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Abstract

Alzheimer’s disease (AD) is characterized by spread of tau pathology throughout the cerebral 

cortex. The spreading pattern was thought to be fairly consistent across individuals, though recent 

work has demonstrated substantial variability in the AD population. Using tau-PET scans from 

1612 individuals, we identified four distinct spatiotemporal trajectories of tau pathology, ranging 

in prevalence from 18 to 33%. We replicated previously described limbic-predominant and medial 

temporal lobe-sparing patterns, while also discovering posterior and lateral temporal patterns 

resembling atypical clinical variants of AD. These “subtypes” were stable during longitudinal 

follow-up, and were replicated in a separate sample using a different radiotracer. The subtypes 

presented with distinct demographic and cognitive profiles, and differing longitudinal outcomes. 

Additionally, network diffusion models implicated that pathology originates and spreads through 

distinct corticolimbic networks in the different subtypes. Together, our results suggest variation in 

tau pathology is common and systematic, perhaps warranting a re-examination of the notion of 

“typical AD”, and a revisiting of tau pathological staging.

Introduction

Alzheimer’s disease (AD) is the leading cause of dementia worldwide and prevalence 

is expected to double in the next twenty years1. At autopsy, AD presents with diffuse 

extracellular and neuritic amyloid-β (Aβ) plaques, and intracellular neurofibrillary tangles 

and neuropil threads of hyperphosphorylated tau, along with extensive neurodegeneration2,3. 

Leading hypotheses have postulated these two hallmark proteins, Aβ and tau, either 

alone or in combination, are causative agents in disease etiology and progression4,5. 

Cortical tau colocalizes with cortical atrophy and predicts future neurodegeneration6, while 

the appearance of tau in specific cognitive networks leads to domain-specific cognitive 

impairments7. Recently, the focus of treatment discovery has shifted to tau, and numerous 

therapeutic interventions are currently undergoing research and development. A better 

understanding of tau pathophysiology is therefore of imminent need in order to aid 

development of these interventions.

Tau tangles are thought to exhibit a stereotypical pattern of cortical spread, which has 

been formalized into the Braak staging system8,9. The six Braak stages describe the 

first appearance of cortical tau tangles in the transentorhinal cortex, subsequent spread 

throughout the medial and basal temporal lobes, then into neocortical associative regions, 

and finally into the unimodal sensory and motor cortex9. While this stereotyped progression 

was derived from histopathological staining at autopsy, tau can now be measured in vivo 
in the human brain using positron emission tomography (PET). Early tau-PET imaging 
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studies described average spatial patterns that have mostly converged with the Braak staging 

system10,11.

However, many examples have emerged of individual tau patterns that do not fit neatly 

into the Braak staging system. A medial temporal lobe (MTL)-sparing phenotype with 

extensive cortical tau burden but limited MTL burden has been described, as well as a 

limbic-predominant phenotype with most prominent tau pathology in limbic and medial 

temporal cortex, which were found to be associated with specific patient profiles12–14. 

In addition, clinical variants of AD have been described that exhibit specific patterns of 

pathology that deviate from the Braak staging scheme15, e.g., posterior cortical atrophy 

(PCA) 16, logopenic primary progressive aphasia (lvPPA)17, and others18. These latter 

clinical variants of AD are relatively uncommon and most frequently associated with early-

onset AD, but represent another example of atypical tau patterning.

Taken together, the examples above suggest that, while the Braak staging system appears 

to be a good description of tau spreading at the population level, it does not account for 

systematic variability at the individual level. Variation in tau patterning may be indicative 

of distinct underlying neurobiology 19,20, which may affect treatment response. Different 

subtypes may also have distinct rates and profiles of cognitive decline 21,22, potentially 

affecting clinical trials. For these reasons, a systematic description of variation in AD 

pathological spread is needed. Previous studies have provided invaluable information toward 

this effort 12,13,23–26, but carry certain limitations. Pathology studies, for example, are 

limited by spatial sampling and semi-quantitation. Neuroimaging studies overcome some of 

those limitations, but often use non-specific measurements, and rely on methods designed to 

parse spatial rather than spatiotemporal variation.

Here we present a systematic characterization of heterogeneity in tau patterning in AD. We 

amassed the largest and most diverse sample of tau-PET data to date (n=2324), covering 

the full clinical spectrum from asymptomatic through mild cognitive impairment (MCI) 

to AD dementia, allowing unprecedented power to detect and characterize AD subtypes. 

We fit this data using the Subtype and Stage Inference (SuStaIn) model, a paradigm-

shifting algorithm that combines disease progression modeling with traditional clustering 

to achieve probabilistic spatiotemporal partitioning and classification23. SuStaIn requires 

only cross-sectional datasets to automatically detect multiple spatiotemporal trajectories, and 

it provides probabilistic and quantitative information for individualized inference. We apply 

SuStaIn to our multi-cohort sample of tau-PET data to discover systematic spatiotemporal 

variation in tau spreading. We validate the subtypes across different PET radiotracers, and 

we validate the progression patterns using serial longitudinal tau-PET data.

Results

We compiled an initial sample of 1667 individuals with flortaucipir-PET tau images, 

spanning five separate cohorts. 1143 individuals were identified as either cognitively 

normal (n=707), or showed biomarker evidence for Aβ pathology (Aβ+ MCI, n=223; 

Aβ+ AD dementia, n=213), and were used as a discovery sample for subsequent analysis. 

Demographic information and cross-cohort comparisons can be found in Table S1.
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Spatiotemporal subtypes of Alzheimer’s disease.

We applied the SuStaIn algorithm (Extended Data Fig. S1a) to the 1143 flortaucipir-PET 

images in order to extract distinct spatiotemporal trajectories of tau spreading. As expected, 

many individuals (n=700; 61%) did not demonstrate any abnormal tau-PET signal, and 

were therefore automatically assigned to a tau-negative group (S0) (see Supplementary 

Note 1). Using cross-validation, we determined a four-subtype solution to best represent the 

remaining data (n=443; See Methods, Extended Data Fig. S1c–f). The four-subtype model 

was applied to probabilistically assign individuals to one of 30 progressive stages along one 

of the four subtype trajectories (Fig 1).

The distribution of clinical diagnoses across stages and subtypes can be found in Extended 

Data Fig. S2f,g,i. 145 (32.7%) individuals exhibited a limbic-predominant phenotype, with 

a Braak-like spatial progression across SuStaIn stages (S1: Limbic). An additional 79 

individuals (17.8%) expressed a parietal-dominant and MTL-sparing phenotype, where 

early precuneus binding accumulated across temporoparietal and frontal cortex, but with 

relative sparing of the MTL (S2: MTL-Sparing). The third subtype composed 135 (30.5%) 

individuals with a predominant posterior occipitotemporal phenotype, involving early 

occipital lobe binding and gradual anterior progression across SuStaIn stage (S3: Posterior). 

The remaining 84 (19.0%) individuals showed a temporoparietal phenotype with distinct 

left-sided lateralization, characterized by early left-temporal tau eventually spreading to 

parietal and frontal cortex across disease stage (S4: Lateral [L] Temporal). The differences 

highlight inconsistencies between tau-PET binding and pathological sequencing of specific 

brain regions found in previous studies, such as the hippocampus, lingual gyrus and 

insula10,11,27, which exhibited different binding patterns across subtypes (Extended Data 

Fig. S3).

Stability of AD subtypes.

While variation in subtype proportion was observed (and expected) across cohorts, all 

subtypes were represented across all cohorts (Extended Data Fig. S4). Most individuals 

fell neatly into the stereotypical progression of each subtype (Fig 1b), allowing a clean 

stepwise progression across tau abnormality events to be observed across each subtype 

population (Extended Data Fig. S5). 12% of individuals did not fall cleanly into any subtype 

due to having either too little or too much pathology, both of which are uninformative 

for subtype (Fig 1b, Extended Data Fig. S2d,h). In general, early stage and cognitively 

normal individuals were assigned to subtypes with less confidence, though median subtype 

probability neared 100% by SuStaIn stage 7 (Extended Data Fig. S2e), and by the MCI 

clinical stage (Extended Data Fig. S2h). This provides evidence that the earliest phases 

of each subtype may overlap, or that they are difficult to distinguish above measurement 

error. We further confirmed that the subtypes produced by SuStaIn were not driven by, or 

specific to, arbitrary user inputs relating to the anchoring of regional pseudotimes (Methods, 

Extended Data Fig. S6).

We next assessed whether the same subtypes could be derived within a separate replication 

sample of 469 individuals scanned with the RO948 tau-PET tracer. The replication cohort, 

BioFINDER II28, is described in Supplementary Table S1. SuStaIn was run separately 
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on these individuals, constraining the analysis to produce four subtypes. Three of the 

four replication subtypes greatly resembled those derived in the discovery sample (Fig 

2). The only exception involved the S4: L Temporal subtype, which had a similar overall 

tau-PET pattern but involved right-sided rather than left-sided lateralization. Further analysis 

determined that this related to the smaller sample size rather than the differing radiotracer, 

and further suggested that the S4: L Temporal subtype has a consistent overall pattern but a 

high propensity for marked lateralization (see Supplemental Note 2, Extended Data Fig. S7).

Subtypes characterized by distinct clinical profiles.

Next, we compared demographic, cognitive and genetic (i.e. APOE4 status) variables 

between the subtypes and the tau-negative S0 group (Table 1). Individuals across all four 

subtypes expressed worse MMSE and worse memory scores compared to S0 individuals. 

In addition, all subtypes except S1 (Limbic) had worse global cognitive composite scores, 

individuals across all subtypes except S2 (MTL-Sparing) were more likely to be APOE4 
carriers, and all subtypes except S4 (L Temporal) were more likely to be female, compared 

to S0 individuals. Compared to tau-negative individuals in S0, S1 and S3 were older, S2 

exhibited poorer executive function, S2 and S3 exhibited poorer visuospatial function, and 

S4 had worse language scores.

Compared to other subtypes (i.e., other tau-positive individuals), individuals within the 

S1 (Limbic) subtype were more likely to be APOE4 carriers, had less overall tau with a 

more right-sided pattern, and had better overall cognition, but worse memory relative to 

their overall cognition. S2 (MTL Sparing) individuals were younger, less likely to carry an 

APOE4 allele, had more overall tau burden, had a more right-sided tau pattern and had 

worse relative executive function, compared to other subtypes. S4 (L Temporal) individuals 

had more overall tau with a more left-lateralized pattern. These individuals also trended at 

having worse overall cognition, but had better relative memory and worse relative language 

scores compared to other subtypes. Finally, individuals with the S3 (Posterior) subtype did 

not exhibit any significant cognitive, demographic or APOE4 differences compared to the 

other subtypes. These relationships (after adjustment for demographics, diagnosis, cohort 

and SuStaIn stage) are described in Table 1 and visualized in Extended Data Fig. S8.

Each individual was assigned a stage along their respective subtype trajectory. As expected, 

increasing SuStaIn stage was associated with worse global cognition as measured with 

MMSE (r=0.54, p<0.0001; Fig 3a). This relationship was consistent across all subtypes (S1: 

r = −0.51, S2: r = −0.53, S3: r = −0.64, S4: r = −0.40, all p<0.001). A strong negative 

relationship between SuStaIn stage and age was also observed, such that individuals at later 

SuStaIn stages tended to be younger (r = −0.59, p<0.0001). This relationship was again 

consistent across all subtypes, though less prominent for S1 (S1: r = 0.20, S2: r = −0.68, 

S3: r = −0.64, S4: r = −0.73, all p<0.05; Fig 3b). This inverse relationship was also present 

among individuals both 65 and younger (n = 100, r = −0.43, p <0.0001) and individuals 

older than 65 (n = 342, r = −0.28, p < 0.0001), suggesting the effect is not driven purely 

by early onset cases. Lateralization also increased with increasing SuStaIn stage (Extended 

Data Fig. S9). However, despite trends in lateralization at higher SuStaIn stage, many 

individuals were observed with a “reversed” lateralization compared to the group average 
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tau lateralization patterns for their subtype (Extended Data Fig. S9), suggesting lateralization 

to be at least partially orthogonal with subtype.

Cognitive prognosis of AD subtypes.

Longitudinal MMSE data was available for a subset of 697 individuals (mean follow-up 

= 1.74 years from PET scan, sd = 0.64). Individuals with the S3 (Posterior) subtype had 

significantly slower decline compared to all other subtypes independently (S1: t=2.03, 

p=0.043; S2: t=2.88, p=0.004; S4: t=4.83, p<0.0001), as well as in a one vs all analysis 

(t=3.64,p=0.0003; Fig 3c). This finding persisted across different clinical diagnoses (Fig 

3d, Supplemental Table S2), and was confirmed through a meta-analysis across the five 

cohorts, which also showed a significantly slower decline for the S3 (Posterior) group 

(t=1.67,p=0.047; Fig 3e). Individuals with the S4 (L Temporal) subtype additionally showed 

steeper cognitive decline compared to S1 (Limbic) subtype individuals (t=3.40, p=0.0008), 

and generally showed faster decline compared to other subtypes in a one vs all analysis 

(t=−4.49,p<0.0001) and across clinical diagnoses (Fig 3d, Supplementary Table S2). A 

meta-analysis once again confirmed a significant overall effect (t=1.88,p=0.031; Fig 3e).

Stability and progression of AD subtypes over time.

SuStaIn uses cross-sectional data to infer longitudinal trajectories for the tau data, so 

evaluating how well longitudinal data fits the model is a key aspect of validation. 519 

individuals from the discovery sample also had follow-up flortaucipir-PET scans (mean 

follow-up time = 1.42, sd = 0.58, years). Overall, 88.5% of individuals exhibited the same 

subtype at both baseline and follow-up, or progressed from S0 into a subtype (Fig 3f). 

Stability when excluding individuals classified as S0 at baseline (tau-positive stability) 

and follow-up was 83.9%. Stable individuals were classified with a higher degree of 

confidence at baseline compared to individuals whose subtype changed at follow-up (stable 

mean = 0.91, sd = 0.17; change mean = 0.74, sd = 0.27; t = 5.26, p < 0.0001; Fig 3g). 

Supplementary Table S3 shows longitudinal tau-positive stability (i.e. excluding S0) when 

excluding individuals using various subtype probability thresholds.

We next examined how SuStaIn stage changed over time for each subtype. Across the 

whole sample, we observed significant yearly increase in SuStaIn stage (mean Δ/year 

= 0.8, t[148]=6.54, p<0.0001) (Fig 3h, Table S4), and a significant difference in mean 

annual rate of SuStaIn stage change was seen across subtypes (details in Supplementary 

Note 3). The annual SuStaIn stage increased faster in S4 (L Temporal) compared to S2 

(MTL-Sparing) and S3 (Posterior) subtypes (Fig 3h, Supplementary Note 3). Younger 

age (r=−0.22, p=0.006), but not higher baseline SuStaIn stage (r = 0.12, p=0.15), was 

associated with faster annual change in stage. As a final validation, we used SuStaIn to 

forecast longitudinal rate of regional tau-PET change at the individual level. On average, 

predictions were significantly better than chance for all subtypes (S1 (Limbic): t[78]=5.00, 

p<0.0001; S2 (MTL-Sparing): t[52]=2.16, p=0.035; S3 (Posterior): t[45]=3.05, p=0.0039; 

S4 (L Temporal): t[29]=4.93, p<0.0001; Fig 3i).
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Subtype patterns resemble distinct cortico-limbic networks.

Based on our previous work29, we used network diffusion models to examine the possibility 

that the observed subtype-specific tau spreading patterns may be driven by spread through 

distinct networks. We found that an entorhinal cortex epicenter was optimal for the S1 

(Limbic) subtype tau pattern and strongly replicated the pattern of tau spreading (r2=0.70), 

but did not reproduce other subtype patterns nearly as well (S2: r2=0.04; S3: r2=0.41; 

S4: r2=0.37). Models using different epicenters substantially improved fit for these others 

subtypes (Fig 4a,b,e): best fitting models used the middle temporal gyrus (r2=0.27) for S2 

(MTL-Sparing), the fusiform gyrus (r2=0.59) for S3 (Posterior) and the inferior temporal 

gyrus (r2=0.50) for S4 (L Temporal) (Fig 4c), suggesting a possible predominance of 

these regions in secondary tau seeding for different subtypes. Highly similar results were 

found using a different brain atlas and different connectivity data (Extended Data Fig. 

S10). We further tracked how the best-fitting epicenter changed at higher disease stages, 

perhaps reflecting participation of different regions as secondary seeding points with 

advancing disease progression (Fig 4d). All but the S2 (MTL-Sparing)_subtype exhibited 

MTL spreading in earlier stages, whereas early stages of S2 involved parietal spread. 

Later stages involved secondary seeding in the temporal lobes, as well as subtype-specific 

regions. Together, these results suggest that distinct tau patterns across different subtypes 

may be driven in part by vulnerability of, or selective spread through, distinct temporal lobe 

networks.

Discussion

For the last thirty years, the progression of tau pathology in AD has principally been 

described by a single model of spatiotemporal evolution8,9, despite frequent examples 

of nonconforming cases12. We show that the cortical cascade of tau pathology is better 

described by a data-driven model including multiple spatiotemporal patterns (Fig. 5). 

Importantly, our findings may reconcile atypical AD variants with common variations 

of typical AD into a single unified model of pathological progression. First, the 

model reaffirms the existence of observed cortical-predominant and limbic-predominant 

pathological patterns as distinct subtypes of tau progression, rather than phases along a 

continuum. In addition, the model also accounts for the most frequently occurring atypical 

clinical variants of AD, PCA and lvPPA, as the extremes of regularly occurring posterior 

and lateral-temporal AD subtypes. Together, our data align with a recent model14 to suggest 

variation in the pathological expression of AD along two orthogonal axes: subtype and 

severity, the latter of which is strongly and inversely correlated with age (Fig 5). Given 

that no dominant pattern emerged, our data suggest the existence of multiple common AD 

subtypes, challenging the notion that there is such a pathological entity that can be described 

as “typical” AD. Rather, the spatial pattern of tau spreading appears to vary along at least 

four archetypes, depending on factors such as age and genotype. Therefore, we propose 

heterogeneity in AD is best represented as a quadrilateral axis (Fig 5).

Our results are robust across datasets and radiotracers. We found individuals representing 

each of four subtype patterns in each of the five contributing cohorts, and we reproduced 

a very similar set of subtypes in a totally separate sample using a different radiotracer. 
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Further, most individuals were confidently assigned into one subtype pattern, which was 

consistent over time. The limbic subtype was the most frequent, and presented with many 

characteristics typically associated with AD, including a greater proportion of APOE4 
carriers, a strongly amnestic phenotype, and medial temporal pathology with a Braak-like 

progression of tau spread. However, this subtype represented only a third of all tau-positive 

cases in our dataset (though the earliest stages of three of the four subtypes featured 

prominent MTL binding, Fig 4d). Our data suggest instead that, at older onset ages or 

earlier disease stages, the subtypes may present with subtle differences that may be difficult 

to detect in the clinic, while at younger onset ages or later stages, the more aggressive 

phenotype can amplify the distinct subtype expressions. The existence of these phenotypes, 

if further validated, may necessitate a reform in pathological tau staging, where key regions 

are surveyed to increase sensitivity to detect subtype-specific patterns.

Many pioneering studies have noted variation in AD pathology. For example, limbic-

predominant and MTL-sparing phenotypes are contrasted against “typical” phenotypes that 

express tau pathology in both the MTL and neocortex12,13. In contrast to this notion, we 

found a subtype of individuals expressing both cortical and MTL tau exhibiting a more 

aggressive phenotype with marked lateralization, the latter being a feature that has not 

been well characterized in histopathological studies of AD, which typically assess only one 

hemisphere. In addition, our model allows the concurrence of MTL and cortical pathology 

at later stages of several distinct progressions, perhaps suggesting that solely contrasting 

cortical and MTL tau (e.g. 21,22) may not be sufficient to describe AD heterogeneity. Indeed, 

while some spatial convergence could be observed in our AD subtypes, particularly at early 

or late stages, subtle regional variation consistently distinguishes individuals of one subtype 

from another.

We reproduce previous reports describing a strong negative correlation between age and 

tau progression30–34, as well as previous reports that a younger age of onset of AD is 

associated with a more rapid progression of tau pathology35,36. Interestingly, in our study, 

this phenomenon was observable across all subtypes (Fig 3b). Previous work has noted 

that early-onset AD (EOAD) is more likely to present with an atypical (i.e. nonamnestic) 

phenotype37. This may be a specific characteristic of EOAD. However, ours and others 

studies26,38,39 suggest that posterior or left-lateralized temporal binding are not uncommon 

across the age spectrum, but our data suggest that the phenotype is more pronounced at 

earlier ages. Therefore, atypical variants of AD may represent an accelerated and intensified 

manifestation of common AD subtypes, though this will require further validation.

Our findings complement other supervised and unsupervised AD subtyping studies from the 

imaging and pathology literature12–14,21,22,26,38, though our analysis also produced some 

novel findings worth further investigation. Despite the extreme of the posterior subtype 

being represented by PCA, an aggressive disease variant, the posterior subtype overall 

demonstrated slower cognitive decline compared to all other subtypes. These individuals 

exhibited considerable tau pathology in posterior (including occipital) brain regions, but 

also relatively less MTL and frontal binding. These findings, however, are in agreement 

with pathology literature describing common variation in occipital tau pathology in both 

preclinical and symptomatic AD 2,40–42. These studies, variously surveying Brodmann areas 
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17, 18 and 19, find evidence for occipital lobe tau in 24–52% of sampled brains, including 

in cognitively normal individuals. Our study suggests this population variation may indeed 

be systematic, and could be associated with a specific progression pattern. However, tau in 

the occipital lobe remains understudied, and future studies will be necessary to validate the 

precise characteristics of this posterior subtype. It is still unclear if the posterior subtype is 

related to PCA beyond a shared predominance of posterior tau, though it may at least signify 

the existence of a posterior cortical network selectively vulnerable to tau pathology.

Different manifestations of AD may represent subtle variations in the spread of pathology, 

or could signal the influence of highly distinct processes relevant to treatment intervention. 

For example, a recent pathology study found increased NFT pathology and neuronal loss 

in the cholinergic basal forebrain specifically in patients with a MTL-sparing phenotype, 

and that earlier disease onset was associated with more NFT pathology in these subjects43. 

Furthermore, another recent study indicated that a targeted basal forebrain treatment could 

be most effective for patients with a MTL-sparing phenotype44. This research may suggest 

a unique role of the basal forebrain in certain subtypes of AD. Meanwhile, APOE has 

been consistently associated with limbic manifestations of AD12,34, including the present 

study, and APOE or hippocampus-focused therapies could prove more effective for these 

individuals. Together, these results point to the possibility that clinical trials may benefit 

from stratification or enrichment based on AD subtype, or as a first step, post-hoc 

identification of within-subtype effects.

There are currently very few explanations as to why subtypes of AD manifest. Fascinating 

work has found PCA and lvPPA patients are more likely to exhibit learning disabilities 

in childhood45,46, perhaps mediated by abnormalities during brain development47. While 

lvPPA and PCA may represent extremes along the AD continua (as indicated by the present 

results), this points to the possibility that distinct subtypes may be influenced by variation in 

cognitive development or other premorbid factors. Another possible explanation for subtypes 

is interactions between post-translational tau modification and synaptic tau spreading. 

Several studies have shown that the regional pattern of pathological tau expression in 

mice is dependent on conformation and injection site of tau seeds35,48,49. It is therefore 

possible that subtypes of tau spread may simply be dictated by distinct tau conformations 

and/or systematic variation in the human connectome, perhaps at key synaptic junctures. 

Supporting the latter hypothesis, we found the tau-PET pattern of AD subtypes resembled 

macroscale neuronal networks seeded from different brain regions. These findings do not 

presuppose tau pathology necessarily starts in different regions, but instead that different 

regions may play a more prominent role in tau propagation across subtypes as “amplifying 

nodes”. This could be mediated by involvement of distinct neuronal cell subtypes50, which 

may incur disrupted development due to environmental or genetic factors, leading to 

network abnormality during life and network vulnerability in late life.

This study has a number of limitations. The SuStaIn method fits data based on the 

assumption that several discrete sequences are represented within the data, and it uses 

cross-sectional information to create pseudo-longitudinal sequences. This framework is 

based off of the same logic as most pathological staging schema (e.g. 8) and hypotheses 

of biomarker trajectories (e.g. 5), but does so in an automated fashion. It is therefore 
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possible that a SuStaIn subtype trajectory could be created by “appending” or “stitching” 

unrelated disease states together. However, we did find most individuals to remain the same 

subtype at longitudinal follow up, and we could predict regional individual tau accumulation 

greater than chance using just the SuStaIn model. While the use of tau-PET imaging 

is a great improvement over using MRI to measure AD pathology, there is still some 

discrepancy between tau-PET signal and true tau pathology51. While flortaucipir binds to 

paired-helical filament tau, off-target binding is an issue with flortaucipir, particularly in 

the striatum, white matter and choroid plexus52. We mitigated this issue by regression 

of choroid plexus signal, exclusion of subcortical ROIs and non-AD dementia patients, 

and region-specific normalization against non-specific binding, as well as replication with 

RO948 which exhibits less off-target binding53. Similarly, recent reports question whether 

elevated flortaucipir binding is detectable before advanced stages of tau accumulation54–56. 

However, SuStaIn’s modeling is based on relative regional differences in pathology, and 

regional variation in tau-PET and tau pathology are correlated55–57. Still, while the unbiased 

spatial sampling of tau-PET data across the brain aided our discovery of these subtype 

patterns, they must still be validated using histopathology studies. Sample size was an 

obvious strength of our study, but it comes with the caveat of mixing data from multiple 

cohorts, scanners, and cognitive batteries. We addressed this issue somewhat by examining 

subtypes in each cohort separately, replicating our results in a separate sample and adjusting 

for cohort in our comparisons. In addition, despite our study boasting the largest tau-

PET sample to date, even larger samples would be preferable in order to elucidate the 

spatiotemporal progression of each subtype in more detail. We arrived at a four-subtype 

solution to describe our data using established statistical methodology to identify a solution 

the data supports with confidence. However, this does not preclude the possibility that other, 

more subtly disctinct subtypes exist (Extended Data Fig. S1f).

In conclusion, we describe four distinct but stable spatiotemporal phenotypes of tau 

accumulation in AD. These subtypes exhibit differing clinical profiles and longitudinal 

outcomes, and their tau patterns resemble distinct temporal lobe networks. Our data-driven 

results call into question whether “typical AD” is a quantifiable entity, rather suggesting 

that several AD subtypes exist, and that their individual differences are exacerbated by more 

aggressive phenotypes with younger onset ages. Future studies should seek to validate the 

existence and temporal evolution of these subtypes, as well as identify genetic, cellular and 

developmental factors that may influence their expression. This may include identifying 

differences in brain activity and connectivity between individuals, as well as differences 

in regional vulnerability. This framework may also be useful for enrichment of clinical 

trials, for providing more individualized clinical care, and eventually for more individualized 

treatment.

Online Methods

Unless otherwise noted, all data analysis was conducted, and all figures were created, using 

Python v.3.7.3, mostly using the numpy, scipy, pandas, scikit-learn, nilearn, matplotlib, 

seaborn and statsmodels libraries.
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Sample Characteristics.

The total sample for the following analyses comprised of flortaucipir tau-PET scans 

from 1667 individuals from five different cohorts (BioFINDER I, Seoul, AVID, UCSF, 

ADNI), and RO948 PET scans from 657 individuals from a sixth cohort (BioFINDER 

II). Information pertaining to recruitment, diagnostic criteria and Aβ positivity assessment 

for the BioFINDER I (BioF)46, ADNI27, AVID32, Seoul59, UCSF6 and BioFINDER II 

(BF2)28 cohorts have been previously reported. Informed written consent was provided 

for all participants or their designated caregiver, and all protocols were approved by each 

cohort’s respective institutional ethical review board. Specifically: All BioFINDER subjects 

provided written informed consent to participate in the study according to the Declaration 

of Helsinki; ethical approval was given by the Ethics Committee of Lund University, Lund, 

Sweden, and all methods were carried out in accordance with the approved guidelines. 

Approval for PET imaging was obtained from the Swedish Medicines and Products Agency 

and the local Radiation Safety Committee at Skåne University Hospital, Sweden. For UCSF, 

the study was approved by the University of California (San Francisco and Berkeley) and 

Lawrence Berkeley National Laboratory institutional review boards for human research. 

Data from the AVID sample were collected in compliance with the Declaration of Helsinki 

and the International Conference on Harmonization guideline on good clinical practice. Data 

collection for the Gangnam Severance hospital sample was approved by the institutional 

review board of Gangnam Severance Hospital. Information related to participant consent 

in ADNI can be found at (ADNI; http://adni.loni.usc.edu). Some of the data used in 

the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary 

goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron 

emission tomography (PET), other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of mild cognitive impairment 

(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-

info.org.

From this total sample of 1667 subjects with flortaucipir scans, a subsample was derived 

including i) all cognitively unimpaired individuals older than 40 years; and ii) individuals 

who had both a diagnosis of MCI or AD, and imaging or fluid evidence of brain Aβ 
pathology. All subjects with a primary diagnosis other than cognitively unimpaired (which 

included subjective cognitive decline), MCI or AD were excluded. This subsample, used for 

all subsequent analysis, comprised 1143 individuals. The same screening procedures were 

used to filter individuals from BioFINDER II, reducing the samples size from 657 to 469. 

Characteristics of all samples, including inter-cohort differences, are detailed in Table S1.

Image Acquisition and Preprocessing.

Tau-PET data acquisition procedures for each cohort have been previously 

described6,27,28,32,46,59. All tau-PET data were processed centrally in Lund by analysts 

blinded to demographic and clinical data, in a manner previously described46. Briefly, 

resampling procedures were used to harmonize image size and voxel dimension 

across sites. Each image underwent motion correction using AFNI’s 3dvolreg (https://
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afni.nimh.nih.gov/), and individual PET volumes were averaged within-subject. Each 

subject’s mean PET image next underwent rigid coregistration to it’s respective skull-

stripped native T1 image, and images were intensity normalized using an inferior cerebellar 

gray reference region, resulting in standardized update value ratio (SUVR) images. T1 

images were processed using Freesurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/), resulting 

in native space parcellations of each subject’s brain using the Desikan-Killiany (freesurfer) 

atlas. These parcellations were used to extract mean SUVR values within different regions of 

interest (ROIs) for each subject in native space.

Subtype and Stage Inference.

Typical efforts to perform data-driven subtyping of neuroimages in AD are limited by 

the confound of disease stage. In a sample spanning the AD spectrum from healthy to 

demented such as ours, disease progression represents the main source of variation in MR 

and PET images. Therefore, unless disease stage is somehow accounted for, most clustering 

algorithms will partition individuals based on their disease stage. This is not useful for 

parsing heterogeneous patterns related to progression subtypes, which are theoretically 

orthogonal to disease progression itself. The Subtype and Stage Inference (SuStaIn)23 

algorithm surmounts this limitation by combining clustering with disease progression 

modeling. Detailed formalization of SuStaIn has been published previously23.

SuStaIn models linear transition across discrete points along a progression of indices of 

severity (typically z-scores), separately across different ROIs (Fig. S1a). Input requires 

a subject x feature matrix where, in this case, features represent mean tau-PET signal 

within different ROIs. In addition, “severity scores”, indicating different waypoints along 

the natural progression of ROI severity, must be provided. Whereas the choice of ROI 

constrains the spatial dimensions along which individuals may vary, the severity scores 

instead constrain the temporal dimension of variation. The total number of features is 

therefore represented by the product of N ROIs by N ROI-specific severity scores. A balance 

must thus be struck between resolution in the spatial and temporal dimensions, with respect 

to overall sample size.

Our discovery sample boasts scans from 1143 individuals, but even given our inclusion 

criteria, we expected from previous work29 that the majority of individuals (50–60%) will 

have minimal tau binding (note that SuStaIn will automatically detect these individuals 

and exclude them from progression modeling). We therefore expect the modeling to be 

performed on a sample of closer to N~450–550. We therefore decided on ten different ROIs 

(spatial features), each with three severity scores (temporal dimension), totalling 30 features. 

Given an arbitrary rule of 10–20 observations per feature, 300–600 observations should 

provide sufficient power, and our sample size should therefore be sufficient.

For the ten spatial features, we opted for left and right lobar regions of interest: parietal, 

frontal, occipital, temporal and medial temporal lobe (MTL). This choice is justified as 

follows: i) previous imaging and pathology subtyping studies have revealed variation in 

AD pathology to often occur within specific lobes, e.g. limbic-predominant (MTL), MTL-

sparing (parietal), posterior cortical atrophy (occipital), logopenic aphasia (temporal) and 

behavioral variant AD (perhaps frontal)18; ii) hemispheric laterality in AD is understudied, 

Vogel et al. Page 14

Nat Med. Author manuscript; available in PMC 2021 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://afni.nimh.nih.gov/
https://surfer.nmr.mgh.harvard.edu/


perhaps due to pathological staining often occurring on single hemispheres. However, some 

laterality has been observed in AD clinical variants (i.e. lvPPA15) and may point to differing 

phenotypes in typical AD; iii) These lobar regions maintain some orthogonality to disease 

progression, as multiple lobes are involved in Braak stages IV - VI8.

To define severity score cutoffs, we first sought to normalize SUVR values to account for 

regional differences in PET signal (due to nonuniformity of off-target binding, perfusion, 

etc. across the brain)29. Two-component Gaussian mixture models were used to define, for 

each ROI, a normal (Gaussian-shaped noise) and abnormal distribution. We then created tau 

Z-scores by normalizing all values using the mean of the normal distribution (Extended Data 

Fig. S1b). This procedure centered the Z-score values on the normal distribution to allow for 

more interpretable values (i.e. 2=2 SDs from normal), and also accounted for region-specific 

differences in normal and abnormal SUVR distributions. Uniform values of Z = 2, 5, 10 

were arbitrarily chosen as severity score control points for all ROIs (Extended Data Fig. 

S1)B. However, analyses were also run with alternative z-score values, see the Replication 

Analysis section below.

The number of subtypes (i.e. distinct spatiotemporal progressions) was determined 

through cross-validation. Separately for each k=1–7 subtypes, 10-fold cross-validation was 

performed where, for each fold, SuStaIn was fit to 90% of the data, and this model was 

used to evaluate sample likelihood for the 10% left-out subjects. For each left-out set, model 

fit was evaluated using the cross-validation information criterion (CVIC; as described in 
23), as well as out-of-sample log-likelihood. In addition, we used the inner-fold SuStaIn 

model to assign all outer-fold individuals to a subtype, and we evaluated the probability of 

the maximum-likelihood subtype. In theory, a better fit model should produce more high 

probability assignments of left-out data, though more subtypes will also make assignment 

more challenging. k was chosen by evaluating these three metrics in concert (Extended 

Data Fig. S1c–e). CVIC increased significantly with increasing k, indicating better fit to the 

data as the number of subtypes increased, though the curve flattened somewhat after k=4 

(Extended Data Fig. S1c). Similarly, log-likelihood increased indicating better model fit, up 

until k=4, after which no improvement was seen (Extended Data Fig. S1d). In contrast to 

these fit statistics, cross-validated maximum-likelihood subtype probability decreased with 

increasing k, indicating less-confident assignment of left-out data with more subtypes. This 

decline was steady, though the median probability dropped below 0.5 after k=4. Taken 

together, k=4 appeared to be the best solution to maximize model fit but minimize detriment 

to subtype confidence. We also noted that no subtypes after k=4 had more than one “parent” 

subtype. In other words, solutions 3 and 4 feature subtypes that were composed of multiple 

parent subtypes, whereas all solutions thereafter featured only subtypes that split off from a 

single parent subtype. This could be indicative of a certain level of hierarchical convergence 

at k=4 (Extended Data Fig. S1f).

Finally, SuStaIn was run on the whole sample with the selected k=4. Note that for model 

fitting, SuStaIn uses a uniform prior on disease subtype and stage (i.e. assumes all subtype 

and stage combinations equally likely). Note also that the model is initialized with an 

expectation-maximization algorithm, and therefore does not require a burn-in period.23 

The model was fit using 10000 Markov chain Monte Carlo (MCMC) iterations. SuStaIn 
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calculates the probability that each individual falls into each stage of each subtype, 

and individuals are assigned to their maximum likelihood subtype and stage. Note that 

individuals that do not express abnormal tau in any region are classified by SuStaIn as 

“Stage 0”, and are not assigned to a subtype. The proportion of individuals classified into 

each subtype was quantified. We also stratified this quantification by clinical diagnosis, 

and to cohort to assess the frequency of subtypes in each contributing dataset. Finally, we 

quantified the proportion of subjects that did not fall well into any subtype (no subtype 

probability >50%).

Post-hoc subtype correction.

Manual inspection of subtype progressions suggested that the early stages of one subtype 

(S2: MTL-Sparing; see Results) were composed mostly of cognitively normal individuals 

with abnormally high tau-PET binding throughout the cortex, but little-to-no tau in typical 

early-mid AD regions, i.e. false (tau) positives. Specifically, these individuals showed 

elevated binding throughout the cortex, including sensorimotor and frontal regions (regions 

where tau typically accumulates only in the latest stages of AD8), but had low tau levels 

in the temporal lobes (Extended Data Fig. S1a). On an individual basis, such individuals 

showed tau-PET signal that was slightly but globally elevated, with several small “hotspots” 

distributed diffusely throughout frontal, parietal and occipital cortex. While it is unclear 

whether this elevated binding represents off-target binding, diffuse low-level target binding, 

or other methodological issues, consensus among co-authors was that these individuals 

were not consistent with an AD phenotype. We used Gaussian mixture modeling across all 

individuals as described in 29 to define the probability of abnormal tau-positivity in each of 

the left and right entorhinal cortex and precuneus, respectively. We then marked individuals 

who had <90% probability of tau in all four regions as low-probability tau individuals (T−). 

These individuals also underwent manual inspection. Next, we identified T- individuals in 

the MTL-Sparing subtype, finding 40.6% of this subtype was composed of this group, and 

all were classified as stage 5 (of 31) or below. Furthermore these individuals showed many 

other indications of being false (tau) positives: they had normal MMSE scores, were older, 

were less likely to be Aβ+ and less likely to be MCI or AD (Extended Data Fig. S2b,c). 

We assume SuStaIn appended this specific group of T- individuals to the MTL-Sparing 

subtype because the individuals i) had abnormally high tau in at least one ROI as per our 

calculations (even if that abnormal signal was not driven by pathology); ii) the abnormal tau 

was located mainly in the isocortex inclusive of the parietal lobe; iii) these individuals did 

not have elevated MTL binding. As SuStaIn is an unsupervised algorithm, the pathological 

MTL-sparing phenotype became conflated with this specific profile of T- individuals. To 

correct this issue, we converted all T- individuals classified as MTL-sparing to Subtype 0 for 

all further analysis.

Visualization of subtype-specific tau-PET patterns.

To visualize tau-PET patterns for each subtype, we calculated the mean tau Z-score for each 

Desikan-Killiany (freesurfer) atlas ROI. To visualize the progression of the subtype pattern 

across SuStaIn stages, for each subtype, we created mean images for all individuals falling 

into the following SuStaIn stage bins: 2–6, 7–11, 12–16, 17–21, 22–26. To deduce regions 

with relatively greater or less tau signal for each subtype, we created region-wise one-vs-all 
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ordinary least squares (OLS) linear models comparing regional tau in one subtype to all 

others. This analysis was performed to visualize subtype models inferred by SuStaIn using 

individual data, and to explore differences between subtypes. Each model included ROI tau 

Z-scores as the dependent variable, a one-hot dummy variable representing membership in 

the reference subtype, and SuStaIn stage as a covariate. These models were FDR-corrected 

for the number of comparisons (i.e. number of ROIs).

Subtype Characterization.

Several demographic, cognitive and genetic variables were available for nearly all 

individuals across the five cohorts in our main (discovery) cohort. These variables included 

clinical diagnosis (100%), age (99.8%), sex (100%), years of education (97.1%), mini 

mental state examination (MMSE) score (97.7%) and APOE4 allele carriage (89.5%). Only 

the UCSF sample provided diagnoses of clinical AD variants such as PCA16 and lvPPA17. In 

addition, most individuals underwent extensive cohort-specific cognitive batteries assessing 

multiple domains of cognition. In order to utilize this rich cognitive data, we created 

cognitive domain scores separately within each cohort by taking the mean of several 

z-scored tests within the following cognitive domains: memory, executive function, language 

and visuospatial function. Supplemental Table S5 indicates which cognitive tests were 

used in each cognitive domain score across each cohort. We calculated global cognition 

as the mean between the four domain scores. Finally, we additionally regressed global 

cognition out of each domain score to create “relative” cognitive domain scores. These 

scores are useful for assessing the degree of domain-specific impairment above and beyond 

global impairment. The various absolute and relative domain scores were then aggregated 

across all cohorts to maximize the sample size available for cognitive tests: memory 

(86.6%), language (81.3%), executive function (85.5%), visuospatial function (82.0%). 

While aggregating scores of different compositions across cohorts of different compositions 

presents a suboptimal solution, we rest on sample sizes and statistical correction helping to 

overcome these limitations.

Subtypes were statistically compared to one another, and to tau-negative (i.e. Stage 0) 

individuals, in order to determine subtype-specific characteristics. These analyses compared 

age, sex, education, APOE4 carriage, MMSE, global cognition, total tau, and total tau 

asymmetry. Comparisons between subtypes and Stage 0 individuals additionally included 

the four cognitive domain scores, while comparison between subtypes instead included the 

four “relative” cognitive domain scores. This statistical comparison involved three steps: 1) 

Comparison to tau-negative individuals: Tau-negative individuals were those characterized 

as “Subtype 0” by SuStaIn, i.e. those individuals that did not demonstrate any abnormal tau 

events. An OLS linear model was fit with each variable described above as the dependent 

variable, and with dummycoded subtype entered as the independent variable (with S0 as 

the reference subtype). The model also included age, sex, education, clinical status (CN, 

MCI, AD) and cohort as covariates (except when that covariate was the dependent variable). 

Model t- and p-values were stored for each model and the latter were FDR-corrected. 2) 

Comparison between subtypes. A one-vs-all approach was applied to subtyped individuals 

only to assess how different tau-progression subtypes differed from one another. Separately 

for each subtype, models were fit for each variable with a single dummy variable entered 
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indicating membership to that subtype. Models once again covaried for age, sex, education, 

clinical status (CN, MCI, AD), cohort, and, this time, SuStaIn stage. T and p values were 

stored, and the latter was FDR-corrected for the number of variables assessed. 3) Finally, 

each subtype was compared directly to each other subtype (i.e. one-vs-one comparison). 

OLS models were fit with dummy coded subtype variables as the dependent variable, 

cycling each subtype as the reference subtype. T and p values for each of these models 

were stored, and the latter was FDR-corrected for number of comparisons (i.e. number of 

dependent variables). These models were also adjusted for age, sex, education, clinical status 

(CN, MCI, AD), cohort and SuStaIn stage. For space reasons, the results of 3) are only 

visible in Extended Data Fig. S8.

All models were subjected to diagnostics to ensure our data fulfilled assumptions of 

OLS regression models. We found the residuals of all models to be normally distributed 

(Anderson-Darling tests p>0.05). Further, we found no strong evidence for autocorrelation 

(Durbin Watson test, 1.5 < all models < 2.5), outliers (Cooks distance of all subjects < 

0.5), multicollinearity (variance inflation factor (VIF) for all covariates < 100; besides age 

[23–27], sex [8–12] and education [13–17], all VIF < 10) or heteroscedasticity (visual 

assessment of distribution around mean of residuals) in any of our models.

We also assessed the relationship between SuStaIn stage and two variables: age and 

MMSE. For these analyses, stage was correlated with age and MMSE, and the results were 

visualized across the whole sample and also stratified by subtype. As a post-hoc analysis, we 

separated individuals into different age groups: 65 or younger, and older than 65. We then 

reassessed age by SuStaIn stage correlations within each of these age groups.

Longitudinal MMSE data was also available for individuals from all cohorts, totalling 735 

individuals with at least two timepoints. 195 individuals had an additional third timepoint, 

29 had a fourth, and 3 had a fifth. Mean latest follow-up was 1.72 years from PET scan (sd 

= 0.64). Linear mixed effect models were used to assess difference in longitudinal MMSE 

change between subtypes. All models were fit using the lme4 library in R, using type-

III sum of squares, unstructured covariance matrices, and Satterthwaite’s approximation 

to calculate the denominator degrees of freedom for p-values. Models featured MMSE 

measurements as the dependent variable, interactions between time from baseline and 

dummy coded subtype variables as the independent variables of interest (cycling the 

reference subtype), subject ID as a random effect (allowing for random intercepts and 

slopes), and age, sex, education, cohort, dummy coded variables for MCI and AD, and 

SuStaIn stage as covariates of no interest. One vs all models were also fit for each subject 

using dummy coded subtype variables, and significant effects were reported. We additionally 

repeated the one vs. all subtype models within each cohort separately, and used this to 

calculate a meta-analysis by finding a weighted mean of the t-values and standard errors. 

Since this analysis was confirmatory, we used a one-tailed significance test to calculate the 

p-values.

Replication Analysis.

We performed two types of replication analysis. To ensure that our results were not driven 

by arbitrary z-score cutoffs, we reran models with completely different cutoffs. To ensure the 
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results were not driven by our sample or unique to the flortaucipir radiotracer, we repeated 

the analysis de novo in a separate cohort using a different tau-PET radiotracer.

SuStaIn require z-score values to anchor the psuedotime for each ROI (see section Subtype 

and Stage Inference above), and we chose values of 2,5,10 for all ROIs so as to not let any 

region bias or influence the model unduly, and to aid comparability across different regions. 

To ensure our results were not driven by this choice, we reran the model with a different set 

of z-score values chosen in a data-driven manner. The object was to allow the distribution of 

tau-PET data in each region to define natural waypoints in the data. For each input region, 

we fit Gaussian mixture models to the data, varying the number of components between 

1 and 5. We used the model fit (AIC) to decide the optimal number of components for 

each region. Finally, we used five-fold cross-validation to determine the boundaries of these 

Gaussians to define anchors for each regions. We did this separately for each ROI, and as 

a result, different ROIs had different waypoints, and even different numbers of waypoints 

(Table S6). We then refit the SuStaIn model to the data and compared the results to the 

original model using spatial correlation (see below).

While the five cohorts from the main discovery sample all use flortaucipir as the tau-PET 

tracer, a sixth cohort (BioFINDER II; BF2) was available that instead used the RO948 

radiotracer. While the two tracers have similar binding patterns, RO948 tends to have 

less off-target binding in the basal ganglia and better MTL signal, but frequently boasts 

high meningeal signal that can affect cortical SUVR measurement53. Because of these 

differences, we opted to leave BF2 out of the discovery sample, and instead use it as a 

replication cohort. This strategy allowed us to not only evaluate the stability of the subtypes 

in a new cohort, but also allowed us to evaluate whether the subtypes are robust to tau-PET 

radiotracer.

We reran SuStaIn de novo in the BF2 sample, using identical procedures to those 

described above (Methods: Subtype and Stage Inference), although using the discovery 

sample to inform the number of subtypes. The resulting subtypes were visualized and 

quantitatively assessed using spatial correlations. Specifically, mean within-subtype SUVRs 

were computed for each (freesurfer) ROI, and each discovery subtype ROI-vector was 

correlated to each replication (BF2) subtype ROI-vector. To account for whether different 

sample sizes contribute to differing results between the discovery and replication datasets, 

we performed a split-half analysis with the discovery sample. Specifically, we split the 

discovery sample in half and ran SuStaIn separately on each half, once again using the 

original discovery sample to inform the number of subtypes. We then compared each half, 

which had a sample size comparable to that of BF2, to the BF2 samples using spatial 

correlations.

Assessment of Longitudinal Stability.

Longitudinal PET data was available for individuals across all cohorts except for UCSF, 

totaling 519 individuals with at least two time points (mean follow-up time = 1.42, sd = 

0.58, years). These longitudinal scans were used to validate the stability of subtypes over 

time, under the hypothesis that individuals should remain the same subtype, but should 

advance (or remain stable) in SuStaIn stage over time. ROIs for the longitudinal datasets 
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were Z-scored as described above, but using the cross-sectional cohort as the cohort for 

normalization. The SuStaIn model fitted to the cross-sectional dataset was used to infer 

subtype and stage of longitudinal data (all timepoints). Confusion matrices were built to 

assess subtype stability between baseline and first follow-up. Stability was calculated as 

proportion of individuals classified as the same subtype at follow-up, or who advanced 

from Stage 0 into a subtype, compared to the total number of individuals. Stability was 

also calculated excluding individuals who were classified as Stage 0 at baseline or follow-

up. We also assessed the influence of subtype probability (i.e. the probability a subject 

falls into their given subtype) on individual subtype stability. Specifically, we compared 

the subtype probability of stable individuals to unstable individuals with a t-test. We 

additionally calculated overall model stability after excluding individuals using various 

subtype probability thresholds.

Subtype progression was assessed by observing change in SuStaIn stage over time in stable 

subtype individuals. We calculated the proportion of individuals who advanced, were stable, 

or regressed in disease stage over time, before and after accounting for model uncertainty. 

Specifically, while stages are generally characterized by advancing abnormality in a given 

region, uncertainty leads to some stages being characterized by probabilities of progressing 

abnormalities in more than one region. Therefore, individuals who advanced or regressed 

to a stage with event probabilities overlapping with their previous stage were considered to 

be stable. We also calculated annual change in SuStaIn stage by dividing total change in 

SuStaIn stage by number of years between baseline and final available timepoint. We used 

one-sample t-test against zero to assess whether significant change over time was observed 

across the whole sample, and within each subtype. We used ANOVAs and Tukey’s post-hoc 

tests to assess differences in annual change in stage across the different subtypes. We also 

correlated annual change in stage with baseline stage, and with age.

Individual forecasting of longitudinal tau progression.

SuStaIn models spatiotemporal subtype progressions, but does so using only cross-sectional 

data. Therefore, longitudinal data can be used as “unseen” or “left-out” data, which can 

be used to test whether and to what extent individuals follow the trajectories predicted 

by SuStaIn. We accomplish this by using an individual’s subtype and stage probability to 

generate a predicted second time point, and comparing the change between baseline and 

predicted follow-up to change between baseline and actual follow-up.

To do this, we first sought to predict the rate of change of stage for each individual. 

We trained a Lasso model to predict individual annualized change in SuStaIn stage 

(Δstage) using available data, and cross-validation to get out-of-sample predictions for each 

individual. Features included age, sex, education, amyloid status, APOE4 status, baseline 

stage MMSE and dummy coded variables for MCI, AD, and each subtype. For each fold, the 

model was trained on 90% of the data, and this model was used to predict Δstage in the 10% 

left out subjects. This process was repeated until predictions were made for each subject. 

The mean absolute error between the predicted and true Δstage was 0.91 stages/year. The 

predicted Δstage was used for subsequent aspects of the tau prediction. This is important, 
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as we are therefore minimizing the amount of longitudinal information leaking into the 

forecast.

Using this predicted Δstage, we were then able to predict an individual’s stage at follow-up 

ki,new given any stage at baseline k, as ki,new = k +Δstageti, where ti is the time between 

follow-up visits in years.

We can then evaluate the SuStaIn-predicted pattern of regional tau deposition at baseline Yi,j 

as

Yij = ∑
c = 1

C
∑

k = 0

K
Aj, c, kPi, c, k

or at follow-up Zi,j as

Zij = ∑
c = 1

C
∑

k = 0

K
Aj, c, ki, newPi, c, k

where Aj,c,k is an ‘archetype’ indicating the expected amount of tau deposition for 

biomarker j at stage k of subtype c and Pi,c,k is the probability subject i is at stage k of 

subtype c. The archetype Aj,c,k is estimated probabilistically from the Markov chain Monte 

Carlo (MCMC) samples of uncertainty provided by the SuStaIn algorithm, giving an average 

archetypal pattern accounting for the uncertainty in the progression pattern of each subtype. 

This means that each SuStaIn-predicted pattern Yi,j accounts for both uncertainty in the 

progression pattern of each subtype as well as uncertainty in the subtype and stage of each 

individual.

We can therefore represent the predicted change in tau as Zi,j −Yi,j. This vector represents 

the predicted change in tau Z-score in each of the ten spatial input features to SuStain (i.e. 

left and right temporal, parietal, occipital, frontal and medial temporal lobes). We evaluate 

the prediction by computing, for each individual, the correlation between the predicted and 

true regional tau change vectors. We evaluate the overall prediction across the whole sample, 

and within-subtypes, by comparing the average prediction against chance using one-sample 

t-tests against a correlation of zero.

Epidemic spreading model.

Perhaps the most prominent hypothesis of tau spread suggests tau oligomers spread 

directly from neuron to neuron through axonal connections. Under this hypothesis, diverse 

but systematic variations in tau spreading may be driven by variability in macroscale 

connectivity, network organization or vulnerable circuits. We test this idea by investigating 

whether a network diffusion model simulating tau spread through the human connectome 

can recapitulate the various subtype patterns discovered by SuStaIn. We have previously 

applied the epidemic spreading model (ESM)58 to tau-PET data, showing diffusion 

of an agent through human connectivity data (measured with diffusion imaging-based 

tractography) can explain a majority of the variance of spatial tau patterns across a 
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population of individuals along the AD spectrum29. We here conduct the exact same analysis 

separately for each subtype identified through SuStaIn. We further allow the ESM to identify 

regional epicenters separately for each subtype, under the hypothesis that different subtype 

patterns may be driven by prominence of different cortico-limbic networks.

As described in 29, each tau-PET ROI was converted to tau-positive probabilities using 

mixture modeling. This process is similar to the Z-scoring procedure (Extended Data Fig. 

S1), though in this case, the probability that values fall onto the abnormal distribution is 

ascertained using five-fold cross-validation. These measures represent the probability that a 

given ROI exhibits tau in the abnormal range. Connectivity was measured from a dataset 

of 60 young healthy subjects from the CMU-60 DSI Template (http://www.psy.cmu.edu/

coaxlab/data.html). Deterministic tractography was calculated for each individual by finding 

connections between ROIs using orientation distribution functions, and connectivity was 

measured using the anatomical connection density (ACD) metric58. Images were assessed 

for quality and connectomes were averaged across all 60 individuals. For each subtype 

separately, the ESM was fitted across all individuals, cycling through the average of each 

left-right pair of cortical ROIs (including hippocampus and amygdala, 33 pairs in total) as 

the model epicenter. The best fitting epicenter was selected by finding the model with the 

minimum mean euclidian distance between model predicted and observed tau spatial pattern 

across subjects. Model accuracy was represented as the r2 between the mean observed 

ROI-level tau-PET probabilities and mean predicted probabilities across subjects. For each 

subtype, we compared the r2 of the model using the best-fitting epicenter to the r2 of 

models using an entorhinal epicenter. To gain confidence in the subject-specific epicenter, 

we bootstrapped the sample 1000 times and recomputed the best-fitting epicenter for each 

subtype. Epicenter probability was calculated as the frequency that an epicenter was selected 

as best epicenter across bootstrap samples.

We were additionally interested in how secondary seeding evolved over the course of each 

subtype progression. While the ESM is designed to ascertain the true pathological epicenter, 

the selected epicenter reflects the seeding point that best matches the spatial pattern of the 

dependent variable. As such, it is likely that “secondary epicenters” become important for 

disease spread at later disease stages. We binned individuals for each subtype into disease 

stage bins, as with Fig 1e. Individual epicenters were ascertained for each subject, and were 

aggregated based on lobe (MTL, temporal, frontal, parietal, occipital). We then calculated 

epicenter frequency among individuals in each stage bin for each subtype. This allowed us 

to track how the secondary epicenter evolve throughout the disease course for each subtype 

trajectory.

We repeated this same analysis with a different connectome based on rsfMRI connectivity 

from an elderly population, and using a higher-resolution atlas. The sample consisted of 

rsfMRI scans from 422 healthy elderly controls (166 Aβ-positive), 138 individuals with 

subjective cognitive decline but without objective impairment (48 Aβ-positive), and 83 

Aβ-positive MCI patients. 57 individuals overlapped between this sample and the tau-PET 

discovery sample used for analysis. Functional data was processed using modified CPAC 

pipeline60 involving slice time correction, bandpass filtering at 0.01–0.1 Hz, regression of 

motion, white matter and CSF signal, compcor physiological noise, and the 24 Friston 
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parameters. The timeseries also underwent adaptive censoring of volumes for which 

DVARS jumps above median+1.5*IQR were observed. Timeseries were averaged within 

ROIs of the 246-ROI Brainnetome cortical/subcortical atlas (https://atlas.brainnetome.org/), 

nodewise connectivity was calculated using either Fisher’s Z transformed correlations or 

partial-correlation (see below). The ESM was fit using the bilateral A35/36r ROI as model 

epicenter, and the following combinations of parameters were varied: regions (cortical 

only or all regions), subject-base (Aβ-negative only vs. all subjects), density (edgewise 

thresholding at 0.02, 0.5, 0.1, 0.25, 1, or partial correlation with no thresholding, and 

normalization (whether connectivity matrices were normalized after density thresholding). 

The only parameter strongly affecting model performance was density threshold – partial 

correlation far outperformed all other conditions. Using all regions over only cortical regions 

bore slight advantages, as did using all subjects over only Aβ-negative. Normalization had 

no effect on outcomes. The best-fitting model was used for further analysis. The ESM was 

fit to each subject separately, and epicenter bootstrapping was performed, both as described 

above.
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Extended Data

Figure S1. 
Methodological details. a) SuStaIn requires both spatial (e.g. brain regions) and 

pseudotemporal (e.g. Z-score waypoints representing advancing biomarker severity) features 

as input. SuStaIn models linear change between waypoints across multiple biomarkers 

and uses k-means clustering to fit subtype trajectories representing distinct biomarker 

sequences. b) Each spatial feature was z-scored in order to derive interpretable waypoints. 

Example: (top left), SUVR distribution in the left temporal lobe. (bottom-left) Distribution 

of standardized residuals after regression of choroid plexus. Gaussian mixture-modeling 

identifies “normal” (grey) and “abnormal” (red) tau-PET values within this distribution. 

(bottom right) Mean and SD of “normal” distribution used to normalize the whole 

distribution, creating “Tau Z-scores”. Tau Z-scores of 2, 5 and 10 are used as waypoints. 

(top-right) Tau-z scores superimposed onto the original SUVR distribution. For each 
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subtype model (k=1–7), distribution of average negative log-likelihood, d) CVIC, and e) 

distribution of the probability of the maximum-likelihood subtype across cross-validation 

folds of left-out individuals. Higher log-likelihood, lower CVIC represents better model fit. 

f) Visualization of subtype solutions k=2–7. For each subtype, the rendered brains show 

significant regional tau difference between the subtype and all other subtypes in its solution. 

Connecting-line thickness indicates how many subjects are shared between a subtype and 

each subtype from its parent and child solutions. Circle color represents of the k=4 subtypes 

(outlined in the dashed box) each subtype is most similar to, in terms of the number 

of overlapping subjects. Red arrowheads indicate subtypes that were formed by pooling 

individuals from two different parent subtypes.

Figure S2. 
Details of subtype assignment. a) Several individuals classified as S2 (MTL-Sparing) were 

found to be tau-negative (i.e. no significant tau in the entorhinal cortex or precuneus). 

Cortical rendering shows the overall mean tau Z-scores (see Fig S1b) of S2: False 

individuals. Slightly elevated signal was observed throughout the cortex (but not MTL 

areas), including in regions where pathological tau is not observed until late AD. b) 

Proportion of Aβ+ (top) and cognitively impaired (bottom) individuals in S2: False to other 

S2 individuals (S2: True) and tau-negative individuals (S0). Using, χ2-tests with Tukey’s 

posthoc correction, a higher proportion of S2: False and S0 individuals were Aβ-and 

cognitively impaired (ps<0.0001) than S2: True individuals, but did not differ significantly 

from one another (ps>0.05). c) Using ANOVAs with Tukey’s posthoc correction, S0 and 

S2: False individuals were older and had higher MMSE scores than S2: True individuals, 

but did not differ from one another (ps>0.05). d) SuStaIn stage of all individuals stratified 

by subtype, with the poorly fitting subjects (those that had <0.5 probability of falling into 

any subtype) shown separately. All but one poorly fit subject exhibited very low SuStaIn 
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stages. e) Probability of maximum likelihood subtype is low at SuStaIn stage 1, but quickly 

increases with increasing SuStaIn stage. f) Distribution of clinical diagnoses across SuStaIn 

stages. g) Distribution of clinical diagnoses across subtypes. h) Distribution of maximum-

likelihood subtype probabilities for each clinical diagnosis. i) Distribution of PCA and 

lvPPA subjects from the UCSF sample into each subtype

Figure S3. 
Comparison of the mean tau-PET signal (tau-Z) across all ROIs, after adjustment for total 

cortical tau. A value of 0 represents a regional tau Z-score proportionate to the average 

cortical tau Z-score in that subtype. The left panel represents left hemisphere, the right panel 

represents right hemisphere. Confidence intervals represent standard error of the mean
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Figure S4. 
All subtypes observable across all contributing cohorts. The top Figure shows the 

proportions of each subtype (plus S0) within each of the five cohorts. All cohorts included 

individuals from each subtype. The bottom shows the mean tau Z image of each subtypes in 

a given cohort. Variation can be observed across cohorts, particularly regarding phenotypic 

severity, but subtype patterns are fairly consistent.
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Figure S5. 
Individual fit to stereotypical subtype progression. Progression plots are created for each 

subtyped individual based on their progression through the events specific to their subtype. 

The outer images show regional tau z scores (see Fig S1) for an S2 (left) and S3 (right) 

individual. This data is summarized in lobar ROI z-scores (inner images). In progression 

plots under the images, each box represents a biomarker event, tied to a SuStaIn stage. A 

SuStaIn stage represents tau reaching a given severity (w) score at a given region (see Fig 

S1). Filled (tan) boxes indicate an individual fulfills the criteria for that SuStaIn stage. An 

empty (black) box indicates an individual does not. Note that each subtype has a different 

event order. A stepwise progression plot is shown for each subtype. Each row represents an 

individual, and each column represents a SuStaIn stage. A perfect fit would be represented 

by an individual (row) having every box filled before a given stage, and no boxes filled after 
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it. The y-axis (subjects) are sorted from the least (top) to most (bottom) stages fulfilled. 

Across the population, this would be represented as a stepwise progression. Each subtype 

demonstrates a stepwise progression indicating good general fit. The average subject fit 

imperfection was 2.1 boxes.

Figure S6. 
SuStaIn creates nearly identical subtypes when initialized with different parameters 

(Table S5) see Methods: Replication Analysis). SuStaIn was rerun allowing a data-driven 

methodology to determine the number and value of z-score waypoints for each ROI. a) 

Qualitative contrasts of each subtype as defined using the original (Orig) parameters and 

the new data-driven (DD) parameters, where maps show regions significantly different 

between one subtype and all others (excluding S0) within the cohort (after FDR correction). 

b) Confusion matrix comparing subtypes identified in the original (orig) sample (y-axis), 

and subtypes separately identified in the data-driven parameter replication sample (x-axis). 

Values represent spatial correlation between average regional tau for each subtype. Values 

along the diagonal indicates similarity between the same subtype across both parameter sets.
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Figure S7. 
Stability of subtypes across train-test split and replication datasets. (Top) Cortical renders 

showing, for each subtype across each dataset, regions with significantly different tau-PET 

signal compared to other within-dataset subtypes after FDR correction. Hot regions show 

greater tau-PET whereas cooler regions show lower signal. Remarkable similarity can 

be observed across subtypes, except S4, where lateralization switches from left to right. 

(Bottom) A heatmap showing similarity (spatial correlation) between subtypes across 

all four datasets. The diagonal represents the identity, whereas outlined boxes represent 

comparisons of the same subtype across cohorts.
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Figure S8. 
Subtypes present with differing clinical profiles. For all plots, a * below a box indicates the 

subtype is significantly different (corrected p<0.05) from all other subtypes combined (one 

vs. all), while a χ represents a trend (p<0.1). Thick horizontal lines above boxes indicate 

significant (p<0.05) differences between two subtypes (one vs one). Dashed horizontal lines 

represent the mean of the S0 group (controlling for covariates), where relevant. All statistics 

are adjusted for demographics, disease status, cohort and SuStaIn stage. For boxplots, 

the center line=median, box=inner quartiles, whiskers=extent of data distribution except 

*=outliers
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Figure S9. 
Lateralization across disease progression as measured with SuStaIn stage. a) Tau 

lateralization was measured as the mean left to right ratio of tau Z scores for all ten 

tau features. Higher positive numbers represent greater left hemisphere tau lateralization, 

whereas lower negative numbers represent greater right hemisphere lateralization. The 

progression of laterality over SuStaIn stage was visualized for each subtype. Lateralization 

generally increased with increasing SuStaIn stage. In some subtypes (particularly S2 and 

S3), strong lateralization was seen in both hemispheres at later stages. b) The absolute (i.e. 

agnostic to hemisphere) lateralization (i.e. tau asymmetry) was visualized against SuStaIn 

stage, indicating a general increase in lateralization with more severe tau expression. c) A 

three-way relationship between age, SuStaIn stage and absolute lateralization is visualized, 

indicating these relationships covary but are independent of one another.
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Figure S10. 
Replication of subtype-specific epidemic spreading model. We repeated analyses from 

Fig. 4, this time using functional connectivity from a sample of elderly healthy and MCI 

individuals, over a higher-resolution cortical atlas, as the connectome input to the model. 

The ESM was fit separately for each subtype; once using an entorhinal cortex epicenter [a), 

gray], and once with a subtype-specific best-fitting epicenter [b), blue]. For each plot, each 

dot represents a region. The x-axis represents the mean simulated tau-positive probabilities 

across the population, while the y-axis represents the mean observed tau-positive probability. 

Each column represents a subtype. c) Visualization of the best-fitting epicenter selected by 

the model. d) For each subtype, the probability that each region is the best fitting epicenter 

for that subtype, based on bootstrap resampling.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Spatiotemporal subtypes of tau progression. A) Tau-PET pattern of tau-positive (subtyped) 

individuals. B) Quarternary plot showing probability each individual is classified as each 

subtype. Dots are labeled by final subtype classification: S1 (blue), S2 (green), S3 (orange) 

or S4 (pink). Inset box shows individuals that had a probability < 0.5 to be classified as any 

of the four subtypes (i.e. showing poor fit). C) Average tau-PET pattern for each subtype. 

The colorbar is the same as Panel A. D) Regions showing significant difference between one 

subtype and all other subtypes using OLS linear models adjusting for SuStaIn stage, after 

FDR correction. E) Progression of each subtype through SuStaIn stages. Each image is a 

mean of individuals classified at the listed stage and up to four stages lower. Only the left 

hemisphere is shown.
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Figure 2. 
Subtype stability: AD spatiotemporal subtypes replicate in another cohort using a different 

PET tracer. A) For both the discovery (Orig) and replication (Repl) cohorts, maps showing 

regions significantly different between one subtype and all others (excluding S0) within the 

cohort (after FDR correction). Similar spatial patterns were observed, except for a reversed 

pattern in S4. B) Confusion matrix comparing subtypes identified in the original (discovery) 

sample (y-axis), and subtypes separately identified in the replication sample (x-axis). Values 

represent spatial correlation between average regional tau for each subtype. Values along the 

diagonal indicates similarity between the same subtype across both cohorts.
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Figure 3. 
Progression of AD subtypes. Increasing SuStaIn stage is associated with lower age a) and 

worse cognition b) across all subtypes. c) Rate of longitudinal decline in MMSE for each 

subtype. The x-axis was jittered for visualization purposes only. The y-axis shows MMSE 

across all observations as predicted by linear mixed models adjusted for covariates. d) 

Boxplots showing the distribution of predicted MMSE slopes for each subtype, stratified 

by clinical diagnosis (stats in Supplementary Table S2). e) Cross-cohort meta-analysis for 

the effects of S4: L Temporal declining faster (left) and S3: Posterior declining slower 

(right) than other subtypes, respectively. Diamonds represent effect sizes, while diamond 

size reflects relative sample size. Red diamonds indicate significant effects. Error bars = 

SEM. f) Confusion matrix showing longitudinal stability of subtypes. Each row shows the 

number of subjects from a given subtype at Visit 1 that were classified as each subtype 

at Visit 2. The diagonal represents the number of subjects that were classified as the 

same subtype at Visit 1 and Visit 2. g) Individuals with a higher probability of being 

classified into their subtype at baseline were more likely to show a stable subtype over time 

(two-sided t[156,53]=5.26, p=3.6e-07). h) Annual change in SuStaIn stage for each subtype, 

in individuals with stable subtypes over time (stats in Supplementary Note 3). i) SuStaIn 

was used to predict longitudinal change in regional tau accumulation. Each dot represents a 
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subject, and the y-axis represents the spatial correlation between the true regional tau change 

and the predicted regional tau change. Average predictions were significantly greater than 

chance based on a two-tided, one-sample t-test against 0 (S1: t[78]=5.00,p=3.5e-06; S2: 

t[52]=2.16,p=0.035; S3: t[45]=3.05,p=0.0039; S4: t[29]=4.93,p=3.1e-05). *p(unc.)<0.05, 

*** p(unc.)<0.001. Error bars in a-c represent 95% CI of model fit across 1000 bootstrap 

samples. For boxplots in d, g-i, center line=median, box=inner quartiles, whiskers=extent of 

data distribution except *=outliers

Vogel et al. Page 41

Nat Med. Author manuscript; available in PMC 2021 December 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Application of epidemic spreading model to determine subtype-specific corticolimbic circuit 

vulnerability. An epidemic spreading model was fit separately for each subtype; once 

using an entorhinal cortex epicenter (a, blue), and once with a subtype-specific best-fitting 

epicenter (b, red). For each plot, each dot represents a region. The x-axis represents the 

mean simulated tau-positive probabilities across the population, while the y-axis represents 

the mean observed tau-positive probability. Each row represents a subtype. Error bars in 

a-c represent 95% CI of model fit across 1000 bootstrap samples. c) For each subtype, the 

probability that each region is the best fitting epicenter for that subtype, based on bootstrap 

resampling. d) For each subtype, the proportion of individuals at various stages that had 

best-fitting epicenters within each of five major brain divisions: medial temporal lobe (MTL, 

blue), temporal lobe (yellow), parietal lobe (purple), occipital lobe (gray) and frontal lobe 

(turquoise). e) For each subype, spatial representation of ESM results from panel B using 

best-fitting epicenter. From left to right, observed regional tau-PET probabilities (tau-P), 

regional connectivity to best-fitting epicenter (Cx), tau-PET probabilities predicted by the 

ESM. These images show the degree to which constrained diffusion of signal through a 

connectome (Pred.), starting in a given epicenter and its associated fiber network (Cx.), 

recapitulates the tau patterns of each subtype (Obs.).
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Figure 5. 
A theoretical model summarizing variation in the spread of tau pathology in AD. Tau 

pathology varies along an axis of severity (vertical in the diagram), which is inversely 

associated with onset age. In addition, tau varies along a spatiotempral dimension 

(horizontal plane in the diagram), such that an individual can be described by their fit 

along one of at least four trajectories. Text indicates clinical characteristics of each subtypes. 

Emboldened text reflects robust differences between subtypes, while normal text reflects 

less-robust characteristics that differentiate subtypes from tau-negative individuals
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Table 1

Comparison of means of different variables between subtypes in the discovery sample, after correction for age 

(except in the case of age), sex (except in the case of sex), education (except in the case of education), cohort, 

clinical diagnosis (i.e. CN, MCI, AD), and SuStaIn stage (except comparisons with S0). Standard deviations 

are given in parentheses where relevant. All p-values were corrected for multiple comparisons.

S0: No Tau S1: Limbic S2: MTL-Sparing S3: Posterior S4: L Temporal

n 687 137 73 131 80

Age 71.52 (8.1) 75.28 (7.7)# 71.34 (8.3)* 75.06 (7.3)# 73.41 (6.9)

Prop. Female 0.49 0.70# 0.60‡ 0.64# 0.56

Education 15.17 (2.9) 14.42 (3.9) 14.29 (4.0) 14.6 (3.0) 14.82 (2.9)

Prop. APOE4 Carrier 0.26 0.75#* 0.47* 0.63# 0.59#

Cortical Tau SUVR 1.04 (0.1) 1.41 (0.1)#* 1.44 (0.1)# 1.44 (0.1)# 1.47 (0.1)#*

Laterality 0.0 (0.2) −0.28 (1.3)*#R −0.13 (1.6)‡*R 0.04 (1.5) 1.95 (1.2)#*L

MMSE 28.9 (1.5) 24.33 (3.0)# 24.32 (4.2)# 24.19 (3.0)# 23.33 (5.0)#

Global Cognition 0.36 (0.5) −0.03 (0.8)* −0.29 (0.8)# −0.23 (0.8)# −0.39 (0.9)#†

Abs. Memory 0.48 (0.7) −0.62 (0.7)#† −0.36 (0.7)# −0.55 (0.7)# −0.3 (0.8)#†

Abs. Language 0.22 (0.7) −0.11 (0.8) 0.01 (0.9) −0.18 (0.8) −0.64 (1.1)#*

Abs. Executive 0.19 (0.6) 0.02 (0.9) −0.33 (0.9)# 0.03 (0.8) −0.17 (1.0)‡

Abs. Visuospatial 0.19 (0.6) 0.08 (1.0) −0.25 (1.2)# −0.23 (1.2)# −0.09 (1.0)

Rel. Memory 0.26 (0.8) −0.61 (1.0)#* −0.14 (1.0) −0.37 (1.0)# −0.06 (1.1)*

Rel. Language −0.02 (0.8) 0.05 (1.0) 0.31 (1.2)# 0.06 (1.0) −0.51 (1.3)#*

Rel. Executive −0.14 (0.8) 0.25 (1.0)‡ −0.22 (1.0)‡* 0.38 (1.1)# 0.22 (1.2)

Rel. Visuospatial −0.1 (0.7) 0.31 (1.1)‡ 0.03 (1.3) 0.0 (1.3) 0.27 (1.3)

MMSE = Mini-Mental State Examination; Abs. = Absolute; Rel. = Relative; Prop. = Proportion

*
= Adj. p$<$0.05 (vs all other subtypes, not including S0)

†
= Adj. p$<$0.1 (vs all other subtypes, not including S0)

#
= Adj. p$<$0.05 (vs S0)

‡
= Adj. p$<$0.1 (vs S0).

R
= Significant right-sided laterality in this subtype compared to others

L
= Significant left-sides laterality in this subtype compared to other subtypes.
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