourcererCC’s clone detection

process in detail below.

23

3.1 Problem Formulation

This section describes how SourcererCC formulates the problem of code clone detection.

A software project P is represented as a set of code blocks P : {B1, ..., Bn}. As defined

earlier, a code block is a continuous segment of source code (e.g. method or functions,

classes, code between). A code block B, in turn, is represented as a bag-of-tokens (multiset)

B : {T1..., Tk}. A token is represented by a programming language keyword, literal, or an

identifier. There is no preprocessing of tokens except, a string literal is further split on

whitespace and the operators (e.g. ′∗′, ′+′) are discarded. Since a code block may have

token multiplicity, each token is represented as a (token, frequency) pair where frequency

denotes the number of times a token appears in a given code block. This step further reduces

a code block representation to a set of (token, frequency) pairs.

In order to quantitatively infer if two code blocks are clones, we use a similarity function

which measures the degree of similarity between code blocks, and returns a non-negative

value. The higher the value, the greater the similarity between the code blocks. As a result,

code blocks with similarity value higher than the specified threshold are identified as clones.

Formally, given two projects Px and Py, a similarity function f , and a threshold θ, the

aim is to find all the code block pairs (or groups) Px.B and Py.B s.t f(Px.B, Py.B) ≥

d θ · max(|Px.B|, |Py.B|) e. Note that for intra-project similarity, Px and Py are the same.

Similarly, all the clones in a project repository can be revealed by doing a self-join on the

entire repository itself.

Similarity Function: We compute similarity by measuring overlap between the code

blocks. For example, given two code blocks Bx and By, the overlap3 similarity OS(Bx, By)

3SourcererCC can be adapted for Jaccard and Cosine similarity functions as well.

24

is computed as the number of tokens shared by Bx and By.

OS(Bx, By) = |Bx ∩By| (3.1)

In other words, if θ is specified as 0.8, and max(|Bx|, |By|) is t, then Bx and By should share

at least d0.8 ˙|t|e tokens to be identified as a clone pair. Note that if a token a appears in

Bx twice and thrice in By, the match between Bx and By due to token a is two i.e., the

minimum of its occurrence in either of the code blocks.

Example: To illustrate, Figure 3.2 shows two methods from DOMTransformer.java in

org.apache.cocoon.transformation package of Apache Cocoon project. For the ease of rep-

resentation, Table 3.1 shows the mapping of source terms with shorter terms. Using this

mapping, the methods can be transformed into the following sets of (token, frequency) pair

(B1 & B2):

B1 ={(T1, 1), (T2, 1), (T3, 2), (T4, 1), (T5, 2), (T6, 2),

(T7, 2), (T8, 2), (T9, 1), (T10, 1), (T11, 5), (T12, 2),

(T13, 2), (T14, 1), T (15, 1), (T16, 1)}

B2 ={(T1, 1), (T2, 1), (T17, 2), (T4, 1), (T5, 2), (T6, 2),

(T7, 2), (T8, 2), (T9, 1), (T10, 1), (T11, 5), (T12, 2),

(T13, 2), (T14, 1), T (15, 1), (T16, 1)}

Figure 3.1: Code blocks represented as a set of (token, frequency) pairs

The size of each method is t = 27 tokens, out of which they share 25 tokens. Given the

overlap similarity function, and θ specified as 0.8, the minimum number of tokens they should

share in order to be identified as clones is 22 (dθ ˙|t|e = 22). Since they share 25 terms (> 22),

they are clones for a given θ. However, if we change θ to 0.95, the minimum number of

tokens shared should be 26. Hence, in that case, the two methods will not be identified as

clones. Therefore, the higher the value of θ, the stricter the similarity between the methods.

25

1. public void characters(char c[], int start , int len)

2. throws SAXException {

3. this.stack.setOffset(this.oldOffset);

4. this.consumer.characters(c, start , len);

5. this.stack.setOffset(this.newOffset);

6. }

1. public void ignorableWhitespace(char c[], int start , int len)

2. throws SAXException {

3. this.stack.setOffset(this.oldOffset);

4. this.consumer.ignorableWhitespace(c, start , len);

5. this.stack.setOffset(this.newOffset);

6. }

Figure 3.2: Methods from Apache Cocoon Project

Source Term Mapping

public T1
void T2
characters T3
char T4
c T5
int T6
start T7
len T8
throws T9
SAXException T10
this T11
stack T12
setOffset T13
oldOffset T14
consumer T15
newOffset T16
ignorableWhiteSpace T17

Table 3.1: Source Term Mapping

In order to detect all clone pairs in a project or a repository, the above approach of computing

the similarity between two code blocks can simply be extended to iterate over all the code

blocks and compute pairwise similarity for each code block pair. For a given code block,

all the other code blocks compared are called candidate code blocks or candidates in short.

26

Methods

C

an
di

da
te

s
(x

 1
K

)

10
00

20
00

30
00

40
00

0

2000

4000

6000

8000

Figure 3.3: Growth in number of candidate comparisons with the increase in the number of
code blocks

While the approach is very simple and intuitive, it is also subject to a fundamental problem

that prohibits scalability - O(n2) time complexity. Figure 3.3 describes this by plotting

the number of total code blocks (X-axis) vs. the number of candidate comparisons (Y-

axis) in 35 Apache Java projects (see Appendix A for details about the projects). Note

that the granularity of a code block is taken as a method. Points denoted by ◦ show how

the number of candidates compared increases quadratically1 with the increase in number of

methods. SourcererCC uses advanced index structures and filtering heuristics as described

in the next few sections to significantly reduce the number of candidate comparisons during

clone detection.

1The curve can also be represented using y = x(x − 1)/2 quadratic function where x is the number of
methods in a project and y is the number of candidate comparisons carried out to detect all clone pairs.

27

3.2 Overview of the Approach

SourcererCC’s general procedure is summarized in Figure 3.4. It primarily operates in three

stages: (i) code block creation; (ii) partial index creation; and (ii) clone detection.

SourcererCC’s first step is to parse the source code, extract code blocks according to the

granularity at which the clones are to be detected. The granularity of extraction could be

file-level, method-level or block-level. The extracted code blocks are then tokenized.

To accomplish this, SourcererCC uses a simple scanner that is aware of token and block

semantics of a given language2. The extracted code blocks are represented as a set of

(token, frequency) pairs as already shown in Figure 3.1. This process is described as Code

Block Creation (step 1) in Figure 3.4.

In the next step, namely, Partial Index Creation (step 2 in Figure 3.4), SourcererCC builds

an inverted index mapping tokens to the code blocks that contain them. An inverted index

(also referred to as postings file or inverted file) is an index data structure storing a mapping

from content, such as words or numbers (in our case tokens), to its locations in a document

or a set of documents (in our case code block). Unlike previous approaches [50], SourcererCC

does not create an index of all the tokens in a code blocks, instead it uses a filtering heuristic

(Section 3.3.1) to construct a partial index of only a subset of the tokens in each block.

In the Clone Detection phase (step 3 in Figure 3.4), SourcererCC iterates through all of the

code blocks, and retrieves their candidate clone blocks from the index. As per the filtering

heuristic, only a subset of the tokens in a code block are used to query the index, which

reduces the number of candidate blocks. After candidates are retrieved, SourcererCC uses

another filtering heuristic (Section 3.3.2), that exploits ordering of the tokens in a code block

to measure a live upper-bound and lower-bound of similarity scores between the query and

2Currently SourcererCC supports Java, C and C# using TXL [24], but it can be easily extended to other
languages.

28

Source
Files

Parsing
&

Tokenizing

Code
Blocks

Sub-block
Overlap
Filtering

Partial
Index

Sub-block
Overlap
Filtering

queries

Candidate
Blocks

returns

Token
Position
Filtering

Candidate
Verification

Clones

2. Partial Index Creation

3. Clone Detection

1. Code Block Creation

Figure 3.4: SourcererCC’s clone detection process

candidate blocks. Candidates whose upper-bounds fall below the similarity threshold are

eliminated immediately without further processing. Similarly, candidates are identified as

clones as soon as their lower-bounds exceed the similarity threshold. This is repeated until

all the clones of every code block are located. SourcererCC also exploits symmetry to avoid

detecting the same clone pair twice.

In the following sections, we provide a detailed description of the filtering heuristics and

overall clone detection algorithm.

29

3.3 Filtering Heuristics to Reduce Candidate Compar-

isons

This section describes filtering heuristics that enable SourcererCC to effectively reduce the

number of candidate comparisons during clone detection. These heuristics are inspired by

the work of Chaudhuri et al. [20] and Xiao et al. [126] on efficient set similarity joins in

databases.

3.3.1 Sub-block Overlap Filtering

Sub-block overlap filtering follows an intuition that when two sets have a large overlap, even

their smaller subsets should overlap. Since we represent code blocks as bag-of-tokens (i.e.,

a multiset), we can extend this idea to code blocks, i.e., when two code blocks have large

overlap, even their smaller sub-blocks should overlap. Formally, we can state it in the form

of a following property:

Property 1.a: If blocks Bx and By consist of t tokens each, and if |Bx ∩By| ≥ i, then any

sub-block of Bx consisting of t− i+ 1 terms will overlap with block By.

To illustrate, consider the following two blocks:

Bx = {a, b, c, d, e}

By = {f, b, e, d, c}

Bx and By have a total of 5 tokens (t = 5) each, and an overlap of 4 tokens (i = 4). Let Sx

30

represent a set of all the sub-blocks of Bx of size 2 (t− i+ 1):

Sx = {{a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}}

Then, according to Property 1.a, all the elements of Sx will have a non-zero overlap (at least

share one token) with By.

To understand the implications of this property, consider the above two blocks with 5 tokens

each, and let θ be specified as 0.8. That is, the two blocks should share at least d0.8 ∗ 5e = 4

tokens to be considered as clones of each other. In this context, if we wish to find out if

Bx and By are clones, then, using Property 1.a, we can infer that all the sub-blocks of Bx

should share at least one token with By. That is to say, if any sub-block of Bx did not share

a token with By, we can certainly deduce that Bx and By cannot be clones for a given value

of θ.

Interestingly, the above principle suggests that instead of comparing all the tokens of Bx

and By against each other, we could simply compare only the tokens of any sub-block of Bx

to identify if Bx and By will not happen to be clones. In this way, by filtering out a large

subset of Bx, we can often reduce the total number of comparisons between Bx and By by

very significant margins.

The above example applies filtering to only block Bx. Naturally, the question is, if and how

can we apply filtering heuristic to both the blocks? It turns out that the filtering property is

applicable to both the blocks if the blocks are in the same order. Formally, this refinement

can be stated in the form of the following property:

Property 1.b: Given blocks Bx and By consisting of t tokens each in some predefined order,

if |Bx ∩ By| ≥ i, then the sub-blocks SBx and SBy of Bx and By respectively, consisting of

31

first t− i+ 1 tokens, must match at least one token.

To further understand the implication of this refinement, let us consider the code blocks in

the previous example to be alphabetically ordered.

Bx = {a, b, c, d, e}

By = {b, c, d, e, f}

.

According to Property 1.b, since the two blocks are now in the same order (alphabetically

ordered), in order to find out if Bx and By are clones, we can simply check if their sub-blocks

consisting of only first t− i+ 1 = 2 tokens match at least one token. In this case, they do, as

token b is common in both the sub-blocks (marked in bold). However, if they did not share

any token, then even without comparing the remaining tokens in the blocks, we could have

most certainly figured that Bx and By will not end up as a clone pair for the given θ. In

other words, Property 1.b suggests that instead of comparing all the tokens of Bx and By

against each other, we could simply compare their sub-blocks consisting of only first t− i+1

tokens to deduce if Bx and By will not be clones.

3.3.1.1 Token Ordering in the Code Blocks

As stated in Property 1.b, the sub-block overlap filtering heuristic is applicable only if the

tokens in the code blocks follow a predefined global order. While there are many ways in

which tokens in a block can be ordered (e.g., alphabetical order, length of tokens, occurrence

frequency of token in a corpus), a natural question is what order is most effective in this

context. The goal is to pick an ordering that further minimizes the number of comparisons

among the code blocks.

32

As it turns out, software vocabulary follows Zipf’s law [130] and exhibit characteristics very

similar to natural languages [47]. That is, there are only few very popular (frequent) tokens

in the corpus, and the frequency of tokens decreases very rapidly with their rank. In other

words, while most of the code blocks are likely to contain one or more of few very popular

tokens (e.g. keywords, or common identifier names like i, j, count), not many will share rare

tokens (e.g. identifiers that are domain or project specific). The basic idea is to eliminate

the comparison of frequent tokens and instead, check if two code blocks share rare tokens.

Therefore, if the tokens in the code blocks are ordered in the reverse order of their popularity

in the corpus, naturally, their sub-blocks will consist of rare tokens because popular tokens

will be pushed at the end of the code blocks. Such arrangement will ensure low probability

of different sub-blocks sharing similar tokens. As a result, this ordering will eliminate more

false positive candidates3.

To implement this, we create a global token order list consisting of all the tokens in the

corpus4. First, a list of all the tokens in the corpus is computed. Next, the corpus frequency 5

of each token in the list is calculated. The list is sorted in the ascending order of the corpus

frequency of tokens. Tokens with lower frequency appear at the top of the list whereas, the

tokens with higher frequency appear at the bottom of the list. The resultant global token

order list is used to order the tokens in the candidate code block. Since high frequency

tokens will have lower ranking in the global token order list, they will appear at the end in

the code blocks. Therefore, the sub-blocks consisting of first few tokens will mostly consist

of rare tokens - subsequently decreasing the probability of a token match with candidate

sub-blocks.

3Candidate code blocks that will not result into a clone pair are known as false positive candidates.
4Corpus consist of a project or a repository on which clone detection is to be performed
5Corpus frequency of a token is a measure of how many times a token appeared in the entire corpus

33

3.3.1.2 Computing the Correct Sub-block Length

The sub-blocks consist of only the first few tokens of the block. The natural question is

how many tokens should be considered or in other words, what should be the length of

sub-blocks? It is important to note that the length of a sub-block has direct implication on

filtering the candidates. Hence, if computed incorrectly, it can eliminate blocks which could

actually result into clones, i.e., lowering the recall of the technique. We can compute the

correct sub-block length in the following way:

Using Property 1.b, we know that the minimum number of overlapping tokens between the

two code blocks is:

t− i+ 1 (3.2)

Now, given the similarity threshold value θ and the number of tokens in the code block as t,

the minimum number of overlapping tokens can be computed as:

dθ ˙|t|e (3.3)

Comparing Equation 3.2 and Equation 3.3, the length of sub-block, i, is computed as:

i = |t| − dθ ˙|t|e+ 1 (3.4)

Hence, in a code block of t tokens, and a similarity threshold value of θ, a sub-block length

of |t| − dθ ˙|t|e+ 1 will ensure that no potential clones will be missed.

Note that the length of a sub-block depends on the size of the block for which it is computed

and hence cannot be the same for all the blocks. Moreover, in most cases, the two blocks

compared will have different sizes, say t1 and t2. However, in such cases, the formula to

34

compute the length does not change, except |t| is now computed as |t| = max(|t1|, |t2|).

Revisiting the Figure 3.3, the points denoted by4 show the number of candidate comparisons

after applying the sub-block overlap filtering. The large difference from the earlier curve (◦)

shows the impact of filtering in eliminating candidate comparisons.

The below section discusses when the use of Property 1 may still be ineffective and demon-

strates how ordering of tokens in a code block can be further exploited to formalize yet

another filtering heuristic that is extremely effective in eliminating even more candidate

comparisons.

3.3.2 Token Position Filtering

In order to understand when Property 1 may be ineffective, consider code blocks Bx and By

from the previous example, except Bx now has one fewer token. Hence Bx = {a, b, c, d} and

By = {b, c, d, e, f}.

Assuming the same value of θ, the blocks must still match 4 tokens (d θ ·max(|Bx|, |By|) e =

d0.8∗5e = 4) to be a clone pair. But since the two blocks have only 3 tokens in common, they

cannot be identified as a clone pair. However, note that their sub-blocks (shown in bold)

consisting of first t− i + 1 = 2 tokens still have a common token b. As a result, Property 1

is satisfied and By will be identified as a candidate of Bx, although Bx and By eventually

will not end up as a clone pair. In general, cases when the code blocks have fairly different

sizes it is likely that they may result into false positives even after satisfying Property 1.

Interestingly, to overcome this limitation, the ordering of tokens in code blocks can be ex-

ploited. For example, if we closely examine the position of the matched token b in Bx and

By, we can obtain an estimate of the maximum possible overlap between Bx and By as

the sum of current matched tokens and the minimum number of unseen tokens in Bx and

35

By, i.e., 1 + min(2, 4) = 3. Since this upper-bound on overlap is already smaller than the

needed threshold of 4 tokens, we can safely reject By as a candidate of Bx. Note that we can

compute a safe upper-bound (without violating the correctness) because the blocks follow a

predefined order. The above heuristic can be formally stated as follows.

Property 2: Let blocks Bx and By be ordered and ∃ token t at index i in Bx, s.t Bx is

divided in to two parts, where Bx(first) = Bx[1...(i− 1)] and Bx(second) = Bx[i...|Bx|)]

Now if |Bx ∩ By| ≥ d θ · max(|Bx|, |By|) e, then ∀ t ∈ Bx ∩ By, |Bx(first) ∩ By(first)| +

min(|Bx(second)|, |By(second)|) ≥ d θ ·max(|Bx|, |By|) e

Revisiting the Figure 3.3, the points denoted by + show the number of candidate comparisons

after applying the token position filtering. The reduction is so significant that empirically

on this dataset, the function seems to be near-linear. This is a massive reduction in the

number of comparisons when compared to the quadratic number of comparisons shown

earlier without any filtering.

Although both the filtering heuristics are independent of each other, they complement each

other to effectively reduce a greater number of candidate comparisons together than alone.

The index data structure in conjunction with the above filtering heuristics form the key

components of SourcererCC to achieve scalability. The next section describes the complete

algorithm of SourcererCC.

3.4 Clone Detection Algorithm

The algorithm works in two stages: (i) Partial Index Creation; and (ii) Clone Detection.

Each step has filtering heuristics directly embedded in it as described below.

36

3.4.1 Partial Index Creation

The basic approach of using Inverted index in SourcererCC is derived from the way keyword

queries are answered using an inverted index in Information Retrieval []. An inverted index

consists of a list of all the unique tokens that appear in any code block, and for each token,

a list of the code blocks in which it appears. The index can be constructed in one sequential

scan of the data. With the inverted index created, the query “find the code blocks where

token X is present” can now be answered in a single random access.

SourcererCC’s index creation step exploits Property 1.b and creates optimized indexes for

tokens only in the sub-blocks. We call this Partial Index. In this Section, we first use an

example to describe how SourcererCC creates partial index. Later we describe the formal

algorithm for partial index creation.

To understand SourcererCC’s partial index creation, consider the following four code blocks

in the corpus:

B1 = [T7, T1, T3, T2, T8]

B2 = [T6, T7, T3, T4, T5]

B3 = [T1, T2, T5, T6, T7]

B4 = [T3, T2, T1, T7, T6]

Note that these code blocks are not ordered and hence we cannot compute their sub-blocks.

Table 3.2 shows the occurrence frequency of each token in the corpus (column Global Oc-

currence Frequency). The tokens in the table are ranked in the ascending order of their

occurrence frequency. As a result, less frequent tokens (e.g T4, T8) are ranked higher.

37

Token Global
Occurrence
Frequency

Rank

T4 1 1
T8 1 2
T5 2 3
T1 3 4
T2 3 5
T3 3 6
T6 3 7
T7 4 8

Table 3.2: Global Token Frequency Map

The tokens in the four code blocks listed above are now re-arranged according to their rank

in the Table 3.2. As a result, we get the following ordered code blocks:

B1 = [T8, T1, T2, T3, T7]

B2 = [T4, T5, T3, T6, T7]

B3 = [T5, T1, T2, T6, T7]

B4 = [T1, T2, T3, T6, T7]

Since the code blocks are now ordered, assuming θ is specified as 0.8, the sub-block (under-

lined tokens) of each code block can be calculated using Property 1.b. While creating the

index, SourcererCC will index only the tokens in the sub-blocks (underlined tokens). As a

result, creating (1− θ) ∗ 100% smaller index as compared to a full index. Moreover, bigger

code blocks lead to even greater reduction in the size of the partial index. This not only

saves space but also enables faster retrieval because of a smaller index. In traditional index

based approaches, all the tokens are indexed. However, as described later in Chapter 4, in

our experiments θ = 0.7 resulted in the best recall and precision, therefore, the index size is

smaller by 70% as compared to a full index.

Algorithm 1 lists the steps to create a partial index. The first step is to iterate over each

code block b (line3), and sort it according to the global token frequency map (GTP) (line4).

38

Algorithm 1 SourcererCC’s Algorithm for Partial Index Creation

INPUT: B is a list of code blocks {b1, b2,...bn} in a project/repository, GTP is the global token
position map, and θ is the similarity threshold specified by the user
OUTPUT: Partial Index(I) of B

1: function createPartialIndex(B, θ)
2: I = φ
3: for each code block b in B do
4: b = Sort(b, GTP)
5: tokensToBeIndexed = |b| − d θ ·|b|e+ 1
6: for i = 1 : tokensToBeIndexed do
7: t = b[i]
8: It = It ∪ (t, i)
9: end for

10: end for
11: return I
12: end function

This is done as a prerequisite to the application sub-block overlap filtering. Next, the size of

sub-block is computed using formula shown in Property 1.b, i.e., (t − i + 1). Later, tokens

in the sub-block are indexed to create a partial index. (lines 6− 8).

3.4.2 Clone Detection

After partial index is created, the goal is to detect clones. Algorithm 2 describes the steps

in detail. The detectClones() function iterates over each query block b, and sorts them using

the same (GTP) that was created during index creation (line 4). Again, this is done as a

prerequisite for both Property 1 & 2 to be applicable. After that, it calculates the length

of query sub-block by using the same formula described in Property 1 (line 5). Next it

iterates over only as many tokens as the length of b’s sub-block and retrieves candidates by

querying the partial index. Note that since partial index is created using only sub-blocks, the

candidates retrieved in this phase implicitly satisfy Property 1. In other words, by creating

partial index, the algorithm not only reduces the index size, but also ensures that we only

get a filtered set of candidates that satisfy Property 1.

39

After the candidates are retrieved for a given query block, a trivial optimization to further

eliminate candidates is done using the size of the candidates. That is, if a candidate c does

not have enough tokens needed for it to be b’s clone pair, then there is no point in even

comparing them. This is done using a conditional check |c| > d θ · |b| e on line 8. This

further filters out false positive candidates.

The remaining candidates that have satisfied the above elimination process are now subjected

to the filtering based on Property 2. First, based on θ, a threshold is computed to identify

the minimum number of tokens needed to be matched for b and c to be considered as a clone

pair (ct on line9). Now, as the tokens in b and c are compared, a theoretical upper-bound is

dynamically computed based on the number of remaining tokens in b and c (line 10). This

upper-bound indicates, the maximum number of tokens b and c could match assuming all of

their remaining tokens would match. If at any point in the iteration, the sum of upper-bound

(i.e, the maximum number of tokens b and c could match) and the current similarity score

(i.e, the number of tokens b and c have matched until now) happens to be less than ct (i.e,

the minimum number of tokens b and c need to match), c is eliminated from b’s candidate

map, candSimMap (lines 11 and 14). In other words, Property 2 is violated. On the other

hand, if the sum is more than ct, the similarity between b and c gets updated with each

matching token (line 12). Once all the tokens in b’s sub-block are exhausted (line 19), we

have a map of candidates (candSimMap) along with their similarity score and the last seen

token in each candidate. The reason for storing the last seen token will become clear as we

explain further. The next task is to verify if the candidates will eventually end up being b’s

clones. This is done in a call to verifyCandidates() function on line 18.

40

Algorithm 2 SourcererCC’s Algorithm for Clone Detection

INPUT: B is a list of code blocks {b1, b2,...bn} in a project/repository, I is the partial index
created from B, and θ is the similarity threshold specified by the user
OUTPUT: All clone classes (cloneMap)

1: function detectClones(B, I, θ)
2: for each code block b in B do
3: candSimMap = φ
4: b = Sort(b, GTP)
5: querySubBlock = |b| − d θ ·|b|e+ 1
6: for i = 1 : querySubBlock do
7: t = b[i]
8: for each (c, j) ∈ It such that |c| > d θ · |b| e do
9: ct = d max(|c|, |b|) · θ e

10: uBound = 1 +min(|b| − i, |c| − j)
11: if candSimMap[c] + uBound ≥ ct then
12: candSimMap[c] = candSimMap[c] + (1, j)
13: else
14: candSimMap[c] = (0, 0) // eliminate c
15: end if
16: end for
17: end for
18: verifyCandidates(b, candSimMap, ct)
19: end for
20: return cloneMap
21: end function

1: function verifyCandidates(b, candSimMap, ct)
2: for each c ∈ candSimMap such that candSimMap[c] > 0 do
3: tokPosc = Position of last token seen in c
4: tokPosb = Position of last token seen in b
5: while tokPosb < |b| && tokPosc < |c| do
6: if min(|b| − tokPosb, |c| − tokPosc) ≥ ct then
7: if b[tokPosb] == c[tokPosc] then
8: candSimMap[c] = candSimMap[c] + 1
9: else

10: if GTP [b[tokPosb]] < GTP [c[tokPosc]] then
11: tokPosb + +
12: else
13: tokPosc + +
14: end if
15: end if
16: else
17: break
18: end if
19: end while
20: if candSimMap[c] > ct then
21: cloneMap[b] = cloneMap[b] ∪ c
22: end if
23: end for
24: end function

41

3.4.3 Candidate Verification

The goal of verifyCandidates() function three-fold. First, iterate over candidates c of query

b that were not rejected in detectClones(), second, compute their similarity score with b, and

third, either reject the candidates if the score does not meet the computed threshold ct or

add them to the cloneMap if it does.

In doing so, an important optimization is seen on line 5. Note that tokens are not iterated

from the start but from the last token seen in b and c because earlier in detectClones() few

tokens of b and c were already iterated to check if they satisfy Property 1 & 2 (lines 6 −

8). Hence the function avoids iterating over those tokens again. It is for this reason, in

detectClones(), candSimMap is designed to not only store candidates but also the last

token seen in each candidate, i.e., (Candidate, TokensSeenInCandidate) pair.

The rest of the function while iterating over the remaining tokens ensures that Property 2

holds in every iteration (line6), and then increments the similarity score whenever there is a

token match (lines 7− 8). If in any iteration, Property 2 is violated, candidate is eliminated

immediately without iterating over the remaining tokens (line 17). Thus further reducing

the number of token comparisons.

Another trivial but important optimization is done while iterating over code blocks. Since

b and c are already sorted using a global token frequency map (GTP), verifyCandidates()

efficiently iterates over b and c by incrementing only the index of a block that has a lower

globally ranked token (lines 10− 14). Hence while iterating, except in the worst case when

b & c happen to be clone pairs, time complexity is reduced from O(|b| ∗ |c|) to O(|b|+ |c|).

42

3.4.4 Revisiting the Research Questions

In this section, we revisit the research questions posed in the Introduction (Chapter 1) and

discuss how SourcererCC’s clone detection approach answers them.

Research Question 1. [Design] - How can we be more robust to the modifications in

cloned code to detect near-miss Type-3 clones?

One of the distinguishing characteristics of SourcererCC compared to other token-based

tools is its ability to detect near-miss Type-3 clones. The bag-of-tokens model and overlap

similarity measure play an important role in detecting such clones. Type-3 clones are created

by adding, removing, or modifying statements in a duplicated code fragment. Since the bag-

of-tokens model is agnostic to relative token positions in the code block, it is resilient to

such changes, and hence can detect near-miss clones as long as the code blocks share enough

tokens to exceed a given overlap threshold.

Additionally, many Type-3 clones have modifications similar to swapping statements in code

blocks, combining multiple condition expressions into one, changing operators in conditional

statements, and the use of one language construct over the another (e.g. “for” vs. “while”).

While these changes may exhibit semantic differences, they preserve enough syntactic sim-

ilarity at a token level to be detected as similar. Detecting such clones can be difficult for

other token-based approaches as they use token sequences as a unit of match [61]. While a

token-sequence approach could merge nearby cloned sequences into Type-3 clones [40], they

fail to detect the clones when the Type-3 gaps are too frequent or large.

Research Question 2. [Computational Complexity] - How can we reduce the O(n2)

candidate comparisons to O(c.n), where c << n?

The two filtering heuristics - sub-block overlap and token position filtering - along with the

partial index, form the key components to reduce the number of candidate comparisons

43

in SourcererCC. The sub-block overlap filtering ensures that the code blocks that will be

identified as clones share at least one token in their sub-blocks. The partial index uses this

constraint to collect the list of candidates in O(1) time by a simple index look-up. Since there

are only few candidates that satisfy the filtering constraint, the overall candidate comparison

is reduced to O(c.n) from O(n2), where c (<< n) is the number of candidates that satisfy

the filtering constraint.

The identified candidates are later verified if they meet the similarity threshold before being

declared as clones. Token position filtering is used in this verification step to further eliminate

candidates early on if their upper-bounds do not meet the similarity threshold.

Empirical evidence of the reduction in the number of candidate comparisons can be seen by

revisiting the Figure 3.3. The points denoted by 4 show the number of candidate compar-

isons after applying the sub-block overlap filtering. The difference in the two curves formed

by points denoted by 4 and ◦ shows the reduction in candidate comparisons before and

after applying the filtering.

Research Question 3. [Engineering] - How can we make faster candidate comparisons

without requiring much memory?

SourcererCC uses an inverted index to optimize for the speed of the clone detection process.

While traditionally the index size can increase tremendously with the increase in the size of

the dataset, the sub-block overlap filtering reduces the index size by constructing a partial

index of only the first few tokens in each code block. As a result, the size of the index

constructed is approximately 70% smaller than a full index. The partial index not only

drastically reduces the memory footprint of SourcererCC, but it also significantly improves

the retrieval process. In our experiments (described later in Chapter 4) to detect clones on

a repository of 25,000 Java projects using SourcererCC, we found that the size of the partial

index is only 1.2 GB. That is to say that the partial index can easily fit even in the memory

44

(RAM) of a standard workstation, and thus enables faster candidate comparisons without

requiring much memory.

To summarize the answer to the research questions, it is not a single component but the

harmony of many components, including the bag-of-tokens model, the filtering heuristics,

and the index data structure, that come together to make SourcererCC effective in accurate,

scalable, and fast code clone detection.

3.5 Implementation

This section provides implementation and execution details of SourcererCC. SourcererCC is

hosted at GitHub and can be downloaded from https://github.com/Mondego/SourcererCC.

SourcererCC is implemented as a Java library consisting of three main components: (i)

Parser; (ii) Indexer; and (iii) Searcher. It is packaged as two jar files: (i) inputBuilderClas-

sic.jar; and (ii) indexbased.SearchManager.jar. The inputBuilderClassic.jar is responsible for

parsing operations whereas indexbased.SearchManager.jar is parameterized for performing

index and search operations.

We describe the implementation of each of these components below.

3.5.1 Parser

The goal of the parser is to read the source files of a project or a repository and generate

normalized code blocks in the form of bag-of-tokens. To understand the input and output of

this parsing step, let us consider a Java source file that contains a method named execute in

it (see Figure 3.5) as an input to the parser. The output of the parser is shown in Figure 3.6.

In the output file generated by the parser, each method is represented in a newline. Since

45

https://github.com/Mondego/SourcererCC

∗ Execute a l l nestedTasks .
∗/
public void execute () throws Bui ldExcept ion {

i f (f i l e s e t == null | | f i l e s e t . getDir (g e tPro j e c t ())==null)
{

throw new Bui ldExcept ion
(” F i l e s e t was not con f i gu r ed ”) ;

}
for (Enumeration e = nestedTasks . e lements () ;
e . hasMoreElements () ;) {

Task nestedTask = (Task) e . nextElement () ;
nestedTask . perform () ;

}
nestedEcho . r e c o n f i g u r e () ;
nestedEcho . perform () ;

}

Figure 3.5: Sample code fragment as input to the parser

1@#@for@@ : : @@1, Fileset@@ : : @@1, perform@@ : : @@2,was@@ : : @@1,
configured@@ : : @@1, throw@@ : : @@1, if@@ : : @@1, elements@@ : : @@1,
null@@ : : @@2, nextElement@@ : : @@1, nestedTask@@ : : @@2, execute@@ : : @@1,
e@@ : : @@3, nestedTasks@@ : : @@1, throws@@ : : @@1, getDir@@ : : @@1,
void@@ : : @@1, Enumeration@@ : : @@1, nestedEcho@@ : : @@2, not@@ : : @@1,
new@@ : : @@1, getProject@@ : : @@1, f i l e s e t@@ : : @@2, hasMoreElements@@ : : @@1,
Task@@ : : @@2, public@@ : : @@1, reconfigure@@ : : @@1, BuildException@@ : : @@2

Figure 3.6: Output produced by the parser

46

1 . @#@ (t h i s only appears once at the s t a r t o f the l i n e)
2 . , (read comma)
3 . @@: :@@

Figure 3.7: Delimiters used in the output file produced by the parser

for@@ : : @@1
Fileset@@ : : @@1
perform@@ : : @@2
. . .

Figure 3.8: (Token, Frequency) pair representation in the output format

our input here has only one method, the output consists of only one line. There are a total

of three delimiters used, and they appear in the order shown below (Figure 3.7).

To further understand the output format, let us split the output on the delimiter @#@. As

a result, we get two strings i.e., LHS and RHS of @#@ delimiter. The LHS is a unique

blockId that is automatically assigned to each method (or code block).

When we further split the RHS using the delimiter ’,’ (comma), we get a set of (token,

frequency) pairs of the entire method. For example, in the above case, we would get the

following strings after splitting on ’,’ (Figure 3.8).

The string for@@ :: @@1 implies that in execute method, token for appears once. Similarly,

perform@@ :: @@2 implies that the token perform is present twice. This can easily be

obtained by splitting the (token, frequency) pair on delimiter @@ :: @@.

A blockId is a unique Id that identifies a line in the parsed output file. A block could be at

any granularity level - file, method, code block, or even a statement. For the above example

Id 1 uniquely identifies execute. It is important that these block Ids are unique positive

numbers that are assigned to the code blocks in an increasing order. The increasing order of

block ids is used to avoid comparing the same code blocks twice. For example if block 1 is

compared with block 2, then because of their symmetry there is no need to compare block 2

47

with block 1. SourcererCC exploits increasing Ids to compare a given block with only blocks

that have Ids greater than the given block. So in the case of block 1 & 2, block 1 will be

compared to block 2 because 2 is greater than 1, but not vice-versa.

SourcererCC also reports clones using these blockIds. For example, if there are two cloned

methods with blockId 31 and 89, SourcererCC will report them as clones using their blockIds

separated with a , i.e., (31, 89). In order to be able to track the code blocks from blockIds,

the parser also generates a bookkeeping file that maps blockIds to the path of the code

block in the file system. The start and end line of the code block is also reported in the

bookkeeping file.

The command to execute the parser is as follows:

>java −j a r Inpu tBu i l d e rC la s s i c . j a r <s r c /path>

<path/code−blocks> <path/ bookkeeping> f u n c t i o n s java 0 0 10 0 8

There are 10 arguments controlling various parameters of the parser. They are as follows:

1: Path to the input source folder

2: Path where the parsed output code block file will be created

3: Path where the bookkeeping file (mapping ids to code blocks) will be created

4: Granularity at which input is to be parsed (e.g., functions or blocks)

5: Language of the source project(s) (cpp, java, c#, and c)

6: Minimum number of tokens to be considered in a block

7: Maximum number of tokens to be considered in a block

8: Minimum number of lines to be considered in a block

48

9: Maximum number of lines to be considered in a block

10: Number of threads to launch for parsing

Note that setting the minTokens/minLines (parameter 6 & 8) to zero means no minimum

limit for the size of the code block, whereas setting maxTokens/maxLines (parameter 7 &

9) to zero means that there is no upper limit, i.e., code blocks of any size will be considered.

3.5.2 Indexer

After parsing the corpus, the Indexer applies filtering heuristics on the output produced by

the parser and constructs a partial inverted index of the corpus according to the similarity

threshold specified by the user.

The command to execute the Indexer is as follows:

java −j a r indexbased . SearchManager . j a r index 8

The indexbased.SearchManager.jar expects two arguments: (i) action: index/search; and

(ii) similarity threshold: an integer between 1-10 (both inclusive).

The action could be either “index” or “search” depending on the task to be performed. The

second argument, similarity threshold, instructs SourcererCC to detect clones that satisfy

the given similarity threshold. For example, a similarity threshold of 8 indicates that the

user wants to detect clone pairs that are at least 80% similar. Please note that the specified

similarity threshold should be the same during indexing and searching. That is, if one is

using a similarity threshold of 8 while indexing, then one should use the same similarity

threshold while searching clones.

49

3.5.3 Searcher

Once the index is constructed, Searcher is launched to detect all the clones by querying the

partial index. Searcher is also responsible for verifying the retrieved candidates based on the

similarity threshold.

The command to execute the Searcher is as follows:

java −j a r d i s t / indexbased . SearchManager . j a r search 8

3.6 Chapter Summary

This chapter introduced SourcererCC, an accurate, near-miss clone detection tool that scales

to several hundred million lines of code on a single standard machine. The core idea of

SourcererCC is to build an optimized index of code blocks and compare them using a simple

and fast bag-of-tokens strategy which is very effective in detecting near-miss clones. Several

filtering heuristics are used to reduce the size of the index, which in turn, significantly reduce

the number of code block comparisons to detect the clones. SourcererCC also exploits the

ordering of tokens in a code block to estimate a live upper-bound on the similarity of code

blocks in order to reject or accept a clone candidate with minimal token comparisons.

50

Chapter 4

Evaluation of SourcererCC

The evaluation of SourcererCC was partially conducted independently by Prof. Chanchal

Roy and his Ph.D. student Jeffrey Svajlenko at University of Saskatchewan. Dr. Roy is

a veteran in the field of code cloning and author of NiCad, a popular clone detector tool.

He is also well known for his seminal work on the comparison and evaluation of code clone

detection techniques and tools [107].

Part of the material in this chapter is included with the permission of the IEEE and based

on our work in:

• Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C.; Lopes, C. “SourcererCC: Scaling Code

Clone Detection to Big-Code,” International Conference on Software Engineering (ICSE’16),

May 2016

In this chapter, we evaluate the execution and detection performance of SourcererCC. We

begin by evaluating its execution time and scalability using subject inputs of varying sizes

in terms of lines of code (LOC). We then demonstrate SourcererCC’s execution for a large

inter-project repository, one of the prime targets of scalable clone detection. We measure its

51

Tool Scale/BigCloneBench Mutation Framework

SourcererCC Min length 6 lines, min
similarity 70%, function
granularity.

Min length 15 lines, min
similarity 70%, function
granularity.

CCFinderX Min length 50 tokens, min
token types 12.

Min length 50 tokens, min
token types 12.

Deckard Min length 50 tokens, 85%
similarity, 2 token stride.

Min length 100 tokens, 85%
similarity, 4 token stride.

iClones Min length 50 tokens, min
block 20 tokens.

Min length 100 tokens, min
block 20 tokens.

NiCad Min length 6 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

Min length 15 lines, blind
identifier normalization,
identifier abstraction, min
70% similarity.

Table 4.1: Clone Detection Tool Configurations

clone recall using two benchmarks: The Mutation and Injection Framework [102, 119] and

BigCloneBench [114, 118]. We measure the precision of our tool by manually validating a

statistically significant sample of its output for the BigCloneBench experiment.

We compare SourcererCC’s execution and detection performance against four publicly avail-

able clone detection tools, including CCFinderX [61], Deckard [55], iClones [40] and NiCad [28].

We include CCFinderX as it is a popular and successful tool, which has been used in many

clone studies. We include Deckard, iClones and NiCad as popular examples of modern clone

detection tools that support Type-3 clone detection. Moreover, recent benchmarking exper-

iments suggest these tools to be state-of-the-art in the field [117, 118]. The selection criteria

also included tools with best the scalability, recall, and/or most unique performance aspects

for this study. We focus primarily on near-miss clone detectors, as Type-1 and Type-2 clones

are relatively easy to detect. The configurations of these tools for the experiments are found

in Table 4.1. These are targeted configurations for the benchmarks, and are based on exten-

sive previous experiences of our collaborators with the tools [117, 118] as well as previous

discussions with their developers, where available.

Our primary goal with SourcererCC is to provide a clone detection tool that scales efficiently

52

for large inter-project repositories with near-miss Type-3 detection capability. Most existing

state-of-the-art tools have difficulty with such large inputs, and fail due to scalability lim-

its [115, 116]. Common limits include untenable execution time, insufficient system memory,

limitations in internal data-structures, or crashing or reporting an error due to their design

not anticipating such a large input [115, 116]. We consider our tool successful if it can scale

to a large inter-project repository without encountering these scalability constraints while

maintaining a clone recall and detection precision comparable to the state-of-the-art. As

our target we use IJaDataset 2.0 [3], a large inter-project Java repository containing 25,000

open-source projects (3 million source files, 250 MLOC) mined from SourceForge and Google

Code.

4.1 Execution Time and Scalability

We evaluate the execution time and scalability of SourcererCC and compare it to the compet-

ing tools. Execution time primarily scales with the size of the input in terms of the number

of lines of code (LOC) needed to be processed and searched by the tool. So this is the ideal

input property to vary while evaluating execution performance and scalability. However, it

is difficult to find subject systems that are large enough and conveniently dispersed in size.

Additionally, a tool’s execution time and memory requirements may also be dependent on

the clone density, or other properties of the subject systems. It is difficult to control for

these factors while measuring execution performance and scalability in terms of input size.

Our solution was to build inputs of varying convenient sizes by randomly selecting files from

IJaDataset. This should ensure each input has similar clone density, and other properties

that may affect execution time, except for the varying size in LOC. Each input has the

properties of an inter-project repository, which is a target of large-scale clone detection.

We created one input per order of magnitude from 1K LOC to 100 MLOC. We built the

53

LOC SourcererCC CCFinderX Deckard iClones NiCad

1K 3s 3s 2s 1s 1s
10K 6s 4s 9s 1s 4s
100K 15s 21s 1m 34s 2s 21s
1M 1m 30s 2m 18s 1hr 12m 3s MEMORY 4m 1s
10M 32m 11s 28m 51s MEMORY — 11hr 42m 47s
100M 1d 12h 54m s5s 3d 5hr 49m 11s — — INTERNAL LIMIT

Table 4.2: Execution Time (or Failure Condition) for Varying Input Size

inputs such that each larger input contains the files of the smaller inputs. This ensures that

each larger subset is a progression in terms of execution requirements. Lines of code were

measured using cloc tool [2], and includes only lines containing code, and not comment or

blank lines.

The execution time of the tools for these inputs is found in Table 4.2. The tools were executed

for these inputs using the configurations listed under “Scale” in Table 4.1. The tools were

executed on a machine with a 3.5 GHz quad-core i7 CPU, 12 GB of memory, a solid-state

drive, and running Ubuntu 15.04. CCFinderX was executed on an equivalent machine run-

ning Windows 7. We use the same configurations for evaluating recall with BigCloneBench

such that recall, execution performance, and scalability can be directly compared.

Scalability

SourcererCC is able to scale even to the largest input, with reasonable execution time given

the input sizes. CCFinderX is the only competing tool to scale to 100MLOC, however it only

detects Type-1 and Type-2 clones. The competing Type-3 tools encounter scalability limits

before the 100MLOC input. Deckard and iClones run out of memory at the 100MLOC and

1MLOC inputs, respectively. NiCad is able to scale to the 10MLOC input, but refuses to

execute clone detection on the 100MLOC input. In our previous experience [116], NiCad re-

fuses to run on inputs that exceed its internal data-structure limits, which prevent executions

that will take too long to complete. From our experiment, it is clear that the state-of-the-art

Type-3 tools do not scale to large inputs, whereas SourcererCC can.

54

Execution Time

For the 1KLOC to 100KLOC inputs, SourcererCC has comparable execution time to the

competing tools. iClones is the fastest, but it hits scalability issues (memory) as soon as the

1MLOC input. SourcererCC has comparable execution time to CCFinderX and NiCad for

the 1MLOC input, but is much faster than Deckard. SourcererCC has comparable execution

time to CCFinderX for the 10MLOC input size, but is much faster than NiCad. For the

largest input size, SourcererCC is twice as fast as CCFinderX, although their execution

times fall within the same order of magnitude. Before the 100MLOC input, SourcererCC

and CCFinderX have comparable execution times.

SourcererCC is able to scale to inputs of at least 100MLOC. Its execution time is comparable

or better than the competing tools. Of the examined tools, it is the only state-of-the-art

Type-3 clone detector able to scale to 100MLOC. While CCFinderX can scale to 100MLOC

for only detecting Type-1 and Type-2 clones, SourcererCC completes in half the execution

time while also detecting Type-3 clones.

4.2 Experiment with Big IJaDataset

Since SourcererCC scaled to 100 MLOC without issue, we also executed for the entire IJa-

Dataset (250MLOC). This represents the real use case of clone detection in a large inter-

project software repository. We execute the tool on a standard workstation with a quad-core

i7 CPU, 12GB of memory, and 100GB of SSD disk space. We executed SourcererCC using

the “Scale” configuration in Table 4.1, with the exception of increasing the minimum clone

size to ten lines. Six lines is common in benchmarking [13]. However, a six line minimum

may cause an excessive number of clones to be detected in IJaDataset, and processing these

clones for a research task can become another difficult scalability challenge [115]. Addition-

55

ally, larger clones may be more interesting since they capture a larger piece of logic, while

smaller clones may be more spurious.

SourcererCC successfully completed its execution for IJaDataset in 4 days and 12 hours,

detecting a total of 146 million clone pairs. The majority of this time was clone detection.

Extracting and tokenizing the functions required 3.5 hours, while computing the global token

frequency map and tokenizing the blocks required only 20 minutes. SourcererCC required

8GB of disk space for its pre-processing, index (1.2GB), and output. Of the 4.7 million

functions in IJaDataset greater than 10 lines in length, 2.4 million (51%) appeared in at

least one clone pair detected by SourcererCC. We have demonstrated that SourcererCC

scales to large inter-project repositories on a single machine with good execution time. We

have also shown that building an index is an inexpensive way to scale clone detection and

reduce overall execution time.

Since CCFinderX scales to the 100MLOC sample, we also executed it for IJaDataset. We

used the same settings as the scalability experiment. We did not increase CCFinderX’s

minimum clone size from 50 tokens, which is roughly 10 lines (assuming 5 tokens per line).

This was not an issue with benchmarking as we used a 50 token minimum for reference clones

from BigCloneBench. CCFinderX executed for 2 days before crashing due to insufficient disk

space. Its pre-processed source files (25GB) and temporary disk space usage exceeded the

disk space. Based on the findings of a previous study, where CCFinder was distributed

over a cluster of computers [83], we can estimate it would require 10s of days to complete

detection on 250MLOC, given sufficiently large disk-space. So we can confidently say that

SourcererCC is able to complete quicker, while also detecting Type-3 clones.

56

4.3 Recall

In this section we measure the recall of SourcererCC and the competing tools. Recall has

been very difficult for tool developers to measure as it requires knowledge of the clones that

exist in a software system [104, 103]. Manually inspecting a system for clones is non-trivial.

Even a small system like Cook, when considering only function clones, has almost a million

function pairs to inspect [123]. Bellon et al. [13] created a benchmark by validating clones

reported by the clone detectors themselves. This has been shown to be unreliable for modern

clone detectors [117]. Updating this benchmark to evaluate a tool would require extensive

manual clone validation with a number of modern tools. As such, many clone detection tool

papers simply do not report recall.

In response, our collaborators created The Mutation and Injection Framework [102, 119],

a synthetic benchmark that evaluates a tool’s recall for thousands of fine-grained artificial

clones in a mutation-analysis procedure. The framework is fully automatic, and requires no

validation efforts by the tool developer. However, we recognized that a modern benchmark

of real clones is also required. So we also use BigCloneBench [114], a recently developed

benchmark containing 8 million validated clones based on clone functionality within and

between 25,000 open-source projects. It measures recall for an extensive variety of real

clones produced by real developers. The benchmark was designed to support the emerging

large-scale clone detection tools, which previously lacked a benchmark. This combination

of real-world and synthetic benchmarking provides a comprehensive view of SourcererCC’s

clone recall.

57

4.3.1 Recall Measured by the Mutation Framework

The Mutation Framework in a synthetic benchmark that evaluates tools using artificial

constructed clones. The advantage of this benchmark is it can precisely evaluate the detection

capabilities of the tools at a fine granularity.

The Mutation Framework follows a standard mutation-analysis procedure. It begins by

extracting a randomly selected code fragment (a function or a block) from a repository of

varied source code. A copy of the fragment is mutated using one of fifteen mutation operators,

which are listed in Table 4.3. Each mutation operator performs a single code edit, and is

based on a empirically validated taxonomy of the types of edits developers make on copy and

pasted code. The original and mutant versions of the code fragment are randomly injected

into a copy of a subject system, evolving the system by a single copy, paste and modify clone.

The clone detector under evaluation is executed for the mutant subject system, and its recall

of the injected clone is measured using a clone-matching algorithm. This process is repeated

many times per mutation operator, and the clone detector’s recall can be measured per type

of edit developers make on cloned code. A more detailed overview of this methodology can

be found in the literature [119, 102].

4.3.1.1 Procedure

We executed the framework for three programming languages: Java, C and C#, using the

following configuration. For each language, we set the framework to generate clones using 250

randomly selected functions, 10 randomly selected injection locations, and the 15 mutation

operators, for a total of 37,500 unique clones per language (112,500 total). For Java we used

JDK6 and Apache Commons as our source repository and IPScanner as our subject system.

For C we used the Linux Kernel as our repository and Monit as our subject system. For

C# we use Mono and MonoDevelop as our repository, and MonoOSC as our subject system.

58

ID Mutation (Edit) Description Clone Type

mCW A Addition of whitespace.

Type-1

mCW R Removal of whitespace.
mCC BT Change in between token (/**/) comments.
mCC BT Change in end of line (//) comments.
mCF A Change in formatting (add newline).
mCF R Change in formatting (remove newline).

mSRI Systematic renaming of an identifier.

Type-2
mARI Renaming of a single identifier instance.

mRL N Change in value of a numeric literal.
mRL S Change in value of a string literal.

mSIL Small insertion within a line.

Type-3
mSDL Small deletion within a line.
mIL Insertion of a line.
mDL Deletion of a line.
mML Modification of a line.

Table 4.3: Cloning Mutation Operators

We constrained the synthesized clones to the following properties: (1) 15-200 lines in length,

(2) 100-2000 tokens in length, and (3) a mutation containment of 15%. We have found

this configuration provides accurate recall measurement [117, 118]. The tools were executed

and evaluated automatically by the framework using the configurations listed in Table 4.1.

To successfully detect a reference (injected) clone, a tool must report a candidate clone

that subsumes 70% of the reference clone by line, and appropriately handles the clone-type

specific edit introduced by the mutation operator [119].

4.3.1.2 Results

Recall measured by the Mutation Framework for SourcererCC and the competing tools is

summarized in Table 4.4. The table shows recall per clone type. SourcererCC has perfect

recall for the first three clone types, including the most difficult Type-3 clones, for Java, C

and C# indicating that SourcererCC’s clone detection algorithm is capable of handling all

the types of edits developers make on copy and pasted code for these languages, as outlined

59

Tool
Java C C#

T1 T2 T3 T1 T2 T3 T1 T2 T3

SourcererCC 100 100 100 100 100 100 100 100 100

CCFinderX 99 70 0 100 77 0 100 78 0
Deckard 39 39 37 73 72 69 - - -
iClones 100 92 96 99 96 99 - - -
NiCad 100 100 100 99 99 99 98 98 98

Table 4.4: Mutation Framework Recall Results

in the editing taxonomy for cloning [108].

SourcererCC exceeds the competing tools with the Mutation Framework. The runner up is

NiCad, which has perfect recall for Java, and near-perfect recall for C and C#. iClones is

also competitive with SourcererCC, although iClones has some troubles with a small number

of Type-2 and Type-3 clones. SourcererCC performs much better for Type-2 and Type-3

clones than CCFinderX. Of course, as a Type-2 tool, CCFinderX does not support Type-3

detection. SourcererCC performs much better then Deckard across all clone types. While

Deckard has decent recall for the C clones, its Java recall is very poor. We believe this is

due to its older Java parser (Java-1.4 only), while the Java reference clones may contain up

to Java-1.6 features.

In summary, SourcererCC has perfect recall with the Mutation Framework, which shows it

can handle all the types of edits developers make on cloned code. As per standard mutation

analysis, the Mutation Framework only uses one mutation operator per clone. This allows

it to measure recall very precisely per type of edit and clone type. It also prevents the

code from diverging too far away from natural programming. However, this means that the

Mutation Framework makes simple clones. It does not produce complex clones with multiple

type of edits, and the Type-3 clones it produces generally have a higher degree of syntactical

similarity. To overcome this issue, we use the real-world benchmark BigCloneBench as

follows.

60

4.3.2 Recall Measured by BigCloneBench

Here we measure the recall of SourcererCC using BigCloneBench and compare it to the com-

peting tools. We evaluate how its capabilities shown by the Mutation Framework translate

to recall for real clones produced by real developers in real software-systems, spanning the

entire range of clone types and syntactical similarities. Together the benchmarks provide a

complete view of SourcererCC’s recall.

BigCloneBench [114] is a large clone benchmark of manually validated clone pairs in the

inter-project software repository IJaDataset 2.0 [3]. IJaDataset consists of 25,000 open-

source Java systems spanning 3 million files and 250MLOC. This benchmark was built by

mining IJaDataset for functions implementing particular functionalities. Each clone pair is

semantically similar (by their target functionality) and is one of the four primary clone types

(by their syntactical similarity). The published version of the benchmark considers 10 target

functionalities [114]. For this study, we use an in-progress snapshot of the benchmark with

48 target functionalities, and 8 million validated clone pairs.

For this experiment, we consider all clones in BigCloneBench that are 6 lines or 50 tokens

in length or greater. This is a standard minimum clone size for benchmarking [13, 118].

The number of clones in BigCloneBench, given this size constraint, is summarized per clone

type in Table 4.5. There is no agreement on when a clone is no longer syntactically similar,

so it is difficult to separate the Type-3 and Type-4 clones in BigCloneBench. Instead the

authors of the BigCloneBench divide the Type-3 and Type-4 clones into four categories

based on their syntactical similarity, as follows. Very Strongly Type-3 (VST3) clones have a

syntactical similarity between 90% (inclusive) and 100% (exclusive), Strongly Type-3 (ST3)

in 70-90%, Moderately Type-3 (MT3) in 50-70%, and Weakly Type-3/Type-4 (WT3/4) in

0-50%. Syntactical similarity is measured by line and by token after Type-1 and Type-2

normalizations. The categories, and the benchmark in general, are explained in more detail

61

Clone Type T1 T2 VST3 ST3 MT3 WT3/T4

of Clone Pairs 35787 4573 4156 14997 79756 7729291

Table 4.5: BigCloneBench Clone Summary

in the literature [114].

4.3.2.1 Procedure

We executed the tools for IJaDataset and evaluated their recall with BigCloneBench. As we

saw previously (Section 4.1), most tools do not scale to the order of magnitude of IJaDataset

(250MLOC). Our goal here is to measure recall not scalability. We avoid the scalability issue

by executing the tools for a reduction of IJaDataset with only those files containing the known

true and false clones in BigCloneBench (50,532 files, 10MLOC). Some of the competing tools

have difficulty even with the reduction, in which case we partition it into small sets, and

execute the tool for each pair of partitions. In either case, the tool is exposed to every

reference clone in BigCloneBench, and it is also exposed to a number of false positives as

well, thus creating a realistic input. We measure recall using a subsume-based clone-matching

algorithm with a 70% threshold. A tool successfully detects a reference clone if it reports a

candidate clone that subsumes 70% of the reference clone by line. This is the same algorithm

used in Mutation Framework, and is standard in benchmarking [13].

4.3.2.2 Results

Recall measured by BigCloneBench is summarized in Table 4.6. Recall is summarized per

clone type and per Type-3/4 category for all clones, as well as specifically for the intra and

inter-project clones.

SourcererCC has perfect detection of the Type-1 clones in BigCloneBench. It also has near-

62

Tool
All Clones Intra-Project Clones Inter-Project Clones

T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ST3 MT3 WT3/T4 T1 T2 VST3 ST3 MT3 WT3/T4

SourcererCC 100 98 93 61 5 0 100 99 99 86 14 0 100 97 86 48 5 0

CCFinderX 100 93 62 15 1 0 100 89 70 10 4 1 98 94 53 1 1 0
Deckard 60 58 62 31 12 1 59 60 76 31 12 1 64 58 46 30 12 1
iClones 100 82 82 24 0 0 100 57 84 33 2 0 100 86 78 20 0 0
NiCad 100 100 100 95 1 0 100 100 100 99 6 0 100 100 100 93 1 0

Table 4.6: BigCloneBench Recall Measurements

perfect Type-2 detection, with a negligible difference between intra and inter-project clones.

This shows that the 70% threshold is sufficient to detect the Type-2 clones in practice.

SourcererCC has excellent Type-3 recall for the VST3 category, both in the general case

(93%) and for intra-project clones (99%). The VST3 recall is still good for the inter-project

clones (86%), but it is a little weaker. SourcererCC’s Type-3 recall begins to drop off for

the ST3 recall (61%). Its recall is good in this Type-3 category for the intra-project clones

(86%) but poor for the inter-project clones (48%). We believe this is due to Type-3 clones

from different systems having a higher incidence of Type-2 differences, so the inter-project

clones in the ST3 category are not exceeding SourcererCC’s 70% threshold. Remember

that the reference clone categorization is done using syntactical similarity measured after

Type-2 normalizations, whereas SourcererCC does not normalize the identifier token names

(to maintain precision and index efficiency). Lowering SourcererCC’s threshold would allow

these to be detected, but could harm precision. SourcererCC has poor recall for the MT3

and WT3/T4, which is expected as these clones fall outside the range of syntactical clone

detectors [118]. Of course, Type-4 detection is outside the scope of this study.

Compared to the competing tools, SourcererCC has the second best recall overall, with NiCad

taking the lead. Both tools have perfect Type-1 recall, and they have similar Type-2 recall,

with NiCad taking a small lead. SourcererCC has competitive VST3 recall, but loses out in

the inter-project case to NiCad. SourcererCC is competitive with NiCad for intra-project

clones in the ST3 category, but falls significantly behind for the inter-project case and overall.

NiCad owes its exceptional Type-3 recall to its powerful source normalization capabilities.

63

However, as we saw previously in Section 4.1, NiCad has much poorer execution time for

larger inputs, and hits scalability constraints at the 100MLOC input. So SourcererCC instead

competes with execution performance and scalability, making these tools complimentary

tools for different use cases.

Comparison to CCFinderX is interesting as it is the only other tool to scale to the 100MLOC

input. Both tools have comparable Type-1 and Type-2 recall, with SourcererCC having the

advantage of also detecting Type-3 clones, the most difficult type. While BigCloneBench is

measuring a non-negligible VST3 recall for CCFinderX, it is not truly detecting the Type-3

clones. As shown by the Mutation Framework in Table 4.4, CCFinderX has no recall for

clones with Type-3 edits, while SourcererCC has perfect recall. Rather, CCFinderX is detect-

ing significant Type-1/2 regions in these (very-strongly similar) Type-3 clones that satisfy the

70% coverage threshold. This is a known limitation in real-world benchmarking [117, 118],

which is why both real-world and synthetic benchmarking is needed. CCFinderX’s detection

of these regions in the VST3 is not as useful to users as they need to manually recognize the

missing Type-3 features. CCFinderX’s Type-3 recall drops off past the VST3 category, where

Type-3 gaps are more frequent in the clones. While we showed previously that CCFinderX

also scales to larger inputs (Section 4.1), SourcererCC’s faster execution, Type-3 support,

and better recall make it an ideal choice for large-scale clone detection.

Deckard and iClones are the other competing Type-3 clone detectors. Both SourcererCC

and iClones have perfect Type-1 recall, but SourcererCC exceeds iClones in both Type-2

and Type-3 detection, and iClones does not scale well. Deckard has poor overall recall for

all clone types, along with its scalability issues.

64

4.4 Precision

In this section we measure SourcererCCs precision and compare it against the competing

tools. Unlike clone detection recall, where there exists benchmarks [117], measuring precision

remains an open problem, and there is no standard benchmark or methodology. Instead we

estimate the precision of the tools by manually validating a random sample of their output,

which is the typical approach.

From each tool we randomly selected 400 of the clone pairs they detected in the recall

experiment. The validation efforts were equally distributed over five reviewers, all software

researchers with 2-5 years of software development experience, with each validating 80 clones

from each tool. The clones were shuffled and the reviewers were kept blind of the source

of each clone. The reviewers were familiar with the cloning definitions, and were asked to

validate the clones as per their judgment.

Clone validation can be very subjective, so we used multiple reviewers to get an average

opinion of what is a true positive clone. In addition to the 400 clones, we had each reviewer

validate the same sample of 100 clones (20 from each tool) to measure agreement in the vali-

dation. Agreement between pairs of reviewers for these clones ranged from 67% to 90%, with

an average of 80%. All five reviewers agreed on 58% of the clones, and at least 4 reviewers

agreed on 86% of the clones. Overall, the reviewers had strong agreement; suggesting that

the reviewers have a similar opinion on what constitutes a true positive clone. Disagreement

is expected due to the subjective nature of true vs false positive clones. By distributing the

clones amongst multiple reviewers we normalize for different opinions on what constitutes a

true positive clone.

We find that SourcererCC has a precision of 83%, the second best precision of these tools.

This is a very strong precision as per the literature [103, 108, 104], and demonstrates the

accuracy and trustworthiness of SourcererCC’s output. We summarize the precision of all the

65

SourcererCC CCFinderX Deckard iClones NiCad

Precision 83 72 28 91 56
Precision (min 10 LOC) 86 79 30 93 80

Recall1 90 75 53 78 99
F-Measure2 88 77 38 85 88

Table 4.7: Tool Recall and Precision Summary
1 Including T1, T2, VST3 and ST3.
2 F-Measure = 2 * (recall * precision) / (recall + precision)

tools in Table 4.7, and contrast it against their overall recall measured by BigCloneBench.

We do not include the MT3 and WT3/T4 clones as they are outside the scope of these

tools. iClones has the top precision (91%) because it is cautious when reporting Type-3

clones, although this results in a Type-3 recall (38%) significantly below the other tools.

SourcererCC’s bag-of-tokens model and similarity threshold allows it to provide a good

balance of recall and precision while also providing superior scalability. NiCad has a precision

of 56%, possibly because of its use of normalizations and relaxed threshold. However, with

these settings NiCad also has a very strong recall (99%). CCFinderX’s precision, while

competitive, is low considering it only targets Type-1 and Type-2 clones (although it detects

some Type-1/2 regions in Type-3 clones). Deckard has very poor precision in this experiment,

reporting some clones that are very dissimilar. This may be because we relaxed its similarity

threshold to detect more Type-3 clones. The authors [55] report a precision of 94% for Java-

1.4 code with a 100% similarity threshold. Nonetheless, CCFinderX and Deckard show very

poor Type-3 recall as well.

Tool configuration, particularly minimum clone size, could be a potential bias in this precision

experiment. This was controlled in the recall experiment by setting a minimum clone size of

six lines and 50 tokens in BigCloneBench, and configuring the tools appropriately. However,

there is no agreement between lines of code and the tokens contained, and even the tools

measure lines (original/pretty-printed) and tokens (original/filtered) in different ways. This

makes comparing the precision of the tools difficult because this configuration issue may

66

cause a tool to detect many small spurious clones that another tool does not detect due to

difference in clone size configuration and/or measurement. To examine this, we re-measured

precision using a minimum clone size of 10 original lines of code in order to harmonize the

minimum clone size of the tools. We used the existing validation efforts, randomly selecting

30 validated clones per tool per judge (150 clones per tool) that are 10 LOC or greater. These

results are shown in Table 4.7. All of the tools see a boost in precision, although NiCad

most significantly. This implies that with full normalization and a generous threshold of 30%

dissimilarity, NiCad may be detecting small false clones that are 6 (pretty-printed) lines or

so, but contain very few tokens (spurious similarity).

4.5 Summary of Recall and Precision Experiments

Figure 4.1 summarizes the results of recall and precision experiments for all the tools. It

reports recall computed using BigCloneBench and Mutation Framework, precision, and F-

Measure computed using precision and recall from BigCloneBench. Note that for CCFinder,

recall for Mutation Framework is computed only for Type-1 and Type-2 clones as CCFinder

does not support Type-3 clones. NiCad demonstrates the highest recall whereas iClones

demonstrates the highest precision. While SourcererCC is not number one in recall or preci-

sion, it provides the best balance of both measures (as seen from F-Measure), while achieving

high scalability and good execution performance. SourcererCC owes its high recall perfor-

mance to its bag-of-tokens approach, while maintaining high precision by not using heavy

normalizations on the tokens.

67

83
72

28

91

56

90
75

53

78

99100
85

39

96 100
86

73

37

84
72

0

20

40

60

80

100

120

SourcererCC CCFinderX Deckard iClones NiCad

Precision Recall?(BigCloneBench) Recall?(Mutation?Framework) FIMeasure

Figure 4.1: Summary of Results. F-Measure is computed using Recall (BigCloneBench) and
Precision

4.6 Sensitivity Analysis of the Similarity Threshold Pa-

rameter

The goal of this experiment is to study the impact of change in the similarity threshold

value on three metrics: (i) the number of clones detected; (ii) the total number of candidates

detected; and (iii) the total number of tokens compared.

Subject Systems. We chose 35 open source Apache Java projects as subject systems for

this experiment. These projects are of varied size and span across various domains including

search and database systems, server systems, distributed systems, machine learning and

natural language processing libraries, network systems, etc. Most of these subject systems

are highly popular in their respective domain. Such subject systems exhibiting variety in size

and domain help counter a potential bias of our study towards any specific kind of software

system. More details about the size of the projects (LOC) and number of methods present

in them can be found in Appendix A.

68

SourcererCC was used to detect clones individually for each project, with varying values

of similarity threshold (θ) from 0.6 to 0.9. Next, for each value of θ, the above mentioned

metrics were measured.

We observed all the metric values to decrease with the increase in the value of θ. We posit

the following two reasons for the observed phenomenon:

First, as we increase θ, the size of sub-block (calculated using Sub-block overlap filtering)

to validate candidacy of each code block decreases. Second, a higher value of θ makes the

Token Position filter stricter and therefore fewer number of code block satisfy the similarity

constraint eventually decreasing the number of candidates. In summary, the two filtering

heuristics work together to ensure the decrease in the number of candidates with the increase

in the values of θ. Moreover, since the number of tokens compared is directly related to the

number of candidates compared. The total number of tokens compared also decline with the

increase in the value of θ,

Higher values of θ also mean that the code blocks should contain a greater number of similar

tokens to be identified as clones. As a result, SourcererCC finds near exact clones (e.g.

Type-1 & Type-2) when configured with higher values of θ. Since projects usually have

fewer number of Type-1 & Type-2 clones, we expect the total number of clones reported in

a project to decrease with increase in the value of θ.

Figure 4.2 validates these observations visually on five projects by plotting the impact of

change in the value of θ value on: (i) the number of clones reported; (ii) the total number

of candidates compared; and (iii) the total number of tokens compared. The X-axis shows

θ increasing from 0.6 to 0.95 with a step size of 0.05. The Y-axis shows the number of

clones reported (top-center), the number of candidates compared (bottom-left), and number

of token compared (bottom-right).

69

Similarity Threshold

C

lo
ne

s
D

et
ec

te
d

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

5000

10000

15000

ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

C
lo

ne
 D

et
ec

tio
n

Ti
m

e
(s

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

1

2

3

4

5 ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

C

an
di

da
te

s
(x

 1
K

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

10

20

30

40

50 ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

To

ke
ns

 C
om

pa
re

d
(x

 1
M

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

5

10

15

20

25 ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

C

lo
ne

s
D

et
ec

te
d

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

5000

10000

15000

ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

C
lo

ne
 D

et
ec

tio
n

Ti
m

e
(s

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

1

2

3

4

5 ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

C

an
di

da
te

s
(x

 1
K

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

10

20

30

40

50 ant
eclipse−jdtcore
jfreechart
junit
log4j

Similarity Threshold

To

ke
ns

 C
om

pa
re

d
(x

 1
M

)

0.
6

0.
65 0.

7

0.
75 0.

8

0.
85 0.

9

0.
95

0

5

10

15

20

25 ant
eclipse−jdtcore
jfreechart
junit
log4j

Figure 4.2: Change in number of clones reported (top-center), number of candidates com-
pared (bottom-left), and number of tokens compared (bottom-right) with the change in
similarity threshold.

70

S
im

il
a
ri

ty
T

h
re

sh
ol

d
=

(θ
)

S
u
b

je
ct

S
y
st

em
θ

=
6

θ
=

7
θ

=
8

θ
=

9

C
lo

n
es

C
an

d
id

at
es

T
ok

en
s

C
lo

n
es

C
an

d
id

at
es

T
ok

en
s

C
lo

n
es

C
an

d
id

at
es

T
o
ke

n
s

C
lo

n
es

C
a
n
d
id

a
te

s
T

o
ke

n
s

an
t

62
7

22
,2

27
15

,0
39

,7
36

36
7

7,
1
44

8,
24

6
,6

41
19

2
1
,9

32
3
,7

57
,3

5
7

70
3
6
5

1
,0

2
7
,3

0
2

b
er

ke
le

y
p
ar

se
r

1,
89

8
23

,9
45

6,
74

8,
35

9
89

3
9,

0
49

3,
73

9
,0

54
45

3
2
,9

73
1
,7

31
,2

3
6

18
5

7
5
8

4
9
5
,4

6
3

cg
li
b

96
2,

34
5

62
8,

94
1

48
9
63

34
7,

87
5

1
6

3
31

1
6
0,

05
5

3
5
3

4
3
,1

2
6

cl
ou

d
9

4,
66

8
49

,0
93

11
,4

38
,9

67
3,

14
1

20
,9

6
7

6
,3

10
,0

99
2,

07
4

8
,3

29
2,

8
82

,8
4
5

89
3

3
,0

4
4

7
9
7
,1

7
1

co
co

on
64

95
2

26
5,

47
3

29
35

9
14

7,
46

2
16

12
8

6
6,

76
9

5
2
6

1
8
,2

5
7

co
m

m
on

s-
io

19
0

1,
44

9
28

3,
11

6
11

1
6
97

16
1,

75
0

5
3

3
32

7
8
,4

15
1
8

8
7

2
2
,1

4
5

d
om

4j
54

6
4,

39
9

77
5,

74
3

38
5

1,
99

3
44

4,
83

3
21

1
8
67

2
1
1,

60
5

62
2
4
0

5
9
,0

2
7

ec
li
p
se

-a
n
t

12
1

3,
15

8
1,

07
7,

23
1

80
1
,1

66
58

8,
07

5
3
4

3
45

2
7
0,

15
1

12
7
0

7
4
,0

0
1

ec
li
p
se

-j
d
tc

or
e

3,
97

0
44

,0
51

28
,7

38
,2

82
2,

45
5

17
,1

50
15

,7
39

,7
1
2

1
,7

20
6,

2
72

7,
18

3
,9

14
6
0
4

1
,5

8
0

1
,9

7
6
,3

8
5

h
ad

o
op

-h
d
fs

9,
79

7
38

,6
67

16
,4

16
,7

89
6,

62
0

21
,5

61
9,

05
8
,5

65
3,

7
82

1
0,

37
4

4
,1

3
8,

2
23

1,
88

5
4
,4

3
0

1
,1

3
6
,9

5
7

h
ad

o
op

-m
ap

re
d

63
3

11
,9

02
9,

37
8,

87
1

39
2

4,
53

2
5,

13
6
,3

12
21

6
1
,5

31
2,

3
43

,0
2
3

71
3
9
4

6
3
8
,3

2
9

h
ib

er
n
at

e
70

3
23

,2
78

12
,1

37
,4

76
39

3
7,

90
0

6
,6

77
,2

60
20

5
2,

39
9

3
,0

5
1,

34
4

7
6

4
9
9

8
2
1
,4

1
5

j2
sd

k
1.

4.
0-

ja
va

x
-s

w
in

g
2,

85
2

50
,4

74
39

,6
10

,6
27

1,
43

9
1
7,

92
6

22
,0

58
,8

1
8

62
1

5,
40

9
1
0,

2
14

,0
8
0

24
0

1
,1

1
1

2
,8

3
5
,3

4
8

jf
re

ec
h
ar

t
14

,7
90

57
,0

12
16

,8
82

,5
29

5,
47

3
21

,9
13

9,
30

6
,0

27
1,

3
17

6,
18

7
4
,2

1
5,

6
50

3
91

1
,5

2
6

1
,1

3
3
,5

2
5

ju
n
it

16
42

8
11

5,
76

2
13

19
3

67
,3

31
8

7
3

32
,4

1
3

3
1
7

8
,8

6
7

jy
th

on
5,

63
4

58
,4

39
28

,4
11

,7
46

3,
87

8
22

,1
74

15
,6

92
,4

90
2,

84
3

7,
75

9
7
,2

2
1,

63
6

1
,7

9
8

2
,8

7
2

2
,0

3
1
,6

0
0

lo
g4

j
1,

13
6

4,
44

1
1,

23
0,

70
6

58
0

2,
10

1
70

3
,4

10
28

6
7
95

3
3
3,

12
8

1
24

2
6
0

9
2
,4

2
8

lu
ce

n
e

12
6

2,
13

6
62

1,
78

3
76

90
9

34
8,

86
0

56
33

1
1
62

,2
6
2

2
4

9
2

4
5
,2

4
3

m
ah

ou
t-

co
re

83
2

16
,9

14
9,

21
3,

89
7

35
0

6
,1

62
4
,9

85
,3

7
6

18
1

1,
91

5
2
,2

56
,8

1
6

68
4
1
8

6
1
9
,6

5
0

m
as

on
1,

54
3

7,
41

8
2,

67
3,

33
4

96
8

3,
45

9
1,

48
3
,7

62
49

4
1
,5

08
6
8
3,

48
5

2
12

5
2
7

1
9
3
,0

8
8

n
et

b
ea

n
s-

ja
va

d
o
c

12
1

71
2

25
2,

37
5

93
35

6
14

4,
0
82

5
9

16
6

65
,9

8
9

31
6
9

1
8
,1

0
3

n
u
tc

h
62

1,
20

4
45

6,
65

5
43

4
84

25
3,

03
7

2
6

1
79

1
1
4,

89
9

10
5
2

3
1
,1

4
3

p
d
fb

ox
60

75
8

18
7,

24
2

37
30

9
10

3
,3

49
31

10
9

49
,2

2
3

15
3
8

1
4
,4

9
0

p
ig

3,
26

2
33

,6
61

15
,2

50
,1

82
1,

79
9

12
,3

1
3

8
,2

37
,6

61
1,

17
9

4
,4

16
3,

7
14

,3
7
8

55
7

1
,5

5
2

1
,0

2
7
,3

6
3

p
m

d
3,

78
7

13
,9

00
6
,3

69
,7

75
1,

75
5

6,
07

9
3,

58
6,

03
3

5
28

1,
96

5
1
,6

6
3,

43
4

93
3
0
5

4
5
2
,3

9
2

p
oi

4,
55

3
15

,0
59

4,
07

3,
58

4
2,

55
7

6,
67

0
2,

30
9,

6
19

1,
12

9
2,

54
0

1
,0

8
2,

87
4

4
00

6
2
2

2
9
5
,1

3
7

p
os

tg
re

sq
l

72
8

4,
25

0
1,

32
4,

88
0

39
0

1
,7

78
73

3,
59

8
2
51

75
7

3
36

,3
7
8

12
2

2
3
3

9
3
,3

9
5

rh
in

o
67

0
14

,3
81

5,
83

4,
89

3
32

6
5,

06
7

3,
21

9
,5

19
12

9
1
,6

40
1,

4
75

,0
1
1

27
3
2
9

3
9
5
,8

4
7

st
an

fo
rd

-n
lp

2,
08

8
67

,9
73

46
,5

47
,5

95
1,

07
8

21
,8

5
2

25
,6

69
,8

5
4

58
6

5,
89

2
1
1,

84
5
,5

62
2
1
4

1
,1

7
7

3
,3

2
6
,7

1
7

st
ru

ts
30

6
4,

00
2

1,
18

3,
74

3
19

9
1,

55
1

64
7
,4

43
13

2
57

7
2
93

,6
9
9

97
1
8
3

8
0
,9

8
4

su
b
st

an
ce

46
9

7,
35

5
3
,5

64
,7

68
29

7
2,

8
66

1,
92

7
,0

20
19

8
1
,1

13
8
6
7,

58
0

7
4

3
3
1

2
3
7
,9

1
8

sy
n
ap

se
-c

or
e

56
7

7,
09

7
3,

51
3,

70
5

34
6

2
,7

92
1,

9
07

,7
0
1

16
6

1,
02

2
86

2,
9
06

1
5

2
6
7

2
3
1
,1

9
2

to
m

ca
t-

ca
ta

li
n
a

1,
14

2
19

,1
96

9,
56

8,
18

8
66

9
7,

20
5

5,
23

3
,2

39
32

9
2
,2

89
2,

37
7
,1

21
16

6
5
7
7

6
5
2
,3

4
8

u
im

a-
co

re
18

6
1,

08
2

34
2,

72
4

10
1

50
4

1
93

,9
1
9

62
26

9
90

,5
6
4

23
8
0

2
5
,6

5
9

x
er

ce
s

1,
13

7
14

,3
42

7
,9

10
,2

17
69

2
5,

5
63

4,
38

6
,9

06
39

8
1
,9

85
2
,0

37
,0

9
4

16
0

5
5
5

5
6
2
,3

4
7

T
ab

le
4.

8:
Im

p
ac

t
of

ch
an

ge
in

th
e

si
m

il
ar

it
y

th
re

sh
ol

d
va

lu
e

on
:

(i
)

th
e

n
u
m

b
er

of
cl

on
es

d
et

ec
te

d
;

(i
i)

th
e

to
ta

l
n
u
m

b
er

of
ca

n
d
id

at
es

;
an

d
(i

ii
)

th
e

to
ta

l
n
u
m

b
er

of
to

ke
n
s

co
m

p
ar

ed
.

71

Table 4.8 shows the complete set of results for all the projects for θ ranging from 0.6 to 0.9.

For each value of θ, the table shows the number of clones reported (sub-column Clones),

the number of candidates compared (sub-column Candidates), and the number of tokens

compared (sub-column Tokens). The data confirms the decreasing trend for all the columns

with the increase in the value of θ.

4.7 Manual Inspection of Clones Detected by Sourcer-

erCC

In order to gain more insights about what kind of clones are detected by SourcererCC, two

reviewers (software engineering researchers with 2-5 years of software development experi-

ence) manually inspected 198 clone groups found in the above listed 35 Java projects. The

number of clone siblings in these clone groups ranges from 2 to 5,473. The reviewers’ classi-

fication of these clone groups coincided with the categories proposed by Kasper and Godfrey

for classification in [63]. The following are various categories that the reviewers classified the

clone groups in.

Cross-cutting Concerns. Two different methods responsible for different tasks can look like

clones when, apart from implementing the required behavior, they also implement the code

for addressing similar aspects (e.g. logging, authentication, and debugging). In such cases,

the code that implements the actual logic in a method is small. However, oftentimes devel-

opers copy the whole method body from another method and change only the part of the

code that affects the functionality - leaving the two methods structurally very similar. Since

a large part of such methods contain code that makes function calls to logging, debugging

and authentication modules, it often is a well tested code - making such clones harmless.

The code snippets 1A and 1B in Figure 4.3 show one such clone group where the methods

72

use HttpServletRequest API. Both the methods perform user authentication before making

a function call to the putAttribute method. The presence of authentication code in both the

methods makes the code structurally very similar.

Code Generation. The methods that are auto-generated using some tool usually have similar

structures. Such clones are auto-generated from specifications and ideally not meant to be

modified by the developers. As long as this code of conduct is followed, presence of such

clones is not a threat.

As an example of this type of cloning, we found a clone group with 5,473 members in

PyArrayDerived.java in Jython project. The code snippet 2 shown in Figure 4.3 is written

for rlshift operator and is duplicated for all the operators creating clones. Similarly, we found

clones of initComponents() method in FormEditor.java file of Eclipse-jdt core project which

gets regenerated by the constructor of FormEditor.

API/Library Protocols. We found clones resulting from the constraints or style imposed

by the frameworks. Cloning in such case is because of the limited APIs made available

by the framework and the sequence in which they are to be invoked to achieve a spe-

cific task. Such tasks are usually domain independent and can also occur across projects

(e.g. adding items in the menu, calendar functionality, internationalization, among oth-

ers). For example, we found a clone of createActionComponent() (see the code snippet 3

in Figure 4.3), a Factory method which creates the JMenuItem for each Action added to

the JMenu. Similarly the run method in edu.umd.cloud9.example.hits.AFormatterWG and

edu.umd.cloud9.example.hits.HFormatterWG has a series of similar function calls to create

and configure the mapper, reducer, and combiner for invoking map-reduce jobs.

Replicate and Specialize. While developing a solution to a problem, the developers sometime

copy a piece of code that has already been implemented to address a similar problem, and

make some modifications to address the required problem.

73

1A) public void processNestedTag(PutTag nestedTag) throws JspException {

// Check role

HttpServletRequest request = (HttpServletRequest)

pageContext.getRequest ();

String role = nestedTag.getRole ();

if (role != null && !request.isUserInRole(role)) {

// not allowed : skip attribute

return;

}

putAttribute(nestedTag.getName(), nestedTag.getRealValue ());

}

/* *** */

1B) public void putAttribute(PutListTag nestedTag) throws JspException {

// Check role

HttpServletRequest request = (HttpServletRequest)

pageContext.getRequest ();

String role = nestedTag.getRole ();

if (role != null && !request.isUserInRole(role)) {

// not allowed : skip attribute

return;

}

putAttribute(nestedTag.getName(), nestedTag.getList ());

}

/* *** */

2) public PyObject __rlshift__(PyObject other) {

PyType self_type = getType ();

PyObject impl = self_type.lookup("__rlshift__");

if (impl != null) {

PyObject res = impl.__get__(this , self_type). __call__(other);

if (res == Py.NotImplemented)

return null;

return res;

}

return super.__rlshift__(other);

}

/* *** */

74

3) protected JMenuItem createActionComponent(Action a) {

JMenuItem mi = new JMenuItem ((String) a.getValue(Action.NAME),

(Icon) a.getValue(Action.SMALL_ICON)) {

protected PropertyChangeListener

createActionPropertyChangeListener(Action a) {

PropertyChangeListener pcl = createActionChangeListener(this);

if (pcl == null) {

pcl = super.createActionPropertyChangeListener(a);

}

return pcl;

}

};

mi.setHorizontalTextPosition(JButton.TRAILING);

mi.setVerticalTextPosition(JButton.CENTER);

mi.setEnabled(a.isEnabled ());

return mi;

}

/* *** */

4A) public boolean containsAll(final IntList c) {

boolean rval = true;

if (this != c) {

for (int j = 0; rval && (j < c._limit); j++) {

if (! contains(c._array[j])) {

rval = false;

}

}

}

return rval;

}

/* *** */

4B) public boolean removeAll(final IntList c) {

boolean rval = false;

for (int j = 0; j < c._limit; j++) {

if (removeValue(c._array[j])) {

rval = true;

}

}

return rval;

}

75

5A) public void startEntity(String name) throws SAXException {

for (int i = 0; i < this.lexicalHandlerList.length; i++) {

if (this.lexicalHandlerList[i] != null)

this.lexicalHandlerList[i]. startEntity(name);

}

}

/* *** */

5B) public void endEntity(String name) throws SAXException {

for (int i = 0; i < this.lexicalHandlerList.length; i++) {

if (this.lexicalHandlerList[i] != null)

this.lexicalHandlerList[i]. endEntity(name);

}

}

/* *** */

6A) public static string getAuthority(String uri) {

RE re = RE(uripattern);

if(re.match(uri)) {

return re.getParen (4);

} else {

throw new illegalArgumentException(uri + " is not a correct URI");

}

}

/* *** */

6B) public static string getPath(String uri) {

RE re = RE(uripattern);

if(re.match(uri)) {

return re.getParen (5);

} else {

throw new illegalArgumentException(uri + "is not a correct URI");

}

}

Figure 4.3: Sample code clones observed in the subject systems. 1A & 1B: Cross-cutting
Concerns; 2: Code Generation; 3: API/Library Protocols; 4A, 4B & 5A, 5B: Replicate and
Specialize; 6A & 6B: Near-Exact Copy

76

We noticed several cases where the clone siblings perform exactly the opposite tasks, but

are structurally very similar. For example, the code snippets 4A and 4B in Figure 4.3 show

two methods that iterate over all the elements of a user defined list and invoke contains

and removeValue APIs respectively. Undoubtedly, these two code blocks share most of the

code; however, their existence in two separate well defined methods could be a thoughtful

decision. Similarly, the code snippets 5A and 5B in Figure 4.3 show another such example

of two methods which share most of the code, but are designed to achieve separation of

concerns.

Exact or Near-Exact Copy. We found several instances where the clone siblings have identical

or near identical code. Such cases of clones could arise due to laziness on programmer’s

part or because of bad development practices. In some cases we noticed comments by

the developers reflecting their awareness of the presence of such clones, and their intent to

refactor in the future. For example, we found that the two siblings of a clone group had

identical code except hard coded integer values passed as parameters to the methods (6A

& 6B in Figure 4.3). Although this does not result in any serious threat to the program,

it is definitely a bad practice because it breaks abstraction and increases the code size. An

easy fix is to refactor the two methods into one by modifying the signature of any of these

methods to accept an integer type as a parameter. A tool support to pro-actively detect such

patterns can help a developer fix the code before cloning. There exists automated refactoring

support for such scenarios; however, such an approach is reactive, and hence often ends up as

an optional exercise. We conjecture that a more proactive approach of making a developer

aware of such issues while she is copy pasting will blend in with the development activity

and hence will be more easily adopted.

Overall, in all of the observed clone groups, we came to an understanding that the developers

seemed to have copied code, which is sufficiently well written and handle the edge cases.

Cases where cloning also resulted into duplication of bad practices and hence impacted overall

77

code quality, could have been fixed by adding proactive tool support to help developers make

an informed decision. In their study [113], Thummalapenta et al. also found that clones

were consistently propagated when needed and developers actually seem to remember the

clone locations that require such propagation, particularly in important cases like bug fixes.

This suggests that although there may be many inconsistent changes, developers are aware

and make conscious decision about propagating the change.

4.8 Threats to Validity

As observed by Wang et al. [124], clone detection studies are affected by the configurations

of the tools, and SourcererCC is no exception. However, we carefully experimented with

its configurations to achieve an optimal result. As for the other tools, we also conducted

test experiments, and also discussed with the corresponding developers for obtaining proper

configurations, where available. Their configurations also provided good results in the past

studies [118, 117, 115].

There are some limitations in the precision measurement. The choice of subject system (in

our case a subset of IJaDataset), tool configuration [124], and targeted use case [123] can

all have a significant impact on the precision measured. The reliability and experience of

reviewers is also identified as a concern [5, 19, 123]. To combat this, we split the validation

efforts across five reviewers so that the measurement reflects the views of multiple clone

researchers. Moreover, conducting this in a blind manner ensured no subjective bias towards

any specific tool.

78

4.9 Chapter Summary

In this chapter, we evaluated SourcererCC’s performance and detection quality. We demon-

strated SourcererCC’s scalability with IJaDataset, a large inter-project repository containing

25,000 open-source Java projects, and more than 250 MLOC. In our experiments, with four

state-of-the-art tools, we found that SourcererCC is the only tool to scale to the complete

repository. We measured recall using two state-of-the-art clone benchmarks, the Mutation

Framework, and BigCloneBench, and found that SourcererCC is competitive with even the

best of the state-of-the-art Type-3 clone detectors. We measured precision by five reviewers,

manually inspecting statistically significant sample of tools’ output, and found SourcererCC

to also have high precision (86%). These results suggests that SourcererCC can be an ideal

choice for the various modern use cases that require reliable, complete, fast, and scalable

clone detection.

79

Chapter 5

SourcererCC-D: Parallel and

Distributed SourcererCC

Part of the material in this chapter is included with the permission of John Wiley and Sons

and based on our work in:

• Sajnani, H.; Saini, V.; Lopes, C., “A Parallel and Efficient Approach to Large Scale

Clone Detection,” Journal of Software: Evolution and Process (JSEP), June 2015 vol.,

no. 27, pp. 402-429, doi: 10.1002/smr.1707

5.1 Introduction

SourcererCC advances the state-of-the-art in code clone detection tools that can scale verti-

cally using high power CPUs and memory added to a single machine. While this approach

works well in most of the cases, in certain scenarios using vertical scalable approaches may

not be feasible as they are bounded by the amount of data that can fit into the memory of a

80

single machine. In such scenarios, timely computing clones in ultra large datasets is beyond

the capacity of a single machine.

Under such scenarios, efficient parallelization of the computation process is the only feasible

option. Previously, research in this direction was limited due to the lack of the availability of

resources and the cost of setting up the infrastructure. But the recent developments in the

field of cloud computing and the availability of low-cost infrastructure services like Amazon

Web Services (AWS), Azure, and Google Cloud, have enabled the research in this area.

However, it is important to note that simply dividing the input space and parallelizing

the clone detection operation do not solve the problem, because running tools on projects

individually, and then combining the results in the later step, would lead to a collection

of common clones, but would not identify clones across division boundaries. Additionally,

oftentimes, simple distributed approaches consume substantial time in aggregating the infor-

mation after the clone detection step. For example, Livieri et al. [83] proposed D-CCFinder,

an in-house distributed CCFinder to detect Type-2 clones. It took two days to analyze 400

million lines of code with a cluster of 80 machines, suggesting that while input partitioning

can scale existing non-scalable detectors, it significantly increases the cumulative runtime.

Thus, efficient parallelization of the computation process is necessary. Moreover, to the best

of our knowledge, currently there is no1 distributed clone detector available.

This chapter presents SourcererCC-D, a distributed and parallel version of SourcererCC that

is designed to horizontally scale to multiple processors and efficiently detect first three types

of clones on large datasets. Since SourcererCC forms the core engine of SourcererCC-D,

it has enhanced scalability (horizontal) preserving the same detection quality (recall and

precision) as SourcererCC.

The rest of the chapter describes SourcererCC-D’s architecture, followed by its implementa-

1As per the interaction with the author of D-CCFinder, the tool was developed only for the experimen-
tation and is no longer available.

81

tion details and experiments to measure its scalability using AWS clusters.

5.2 Architecture

SourcererCC-D detects clones on a cluster of nodes. The core idea is to first construct

the index of the entire corpus that is shared across all the nodes, and parallelize the clone

searching process by distributing the tasks across all the nodes in the cluster. In order to

achieve this, SourcererCC-D can follow a standard Shared-disk (see Figure 5.1) or a Shared-

memory (see Figure 5.2) architecture style.

Figure 5.1: Shared-disk Architectural Style

A shared disk architecture (SD) is a distributed computing paradigm in which all disks

are accessible from all the cluster nodes. While the nodes may or may not have their own

private memory, it is imperative that they at least share the disk space. A shared memory

architecture (SM) is a distributed computing paradigm in which the cluster nodes not only

share the disks but also have access to a global shared memory.

Figure 5.2: Shared-memory Architectural Style

82

Source'Projects

Slave'nodes'
running'
SourcererCC

Parsed'Output

Parser

Split'“Parsed'
Output”'for'each'
slave'node

Splitter

Global'Index''''
(shared'across'
worker'nodes)

Indexer

Clones'reported'
by'each'slave'
node

Master’s'tasks
• Parsing'&'Indexing
• Assigning'jobs'to'slaves

Slaves’'task
• Executing'SourcererCC’ssearcher'''

Q_1

Q_2

Q_3

Q

Figure 5.3: SourcererCC-D’s Clone Detection Process

Figure 5.3 describes SourcererCC-D’s clone detection process. Let us assume a cluster of

N + 1 nodes2. Initially, a master node (any one of the cluster nodes) runs the parser on

the entire corpus and produces a parsed input file containing code blocks according to the

granularity set by the user. Next, the master node runs SourcererCC’s Indexer on the parsed

input file to build an index. The constructed index, also known as a global index, resides on

the shared disk, and hence is accessible by all the nodes in the cluster. After the global index

is constructed, the master node splits the parsed input file into N different files namely Q1,

Q2, Q3,...QN and distributes them to each node in the cluster. Each node is now responsible

to locally compute clones of code blocks in its respective query file using SourcererCC’s

Searcher. Note that since each node has access to the global index, it can find all the clones

in the entire corpus for its given input, i.e., clones present across other nodes. It is for this

reason, nodes must have a shared disk space to store the global index. When all the nodes

finish executing the Searcher, all the clones in the corpus have been found.

Note that in the above design, while the search phase is distributed and happens in parallel,

2In case of a single high performance multi-processor machine, N+1 is the number of processors available
on that machine

83

the index construction phase is not parallelized (only the master node constructs the index).

However, this hardly impacts the overall clone detection performance because we found that

index construction takes less than 4% of the total time to detect clones.

SourcererCC-D can be deployed on in-house clusters, cloud services like AWS, or even multi-

processor machines. Appendix B describes how to run it on AWS.

5.3 Evaluation

5.3.1 Evaluation Metrics

SourcererCC-D is built on top of SourcererCC. Hence, it bears same recall and precision as

SourcererCC. However, since SourcererCC-D’s primary goal is to achieve horizontal scalabil-

ity, we conduct several experiments to measure its performance in terms of two important

properties: Speed-up and Scale-up. Speed-up and Scale-up are two well-known metrics to

measure the performance of parallel systems. They are described as follows:

Speed-up is the extent to which more hardware can perform the same task in less time than

the original system. With added hardware, speed-up holds the task constant and measures

time savings. For example, Figure 5.4 shows how each parallel hardware system performs

half of the original task in half the time required to perform it on a single system. With

good speed-up, additional processors reduce system response time. Speed-up is measured

using this formula:

Speed-up=
Time Original

Time Parallel
(5.1)

where Time Parallel is the elapsed time spent by a larger, parallel system on the given task.

84

For example, if the original system took 60 seconds to detect clones in a project, and two

parallel systems took 30 seconds, then the value of speed-up would equal to two.

Thus a speed-up value of n, where n times more hardware is used, indicates the ideal or

linear speed-up. In other words, an ideal speed-up is when twice as much hardware can

perform the same task in half the time (or when three times as much hardware performs the

same task in a third of the time, and so on).

Original(System

Parallel(System

Time

Time

100%(Task

50%(Task

50%(Task

Time

Figure 5.4: Speed-up

Scale-up is the factor m that expresses how much more work can be done in the same time

period by a system n times larger. With added hardware, a formula for scale-up holds the

time constant, and measures the increased size of the job which can be done. With good

scale-up, if the dataset grows, you can keep response time near constant by adding CPUs.

Scale-up is measured using this formula:

Scale-up=
Task Parallel

Task Original
(5.2)

where Task Parallel is the task processed in a given amount of time on a parallel system.

For example as shown in Figure 5.5, if the original system can detect clones of 100 code blocks

in a given amount of time, and the parallel system can detect clones of 200 code blocks in

85

Original(System

Parallel(System

100%(TaskTime

Time

Time

200%(Task

Figure 5.5: Scale-up

the same amount of time, then the value of scale-up would be equal to two (i.e., 200/100 =

2). A scale-up value of two indicates the ideal scale-up when twice as much hardware can

process twice the data volume in the same amount of time. However, in a real life scenario

it is difficult to measure how much increase in data volume would be appropriate for a given

increase in the hardware.

5.3.2 Experiments to Measure the Speed-up

In order to measure the speed-up of SourcererCC-D, we set up five clusters of 1, 2, 4, 8 and

16 nodes respectively using AWS. Each node in the cluster has the following specification:

High Frequency Intel Xeon E5-2680 v2 (Ivy Bridge) Processors, 7.5 GB memory, 80 GB

storage, 4 virtual core and Ubuntu 10.2 Operating System.

The dataset consists of source code files totaling 100 MLOC and 3,484,913 methods. This

is a subset of SourcererCC’s evaluation dataset from IJaDataset repository.

We compute all the clones in the dataset separately using each cluster. The idea is to

examine the change in computation time with the increase in cluster size. Table 5.1 shows

the speed-up results. Column 1 (Cluster Size) represents the number of nodes in the cluster,

86

Column 2 (Clone Detection Time) shows the time taken to compute clones, and Column 3

(Clone Pairs Detected) shows the total number of clone pairs detected. Note that the total

clone pairs detected is the same for all the runs as clone detection is on the same dataset

(indicating that there is no information loss in parallelization). Row 1 shows the time taken

to compute clones when there is no parallelization, (i.e., Cluster Size of 1), and subsequent

rows show the decrease in time as the cluster size increases. On examining closely, it appears

that whenever the cluster size doubles, the clone detection time is reduced approximately

by a factor of two, exhibiting almost linear speed-up of two. This is also shown in graph

plotted in Figure 5.6.

Cluster Size Clone Detection Time Clone Pairs Detected

1 40h:06m:35s 55,431,324

2 20h:06m:01s 55,431,324
4 10h:08m:32s 55,431,324
8 05h:01m:27s 55,431,324
16 02h:33m:24s 55,431,324

Table 5.1: Speed-up results

40.1

20.1

10.12
5

2.5

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18

Ti
m
es
/to
/d
et
ec
t/c

lo
ne
s/(
ho
ur
s)

Number/of/nodes/ in/the/cluster

Figure 5.6: Speed-up

87

Cluster Size Dataset Size (# methods) Clone Detection Time Clone Pairs Detected

1 174,246 00h:21m:50s 2,428,043

2 348,492 00h:21m:29s 2,765,863
4 696,983 00h:30m:15s 4,243,682
8 1,393,966 00h:46m:32s 10,557,301
16 2,787,931 01h:40m:08s 35,936,960

Table 5.2: Scale-up results

Figure 5.7: The number of clone-pairs detected increases exponentially with the increase in
number of code blocks

5.3.3 Experiments to Measure the Scale-up

For measuring the scale-up, we again set up five clusters with the same node configuration

as above. However, this time we also increase the size of the dataset proportionately as we

increase the number of nodes in the cluster.

Table 5.2 shows the time taken to detect clones (Column 3) and the number of clone-pairs

detected (Column 4) as the number of methods increases (Column 2). As shown in the table,

the cluster size and dataset are increased in the same proportion. That is, as the cluster-size

is doubled (Column 1), the number of methods in the dataset is also doubled to measure if

the time taken to detect clones holds constant. However, it is observed that as the number

of methods increases, the time taken to detect clones also increases despite a proportionate

increase in the number of nodes. This is because (i) not all methods have an equal number

88

0.3
0.3

0.5

0.76

1.66

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14 16 18

Ti
m
es
0to
0d
et
ec
t0c

lo
ne
s0(
ho
ur
s)

Number0of0nodes0 in0the0cluster

Figure 5.8: Scale-up

of clones, so the work done to detect clones for the added methods might be more than the

earlier methods; and (ii) the number of clone pairs increases exponentially with the size of

the dataset. That is, the bigger the dataset, the bigger the probability of finding clones.

This is observed from Column 2 and Column 4 of the Table 5.2. Also, Figure 5.7 visually

confirms this by plotting a chart of the number of clone pairs (Column 4) vs. the number

of code-blocks (Column 2). Due to the above reasons, the time taken to detect clones is

not constant but rather increases near linearly with the increase in the dataset as shown in

Figure 5.8.

5.3.4 Detecting Project Clones in the MUSE Repository

5.3.4.1 DARPA’s MUSE Initiative

The U.S. Defense Advanced Research Projects Agency is attempting to take big data an-

alytics to the next level through a big code project designed to improve overall software

reliability through a large-scale repository of software that drives big data. The DARPA big

89

code initiative, formally known as Mining and Understanding Software Enclaves (MUSE),

seeks to leverage software analysis and big data analytics to improve the way software is

built, debugged, and verified. The goal of the big code effort is to apply the principles of big

data analytics to identify and understand deep commonalities among the constantly evolving

body of software drawn from the hundreds of billions of lines of open source code available

today [30].

5.3.4.2 The MUSE Repository

The MUSE repository consists of 151,135 Java projects containing 12,168,632 Java files.

These projects are collected from various repositories including GitHub, Apache, Maven,

Google Code, and SourceForge. These projects are of varying sizes and span across various

domains including search and database systems, server systems, distributed systems, machine

learning and natural language processing libraries, and network systems. Figure 5.9 shows

the size distribution of projects in the repository. The X-axis represents the number of Java

files (log scale), and the Y-axis represents the number of projects. Similarly Figure 5.10

shows the size distribution of projects where X axis represents lines of code on a log scale.

5.3.4.3 Heuristic to Detect Project Clones in the MUSE Repository

We wanted to use SourcererCC-D to detect all the project clones in the MUSE repository.

To achieve this goal, we begin by first detecting all the file-level clones in the repository. File

level clones are computed at 80% similarity threshold, i.e., two files are clones of each other

if they share at least 80% of the tokens present in them. Next, we derive project clones from

these computed file-level clones using the following heuristic: If a project A has at least 80%

of its files reported as clones in some another project B, then A is considered to be a clone of

project B. This is easily achieved by grouping computed file-level clones by their respective

90

Figure 5.9: Size distribution of projects. Size is defined as Number of Files

Figure 5.10: Size distribution of projects. Size is defined as LOC

91

projects.

5.3.4.4 Running SourcererCC-D on MUSE repository

The MUSE repository resides on a high performance multi-processor computing machine

with the following hardware specification: Architecture: x86-64, # CPU(s): 40, Threads per

core: 2, Model name: Intel(R) Xeon(R) CPU E5-2690 v2 3.00 GHz, CPU MHz: 2391.210,

Memory: 125 GB, and Storage: 877 GB.

The first task is to run the parser at a file-level granularity on the entire corpus of 151,135

projects and generate a parsed input file. Next, we split this parsed input into 10 chunks

and launch SourcererCC-D on the above machine with 10 CPUs as the worker nodes. Each

instance is alloted a 10 GB of memory for its execution. It took 03h:49m to create the Index

and 6d:16h:12m for all the nodes to detect all the file-level clones in the entire corpus. The

task of aggregating these file-level clones to derive project clones was performed outside the

SourcererCC-D’s infrastructure.

5.3.4.5 Results

We summarize our key findings from the analysis of output produced by SourcererCC-D on

the MUSE repository below.

(i) There exists 155,781,688 (≈ 156 million) file-level clone pairs in the MUSE repository.

(ii) After aggregating these file-level clones to derive project clones, we found that 50,032

out of 151,135 projects are cloned at least once (33.10%).

(iii) 21,850 (14%) projects are cloned in two or more projects.

(iv) 23,544 (16%) projects contain two or more project clones in the repository.

92

(v) 38,537 (25.5%) projects are symmetrical clones at 80% similarity threshold. A symmet-

rical project clone pair at 80% similarity threshold means that at least 80% of the files in

both the projects are common.

(vi) 30,783 (20.37%) projects are symmetrical clones at 100% similarity threshold, i.e., exact

duplicate projects.

A qualitative manual inspection of hundreds of random clone pairs by the people involved

in the project showed no false positives.

The large amount of cloning in this corpus was a surprising finding that was analyzed in

greater depth by people involved in that project. Part of the reason for so much duplication

was attributed to the fact that this corpus includes projects from different public reposito-

ries, some of which lost popularity (e.g. SourceForge) while others gained popularity (e.g.

Github) over the years. It appears that many projects have presence in many of these pub-

lic repositories. But even when taking that into account, this study found a considerable

amount of code duplication within repositories, ranging from 7% to 18%.

This experiment successfully demonstrates the ability of SourcererCC-D to scale to very

large datasets on high performance computing machines. To the best of our knowledge, this

is the first experiment to detect clones at such a large scale.

5.4 Chapter Summary

Research in software clones lends itself easily to industrial application. However, scalability

and impractical runtime are major issues for industrial adoption of existing techniques and

tools. This chapter presented SourcererCC-D, a practical and inexpensive technique that

uses a cluster of commodity machines for large scale code clone detection by exploiting the

93

inherent parallelism present in the problem. Our experiments demonstrated SourcererCC-

D’s ability to achieve ideal speed-up and near linear scale-up on large datasets.

This chapter also demonstrated that SourcererCC-D can be easily deployed on both AWS

and high performance multi-processor machines. Using cloud services like AWS as a de-

ployment environment provides advantages like load balancing, data replication, and fault

tolerance over any other in-house distributed solutions where these things are to be dealt

with explicitly.

94

Chapter 6

SourcererCC-I: Interactive

SourcererCC for Developers

Part of the material in this chapter is included with the permission of the IEEE and based

on our work in:

• Saini, V.; Sajnani, H.; Kim, J.; Lopes, C., “SourcererCC and SourcererCC-I: Tools

to Detect Clones in Batch mode and During Software Development,” International

Conference on Software Engineering (ICSE’16), May 2016

6.1 Introduction

Over the past decade, several techniques and tools have been proposed for detecting code

clones. However, as Lee et al. [80] point out, most clone detectors take a “post-mortem”

approach involving the detection of clones “after” code development is complete. While such

stand-alone tools [41, 105, 62] are beneficial in the analysis and investigation of code clones

95

and their evolution, they fail to provide necessary clone management support for clone-aware

development activities, as they are not integrated with the development environment [129].

We carried out a preliminary survey to assess the need for a clone detection tool that is

integrated with the software development environment among developers and received a

compelling positive (90%) response (see Section 6.2). Also, Lague et al. [78] conducted a

case study to assess the impact of integrating clone detection with the development process

as a preventive control for maintenance issues. They analyzed 89 million lines of code and

found several opportunities where the integration of automated clone detection with the

development process could have helped.

Moreover the few clone detection tools that are integrated with the development environ-

ments are mostly focused on detecting Type-1 and Type-2 clones, and typically report all the

clones in the entire code base. Such flooding of information may overwhelm the developer,

who in practice, is likely to be interested in only the clones of a certain portion of code she

deals with at a time.

To address these issues, we developed SourcererCC-I, an Eclipse plug-in based on top of

SourcererCC, that instantaneously reports intra- and inter-project method level clones in

Java projects. SourcererCC-I identifies the method a developer is currently working on, and

then pro-actively reports the clones of that method in a non-obtrusive manner. The developer

can decide to refactor the identified clones or invoke existing code instead of introducing a

new clone. An instant clone search feature during development can also be useful in finding

API usage examples or similar code fragments from curated repositories to facilitate code

reuse.

96

6.2 A Preliminary Survey

As part of this project, we conducted a preliminary survey to understand how software prac-

titioners perceive the use of clone detection tools during software development and main-

tenance activities. The survey consisted of 72 participants, out of which 66 had at least

one year of industrial software development experience at the time of completing our survey.

Figure 6.1 describes the participants’ experience profile in detail.

Figure 6.1: Industrial Experience of Survey Participants

The survey was designed with the following questions:

Q1: How often do you copy-paste code during development (includes both intra- and inter-

project)?

A1: Never: 3; Sometimes: 69

Q2: While fixing a bug in a code snippet, do you actively search for similar code snippets

in the project?

A2: Yes: 53; No: 19

Q3: For developers who answered “yes” to Q2: How often do you search for similar code

snippets while fixing bugs?

A3: Always: 21; Sometimes: 32

97

Q4: Would you like to have a clone detection tool as part of your development process?

A4: Yes: 65; No: 7

Q5: For developers who answered “yes” to Q4: Would you prefer a “Stand-alone/batch” or

a “Plug-in/real-time” style clone detection tool for your use?

A5: Stand-alone/batch: 5; Plug-in/real-time: 60

Summarizing the survey responses, we find the following:

1. 95% of the participants copy-paste code during software development or maintenance.

2. 73% of the participants while fixing a bug in a code snippet, search for similar code

snippets.

3. 90% of the participants would like to have a clone detection tool during software

development.

4. 92% of the participants who want a clone detection support during development, would

prefer that the tool be integrated as part of their development environment.

While this survey is not exhaustive, it clearly highlights software practitioners’ positive

preference for clone detection tool support integrated with the software development envi-

ronment.

More details about the responses to the survey questions are available at [34].

6.3 SourcererCC-I’s Architecture

This section provides an overview of SourcererCC-I’s architecture. It has five modules as

shown in Figure 6.2. We describe the function of each module below.

98

Figure 6.2: SourcererCC-I’s Architecture

99

1. Manager: controls interaction among different modules

Manager module acts as a controller, delegating tasks like create indexes, update indexes,

search clones, and report clones to other modules. It mediates the data flow among them

and listens to the change and selection events generated by the editor. On detection of such

events, it performs action such as update indexes or search clones.

2. Parser: parses projects and creates input for the indexer

Parser generates input files consisting of tokenized code blocks for the Indexer Module.

On activation of the plug-in, Manager delegates the job of parsing the source files of all

the projects in the active workspace to the Parser Module, which creates parsed files using

Eclipse’s JDT (Java Development Toolkit). The parsed files are now ready for the indexer

to build index.

3. Indexer: creates inverted and forward indexes of code blocks

Indexer uses the parsed files to create a partial inverted index and a forward index for each

of the open projects in the Eclipse’s workspace. The partial inverted index is used to search

the candidate clones whereas the forward index is used to verify if the candidates are clones

or not. More details on the creation and working of these indexes can be found in Chapter 3.

4. Searcher: searches clones in the indexes

Manager detects the current method on which the developer is working on and then creates

a query block for the method. Searcher uses this query block as an input and detect its

clones using the indexes already built by the indexer. It produces clone output file contain-

ing meta information of clones including their fully qualified names, time to detect clones,

and number of clones detected (clone group).

100

5. Reporter: reports detected clones

After the Searcher detects the clones of the current method, the Manager asks the Reporter

module to perform two tasks (i) create a marker on the editor (where the line numbers are

written). This marker signifies the presence of clones of the current method in the project;

and (ii) display the list of clone methods using a tree-view in the console. A user can

quickly navigate back-and-forth to the clone methods by clicking any item in this list of

clone methods.

6.4 SourcererCC-I’s Features

1. Non-obtrusive User Interface

SourcererCC-I has a minimalistic design in order to minimize the cognitive burden on the

user. Hence, it’s user interface is designed keeping non-obtrusiveness as a primary aspect of

the design.

The tool uses colored markers to notify the clones detected. A marker is either red, blue,

or green in color where red signifies there are more than 10 clones of the current method in

the project; yellow signifies there are five to 10 clones; and green signifies the existence of

less than five clones Figure 6.3 shows a red colored marker (annotated inside the top blue

rectangular region in the Eclipse’s editor) signifying that SourcererCC-I has found more than

10 clones of this method.

The output of most of the detection tools is impossible to read by a human at any large-scale.

This is because of an extra step to link the output produce by the tools to the actual source

of code fragments. To overcome this limitation, SourcererCC-I displays all the clones found

for a method using their fully qualified name in the result view pane of Eclipse’s console.

101

This not only facilitates easy navigation to cloned methods in the editor by simply using a

mouse click, but also displays the clones in an hierarchical fashion using a tree structure. The

detected clones are further grouped by the files and the projects in which they are present,

thus making it easier for a developer to navigate.

2. Instant Clone Detection

SourcererCC-I builds an optimized index of all projects in the workspace once Eclipse is

launched. Since the index creation phase is highly optimized using SourcererCC’s filtering

heuristics, it takes only few milliseconds even for projects having several thousand lines of

code. Therefore, by the time a developer is ready to begin her development activity, index

is already constructed. Now, as the developer starts typing, SourcererCC-I identifies the

method in which she is operating and instantly detects all the clones of the method using

the constructed index.

Due to SourcererCC-I’s fast index creation process, even for a project consisting of several

thousands of lines of code, clone detection process can begin as soon as the project is loaded

in the workspace.

3. Incremental Index Creation

Software development is a very iterative activity, meaning, developers often change code

that they have already written to either fix bugs or add new features. As a result, new

methods are added, deleted or modified. Clone detection tools should account for these

changes as clones should be detected on the latest version of the program and not any old

version. For index based tools this means that the index needs to be recreated to account

for the changes in the source code. Creating fresh indexes for the entire project with every

change in the project can be very time consuming, and it can eventually slow down the

102

whole clone detection process. To overcome this issue, SourcererCC-I creates incremental

indexes by keeping track of changed methods. As a result, the index is not re-created for

the whole project whenever a method is changed, but it is re-created only for the changed

method. This feature allows SourcererCC-I to instantly detect clones on the latest version

of the project.

4. Inter- and Intra-project Clone Detection

A developer is often a part of multiple projects at the same time, or perhaps a part of a big

project that consists of a family of many sub-projects. Under such scenarios, it is desirable

for the tool to have the capability to search for similar code methods across the entire code

base. To facilitate this requirement, SourcererCC-I has not only the ability to detect clones

in a given project, but it can also seamlessly detect clones across projects or repositories.

5. Configurable Parameters

The granularity of clone detection usually depends on the task at hand and may vary accord-

ing to different use cases. Moreover, sometimes, a developer might be interested in detecting

clones that are more stricter in similarity (e.g., exact methods), whereas sometimes she might

be interested in detecting similar methods that have experienced significant editing. As a

result, SourcererCC-I allows developers to specify the granularity and similarity threshold

parameters in its configuration file.

SourcererCC-I is demonstrated to have optimal recall and precision at 0.7 similarity thresh-

old for methods and at 0.8 for files. Hence, the default configuration is to detect method

level clones at 0.7 similarity threshold.

103

6. Scalable to Large projects and Repositories

SourcererCC-I is developed using SourcererCC’s API. SourcererCC is demonstrated to have

successfully detected all the clones in a repository consisting of 25,000 projects containing

3 million files and more than 250 MLOC on a standard workstation with reasonable hard-

ware specification. Moreover, we envision that in most cases, a developer is only interested

in detecting clones of the method that she is focusing on at a given time and not all the

clones in a project. As a result, the usage scenario of SourcererCC-I is not as extreme as

SourcererCC’s further enhancing SourcererCC-I’s scalability.

7. Quick and Easy Setup

SourcererCC-I is developed as an Eclipse plug-in and hence can be installed easily by follow-

ing these 3 steps: (i) Open Eclipse and click Install New Software in Help menu; (ii) Click

Add. Then, in the Add Repository window, enter the name SourcererCC-I, and in the loca-

tion field enter the url http://mondego.ics.uci.edu/projects/clonedetection/tool/

latest/; and finally, (iii) follow the steps given in Eclipse’s wizard to install the plug-in.

6.5 Related Tools

We have extensively covered the work related to clone detection in the previous chapters.

Here we focus on the tools which are closely related to SourcererCC-I.

Tools integrated with the development environment. Patricia Jablonski’s proposed

CnP, a tool to detect copy-and-paste clones in the IDE [48]. CnP establishes links between

the original and the pasted clones and uses their content information later on for error

detection and other purposes. Unlike SourcererCC-I, CnP does not use a clone detector to

104

http://mondego.ics.uci.edu/projects/clonedetection/tool/latest/
http://mondego.ics.uci.edu/projects/clonedetection/tool/latest/

Figure 6.3: Eclipse’s screenshot showing clones detected using SourcererCC-I

105

detect clones and hence is not capable of finding legacy clones. Moreover, CnP cannot find

accidental clones.

CP-Miner is a commercial tool that detects copy-paste errors in the context of traditional

clone detection [82]. It uses a token-based approach with data mining and a gap constraint.

The tool is tailored specifically for detecting bugs and is not useful for other purposes like

code refactoring or re-use.

CloneTracker, an Eclipse plug-in is a tool that keeps track of the evolution of clones [35]. For

it’s input, it relies on the output of a clone detector tool, that needs to be run in advance

to generate all the clones in a system. CloneTracker, unlike SourcererCC-I, does not detect

clones in real time.

Stand-alone Tools. There are few well packaged stand-alone batch tools, namely Dup [7],

iClones [41], CCFinder [62], and NiCad [105] to detect clones, but these tools are not designed

to be integrated with the development process. NiCad, however, claims that it can be

integrated with an IDE but being a batch processing tool it lacks the capability to detect

clones instantly. Baxter et al. created an abstract syntax tree based clone detector that

works by finding identical subtrees [12]. The tool is now commercialized (CloneDR) and has

been demonstrated to have high precision at the cost of low recall.

6.6 Tool Artifacts

The tool artifacts are made available for public use.

Link to install the Eclipse plug-in: http://mondego.ics.uci.edu/projects/clonedetection/

tool/latest

Link to the demo: https://youtu.be/l7F_9Qp-ks4

106

http://mondego.ics.uci.edu/projects/clonedetection/tool/latest
http://mondego.ics.uci.edu/projects/clonedetection/tool/latest
https://youtu.be/l7F_9Qp-ks4

6.7 Chapter Summary

While there exists a large number of clone detection tools, very few are suitable for developers’

needs because: (i) they come as stand-alone tools and thus cannot support clone-aware

development; (ii) they are ineffective in detecting near-miss (Type 3) clones; and (iii) they

are unable to perform instant clone detection.

This chapter presents SourcererCC-I, an easy-to-use near-miss clone detector plug-in for

Eclipse IDE that can detect clones on the fly. The tool pro-actively finds code snippets a

developer is focusing on and non-intrusively report its clones in real time. Since the tool is

built on top of SourcererCC, it has the ability to efficiently scale to large code bases and or

software repositories.

SourcererCC-I is an ongoing attempt to bring the academic clone research closer to the

real-world developers. In the future, we plan to extend SourcererCC-I into a clone manage-

ment workbench by incorporating features such as clone tracking and semi-automated clone

refactoring support.

107

Chapter 7

Empirical Applications of

SourcererCC

Part of the material in this chapter is included with the permission of the IEEE and based

on our work in:

• Sajnani, H.; Saini, V.; Lopes, C., “A Comparative Study of Bug Patterns in Java

Cloned and Non-cloned Code” Source Code Analysis and Manipulation (SCAM), 2014

14th IEEE Working Conference on, pp. 21-30, 28-29 Sept. 2014 doi: 10.1109/S-

CAM.2014.12

Large-scale empirical studies on code cloning depend on the quality and scalability of clone

detection tools. One of the primary motivations behind the development of SourcererCC is

to provide the infrastructure to enable high quality empirical clone research.

In order to demonstrate the effectiveness of SourcererCC on this front, this chapter presents

two empirical studies conducted using SourcererCC. The first study, “A Comparative Study

of Bug Patterns in Java Cloned and Non-cloned Code” [110], was led by the author whereas

108

the second study, “A Comparative Study of Software Quality Metrics in Java Cloned and

Non-Cloned Code” was led by Vaibhav Saini who is a collaborator on the SourcererCC

project.

In this chapter, I will describe the first study in detail, and briefly given an account of the

key aspects of the second study and how SourcererCC was used in the study.

7.1 Introduction

Over the last couple of decades, software development practices have changed drastically.

Pervasive high-speed Internet, full fledged IDEs, and a whole new generation of hyper-

connected young programmers weaned on the web have established new programming prac-

tices based on massive collaboration. These days, it is easier than ever to find and use a

well-tested piece of code written by someone else that does exactly what we want. Gluing

these pieces together and putting them in the right context is still a necessary and important

skill. But, for better or worse, copy-and-paste is no longer a pejorative term, but a factual

observation about how a part of modern coding gets done today. Reusing code fragments via

copy-and-paste, with or without modifications or adaptations, also known as code cloning,

has become a common behavior of software engineers [107].

Although pervasive, code cloning has traditionally been criticized by researchers and leading

practitioners alike. Parnas [97] notes that “if you use copy and paste while you’re coding,

you’re probably committing a design error.” Indeed, if instead of copying code, we move it

into its own method, future modifications will be easier because we will need to modify the

code in only one location. The code will be more reliable because we will have only one

place to ensure that the code is correct. Consequently, code cloning is often presented as a

negative design characteristic in software systems. Considered as a bad “code smell” [38],

109

a considerable amount of research in cloning is concentrated on detecting clones in exist-

ing source code [11, 5, 36, 56, 60, 69, 76, 42, 73], removing them [70, 72] and refactoring

them [112].

Under many circumstances, code cloning can, indeed, be harmful. But it also has advan-

tages like rapid development, reuse of tested code, and separation of concerns. The pervasive

practice of code cloning has more recently attracted researchers to conduct empirical studies

to find evidence about the effects (good or bad) of code cloning. Such attempts have ques-

tioned our conventional wisdom about the harmful nature of clones. For example, Kasper

and Godfrey presented evidence that clones may be intentional and that they improve de-

veloper productivity [63]. Kim et al. [68] found that most of the clones are short lived – i.e.

starter code that quickly becomes something else – and hence investment made in refactoring

them may not be worth the effort. Toomim et al. [121] showed that managing clones via

linked editing to edit multiple cloned regions without much programmer intervention can be

an efficient way of dealing with clones. Rahman et al. [98] conducted a study on four subject

systems to assess the impact of clones on defect occurrence of software products and did not

find any evidence that cloning is harmful.

These findings present a different perspective on code cloning that has implications for the

future research in this area. Although important, most of the research in this direction, so

far, is either qualitative or performed on very few subject systems. An excellent survey [104]

on code clone research mentions that “there is little information available concerning the

impacts of code clones on software quality”, expressing the need to conduct more empirical

studies examining the impact of code cloning on various factors related to code and other

artifacts. Koschke [71] lists several important open issues in this field, one of which being

“What is the relation of clones to quality attributes?”

To that end, this chapter presents two empirical studies conducted using SourcererCC to

explore the relationship between code clones and various quality attributes.

110

Study 1. A Comparative Study of Bug Patterns in Java Cloned and Non-cloned Code

We conduct an empirical study of 31 open source Java projects (1.7 MSLOC) to explore the

relationship between code clones and a set of bug patterns reported by FindBugs. We found

that: (i) the defect density in cloned code is 3.7 times less than that of the rest of the code;

(ii) 66% of the bug patterns associated with code clones are related to issues in coding style

and practice, the two least problematic of the Find Bugs’ categories, while that number is

49% for non-cloned code; and (iii) 75% of the bug patterns in cloned code are duplicated

without any changes, while 25% are only present in one of the clones. These results show

that, when using FindBugs to detect bug patterns, there is a positive differentiation of cloned

code with respect to the rest of the code: the cloned code has considerably less, and less

problematic, bug patterns.

Study 2. A Comparative Study of Software Quality Metrics in Java Cloned and Non-

Cloned code

This study was primarily conducted by Vaibhav Saini, one of the collaborators of Sourcer-

erCC project as part of his advancement to candidacy at University of California, Irvine.

The study was conducted on 4,421 open source Java systems to explore the relationship

between code clones and a set of 27 software quality metrics spanning across three categories:

complexity, modularity, and documentation (code comments). It was found that for most of

the systems, complexity and modularity of the cloned methods is better than the non-cloned

methods. Non-cloned methods, however, are found to have higher number of code comments.

111

7.2 Study 1. A Comparative Study of Bug Patterns in

Java Cloned and Non-cloned Code

This study examines the relationship between clones and various bug patterns reported by

FindBugs [37]. A bug pattern is a code idiom that is often a programming error and hence

an indicator of code quality. These bug patterns arise for a variety of reasons including

difficult language features, misunderstood API methods, misunderstood invariants when

code is modified during maintenance, and variety of mistakes including typos, use of the

wrong boolean operator, etc. Hence they capture various kinds of issues impacting the

quality of code. Moreover, these bug patterns are organized into high level categories like

Bad Practice, Correctness, Performance, etc. We use this categorization to establish the

relationship between clones and specific bug categories. We posit that such analysis will

help us to investigate the associations between code quality and cloning, which in turn, will

be useful to inform research in this field.

7.2.1 Research Questions

We seek answers to the following research questions.

Research Question 1: Is defect density of cloned code greater than that of non-cloned

code?

For the purpose of this study, we consider a piece of code to be cloned if there exists a similar

piece of code in the same system (intra-system clones only).

We use bug patterns reported by FindBugs to calculate the defect density, where defect

density is defined as the number of bug patterns reported by FindBugs per 1,000 lines

of code. FindBugs pro-actively reports likely defect locations in code by using range of

112

approaches from simple code pattern-matching techniques to rigorous static analyses that

process carefully designed semantic abstractions of code. Thus FindBugs modus operandi is

to automatically prove certain properties of a program, i.e. certifying the program free of a

certain class of bugs. Since, large scale studies like ours are heuristic in nature, FindBugs

gives us the automation we need for this much larger dataset. We discuss more about the

rationale of using FindBugs’ bug patterns in the context of this study in Section 7.2.2.3.

This research question is the main topic of our study. Clearly, if we were to find a much

higher defect density in cloned code than in the rest of the code, there would be irrefutably

strong arguments against the practice of cloning.

Research Question 2: Are there specific bug categories which are seen more often in the

cloned code?

Each bug pattern reported by FindBugs is associated with a category. Since each category

poses a different threat level and captures a different class of bugs, we try to examine

the relationship between these categories and code clones. Such analysis is useful for risk

assessment and employing targeted measures to mitigate the risks.

If we were to find that cloned code has higher rate of Correctness, Performance or Security

bug patterns than the rest of the code, that would also be a strong argument against the

practice of cloning.

Research Question 3: How often do bug patterns propagate through cloning?

The primary goal of this research question is to explore if code cloning leads to an increase in

the total number of bugs in the system. If this is the case, each code block with a bug, when

cloned, adds one more bug in the code-base; eventually degrading the overall code quality.

One implication of this finding could be building tools and techniques to help developers

pro-actively improve code snippets (e.g., fix bugs) before copying it to some other location.

113

Outline: The remainder of this section describes the study design (Section 7.2.2), results and

examination of statistical differences (Section 7.2.3), and the threats to validity (Section 7.4).

Finally, we summarize our findings (Section 7.2.4).

7.2.2 Study Design

At a high level, the overall approach to analyze the bug patterns in the code clones is a two

step process. In the first step, we use a clone detection tool to identify all the clones present

in each subject system. We set the granularity of the tool to detect method level clones.

Thus, we have a list of methods for which clones exist in the system. Similarly, we also have

a list of methods for which no clones exist in the system. A set of methods which are clones

of each other is called a code clone group. Each member of a group is a clone sibling.

In the second step, we find all the bug patterns present in the subject system using FindBugs.

After detecting all the bug patterns in the system, we create a map to associate methods

with the bug patterns found in them. Since, each bug pattern belongs to a high level bug

category, we also create a map to associate methods with bug categories.

Combining the result of the previous two steps, we have, for each method in the subject

system:

1. All the other methods which are clones of this method (clone siblings); and

2. All the bug patterns and bug categories found in this method

We use this information and statistical analysis to seek answers to the research questions

posed above. In the remainder of this section, we describe each aspect of our study design

in detail.

114

Figure 7.1: Size distribution of projects. Size is defined as non-commented lines of code

7.2.2.1 Subject Systems

We chose 31 open source Apache Java projects as subject systems for this study. These

projects are of varied size and span across various domains including search and database

systems, server systems, distributed systems, machine learning and natural language pro-

cessing libraries, and network systems. Most of these subject systems are highly popular in

their respective domain. Such subjects systems exhibiting variety in size and domain help

counter a potential bias of our study towards any specific kind of software system.

Figure 7.5 describes the size distribution of the subject systems. The X-axis represents the

binned uncommented lines of code (SLOC). The Y-axis represents the number of projects.

The average project size is 54,382 SLOC. The name and exact size of each project is listed

in Column 1 & 2 of Table 7.1 respectively.

115

7.2.2.2 Clone Detection

We use SourcererCC with 0.7 similarity threshold (θ) to detect method level clones because

in our evaluation (Chapter 4) it gave maximum recall and precision.

Precision. In order to evaluate the quality of clones detected, we chose a statistically

significant random sample of clone siblings for manual inspection. The author examined 140

clone siblings and classified them as either true positives or false positives. We discovered

only four false positives. Hence, using a t-test, we can conclude with 95% confidence that

the false positive rate of the clone detection tool is only 2.3 ± 5%.

Moreover, on further examining the false positives, we found they consists of empty methods

which are stubs without any functionality. To further safely avoid such cases, we included

only those methods which had at least 20 tokens in the body. This step eliminated all the

false positives in the previous sample, further increasing precision without impacting recall.

Columns 5 & 6 in Table 7.1 respectively list the total methods and cloned methods found in

the subject systems and Columns 4 & 7 show the percentage of total SLOC and percentage

of total methods clones in each subject system.

7.2.2.3 Why use Bug Patterns?

Measuring external quality can be exceedingly challenging, as it requires identifying defects

and inaccuracies in software. Such defect identification is usually done by either using bug

reports or by using static analysis tools like FindBugs.

While both these techniques of defect identification have their merits [99], in the context of

this study, there are several reasons why we choose bug patterns detected by FindBugs to

measure the external code quality.

116

First, defect identification relies heavily on links between bug databases and program code

repositories. This linkage is typically based on bug-fixes identified in developer-entered

commit logs. Unfortunately, developers do not always report which commits perform bug-

fixes. Moreover, developers sometimes fix bugs that are only reported in some other projects’

bug tracker, rather than in their own; and vice-versa. Thus only a fraction of bug fixes are

actually labeled in source code version histories. The question naturally arises, are the bug

fixes recorded in these historical datasets a fair representation of the full population of bug

fixes? Bird et al. [15] investigated historical data from several software projects, and found

strong evidence of systematic bias. They found that bias is a critical problem that threatens

both the effectiveness of processes that rely on biased datasets to build prediction models

and the generalization of hypotheses tested on biased data.

Second, apart from completeness of data, there are also serious concerns regarding the quality

of bug-fix data obtained in such manner. Herzig et al. [46] found 33.8% of all issue reports

to be misclassified, that is, rather than referring to a bug fix, they resulted in a new feature,

or an internal refactoring. This misclassification introduces bias in bug data, confusing bugs

and features. They manually examined 7,000 issues, and found that on average, 39% of files

marked as defective, actually never had a bug.

Third, and more importantly, the number of reported defects is heavily correlated to the

popularity of a project [45]. The more users a project has, the more people there are

discovering and reporting defects. A project, only used by a handful of people, may be

significantly lower in quality than a project used by tens of thousands of people, but popular

projects will almost certainly have more bugs reported. In contrast, the number of bug

patterns in a project and project popularity are not found to be correlated [111].

Fourth, similar to the third issue, affects the number of reported bugs based on the life of

the project. A very old project may have hundreds of reported bugs, however, a project

that has just started may have fewer bugs, if any. Thus practically making it impossible to

117

compare them.

FindBugs [37] uses heuristics and static analysis to identify common bug patterns in soft-

ware that may result in externally visible defects. Any instances of these patterns are then

reported to developers as potential bugs. While such systems make no guarantees as to cor-

rectness or completeness, studies have shown that they regularly identify important defects

in software [4, 49]. Also, since large-scale studies like ours are heuristic in nature, FindBugs

gives us the automation we need for this much larger dataset. Hence, using FindBugs to

look at the exercise of code cloning will provide us with one more perspective to understand

the practice of code cloning better.

Credibility of FindBugs. FindBugs is a heuristic tool; as such, it suffers from both false

positives and false negatives. False positives (i.e. reported bugs that aren’t really bugs) are

particularly problematic. A previous study has shown that FindBugs results in slightly less

than 50% false positives [49], which is a high rate. Nevertheless, the rate of false positives

in FindBugs affects the cloned code and the non-cloned code in about the same way. Since

our goal is a comparison of these two sets of code, our use of FindBugs is fair.

Second, FindBugs bug patterns are used to assess open source software on a regular basis. For

example, in order to regularly perform scans of open source software, the U.S. Department

of Homeland Security uses Coverity [29], a commercial high-end bug finding product, which

includes several bug patterns from FindBugs.

Third, in 2009, Google held a global fixit for FindBugs tool that had interesting results1.

The focus of the fixit was to get feedback on the 4,000 highest confidence issues found by

FindBugs at Google, and let Google engineers decide which issues, if any, needed fixing.

More than 700 engineers ran FindBugs from dozens of offices. More than 250 of them

entered more than 8,000 reviews of the issues. A review is a classification of an issue as

1Information published on FindBugs website: http://FindBugs.sourceforge.net/

118

must-fix, should-fix, mostly-harmless, not-a-bug, and several other categories. More than

75% of the reviews classified issues as must-fix, should-fix or I-will-fix. Many of these issues

received more than 10 reviews each. It is reported that engineers submitted changes that

resolved more than 1,100 issues by 2010. As reported, the work continues on addressing the

issues raised by the fixit, and on supporting the integration of FindBugs into the software

development process at Google.

These observations instill confidence that the bug patterns reported by FindBugs, even if

not measuring external quality directly and deterministically, are positively correlated with

it.

Bug Pattern Categories. FindBugs classifies each bug pattern into a specific cate-

gory which determines the type of the bug pattern. These categories include Correct-

ness, Multi-threaded Correctness, Performance, Security, Malicious Code, Style, and Bad

Practice. A short description of each bug pattern along with its category can be found at

http://FindBugs.sourceforge.net/bugDescriptions.html.

Limiting FindBugs’ False Positives . One of the problems with the code quality tools

like FindBugs is that they tend to overwhelm developers with problems that may not really

be problems i.e., false positives. Although FindBugs is reported to have less than 50% false

positives [49], we believe that large numbers of false positives can skew the results of the

analysis. Hence, in order to mitigate this issue, we take the following steps:

We create two meta categories of bug categories in FindBugs. The first category, which

we call Primary category, includes bug categories like Correctness, Multi-threaded Correct-

ness, Performance, and Security. FindBugs reports that the bug patterns reported in these

categories are precise and actionable.

The second meta category, which we call Secondary category, includes categories such as Bad

Practice and Style. Since FindBugs accepts more false positives in these categories, there

119

are cases when one might decide that a bug pattern is not relevant for one’s code base. For

example, one never uses Serialization for persistent storage, so one never cares about the

fact that one didn’t define a serializationUID. But FindBugs would report this bug pattern

anyway. Moreover, even for the bug patterns which are relevant to one’s code base, perhaps

only a minority will reflect problems serious enough to change the code. So in most cases,

Secondary category does not pose a threat other than affecting the readability of code. Thus

we conduct our analysis separately for Primary and Secondary category whenever relevant

to avoid potential threats due to the nature of bug patterns the two categories detect.

Also, FindBugs assigns a severity level (HIGH, MEDIUM, or LOW) to each bug pattern

based on its threat. To further mitigate the risk of false positives, we configured FindBugs

to exclude LOW severity bug patterns. Examples of such low-severity bug patterns are field

names not starting with lower-case, and method that fails to close stream on exception. The

complete list of such bug patterns is available at FindBugs’s website.

7.2.3 Study Results

In this section, we present the results of our analyses of code clones and their relationship

with a set of bug patterns reported by FindBugs. Our findings are mostly consistent across

all the subject systems and we describe the places where they are different. Each sub-section

below specifically addresses the research questions posed in Section 7.1.

7.2.3.1 RQ1: Is defect density of cloned code greater than that of non-cloned

code?

To answer this question, we compare the defect density of cloned code with non-cloned code

across all the projects. Column 4 (Defect Density) in Table 7.1 shows the defect density

120

F
ig

u
re

7.
2:

B
ox

p
lo

t
sh

ow
in

g
d
ef

ec
t

d
en

si
ty

of
cl

on
ed

-c
o
d
e

an
d

n
on

-c
lo

n
ed

co
d
e.

N
ot

e
th

at
d
ef

ec
t

d
en

si
ty

of
cl

on
ed

-c
o
d
e

is
le

ss
th

an
th

at
of

n
on

-c
lo

n
ed

co
d
e

fo
r

al
l

th
e

ca
te

go
ri

es
(l

ef
t)

.
F

or
p
ri

m
ar

y
ca

te
go

ry
,

th
e

d
ef

ec
t

d
en

si
ty

of
cl

on
ed

-c
o
d
e

is
3.

7
ti

m
es

le
ss

th
an

n
on

-c
lo

n
ed

co
d
e

(c
en

te
r)

.
F

or
se

co
n
d
ar

y
ca

te
go

ry
th

e
d
iff

er
en

ce
is

ze
ro

(r
ig

h
t)

,
im

p
ly

in
g

th
at

m
os

t
of

th
e

b
u
gs

in
cl

on
ed

co
d
e

ar
e

of
se

co
n
d
ar

y
ca

te
go

ry
w

h
ic

h
co

n
si

st
s

of
le

as
t

p
ro

b
le

m
at

ic
ca

te
go

ri
es

in
F

in
d
B

u
gs

.

121

of cloned and non-cloned code for each project respectively. We found that in 26 out of 31

projects, the defect density of cloned code is lower than that of non-cloned code.

As discussed, Primary and Secondary category differ in the severity and the type of bug

patterns they detect. Secondary category consists of bug patterns related to Style and Bad

Practice. In order to avoid the threat of such non-crucial bug patterns impacting RQ1, we

only consider Primary category for our analysis to answer RQ1. However, for the sake of

completeness, we also describe the data for all the categories as well as separately for Primary

and Secondary category.

Figure 7.2 shows three box plots comparing median defect density (Y axis) in cloned code

and non-clone code across three groups consisting of “All”, “Primary”, and “Secondary” bug

category (l-r). As shown in boxplot (left), considering all the categories, the difference in

the median defect densities of non-cloned (4.06) and cloned code (3.06) is 1. The difference

decreases to almost 0 (0.02) when we consider only secondary bug-category (right boxplot).

This implies that the observed difference in the median defect densities when considering

all the categories is mainly because of the primary category - which is our category of

interest because it consists of severe and more problematic bug patterns. For the primary

category, the median defect density of the cloned code and non-cloned code is 0.58 and 2.14

respectively (center boxplot), making the defect density of cloned code 3.7 times less than

that of non-cloned code.

Many observable program features correlate strongly with code size. This knowledge has been

used pervasively in quantitative studies of software through practices such as normalization

on size metrics. We wanted to explore if the number of bug patterns in a method also follow

a similar trend. Since the total size of cloned code is much smaller than that of non-cloned

code, we considered the possibility that this size difference is serving as a confounding factor.

Moreover, we found that the average method size of clones is 17 LOC and that of non-clones

is 7 LOC. As such, the following two factors can impact the result of our analysis: (i) the

122

relative difference in the average method size of cloned and non-cloned code for each project;

and (ii) the relative difference in the total number of cloned and non-cloned methods for

each project.

In order to understand the impact of method size on our analysis, we first compute the

Pearson correlation coefficient between method size (LOC of a method) and the number of

bug patterns found in a method. The goal is to determine how strongly the number of bug

patterns in a method correlate with the method size. Clearly, if the number of bug patterns

show a strong positive correlation with the method size, then the code group (clone/non-

clone) with bigger methods i.e., cloned code, is likely to have more more bugs.

The correlation between bug patterns and method size for all the methods in the corpus is

0.151; 0.108 for only cloned methods, and 0.147 for only non-cloned methods . Figure 7.3

shows the scatter plots between bug patterns and method size for all the methods, only

cloned methods, and only non-cloned methods (l-r) transformed on a log-scale. Manual

inspection of the scatter-plots confirmed that the correlations fell near zero and represented

pairings without an identifiable relationship. We found that the distribution of bug patterns

in the project is right skewed, meaning that majority of the methods contain very few bug

patterns. This result is not unexpected, and confirms the intuition that some methods have

many bug patterns while most of the methods contain hardly any bug pattern at all. This

heavy right skew also means that scatter plots between bug patterns and method size will

have the majority of points clustered at low values if a log transformation is not done.

Column 5 (Correlation) in Table 7.1 shows the correlation coefficient for each project indi-

vidually. As shown, most of the projects show very low value of correlation coefficient.

The fact that method size is very weakly correlated with the number of bug patterns found

in that method, is an indication that method size may not be serving as a strong confounding

factor. While the above experiment ensures that the difference in the average method size

123

of clones and non-clones does not impact the result of RQ1, the large difference between the

total number of cloned and non-cloned methods might still pose a threat to our analysis. In

order to address this, we performed the following two experiments.

In the first experiment, for each project, we randomly pick, from the pool of non-cloned

methods, only as many methods as the total cloned methods in the project. The goal is to

have equal number of methods in both the groups and then compare their defect densities.

We found that the average defect density of cloned code to be 4 times less (0.58 vs. 2.32)

than that of non-cloned code.

In the above experiment, although, both the code groups have the same number of methods,

because of the difference in the average size of method in each group (17 LOC vs. 7 LOC), the

average LOC in each group may be different. Hence, in order to further ensure the validity

of our analysis, we modify the above experiment to randomly pick non-cloned methods, one

by one, such that the total LOC of non-cloned code group is same as that of cloned code

group. Note that in this case, the total number of methods in each group may be different,

but, each group will have same LOC. We found that, even under this setting, the defect

density of cloned code is 3.1 times less (0.58 vs. 1.82) than that of non-cloned code.

Columns 6 (Defect Density (size control)) in Table 7.1 shows the defect density of non-cloned

code for each project separately for each experiment. Note that the results are averaged over

100 runs to ensure sufficient randomization while picking the non-cloned methods. Below

we show statistical significance of the difference.

Statistical significance of the difference. We use statistical paired tests to study the

significance of the difference between median defect densities of the two groups. We formulate

the hypotheses as follows:

H0 : µ(rNC − rC) <= 0, HA : µ(rNC − rC) > 0

124

Figure 7.3: Scatter plots of method size and bug patterns for only cloned, only non-cloned,
and all the methods (left-right) reveal no identifiable relationship.

where µ(rNC − rC) is the population median of the difference in defect density between the

non-cloned code (NC) and the cloned code (C) for each project.

H0: The median defect density of non-cloned code is less than or equal to that of the cloned

code,

HA: The median defect density of non-cloned is greater than that of cloned code.

For our analysis, we conduct Wilcoxon signed rank test because it is a non-parametric paired

statistical test and does not make any assumptions about the normality of the data [85]. The

computed p-value is 0.0031(<< 0.05). We note that the median defect density in the clone

code is 0.58 and that of the non-cloned code is 2.14. Large scale studies are often guaranteed

to give small p-values, therefore we are also reporting the summary statistics (medians), so

that the reader can judge the significance of the differences.

The defect density computed using FindBugs in cloned code is 3.7 times less than that of the

rest of the code, implying that there is a positive differentiation of cloned code with respect

to the rest of the code

125

Bad$Practice
46%

Style
20%

Correctness
8%

Security
1%

Malicious$Code
1%

Performance
13%

Internationalization
7%

MultiAthreaded$Correctness
4%

Figure 7.4: Bug patterns in cloned code classified into various categories

7.2.3.2 RQ2: Are there specific bug categories which are seen more often in

the cloned code?

To answer this question, we examine the relationship between bug categories and cloned

code. Since each category poses a different threat level, such analysis will be useful for risk

assessment and employing targeted measures to mitigate the risks.

Figure 7.4 shows how bug patterns found in the cloned code are distributed across various

categories. While there are bug patterns in all the categories, as seen from a total of 399 bug

patterns, 66% (26 + 40) of bug patterns found in the cloned code belong to Style and Bad

Practice categories (Secondary category). Although not shown in the chart, this number

is as low as 49% (2,065 out of 4,206) for non-cloned code. It is worth noting that these

bug patterns are mostly violations of recommended and essential coding practice and are

susceptible to more false positives. This implies that not only cloned code have fewer bug

patterns compared to non-cloned code, most of the bug patterns belong to the two least

problematic category of FindBugs.

Statistical significance of the difference. In order to statistically evaluate the dominance

126

of Secondary category in the cloned code, we formulate the following hypotheses:

H0 : µ(rP − rS) >= 0, HA : µ(rP − rS) < 0

where µ(rP − rS) is the population median of the difference in bug pattern count between

Primary category (P) and Secondary category (S) in cloned code.

H0: The median bug pattern count of Secondary category is greater than or equal to Primary

category.

HA: The median bug pattern count of Secondary category is less than that of Primary

category. the p-value obtained using Wilcoxon signed rank test is 0.0415. While the median

number of bug patterns found in both the primary and the secondary category is equal to 2,

the mean number of bugs found in the primary and secondary category are 6.67 and 12.87

respectively.

66% of the bug patterns associated with code clones are related to issues in coding style and

practice, the two least problematic of the FindBugs’ categories, while that number is 49% for

non-cloned code

7.2.3.3 RQ3: How often do bug-patterns propagate through cloning?

In order to investigate how often bug patterns are duplicated when the code is cloned, we

manually examined 339 code clone groups which had at least one bug pattern present in

them. Note that a code clone group is a set of methods which are clones of each other. For

each code clone group, we look at all the bug patterns present in the group one at a time,

and classify the group into one of the following two categories.

Category 1 - If the bug pattern present in the code clone is also present in at least one other

127

P
ro

je
ct

S
L
O
C

#
M
et
h
o
d

D
ef
ec
t
D
en

si
ty

C
o
rr
el
a
ti
o
n

D
ef
ec
t
D
en

si
ty

(N
o
n
-c
lo
n
es
)

(s
iz
e
co

n
tr
o
l
)

B
u
g
s

T
o
ta
l

C
lo
n
es

T
o
ta
l

C
lo
n
es

N
o
n
-c
lo
n
es

C
lo
n
es

E
q
u
a
l
#

M
et
h
o
d
s

E
q
u
a
l
L
O
C

d
u
p
li
ca

te
d

n
o
n
-d
u
p
li
ca

te
d

a
n
t

8
6
,4
3
8

3
,6
4
2

7
,8
8
3

2
0
8

2
.6
6

1
.6
5

0
.1
9
5

2
.4
6

2
.6
1

4
0

b
er
k
el
ey

p
a
rs
er

5
7
,9
0
5

7
,8
4
2

3
,3
6
4

3
5
7

4
.3
5

0
.8
9

0
.1
6
8

4
.0
8

4
.2
3

9
1
0

cg
li
b

1
3
,6
6
8

3
5
4

1
,9
1
6

2
8

2
.6
9

0
0
.1
2
3

3
.7
4

1
.6
5

0
0

cl
o
u
d
9

5
6
,7
6
6

2
1
,0
6
6

4
,3
9
0

1
,0
4
7

1
1
.9
6

6
.5

0
.1
4
9

5
.0
2

5
.0
7

–
–

co
co

o
n

1
0
,3
8
7

2
1
1

7
7
3

2
5

2
.0
8

4
.9
2

0
.1
9
7

3
.8
7

1
.8
2

1
0

co
m
m
o
n
s-
io

8
,6
7
3

4
4
0

6
7
4

5
0

1
.0
5

0
0
.1
3
7

2
.9
7

3
.5
6

1
1

d
o
m
4
j

1
7
,8
5
4

9
9
7

2
,2
0
6

7
2

3
.7
4

0
0
.0
9
6

0
.8
2

0
.8

1
0

h
a
d
o
o
p
-h
d
fs

7
0
,4
1
1

5
,0
1
6

5
,4
0
1

3
6
2

2
.4
8

2
.0
3

0
.0
5
1

1
.0
5

1
0

1

h
a
d
o
o
p
-m

a
p
re
d

6
4
,0
2
3

3
,4
5
2

5
,5
7
7

2
3
0

3
.0
5

1
.2
8

0
.2
0
5

2
.4

2
.2
5

2
1

h
ib
er
n
a
te

7
2
,4
0
9

3
,1
1
7

8
,9
7
3

2
4
3

4
.1
8

0
0
.0
1
7

2
.7
9

2
.9
7

6
1

h
tt
p
cl
ie
n
t

1
8
,0
2
2

1
,2
0
6

1
,3
2
4

1
0
2

3
.0
6

6
.8

0
.1
0
1

1
.6

1
.8
1

2
0

jf
re
ec
h
a
rt

9
3
,4
6
0

1
5
,4
7
0

7
,0
3
4

8
7
1

1
.0
1

0
.2

0
.2
1
4

0
.8
9

0
.7
2

8
9

3
1

jy
th

o
n

2
1
1
,9
0
5

7
,4
1
1

1
9
,5
9
3

6
2
0

1
.4
7

1
.6
6

0
0
.1

0
.2
2

1
2

lo
g
4
j

1
6
,1
1
1

6
0
9

1
,6
8
7

5
7

0
.8
6

0
.5
8

0
.1
4
2

2
.3
2

2
.2
4

2
1

lu
ce
n
e

1
5
,6
7
0

1
,4
3
8

1
,3
1
5

7
7

0
.1
4

0
.1
3

0
.1
5
2

1
.6
6

1
.0
6

4
2

m
a
h
o
u
t-
co

re
5
3
,3
6
6

3
,8
0
0

3
,9
4
3

2
4
9

1
.6
1

0
0
.0
0
3

1
.5
4

1
.0
9

0
0

m
a
so
n

3
5
,9
3
1

3
,8
0
0

2
,6
7
4

2
6
1

1
.4
8

0
0
.2
7
8

1
.3
7

1
.3
6

8
5

n
u
tc
h

1
2
,2
4
3

5
1
9

8
6
1

4
0

4
.2
4

0
0
.2
9
9

4
.4
9

4
.3
4

1
0

p
d
fb
o
x

1
3
,9
3
6

1
,6
5
3

8
9
4

3
1

1
2
.2
7

0
0
.2
5
6

1
4
.8
1

9
.7
4

0
0

p
ig

8
4
,7
7
0

3
,0
5
9

5
,4
5
8

1
8
0

3
.0
3

0
.3
3

0
.1
5
7

2
.9
7

2
.2
7

1
7

p
m
d

6
0
,0
6
0

6
,8
6
4

4
,6
3
4

2
5
4

0
.7
9

0
.5
8

0
.3
3

0
.6
7

0
.7

7
6

2

p
o
i

4
7
,8
0
4

5
,0
9
3

4
,8
9
9

3
4
3

4
.8
7

2
.1
6

0
.1
1
7

4
.8

4
.1
8

6
9

p
o
st
g
re
sq
l

2
3
,5
1
4

1
,9
1
6

1
,8
3
6

1
6
0

1
0
.2
2

2
1
.9
1

0
.4
1
5

8
.6
4

8
.0
7

2
0

2

rh
in
o

5
4
,7
2
2

2
,4
1
2

2
,9
5
8

1
3
5

0
.8
7

0
0
.2
0
9

0
.5

2
.4

0
0

st
a
n
fo
rd

-n
lp

2
1
0
,2
3
3

4
,4
3
0

8
,6
9
2

2
9
5

5
.7
2

9
.2
6

0
.1
9
2

3
.1
8

3
.4
5

–
–

st
ru

ts
2
4
,7
9
9

1
,2
7
5

2
,3
0
0

8
2

1
.6
1

0
.7
8

0
.1
2
7

1
.8
7

1
.2
4

0
1

su
b
st
a
n
ce

4
7
,3
6
1

5
,0
1
4

3
,0
2
6

2
1
3

1
.3
2

0
.4

0
.2
3
3

1
.1
3

0
.8
4

8
1

sy
n
a
p
se
-c
o
re

4
1
,6
1
2

2
,3
7
0

2
,8
0
3

1
3
8

0
.7
8

0
0
.1
8

0
.8
8

1
1

2

to
m
ca

t-
ca

ta
li
n
a

7
3
,6
7
3

4
,0
3
0

4
,7
5
7

2
3
2

2
.3
2

0
.9
9

0
.1
7
1

2
.2
6

2
.7
6

5
2

u
im

a
-c
o
re

1
1
,9
4
2

6
8
7

9
4
7

5
9

2
.1
4

0
0
.0
0
7

2
.5
3

0
.8

0
0

x
er
ce
s

7
6
,1
8
5

7
,3
4
0

5
,1
3
1

3
4
5

0
.9
1

0
.6
8

0
.2
0
5

1
0
.8
7

6
4

T
ab

le
7.

1:
R

es
u
lt

s.
C

or
re

la
ti

on
co

lu
m

n
sh

ow
s

P
ea

rs
on

co
rr

el
at

io
n

co
effi

ci
en

t
b

et
w

ee
n

m
et

h
o
d

si
ze

an
d

#
of

b
u
g

p
at

te
rn

s.
D

ef
ec

t
d
en

si
ty

(s
iz

e
co

n
tr

ol
)

sh
ow

s
d
ef

ec
t

d
en

si
ty

of
n
on

-c
lo

n
ed

co
d
e

w
h
en

(i
)

u
si

n
g

th
e

sa
m

e
n
u
m

b
er

of
n
on

-c
lo

n
ed

m
et

h
o
d
s

as
cl

on
ed

co
d
e

m
et

h
o
d
s

(E
q
u
al

#
M

et
h
o
d
s)

;
an

d
(i

i)
u
si

n
g

n
on

-c
lo

n
ed

m
et

h
o
d
s

w
h
os

e
L

O
C

su
m

s
u
p

to
to

ta
l

cl
on

ed
m

et
h
o
d

L
O

C
(E

q
u
al

L
O

C

128

member of the same code clone group. This implies that the bug pattern was also duplicated

during code cloning.

Category 2 - If the bug pattern is unique to the code clone group i.e., it is present in only one

member of the group. This implies that the bug pattern was either introduced later (after

code cloning) to one of the instances, or it was fixed in all the other instances after cloning.

Column 10 & 11 in Table 7.1 show number of duplicated and non-duplicated bug patterns

for 29 (out of 31) projects respectively. In total, out of 339, we found that 254 code clone

groups were classified in Category 1 and only 85 in Category 2.

75% of the FindBugs’ bug patterns in cloned code are duplicated without any changes, while

25% are only present in one of the clones. Interpreting this result, while one may argue that

cloning such a piece of code increased the total number of bug patterns, it is interesting and

important to understand these results in the light of RQ2’s results.

Most of these duplicated bugs again fall into coding and style category. On inspecting the

code clone siblings with duplicated bug patterns, we found that it is very likely, that even

without cloning, many developers would have written the code of same quality (i.e., with bug

patterns present in them), if not worse. However, since bug patterns found in these categories

are not very complex, a tool support to proactively assist developers make informed decision

regarding cloning maybe very useful to maintain the code quality along with the advantages

of rapid development using code cloning.

For example, we found that the two siblings of a clone group had identical code except hard

coded integer values passed as parameter to the methods. Although this does not result in

any serious threat to the program, it is definitely a bad practice because it breaks abstraction

and increases the code size. In this case, an easy fix would be to refactor the two methods

into one method by modifying the signature of any of these methods, so that it accepts an

integer type as a parameter. Today, automated refactoring support for such scenarios often

129

leaves the burden of identifying the refactoring candidates on the developers and hence it

is often perceived as an optional exercise. A more proactive approach, for example, in the

above case, automatically detecting candidate methods for merging by detecting clones as

soon as a method is completed by a developer, and then showing the identified FindBugs’

bug pattern (hard-coded integer), will help developer to not only develop faster but also

incrementally clean the code base. Thus we posit that making developers aware of such

issues and assisting them with code refinement while they are copy pasting will blend better

with the development activity and hence it is likely be more adopted.

75% of the FindBugs’ bug patterns in cloned code are duplicated without any changes, while

25% are only present in one of the clones. As most of the bug patterns duplicated come

from Coding & Style bug category, this finding has important implications on the part of tool

designers

7.2.4 Conclusion (Study 1)

We conduct an empirical study of 31 open source Java projects to explore the relationship

between code clones and a set of bug patterns reported by FindBugs and found that: (i)

the defect density in cloned code is 3.7 times less than that of the rest of the code; (ii) 66%

of the bug patterns associated with code clones are related to issues in coding style and

practice, the two least problematic of the FindBugs’ categories, while that number is 49%

for non-cloned code; and (iii) 75% of the bug patterns in cloned code are duplicated without

any changes, while 25% are only present in one of the clones.

130

7.3 Study 2. A Comparative Study of Software Quality

Metrics in Java Cloned and Non-cloned Code

While the previous study looked at the relationship between code cloning and bug patterns,

this study explores the relationship between code clones and 27 software quality metrics at

a much larger scale. The study is conducted on 4,421 Java systems containing 1,486,882

methods.

I will briefly describe the key aspects of this study including research questions, dataset,

how SourcererCC was used in this study, and finally summarize the key findings below. The

complete study can be found at [22].

7.3.1 Research Questions

This study was motivated by the following research questions.

Research Question 1: Are cloned methods less complex than the non-cloned methods in a

project?

Similar to the earlier study, this study was also conducted using intra-system method level

clones only i.e., methods for which clones exist in the same project.

Complexity is an inherent problem to software systems, particularly when seen from software

comprehension and maintenance aspects. The cost of software maintenance increases with

the increase in the complexity of software [8]. If it is found that the complexity of the cloned

methods is higher than the complexity of non-cloned methods, then it would mean that

cloning contributes to increasing complexity of the system. Complexity is computed using

19 complexity metrics, which are shown in Table 7.2.

131

Research Question 2: Are cloned methods more modular than the non-cloned methods in

a project?

Modularity is computed using five modularity metrics as shown in Table 7.2. If it is found

that the cloned methods are less modular than the non-cloned methods, then it will be

evidence against the practice of cloning, as the methods that are more modular are generally

thought to be easier to maintain.

Research Question 3: Are cloned methods more documented than the non-cloned methods

in a system?

A more documented code is easier to comprehend. If it is found that the cloned methods

are less documented than the non-cloned methods, then it will contribute to the pool of

evidences against the practice of cloning.

7.3.2 Dataset

The dataset used in this study consists of 4,421 Java projects hosted by Maven [88]. The

comprehensive list of systems with their version information can be found at [22].

Figure 7.5 describes the size distribution of these projects. The X-axis represents the binned

number of Java statements (NOS) and the Y-axis represents the percentage of projects in

each bin.

7.3.3 Clone Detection

As in the case of Study 1, SourcererCC was used to compute method-level clones with a 0.7

similarity threshold.

132

Log(NOS)

P
er

ce
nt

ag
e

6 8 10 12

0
5

10
15

Figure 7.5: Size distribution of the projects. The X-axis represents the number of Java
Statements in log scale (binned). The Y-axis shows the percentage of projects in each bin.

Precision. In order to measure the precision of SourcererCC for this study, 401 clone pairs

were randomly chosen for manual inspection. This is a statistically significant sample with a

95% confidence level and a ±5% confidence interval. These clone pairs were inspected by 3

reviewers having more than 7 years of software development experience with at least 2 years

of industrial experience.

Reviewer 1 found all 401 clone pairs to be true positives; reviewer 2 found 394 clone pairs

as true positives and 7 as false positives; and reviewer 3 found 395 clone pairs to be true

positives and 6 as false positives. After considering majority vote, only one clone pair was

declared as a false positive and rest 400 were classified as true positives, resulting into 99.7%

precision.

Distribution of method clones in the projects. In total 644,830 methods were found

to have at least one clone whereas 842,052 methods had no clones in the entire corpus.

Figure 7.6 shows the distribution of cloned methods in the projects. The X-axis represents

the binned number of cloned methods in log scale. The Y-axis represents the percentage of

projects. Figure 7.7 shows a similar graph for non-cloned methods.

133

Log(Number of Clone Methods)

P
er

ce
nt

ag
e

2 4 6 8 10

0
5

10
15

Figure 7.6: Distribution of subject systems measured using the number of cloned methods.
The X-axis shows the binned number of clones in log scale. The Y-axis shows the percentage
of systems in each bin.

Log(Number of Non−Clone Methods)

P
er

ce
nt

ag
e

2 3 4 5 6 7 8 9

0
5

10
15

Figure 7.7: Distribution of subject systems measured using the number of non-cloned meth-
ods. The X-axis shows the binned number of non-cloned methods in log scale. The Y-axis
shows the percentage of systems in each bin.

The median non whitespace lines of code (NLOC) for cloned and non-cloned methods is 11

and 14 respectively whereas the median number of statements (NOS) is 8 and 10 respectively.

134

7.3.4 Software Quality Metrics

For each method, 27 software quality metrics, (shown in Table 7.2) are computed across

the three categories: (i) metrics assessing code complexity; (ii) metrics assessing modularity

properties; and (iii) metrics assessing how well the code is documented

Finally, it was analyzed how these metric values differ for clones compared to rest of the

code. Statistical analysis was used to seek answers to the research questions posed above.

7.3.5 Summary of the Results

This study found that statistically on an average 43% of the projects exhibit significant

(p<0.05) difference in the metric values of cloned code and rest of the code in all of the three

categories; with 90% of these projects showing at least small effect-size (r). Moreover, for

47% projects, complexity and modularity of cloned methods is found to be better than that

of non cloned methods. However, non-cloned methods are found to be better documented

than the cloned method i.e., non-cloned methods have higher number of code-comments than

the cloned methods.

Following is a summary of the findings of three research questions from the study. Note that

all values are statistically significant with p-value < 0.05 and effect-size > 0.1.

Complexity (RQ1): The complexity of cloned methods differ from the non cloned methods

in 32% to 52% of the projects, and in 15% to 55.2% of the projects, the complexity of clones

is significantly better than their counterparts.

Modularity (RQ2): The modularity of cloned methods differ from the non-cloned methods

in 32% to 45% of the projects, and in 19% to 46% projects, the modularity of clones is

significantly better than their counterparts.

135

Category Name Description

Code Complexity ↓ COMP McCabes cyclomatic complexity
↓ NOA Number of arguments
↓ VDEC Number of variables declared
↓ VREF Number of variables referenced
↓ NOS Number of statements
↓ NEXP Number of expressions
↓ MDN Method, Maximum depth of nesting
↓ HLTH Halstead length of method
↓ HVOC Halstead vocabulary of method
↓ HVOL Halstead volume
↓ HDIF Halstead difficulty to implement a method
↓ HEFF Halstead effor to implement a method
↓ TDN Total depth of nesting
↓ CAST Number of class casts
↓ LOOP Number of loops (for,while)
↓ NOPR Total number of operators
↓ NAND Total number of operands
↓ HBUG Halstead prediction of number of bugs
↓ NLOC Number of lines of code

Modularity ↓ CREF Number of classes referenced
↓ XMET External methods called by the method
↓ LMET Local methods called by the method
↓ EXCR Number of exceptions referenced by the method
↓ EXCT Number of exceptions thrown by the method

MOD Number of modifiers

Documentation ↑ NOC Number of comments
↑ NOCL Number of comment lines

Table 7.2: Software Quality Metrics

136

Documentation (RQ3): The documentation of cloned methods differ from the non cloned

methods in 43% of the projects, and in 36% to 42% projects, cloned methods are poorly

documented than their counterparts.

7.3.6 Conclusion (Study 2)

This is the first study to empirically show that the characteristics of cloned methods dif-

fer from that of non-cloned methods at such a large scale (4,421 projects and 27 software

metrics). These are observable characteristics which are measured using software quality

metrics.

The work is ongoing and the authors are exploring ways to build classifier models in order

to calculate a cloneability index of a method. The concept is similar to computing a main-

tainability index [95] of a method. The goal is to identify and monitor methods that show

higher cloneability index and assess their impact on software maintenance.

137

7.4 Threats to Validity

In this section, we identify the threats to the validity of both the studies. While some threats

may be pertinent to only one study, most of the them are applicable to both the studies.

Robustness of Clone Detection Technique. We classify methods as clones or nonclones.

However, this classification is as accurate as the choice of our clone detection technique, tool,

and configurations [125]. In order to mitigate this risk, we chose SourcererCC, our own tool

to help us to choose the right configurations for better accuracy. Moreover we manually

verified random samples and found false positives to be under 5%.

Granularity of Clones. Another threat could occur because of considering only method-

level clones. We may miss overlapping clones or clones in class definitions. However, given

this study is for Java projects, we believe that most of the clones representing logical blocks

of program should be captured at a method level. Nonetheless, we acknowledge that this

assumption might still impact the study.

False Positives in Bug Patterns. The imprecise nature of bug patterns reported by

FindBugs is another threat to our validity. To address this issue, we only consider bug

categories that have proven to be precise and actionable. Moreover, we exclude bug patterns

with LOW severity. Nonetheless, it is very likely that we still face the issue of false positives.

Moreover, although FindBugs detects a variety of bug patterns across various categories,

there may be other bug patterns which are not detected. So the results of this study are to

be interpreted only in the context of FindBugs’ bug patterns.

Use of FindBugs in the Development Practice. It is possible that developers were

already using FindBugs during development, and the warnings were fixed before release,

and thus fewer post-release defects would be associated with warnings. This would further

reduce the defect density and skew the analysis. We took a random sample of 20 projects,

138

and found no evidence of systematic use of FindBugs tool. We did this by going through the

developer fixes, and examining the source history of these projects. In addition, we found

no evidence in the email archives of any these projects suggesting a systematic adoption of

FindBugs tool. These observations provide some mitigation to this particular threat.

Generalizability. The results of these studies are from open source Java systems, all

medium to large size. We chose subject systems that exhibit variety in their type, size,

and domain to minimize the impact of such factors on the observed phenomena. How-

ever, drawing general conclusions from empirical studies in software engineering is difficult

because besides independent variables, the process depends on many relevant confounding

variables [9].

For example, Mondal et al. [91] found that old clones are stable. Does stability of clones

make them less bug prone? If yes, clone age could be one such confounding factor that needs

to be controlled. Similarly, criticality of clones could play an important role i.e., are clones

present in all the features or just not-so-critical features? This will validate that cloned

code has fewer bug patterns not just because it does not implement a critical feature of the

system, but because of its peculiarity. This can be done by preserving the homogeneity of

cloned and non-cloned methods, which is currently not accounted for.

Thus, in the presence of such confounding factors, we cannot assume a priori that the

results of the study generalize beyond the setting for which it was conducted. However, the

overall results of this study showed several commonalities across a wide range of systems

and indicate that the results hold for more than just the studied systems.

139

7.5 Reproducibility

While our results appear to be statistically significant, we urge caution in extending the

findings to other languages. Comparisons such as these are key to promoting software en-

gineering discipline in understanding code clone properties and we invite others to use our

dataset for further experiments. We have made available all the necessary artifacts includ-

ing project sources, detailed steps to run tools and produce the raw data, analysis steps to

produce the statistical results to verify the claims for both the studies.

1. A Comparative Study of BugPatterns in Java Cloned and Non-cloned Code: http:

//mondego.ics.uci.edu/projects/bugpatternsinclones

2. A Comparative Study of Software Quality Metrics in Java Cloned and Non-cloned Code:

http://mondego.ics.uci.edu/projects/clone-metrics

7.6 Chapter Summary

This chapter presented two empirical studies conducted using SourcererCC to demonstrate

the effectiveness of SourcererCC for empirical clone research.

The goal of these studies is to explore the relationship between code clones and various

quality attributes (software quality metrics and bug patterns). These studies are not the

final word on the issue, but it is one more piece of evidence that in the practice of software

development, clones do not seem to be as bad as they have been thought to be. While both

these studies does not unveil any explanation for these findings, results from other, more

qualitative studies indicate that the developers use copy-and-paste intentionally and wisely,

which may explain the quantitative observations of these studies.

Like all complex problems, the issue of code cloning being bad or not will only be fully

140

http://mondego.ics.uci.edu/projects/bugpatternsinclones
http://mondego.ics.uci.edu/projects/bugpatternsinclones
http://mondego.ics.uci.edu/projects/clone-metrics

understood by looking at it from several angles and with several methodologies. But if

clones are not as bad as we thought they were, this leads to interesting new avenues of

exploration for tools that help manage clones rather than eliminating them. Such tools and

techniques can help developers take advantage of rapid development using cloning and also

manage clones effectively to avoid degrading the quality of code due to cloning.

Overall, these research results suggest that the practice of code cloning in Java, and possibly

in all other object-oriented languages, needs to be given serious consideration on the part of

tool designers.

141

Chapter 8

Conclusions and Discussion

8.1 Dissertation Summary

This dissertation focused on the topic of large-scale code cloning. While several techniques

have been proposed for clone detection over many years, accuracy and scalability of clone

detection tools and techniques still remains an active area of research. Specifically, there is

a marked lack of clone detectors that scale to large systems or repositories, particularly for

detecting near-miss clones where significant editing activities may take place in the cloned

code. Furthermore, with the amount of source code increasing steadily, large-scale clone

detection has become an even greater necessity. These large code bases and repositories of

projects have led to several new use cases of clone detection, including mining library candi-

dates, detecting similar mobile applications, detection of license violation, reverse engineering

product lines, finding the provenance of a component, and code search.

To that end, this dissertation presented SourcererCC, a token-based accurate near-miss clone

detection tool, which uses an optimized partial index and filtering heuristics to achieve large-

scale clone detection on a standard workstation.

142

SourcererCC’s scalability is demonstrated with IJaDataset, a large inter-project reposi-

tory containing 25,000 open-source Java projects, and 250 MLOC. We measure Sourcer-

erCC’s recall using two state-of-the-art clone benchmarks, the Mutation Framework and

BigCloneBench. We found that SourcererCC is competitive with even the best of the state-

of-the-art Type-3 clone detectors. To measure precision, we conducted blind experiments

using five reviewers and statistically significant samples of clones detected by the tools to

measure precision. We found SourcererCC to have a high precision (86%). We believe that

SourcererCC can be an excellent tool for various modern use cases that require reliable,

complete, fast, and scalable clone detection.

This dissertation made five major contributions in the field of code clone detection research.

The specific contributions can be summarized as follows:

1. The SourcererCC Tool (Chapter 3) - The SourcererCC tool represents an impor-

tant contribution in the area of code clone detection research. Large-scale empirical

studies on code cloning depend on the quality and scalability of clone detection tools.

SourcererCC provides an infrastructure to enable high quality empirical clone research.

Chapter 3 presented a detailed description of the SourcererCC tool, including infor-

mation about how to use it.

2. Tool Comparison Benchmarks (Chapter 4) - The scalability and accuracy (preci-

sion and recall) of SourcererCC is evaluated against four state-of-the-art clone detectors

using multiple datasets. The results of these experiments can serve as benchmarks for

future research in the area of clone detection.

3. The SourcererCC-D Tool (Chapter 5) - The SourcererCC-D tool is a distributed

version of SourcererCC that can be easily deployed on Amazon Web Service or machines

with multiple processors. To the best of our knowledge, it is the first publicly available

distributed clone detector. Chapter 5 presented a detailed description of the tool,

143

including information about how to use it.

4. The SourcererCC-I Tool (Chapter 6) - While there are several existing clone detec-

tion tools that are beneficial in the analysis and investigation of code clones and their

evolution, they fail to provide necessary clone management support for clone-aware

development activities, as they are not integrated with the development environment.

Chapter 6 presents SourcererCC-I, an Eclipse plug-in based on top of SourcererCC,

that instantaneously reports intra- & inter-project method level clones in Java projects.

SourcererCC-I is designed with features to support clone-aware development and main-

tenance activities.

5. Empirical Studies on the Relationship of Code Clones and Quality At-

tributes (Chapter 7) - Due to the challenges discussed earlier, there is a lack of

studies on understanding the relationship between code cloning and quality attributes.

Chapter 7 presents two empirical studies to explore the relationship between code

clones and (i) bug patterns and (ii) software quality metrics. We found that there

is a positive differentiation of cloned code with respect to the rest of the code when

using bug patterns and software metrics. While a qualitative analysis of the findings is

certainly encouraged, overall, these research results suggest that the practice of code

cloning in Java, and possibly in all other object-oriented languages, needs to be given

serious consideration on the part of tool designers. These studies also demonstrate

how SourcererCC can be effectively used for large-scale empirical clone research.

144

8.2 The Surprising Effectiveness of the Bag-of-tokens

model and Overlap Similarity Measure in Clone

Detection

The core of SourcererCCs algorithm is based on two important but simple concepts:

(i) Bag-of-tokens model to represent code fragments; and (ii) overlap similarity measure to

compute similarity between code fragments.

SourcererCC represents a code block using a bag-of-tokens model where tokens are assumed

to appear independently of one another and their order is irrelevant. The idea is to transform

code blocks in a form that enables SourcererCC to detect clones that have different syntax

but similar meaning. Moreover, this representation also filters out code blocks with specified

structure patterns. Since SourcererCC matches tokens and not sequences or structures, it has

a high tolerance to minor modifications, making SourcererCC effective in detecting Type-3

clones, including clones where statements are swapped, added, and/or deleted.

The overlap similarity measure simply computes the intersection between the code fragments

by counting the number of tokens shared between them. The intuition here is simple. If

two code fragments have many tokens in common then they are likely to be similar to some

degree.

It is interesting to note that such a simple strategy could prove to be so effective in a

complex software engineering task of identifying code clones. We believe that one of the

reasons for its effectiveness is the vocabulary developers use to write source code. While

programming languages in theory are complex and powerful, the programs that real people

write are mostly simple and rather repetitive and similar [47]. This similarity is manifested

in the source code in the form of tokens, and particularly in identifiers. In source code,

145

identifiers (e.g. names of variables, methods, classes, parameters, or attributes) account

for approximately more than 70% of the linguistic information [33]. Many researchers have

concluded that identifiers reflect the semantics and the role of the named entities they are

intended to label [18, 79, 43]. Therefore, code fragments having similar semantics are likely

to have similarity in their identifiers. Furthermore, oftentimes, during copy-paste-modify

practice, developers preserve identifier names as they reflect the underlying functionality of

the code that is copied. They seem to be aware of the fact that different names used for the

same concept or even identical names used for different concepts reflect misunderstandings

and foster further misconceptions [33]. As a result, while copied fragments are edited to

adapt to the context in which they are copied, they often have enough syntactical similarity

associated with the original fragment. This similarity is effectively captured by the bag-of-

tokens model in conjunction with the overlap similarity measure.

Of course, there are scenarios when programmers may deliberately obfuscate code to conceal

its purpose (security through obscurity) or its logic, in order to prevent tampering, deter

reverse engineering, hide plagiarism, or as a puzzle or recreational challenge for someone

reading the source code. The simple bag-of-tokens model of SourcererCC may not be effective

in detecting clones in such cases. Other tools like Deckard that rely on AST, or NiCad that

uses heavy normalizations, may be effective under such scenarios.

8.3 Lessons Learned During SourcererCC’s Develop-

ment

In this section, I will try to summarize the lessons that I learned during the design, develop-

ment and testing of SourcererCC. While these lessons are not new and are already well-known

in the field, my dissertation work has given me an opportunity to directly experience and

146

reflect upon them.

Everything breaks at scale. One of my key lessons during SourcererCC’s development

can be aptly described in a phrase - “Everything breaks at scale, so expect the unexpected”.

We realized that at scale, we cannot test for every error. As a result, we used assertions

and exception handlers for things that can’t happen. We added diagnostic code, logging and

tracing to help explain what is going on at run-time, especially when we ran into problems

during development. The philosophy - if this failed, look for what else can fail - played a

very important role during SourcererCC’s development.

Fault Tolerance. During the initial stages of the development, SourcererCC crashed at

times while running on large datasets after several hours of execution due to unexpected

reasons. Since SourcererCC did not have mechanism to preserve its execution state during

that time, such failures resulted in a loss of several hours of computation time and effort.

Not to mention the frustration that comes along. Based on these experiences, we realized

that SourcererCC’s exception handler must preserve its state of the execution (i.e., keeping

track of how much data is already processed), so when interrupted, SourcererCC’s execution

can resume correctly from the point of failure at a later time. The necessity of logging how

much data is processed by the tool is an important lesson that we learned the hard way.

Memory Leaks. SourcererCC is written in Java programming language which has its own

garbage collection mechanism. However, we encountered bugs related to memory leaks while

testing SourcererCC on large datasets. What I learned from debugging memory leak issues

is that while there are simple solutions to detect and deal with memory leaks (e.g., logging

the size of your data structures when you modify them, and then searching the logs for data

structures that grow beyond a reasonable size), a tool is undoubtedly a big help. In the

absence of the right tools, debugging such issues could take unreasonable time and effort.

We were able to resolve these issues much faster using open source tools like VisualVM1 and

1https://visualvm.java.net/

147

Profiler4J2.

The problem could be in the data too. Oftentimes when we noticed anomalies in the

execution of SourcererCC, we thought that the issue would be in the code. However, it was

not unusual to find issues with either the input data or our assumptions about the input

data. As a result, we realized that it is always useful to check for data consistency and

integrity even before any experimentation.

Tuning parameters to optimize SourcererCC’s performance. SourcererCC has few

parameters (e.g., similarity threshold, tokenization startegies, minimum size threshold of a

code block) that had to be tuned to optimize for accuracy, scalability, and efficiency. This

resulted in countless experiments, and keeping track of these experiments and their settings

posed a severe challenge.

To do this exercise systematically, we adopted the following process that indeed turned out

to be very effective.

We created a smaller dataset for parameter tuning experiments. Apart from the smaller size,

this dataset had characteristics very similar to the large datasets on which SourcererCC is

intended to be used. Executing SourcererCC on a smaller dataset took less time, thus giving

us more freedom to experiment.

In order to better keep track of SourcererCC’s performance on different parameter configu-

rations, we created a SourcererCC revision (using Git) for each configuration of parameters.

This not only enabled us to run several experiments in parallel, but also helped to easily

switch back-and-forth across various parameter configurations.

To summarize, creating SourcererCC’s revisions for various parameter configurations and

running them in parallel on a smaller dataset greatly reduced the turn around time for

2http://profiler4j.sourceforge.net/

148

performing experiments to tune SourcererCC.

8.4 Going Forward

Code Clone detection research has come a long way in the last couple of decades. We

conclude by identifying some of the relevant areas that might shape the future research in

this field.

There are many tools available for clone detection. In contrast, there are relatively few

tools that help in removing or effectively managing clones. Identifying various means of

eliminating harmful clones through automated tool support is an interesting venue to explore

in the future.

Large-scale clone detection is often faced with the challenge of how to make sense of the

large data produced by the clone detection tools. Visual and interactive representations of

the output to reinforce human cognition and produce actionable insight is another useful

direction for the future.

The utility of clone detection is not just limited to source code. Clone detection in other

software artifacts, including models, bug-reports, requirement documents, and binaries, is

turning out to be a necessity for several use cases. For example, the ability to detect clones

in software binaries is necessary for effectively detecting Malwares and License Infringement.

Therefore, extending code clone detection research to other software artifacts is a promising

area for the future.

Clone research should also focus on clone management by: (i) identifying and prioritizing

the clones that are of interest to the developers for a given task; (ii) helping developers pro-

actively assess the negative consequence of cloning; and (iii) categorizing clones as harmful

149

and harmless after detection.

With the several new use cases of clone detection emerging, a reorientation of research focus

towards application-oriented clone detection might be useful. In many cases, state-of-the-art

clone detection tools do not behave well for these specific use cases. These observations point

to the new research opportunities to enhance clone detection technologies. Moreover, use

case specific benchmarking to evaluate various tools and techniques might be another area

to focus on in the future.

150

Bibliography

[1] Software clone detection: A systematic review. Information and Software Technology,
55(7):1165 – 1199, 2013.

[2] Cloc: Count lines of code. http://cloc.sourceforge.net, 2015.

[3] Ambient Software Evoluton Group. IJaDataset 2.0. http://secold.org/projects/

seclone, January 2013.

[4] N. Ayewah and W. Pugh. Using findbugs on production software. In In OOPSLA 07:
Companion to the 22nd ACM SIGPLAN conference on Object oriented programming
systems and applications companion, pages 805–806. ACM, 2007.

[5] B. Baker. A program for identifying duplicated code. Computing Science and Statistics,
pages 24–49, 1992.

[6] B. S. Baker. On finding duplication and near-duplication in large software systems. In
Proceedings of Working Conference on Reverse Engineering, 1995.

[7] B. S. Baker. On finding duplication and near-duplication in large software systems. In
Reverse Engineering, 1995., Proceedings of 2nd Working Conference on, pages 86–95.
IEEE, 1995.

[8] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software complexity and
maintenance costs. Communications of the ACM, 36(11):81–94, 1993.

[9] V. Basili, F. Shull, and F. Lanubile. Building knowledge through families of experi-
ments. Software Engineering, IEEE Transactions on, 25(4):456–473, 1999.

[10] H. A. Basit, D. C. Rajapakse, and S. Jarzabek. Beyond templates: a study of clones
in the stl and some general implications. In In Proc. of the Intl Conf. on Software
Engineering, pages 451–459, 2005.

[11] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection Using
Abstract Syntax Trees. In Proceedings of the International Conference on Software
Maintenance, page 368. IEEE Computer Society, 1998.

[12] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In Software Maintenance, 1998. Proceedings., International
Conference on, pages 368–377. IEEE, 1998.

151

http://cloc.sourceforge.net
http://secold.org/projects/seclone
http://secold.org/projects/seclone

[13] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evalua-
tion of clone detection tools. Software Engineering, IEEE Transactions on, 33(9):577–
591, Sept 2007.

[14] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and Evalu-
ation of Clone Detection Tools. IEEE Trans. Softw. Eng., 33(9):577–591, 2007.

[15] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and P. Devanbu.
Fair and Balanced? Bias in Bug-Fix Datasets. In Proceedings of the the Seventh joint
meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, 2009.

[16] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the use of clone
detection for identifying cross cutting concern code. IEEE Transactions on Software
Engineering, 31(10):804–818, 2005.

[17] E. Burd and M. Munro. Investigating the maintenance implications of the replication
of code. In Software Maintenance, 1997. Proceedings., International Conference on,
pages 322–329, Oct 1997.

[18] C. Caprile and P. Tonella. Nomen est omen: analyzing the language of function
identifiers. In Reverse Engineering, 1999. Proceedings. Sixth Working Conference on,
pages 112–122, Oct 1999.

[19] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère. An empirical assessment of
bellon’s clone benchmark. In Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering, EASE ’15, pages 20:1–20:10, New
York, NY, USA, 2015. ACM.

[20] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins in
data cleaning. In Proceedings of the 22Nd International Conference on Data Engineer-
ing, ICDE ’06, pages 5–, Washington, DC, USA, 2006. IEEE Computer Society.

[21] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and scalability simultaneously
in detecting application clones on android markets. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 175–186, New York,
NY, USA, 2014. ACM.

[22] Clone metrics. http://mondego.ics.uci.edu/projects/clonemetrics/.

[23] P. Clough and D. O. I. Studies. Old and new challenges in auto-
matic plagiarism detection. In National Plagiarism Advisory Service, 2003;
http://ir.shef.ac.uk/cloughie/index.html, pages 391–407, 2003.

[24] J. Cordy. The txl programming language. http://www.txl.ca/.

[25] J. Cordy. Comprehending reality - practical barriers to industrial adoption of soft-
ware maintenance automation. In Proceedings of International Conference on Program
Comprehension, pages 196–205, 2003.

152

http://www.txl.ca/

[26] J. Cordy and C. Roy. The nicad clone detector. In Proceedings of ICPC, 2011.

[27] J. R. Cordy. Comprehending reality-practical barriers to industrial adoption of software
maintenance automation. In Program Comprehension, 2003. 11th IEEE International
Workshop on, pages 196–205. IEEE, 2003.

[28] J. R. Cordy and C. K. Roy. The nicad clone detector. In Proceedings of the 2011 IEEE
19th International Conference on Program Comprehension, ICPC ’11, pages 219–220,
Washington, DC, USA, 2011. IEEE Computer Society.

[29] Coverity scan. http://scan.coverity.com/.

[30] Darpa muse. http://www.darpa.mil/program/mining-and-understanding-software-
enclaves.

[31] J. Davies, D. German, M. Godfrey, and A. Hindle. Software Bertillonage: finding the
provenance of an entity. In Proceedings of MSR, 2011.

[32] M. de Wit, A. Zaidman, and A. van Deursen. Managing code clones using dynamic
change tracking and resolution. In Proceedings of the 25th International Conference
on Software Maintenance (ICSM 2009). IEEE Computer Society, 2009.

[33] F. Deissenboeck and M. Pizka. Concise and consistent naming. Software Quality
Journal, 14(3):261–282, Sept. 2006.

[34] Developer survey. http://tinyurl.com/oezms7d.

[35] E. Duala-Ekoko and M. P. Robillard. Clonetracker: tool support for code clone man-
agement. In Proceedings of the 30th international conference on Software engineering,
pages 843–846. ACM, 2008.

[36] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent Approach for De-
tecting Duplicated Code. In Proceedings of the IEEE International Conference on
Software Maintenance, page 109. IEEE Computer Society, 1999.

[37] Findbugs. http://findbugs.sourceforge.net/.

[38] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: improving
the design of existing code. Addison-Wesley Professional, 1999.

[39] D. M. German, M. D. Penta, Y. gal Guhneuc, and G. Antoniol. Code siblings: tech-
nical and legal implications of copying code between applications. In Mining Software
Repositories, 2009. MSR ’09. 6th IEEE International Working Conference on, 2009.

[40] N. Gode and R. Koschke. Incremental clone detection. In Software Maintenance and
Reengineering, 2009. CSMR ’09. 13th European Conference on, pages 219–228, March
2009.

153

[41] N. Gode and R. Koschke. Incremental clone detection. In Software Maintenance and
Reengineering, 2009. CSMR’09. 13th European Conference on, pages 219–228. IEEE,
2009.

[42] N. Gode and R. Koschke. Incremental clone detection. In Proceedings of CSMR, 2009.

[43] L. Guerrouj. Normalizing source code vocabulary to support program comprehen-
sion and software quality. In Software Engineering (ICSE), 2013 35th International
Conference on, pages 1385–1388, May 2013.

[44] A. Hemel and R. Koschke. Reverse engineering variability in source code using clone
detection: A case study for linux variants of consumer electronic devices. In Proceedings
of Working Conference on Reverse Engineering, pages 357–366, 2012.

[45] I. Herraiz, E. Shihab, T. H. Nguyen, and A. E. Hassan. Impact of installation counts
on perceived quality: A case study on Debian. In Proceedings of the 18th Working
Conference on Reverse Engineering. IEEE Computer Society, 2011.

[46] K. Herzig, S. Just, and A. Zeller. It's not a bug, it's a feature: How
misclassification impacts bug prediction. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 392–401, Piscataway, NJ, USA,
2013. IEEE Press.

[47] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In Proceedings of the 34th International Conference on Software Engineering, ICSE ’12,
pages 837–847, Piscataway, NJ, USA, 2012. IEEE Press.

[48] D. Hou, P. Jablonski, and F. Jacob. Cnp: Towards an environment for the proac-
tive management of copy-and-paste programming. In Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference on, pages 238–242. IEEE, 2009.

[49] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN Not., 39(12):92–106,
Dec. 2004.

[50] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone
detection:incremental, distributed, scalable. In Proceedings of ICSM, 2010.

[51] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-project functional
clone detection toward building libraries - an empirical study on 13,000 projects. In
Reverse Engineering (WCRE), 2012 19th Working Conference on, pages 387–391, Oct
2012.

[52] H. T. Jankowitz. Detecting plagiarism in student pascal programs. Comput. J.,
31(1):1–8, Feb. 1988.

[53] Y. Jia, B. Binkley, M. Harman, J. Krinke, and M. Matsushita. A proposed approach
to fast and precise clone detection. In Proceedings of IWSC, 2009.

154

[54] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of ICSE, 2007.

[55] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate tree-
based detection of code clones. In Software Engineering, 2007. ICSE 2007. 29th In-
ternational Conference on, pages 96–105, May 2007.

[56] J. H. Johnson. Identifying redundancy in source code using fingerprints. In Proceedings
of the 1993 conference of the Centre for Advanced Studies on Collaborative research:
software engineering - Volume 1, pages 171–183, Toronto, Ontario, Canada, 1993. IBM
Press.

[57] J. H. Johnson. Substring matching for clone detection and change tracking. In Inter-
national Conference on Software Maintanence, pages 120–126, 1994.

[58] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetective a workbench for clone
detection research. In Proceedings of ICSE, 2009.

[59] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. do code clones matter?. In
Proceedings of ICSE, pages 485–495, 2009.

[60] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Trans. Softw. Eng.,
28(7):654–670, 2002.

[61] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. Software Engineering, IEEE Trans-
actions on, 28(7):654–670, Jul 2002.

[62] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. Software Engineering, IEEE Trans-
actions on, 28(7):654–670, 2002.

[63] C. Kapser and M. Godfrey. cloning considered harmful considered harmful: patterns
of cloning in software. Empirical Software Engineering, 13(6):645–692, 2008.

[64] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and
H. Iida. Shinobi: A tool for automatic code clone detection in the ide. volume 0, pages
313–314, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

[65] I. Keivanloo, J. Rilling, and P. Charland. Internet-scale real-time code clone search
via multi-level indexing. In Proceedings of WCRE, 2011.

[66] I. Keivanloo, C. Roy, J. Rilling, and P. Charland. Shuffling and randomization for
scalable source code clone detection. In Proceedings of IWSC, 2012.

[67] M. Kim and D. Notkin. Program element matching for multi-version program analyses.
In Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR ’06, pages 58–64, New York, NY, USA, 2006. ACM.

155

[68] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone
genealogies. In Proceedings of FSE, 2005.

[69] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in Source Code.
In Proceedings of the 8th International Symposium on Static Analysis, pages 40–56.
Springer-Verlag, 2001.

[70] R. Komondoor and S. Horwitz. Effective automatic procedure extraction. In Proceed-
ings of the International Workshop on Program Comprehension, pages 40–56. Springer-
Verlag, 2003.

[71] R. Koschke. Survey of research on software clones. In Proceedings of Duplication,
Redundancy, and Similarity in Software, 2007.

[72] R. Koschke. Identifying and removing software clones. pages 15–36, 2008.

[73] R. Koschke. Large-scale inter-system clone detection using suffix trees. In Proceedings
of CSMR, pages 309–318, 2012.

[74] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix
trees. In Working Conference on Reverse Engineering (WCRE’06). IEEE Computer
Society, 2006.

[75] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix
trees. In Proceedings of the 13th Working Conference on Reverse Engineering, WCRE
’06, pages 253–262, Washington, DC, USA, 2006. IEEE Computer Society.

[76] J. Krinke. Identifying Similar Code with Program Dependence Graphs. In Proceedings
of the Eighth Working Conference on Reverse Engineering (WCRE’01), page 301.
IEEE Computer Society, 2001.

[77] J. Krinke. A study of consistent and inconsistent changes to code clones. In Working
Conference on Reverse Engineering, pages 170–178, 2007.

[78] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing the
benefits of incorporating function clone detection in a development process. In Software
Maintenance, 1997. Proceedings., International Conference on, pages 314–321. IEEE,
1997.

[79] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in a name? a study of
identifiers. In Program Comprehension, 2006. ICPC 2006. 14th IEEE International
Conference on, pages 3–12, June 2006.

[80] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim. Instant code clone search. In Pro-
ceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE ’10, pages 167–176, New York, NY, USA, 2010. ACM.

156

[81] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding copy-paste
and related bugs in operating system code. In Proceedings of the 6th Conference on
Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 20–20, Berkeley, CA, USA, 2004. USENIX Association.

[82] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: A tool for finding copy-paste and
related bugs in operating system code. In OSDI, volume 4, pages 289–302, 2004.

[83] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-large scale code clone analysis
and visualization of open source programs using distributed ccfinder: D-ccfinder. In
Proceedings of ICSE, 2007.

[84] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning:
a change based experiment. In Mining Software Repositories, pages 18–22, 2007.

[85] K. M., N. C., N. J., and L. W. Applied Linear Statistical Models. Sage Publications.

[86] U. Manber. Finding similar files in a large file system. In USENIX WINTER 1994
TECHNICAL CONFERENCE, pages 1–10, 1994.

[87] A. Marcus and J. I. Maletic. Identification of high-level concept clones in source code.
In Proceedings of International Conference on Software Engineering, 2003.

[88] A. Maven. http://maven.apache.org/.

[89] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In ICSM. IEEE, 1996.

[90] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of
function clones in a software system using metrics. In Software Maintenance 1996,
Proceedings., International Conference on, pages 244–253, Nov 1996.

[91] M. Mondal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A. Schneider.
Comparative stability of cloned and non-cloned code: An empirical study. In Pro-
ceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pages
1227–1234, New York, NY, USA, 2012. ACM.

[92] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i. Matsumoto. Software quality
analysis by code clones in industrial legacy software. In Proceedings of the 8th Inter-
national Symposium on Software Metrics, METRICS ’02, pages 87–, Washington, DC,
USA, 2002. IEEE Computer Society.

[93] K. S. Muhammad Asaduzzaman, C. K. Roy and M. D. Penta. Lhdiff: A language-
independent hybrid approach for tracking source code lines. In Proceedings of Inter-
national Conference on Software Maintenance. IEEE Computer Society, 2013.

[94] T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H. Pham, and T. N. Nguyen. Scalable
and incremental clone detection for evolving software. In Proceedings of International
Conference on Software Maintenance. IEEE Computer Society, 2009.

157

[95] P. Oman and J. Hagemeister. Metrics for assessing a software system’s maintainability.
In Software Maintenance, 1992. Proceerdings., Conference on, pages 337–344. IEEE,
1992.

[96] J. Ossher, H. Sajnani, and C. V. Lopes. File cloning in open source java projects: The
good, the bad, and the ugly. In ICSM. IEEE, 2011.

[97] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
mun. ACM, 15(12):1053–1058, Dec. 1972.

[98] F. Rahman, C. Bird, and P. Devanbu. Clones: what is that smell? Empirical Software
Engineering, 17(4-5):503–530, 2012.

[99] F. Rahman, S. Khatri, E. T. Barr, and P. Devanbu. Comparing Static Bug Finders
and Statistical Prediction. In Proceedings of the International Conference on Software
Engineering, Hyderabad, India, 2014. ACM.

[100] Rajapakse, D. C., and S. Jarzabek. Using server pages to unify clones in web appli-
cations: A trade-off analysis. In Proceedings of International Conference on Software
Engineering, pages 116–126, 2007.

[101] M. Rieger. Effective Clone Detection Without Language Barriers. PhD thesis, Univer-
sity of Bern, 2005.

[102] C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating
code clone detection tools. In Software Testing, Verification and Validation Workshops,
2009. ICSTW ’09. International Conference on, pages 157–166, April 2009.

[103] C. Roy, M. Zibran, and R. Koschke. The vision of software clone management: Past,
present, and future (keynote paper). In Software Maintenance, Reengineering and Re-
verse Engineering (CSMR-WCRE), 2014 Software Evolution Week - IEEE Conference
on, pages 18–33, Feb 2014.

[104] C. K. Roy and J. R. Cordy. A survey on software clone detection research. (TR
2007-541), 2007. 115 pp.

[105] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization. In Program Comprehension,
2008. ICPC 2008. The 16th IEEE International Conference on, pages 172–181. IEEE,
2008.

[106] C. K. Roy and J. R. Cordy. Near-miss function clones in open source software: An
empirical study. J. Softw. Maint. Evol., 22(3):165–189, Apr. 2010.

[107] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. Comput. Program, pages
470–495, 2009.

158

[108] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Sci. of Comput. Program.,
pages 577–591, 2009.

[109] H. Sajnani, V. Saini, and C. Lopes. A parallel and efficient approach to large scale
clone detection. Journal of Software: Evolution and Process, 27(6):402–429, 2015.

[110] H. Sajnani, V. Saini, and C. V. Lopes. A comparative study of bug patterns in java
cloned and non-cloned code. In Source Code Analysis and Manipulation (SCAM), 2014
IEEE 14th International Working Conference on, pages 21–30. IEEE, 2014.

[111] H. Sajnani, V. Saini, J. Ossher, and C. Lopes. Is popularity a measure of its quality?
an analysis of maven components. In Proceedings of the 30th International Conference
on Software Maintenance and Evolution(To appear in ICSME 2014). IEEE Computer
Society, 2014.

[112] M. Shomrat and Y. Feldman. Detecting refactored clones. In G. Castagna, editor,
ECOOP 2013 Object-Oriented Programming, volume 7920 of Lecture Notes in Com-
puter Science, pages 502–526. Springer Berlin Heidelberg, 2013.

[113] T. Suresh, C. Luigi, A. Lerina, and D. P. Massimiliano. An empirical study on the
maintenance of source code clones. Empirical Software Engineering, 15(1):1–34, 2010.

[114] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia. Towards a big
data curated benchmark of inter-project code clones. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance and Evolution, ICSME ’14, pages
476–480, Washington, DC, USA, 2014. IEEE Computer Society.

[115] J. Svajlenko, I. Keivanloo, and C. Roy. Scaling classical clone detection tools for
ultra-large datasets: An exploratory study. In Software Clones (IWSC), 2013 7th
International Workshop on, pages 16–22, May 2013.

[116] J. Svajlenko, I. Keivanloo, and C. K. Roy. Big data clone detection using classical detec-
tors: an exploratory study. Journal of Software: Evolution and Process, 27(6):430–464,
2015.

[117] J. Svajlenko and C. K. Roy. Evaluating modern clone detection tools. In ICSME,
2014. 10 pp.

[118] J. Svajlenko and C. K. Roy. Evaluating clone detection tools with bigclonebench. In
Proceedings of the 2015 IEEE International Conference on Software Maintenance and
Evolution, ICSME ’15, page 10, 2015.

[119] J. Svajlenko, C. K. Roy, and J. R. Cordy. A mutation analysis based benchmarking
framework for clone detectors. In Proceedings of the 7th International Workshop on
Software Clones, IWSC ’13, pages 8–9, 2013.

[120] Tcs banking case study. http://www.tcs.com/sitecollectiondocuments/case

159

[121] M. Toomim, A. Begel, and S. Graham. Managing duplicated code with linked editing.
In Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, pages
173–180, 2004.

[122] S. Uddin, C. Roy, K. Schneider, and A. Hindle. On the effectiveness of simhash for
detecting near-miss clones in large scale software systems. In Proceedings of Working
Conference on Reverse Engineering, 2011.

[123] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-
relevant clone detection reference data. In WCRE, pages 285–294, 2003.

[124] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better configurations: A
rigorous approach to clone evaluation. In ESEC/FSE, pages 455–465, 2013.

[125] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for better configurations: A
rigorous approach to clone evaluation. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 455–465, New York,
NY, USA, 2013. ACM.

[126] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient similarity joins for near duplicate
detection. In Proceedings of the 17th International Conference on World Wide Web,
WWW ’08, pages 131–140, New York, NY, USA, 2008. ACM.

[127] S. Xie, F. Khomh, Y. Zou, and I. Keivanloo. An empirical study on the fault-proneness
of clone migration in clone genealogies. In Proc. of CSMR-WCRE, pages 94–103. IEEE,
2014.

[128] Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: a statistical
framework. International Journal of Machine Learning and Cybernetics, 1(1-4):43–52,
2010.

[129] M. F. Zibran and C. K. Roy. Ide-based real-time focused search for near-miss clones.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12,
pages 1235–1242, New York, NY, USA, 2012. ACM.

[130] G. K. Zipf. Selective Studies and the Principle of Relative Frequency in Language.

160

Appendices

161

A Subject Systems

Table A.1 describes the details of 35 open source Apache Java projects referred in Chapter 3

and Chapter 4. These projects are of varied size and span across various domains including

search and database systems, server systems, distributed systems, machine learning and

natural language processing libraries, network systems, etc. Most of these subject systems

are highly popular in their respective domain. The details include project name, size of the

project in KLOC, the number of methods in each project and the number of clone pairs

found using SourcererCC at 0.7 similarity threshold.

162

Subject System Size (KLOC) # Methods # Clones

j2sdk1.4.0-javax-swing 102.836 12,174 621

eclipse-jdtcore 98.169 8,716 1,720

jython 211.905 20,284 2,843

jfreechart 93.46 7,783 1,317

ant 86.438 7,695 192

hadoop-hdfs 70.411 6,004 3,763

stanford-nlp 210.233 9,853 316

cloud9 56.766 4,720 2,074

hibernate 72.409 9,286 205

tomcat-catalina 73.673 5,531 329

hadoop-mapred 64.023 5,318 216

mahout-core 53.366 4,013 181

xerces 76.185 6,122 398

berkeleyparser 57.905 3,945 453

rhino 54.722 3,174 129

pmd 60.06 5,358 528

synapse-core 41.612 3,146 166

substance 47.361 3,049 198

poi 47.804 4,897 1,129

pig 84.77 5,910 520

mason 35.931 2,858 494

eclipse-ant 16.106 1,907 34

postgresql 23.514 1,989 251

struts 24.799 2,445 132

httpclient 18.022 1,383 72

log4j 20.611 1596 286

cglib 13.668 2,135 16

dom4j 17.854 2,396 211

nutch 12.243 857 27

lucene 15.67 1,301 56

uima-core 11.942 1,477 62

netbeans-javadoc 9.579 959 59

cocoon 10.387 751 16

pdfbox 13.936 860 31

commons-io 8.673 859 53

junit 6.728 955 8

Table A.1: Performance of the filtering technique by comparing the time taken and total
number of comparisons done to detect clones with and without filtering technique used

163

B Running SourcererCC-D Using Amazon Web Ser-

vices (AWS)

The three main components of SourcererCC-D for running on AWS’s infrastructure are:

(i) StarCluster utility to launch AWS clusters; (ii) SourcererCC; and (iii) Shell scripts to

distribute and automate the clone detection process. However, for running SourcererCC-D

on any in-house cluster, we simply need (ii) and (iii).

Figure B.1 shows the implementation architecture of SourcererCC-D to run on AWS. In

order to deploy SourcererCC-D on AWS, we first need to install StarCluster. StarCluster

is an open source cluster-computing toolkit for Amazons Elastic Compute Cloud (EC2).

It has been designed to automate and simplify the process of building, configuring, and

managing clusters of virtual machines on Amazons EC2 cloud. It allows to easily create a

cluster computing environment in the cloud suited for distributed and parallel computing

applications and systems. The instructions to download and setup StarCluster is available

at its webpage: http://star.mit.edu/cluster/.

After installing the StarCluster, user needs to update its configuration file using user’s

AWS credentials. Once configured, one simply needs to run a single command to launch

SourcererCC-D on AWS. Below we describe how this automation is achieved using shell

scripts.

164

http://star.mit.edu/cluster/

Figure B.1: SourcererCC-D’s Implementation Architecture

1. launchcluster.sh

This is the main script that is responsible for: (i) launching the cluster; (ii) transferring the

data on the cluster (using xfer2cluster.sh) and (iii) splitting the parsed input and distributing

the jobs to the worker nodes (using controller.sh).

While it may seem like a series of complex operations, all this happens internally and user

is agnostic of these operations. A user needs to only prepare a data folder on his local

machine that contains (i) input files generated by the parser; (ii) SourcererCC library; (iii)

Automation scripts. After that, it is simply a single command to run SourcererCC-D to

detect clones.

For example, in order to launch SourcererCC-D on a cluster of 10 working nodes, user can

simply execute the following command:

. / l a u n c h c l u s t e r 11

Here 11 specifies that a user wants to launch a cluster with 1 master node and 10 working

nodes. After the launch is successful, the script internally invokes xfer2cluster.sh.

165

2. xfer2cluster.sh

This script transfers the data folder prepared by the user on the cluster. After the transfer

is done, controller.sh is invoked on the cluster.

3. controller.sh

The script invokes splitquery.sh to split the input files into N almost equally sized query

files, where N is the number of worker nodes in the cluster. Next it assigns every worker

node in the cluster with exactly one query file. In the end, it executes runnodes.sh to create

indexes and detect clones.

4. runnodes.sh

This script commands the master node to build a global index of the entire corpus using

SourcererCC’s Indexer. The constructed global index will be stored on a disk shared by all

the worker nodes. After the global index is constructed, the script triggers each worker to

launch the search process for its local input file using SourcererCC’s Searcher. Every worker

node reports result in its own output folder on the shared disk. Once all the workers have

finished executing, all the clones in the corpus have been found.

166

C Experience Report on Using AWS

In this section, we describe our experience in using AWS for our experiments. While AWS

has a large number of physical servers under management it does not rent them per-se,

rather only access to these servers in the form of virtual machines is available. The types of

virtual machines are limited to a small list so as to make choosing an instance relatively easy.

The advantage is that all these virtual machines come with pre-installed software like Java,

Hadoop or other necessary tools. And although AWS claims that the virtual machines yield

roughly the same performance in terms of compute, we noticed that even same instance type

could run on very different underlying hardware platforms impacting performance. Hence,

performance numbers may vary even with same configurations. We recommend running

experiments multiple times and report the average. Also, it is advisable to use this service

to find relative performance numbers e.g., properties like scale-up and speed-up, but may

not be appropriate in case where absolute numbers are of importance.

At first, when we started developing our application, we had no idea if we were going to

use AWS. Later, we surveyed all the options and decided to deploy our application to AWS.

Since the application was not tailored for AWS, whenever the deployment crashed, we had

difficulty in debugging. Later, we realized that AWS provides a toolkit for Eclipse, which is

a plug-in for the Eclipse Java IDE that makes it easier to develop, deploy, and debug Java

applications using Amazon Web Services. After installing the toolkit, the process was much

smoother. So if you already know that you might use AWS to deploy your application, we

recommend using the toolkit as early as possible to avoid any migration cost later.

We also realized that although Amazon provides a web management console, it is best to

use Amazon’s command line ruby client for running and monitoring experiments. The web

console experiences a lag and fails to update the information regarding instance allocation

and usage on time. We made decisions to terminate the process several times based on the

167

stale information available through the web console. On the other hand, the ruby client is a

quick command line client for monitoring the jobs efficiently.

While deploying an application on AWS, it is important to spend time thinking about the

type of instances that would be best for your application. AWS offers wide variety of instances

specially optimized for computation, storage, memory, GPU, etc. The performance can vary

widely based on the choice of instances made. Hence, we recommend considering this as

part of your design process itself. For example, in our case, since each machine had a limited

workload, we rented smaller machines with reasonable memory and storage and did not opt

for expensive machines with higher RAM and SSDs.

Overall, we found that although AWS has certain limitations, it proves to be an excellent

affordable service for large scale experiments involving tens and hundreds of machines.

168

D Cost of Running the Experiments Using AWS

We rented a total of 62 Amazon C3.2 large instance machines (31 to measure the speed-up

and 31 to measure the scale-up) for a total of 268 hours for both the experiments. The price

of an instance is $0.46 per hour. Thus, we spent a total of $123.28 for a single run of the

experiments. Since we ran the experiments twice to account for variation in the results, the

total cost incurred is $246.56.

169

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Motivation
	Terminology
	Code Clone Terms
	Code Clone Types

	Problem Statement
	Research Questions
	Thesis
	Contributions

	Clone Detection: Background and Related Work
	Why Do Code Clones Exist?
	Issues Due to Code Cloning
	Applications of Clone Detection
	Clone Detection Techniques and Tools
	Measures to Evaluate Clone Detection Techniques
	Impact of Code Cloning on Software Systems
	Chapter Summary

	SourcererCC: Accurate and Scalable Code Clone Detection
	Problem Formulation
	Overview of the Approach
	Filtering Heuristics to Reduce Candidate Comparisons
	Sub-block Overlap Filtering
	Token Position Filtering

	Clone Detection Algorithm
	Partial Index Creation
	Clone Detection
	Candidate Verification
	Revisiting the Research Questions

	Implementation
	Parser
	Indexer
	Searcher

	Chapter Summary

	Evaluation of SourcererCC
	Execution Time and Scalability
	Experiment with Big IJaDataset
	Recall
	Recall Measured by the Mutation Framework
	Recall Measured by BigCloneBench

	Precision
	Summary of Recall and Precision Experiments
	Sensitivity Analysis of the Similarity Threshold Parameter
	Manual Inspection of Clones Detected by SourcererCC
	Threats to Validity
	Chapter Summary

	SourcererCC-D: Parallel and Distributed SourcererCC
	Introduction
	Architecture
	Evaluation
	Evaluation Metrics
	Experiments to Measure the Speed-up
	Experiments to Measure the Scale-up
	Detecting Project Clones in the MUSE Repository

	Chapter Summary

	SourcererCC-I: Interactive SourcererCC for Developers
	Introduction
	A Preliminary Survey
	SourcererCC-I's Architecture
	SourcererCC-I's Features
	Related Tools
	Tool Artifacts
	Chapter Summary

	Empirical Applications of SourcererCC
	Introduction
	Study 1. A Comparative Study of Bug Patterns in Java Cloned and Non-cloned Code
	Research Questions
	Study Design
	Study Results
	Conclusion (Study 1)

	Study 2. A Comparative Study of Software Quality Metrics in Java Cloned and Non-cloned Code
	Research Questions
	Dataset
	Clone Detection
	Software Quality Metrics
	Summary of the Results
	Conclusion (Study 2)

	Threats to Validity
	Reproducibility
	Chapter Summary

	Conclusions and Discussion
	Dissertation Summary
	The Surprising Effectiveness of the Bag-of-tokens model and Overlap Similarity Measure in Clone Detection
	Lessons Learned During SourcererCC's Development
	Going Forward

	Bibliography
	Appendices
	Subject Systems
	Running SourcererCC-D Using Amazon Web Services (AWS)
	Experience Report on Using AWS
	Cost of Running the Experiments Using AWS

