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Abstract

Secure Computing using Certified Software and Trusted Hardware

by

Rohit Sinha

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Building applications that ensure confidentiality of sensitive data is a non-trivial task. Such
applications constantly face threats due to vulnerabilities in the application’s code, or infras-
tructure attacks due to malicious datacenter insiders and exploits in the lower computing
layers (i.e. OS, hypervisor, BIOS, firmware) that the application relies upon.

This dissertation presents a novel approach for developing and verifying applications with
provable confidentiality guarantees, even in the presence of such privileged adversaries. Our
primary defense against infrastructure attacks is the use of trusted primitives such as Intel
SGX enclaves, for isolating sensitive code and data within protected memory regions; en-
claves are inaccessible to all other software running on the machine (i.e. OS, hypervisor,
etc.), thus removing these large software layers from the trusted computing base (TCB). A
central question addressed by this thesis is how the trusted hardware primitives can be used
safely to build the trusted components of modern applications with provable guarantees.
Prior experience suggests that even expert developers write unsafe programs that leak sensi-
tive data due to programming errors and side channel attacks. To address this problem, this
thesis makes contributions in formal threat models, modeling and specification of trusted
platforms, and techniques to verify confidentiality properties of enclave programs.

First, this thesis formalizes adversary models, an abstract, interface-level model of trusted
platforms (including Intel SGX and MIT Sanctum), and formal semantics of enclave exe-
cution. This formal framework is required for reasoning about a program’s behavior in the
presence of a privileged adversary. Next, this thesis presents tools and techniques for certi-
fying confidentiality (at the binary level), a property that we decompose into the following
desiderata: 1) lack of explicit leak of secrets via enclave’s outputs, 2) protection against
certain side-channel leaks — we only remove leaks via page-level memory access pattern,
which is a new channel for privileged adversaries. For both desiderata, we develop verifica-
tion tools and evaluate them on application’s binaries including Map-Reduce programs from
the Microsoft VC3 system, SPEC benchmarks, and several machine learning algorithms.
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Chapter 1

Introduction

Modern software services are increasingly reliant on the public cloud for economic ben-
efits including high availability, low maintenance, and on-demand scaling. Despite these
advantages of cloud-based computing, there is a unanimous agreement amongst its users
about the security and privacy concerns, especially when processing sensitive data. Over
the years, users of cloud computing have suffered from various attacks and data breaches,
exposing millions of sensitive customer records [66, 35].

One primary cause of these attacks is that a typical cloud-based service contains large
software layers in its trusted computing base (TCB) — the TCB includes privileged com-
puting layers such as the OS and Hypervisor, and parts of the application stack (e.g. web
server), and each such layer can amass several millions of lines of code in standard deploy-
ments [2]. In the last few years, numerous exploits have been performed on these vulnerable
software layers, allowing privileged malware to execute [33, 63]. Moreover, a malicious dat-
acenter insider can exploit administrative privileges to log into machines with root access,
and inspect sensitive contents of disks and memory. In short, by controlling the privileged
software layers, the attacker can observe and tamper the contents of an application’s mem-
ory, extract sensitive data, and cause security-critical applications to misbehave — we refer
to an attacker that has compromised the privileged computing layers as a privileged software
adversary. In addition to these platform-level attacks, modern applications are increasingly
complex, use unsafe programming methods, and contain large volumes of code with unspec-
ified behavior. Not surprisingly, attackers repeatedly find such applications to have critical
vulnerabilities such as insufficient access control [131], unsafe cryptographic protections [29],
and memory corruption bugs [117].

Recognizing these problems, processor vendors are now shipping CPUs with hardware
primitives, such as Intel SGX enclaves [61], for isolating sensitive code and data within
protected memory regions which are inaccessible to all other software running on the machine
— we refer to the platform that implements these trusted primitives as an enclave platform.
To support isolated execution, the enclave platform monitors all accesses to the enclave: only
code running in the enclave can access the enclave’s memory. As an example, VC3 [107] runs
Map-Reduce analytics on an untrusted cloud by computing map and reduce functions on
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sensitive cleartext data within enclaves, while the rest of the Hadoop stack (comprising over
million lines of code) is untrusted, manages only encrypted data, and is developed using
legacy software toolchains. In addition to enabling isolated execution, the enclave platform
implements primitives for generating attested statements: code inside an enclave can get
messages signed using a per-processor private key along with a hash-based measurement
of the enclave. This allows other trusted entities to verify that messages originated from
the desired (untampered) enclave running on a genuine platform. Finally, we require the
enclave platform to implement a cryptographically secure entropy source which the enclave
can use for cryptographic operations such as key generation. From here on, we use the term
enclave to mean a program that enjoys the aforementioned properties of isolated execution,
attested statements, and entropy source. At the time of writing, enclaves are implemented by
several mainstream platforms such as Intel SGX [61] and Microsoft Hyper-V Virtual Secure
Mode [134], and academic platforms such as MIT’s RISC-V based Sanctum [38].

In this new paradigm, enclaves are the only trusted components of an application, provid-
ing us the luxury of programming them with greater rigor and stronger defenses. However,
it is open research question as to how cloud services can be built using using hardware-based
enclaves, while ensuring a tiny TCB and formal security guarantees even in the presence of a
privileged software attacker. While enclave platforms implement the necessary primitives for
trustworthy computing on sensitive data, these primitives are not sufficient by themselves.
The enclave program must be implemented carefully, as vulnerabilities in the enclave pro-
gram can be exploited to extract sensitive data or perform malicious actions, thus defeating
the purpose of using enclave platforms in the first place. The enclave program must be
secure, which includes, at the very least, a provable guarantee that sensitive data is never
leaked to the attacker in any execution, under any potential interaction with the attacker —
we refer to this property of the enclaves as confidentiality. However, ensuring confidentiality
of enclave programs (or software in general) is non-trivial. In order to be useful, an enclave
program interacts with the external world (via the untrusted host platform) using commu-
nication and storage mechanisms such as the network, file system, and shared memory; such
interactions can reveal a program’s secrets via explicit and implicit channels. An adversar-
ial OS can tamper inputs, observe outputs, control resource allocation and scheduling, and
these capabilities give an attacker a mechanism to interact with the enclave and potentially
trigger vulnerabilities in its code [33]. Furthermore, due to hardware limitations, an attacker
may observe several implicit attributes of an enclave program’s execution, called side channel
observations. For instance, on an Intel SGX platform, an attacker can use a compromised
OS to observe cache hits and misses, page-level memory access patterns, execution time,
and so on [76, 125] — these observations may reveal secrets for programs that compute on
sensitive data. The burden of programming enclaves correctly and ensuring confidentiality,
for both outputs and side channel observations, remains with the programmer.

We believe that the one of main challenges of developing secure enclaves is the lack of
development and verification tools for building enclaves that are secure by construction. To
reason about confidentiality properties, an enclave developer must a have precise under-
standing of the formal specification of the primitives offered by the enclave platform, which
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requires the developer to reason about the low-level contract between the hardware and
software layers. At the time of writing, there has only been informal security analysis of en-
clave programs and platforms, and informal characterization of the threat model. Moreover,
the developer needs to guard against all potential operations (e.g. tampering of inputs and
persistent storage [33]) and observations (including side channels) of the privileged software
attacker. At the time of writing, there are no proposed techniques or tools for verifying
security properties of enclave programs, other than those described in this thesis.

This dissertation makes several novel contributions towards addressing these challenges.
We present techniques for developing enclave programs and verifying their confidentiality
properties, at the level of machine code execution to maintain a tiny TCB, all-the-while
defending against the operations and observations of a privileged software adversary. Part
I of this dissertation develops a formal framework to reason about an enclave’s execution in
the presence of a privileged software adversary. Specifically, we present a formal semantics
of enclave programs, a formal model of the enclave platform and the specification of its
primitives, and a formal model of privileged software adversary. Part II of this dissertation
presents a novel methodology and practical tools (including compilers and static analyzers)
for safely programming enclaves and formally certifying the absence of vulnerabilities that
leak secrets, both via explicit outputs and certain side channels.

1.1 Thesis Statement
Through formal modeling of trusted enclave platforms, and compilation and verification

tools for developing secure enclave programs, we can build software services that can be
certified, at the level of machine code execution, to not leak sensitive data to a privileged
software adversary.

1.2 Thesis Contributions
Although enclave platforms provide the necessary primitives for developing outsourced

software services, there is little research on methods for writing safe enclave programs that
provide end-to-end security guarantees with a tiny TCB. We wish for these software services
to provide formal guarantees of security (e.g. confidentiality) at the machine code level of ex-
ecution. At a high level, we approach this goal by formally specifying the hardware-software
interface, and providing tools to develop secure software layers on top. This degree of as-
surance requires, at the very least, a formal specification of the trusted platform primitives,
the semantics of enclave program execution, and a formal model of the privileged software
attacker, all of which are used to reason about the safety of enclave software — this is the
core contribution of Part I of this thesis. Confidentiality of enclave programs requires pro-
tecting secrets, which needs understanding of the contract between the enclave developer
and the enclave platform, and a methodology for writing enclave programs that ensures that
secrets are not leaked, either explicitly via outputs or via side channels. Developing enclaves
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that guarantee confidentiality of sensitive data against privileged attackers is challenging,
because of the large set of powerful adversarial operations and observations, thus making
it non-trivial to statically analyze enclave programs or defend them. To account for the
privileged attacker’s capabilities, developers need compiler and static analysis tools to au-
tomatically prevent or detect vulnerabilities in their code. The core contribution of part II
of this thesis is a set of techniques and automatic tools to detect vulnerabilities that violate
confidentiality, and also generate enclave programs that are correct by construction. We
describe the contributions of part I and part II in further detail below.

1.2.1 Modeling and Verification of Enclave Programs, Platforms,
and Adversaries

Despite growing interest, there has only been informal security analysis of enclave pro-
grams, platforms, and threat models. This lack of formalization has several consequences.
Developers of enclave programs cannot formally reason about security of their programs: in-
correct use of hardware primitives or informal characterization of attacker’s abilities can lead
to vulnerabilities in the enclave program. Furthermore, hardware designers cannot formally
state security properties of their architectures and are unable to reason about potential vul-
nerabilities of enclaves running on their hardware. This part of the thesis bridges these gaps
by developing a formal framework to reason about an enclave’s execution in the presence of
a privileged software adversary.

Specifically, we present a formal semantics of enclave program execution (Chapter 3), and
a formal model of the enclave platform and the privileged software adversaries (Chapter 4).
Furthermore, to generalize our guarantees beyond a specific platform, we propose an abstract
enclave platform (Chapter 4) whose operations simulate the set of primitives offered by
mainstream enclave platforms, such as Intel SGX and Sanctum. We then use these formal
models to establish a theorem (Chapter 5) that any enclave program enjoys a set of security
properties when run on the abstract platform (and consequently, SGX, Sanctum, etc.), thus
enabling us to reason about an enclave’s execution on a wide variety of enclave platforms.
The contributions in this part of the thesis are vital to our goal of certifying confidentiality
properties of enclave software with a tiny TCB.

1.2.2 Design and Verification Techniques for Enclave Programs

Practical defenses against a privileged adversary is an open research problem, which
we address in this part of the thesis. Enclaves rely on the compromised host OS for I/O
interactions with remote parties, scheduling, and resource management, and such interactions
can reveal secrets, either directly or via side channels. The burden of programming enclaves
correctly and ensuring confidentiality remains entirely with the programmer. First, the
enclave developer must follow the enclave creation guidelines so that the hardware protects
the enclave from an attacker that has gained privileged access to the system. Even then, the
enclave developers needs to ensure that their code does not leak secrets via any vulnerability.
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For instance, they should encrypt secrets before writing them to non-enclave memory. They
should account for adversary modifying non-enclave memory at any time, which could result
in time-of-check-to-time-of-use attacks [126]. They should program defensively to avoid
any memory safety errors (e.g. buffer overflow, control flow hijacking, etc.). Writing safe
enclaves that avoid such attacks is non-trivial, and the history of computer security indicates
that even expert developers make critical errors such as memory corruption bugs [117],
unsafe use of cryptographic operations, insufficient access control, information flow leaks,
etc. Chapter 7 and Chapter 8 present programming methodologies and automatic tools
(compilers and machine code verifiers) to both detect and prevent such vulnerabilities within
enclave programs.

To add to the developer’s woes, some mainstream enclave platforms do not provide
idealized execution i.e. while they may offer isolated execution (with memory integrity),
they do not necessarily offer strict confidentiality. For instance, Intel SGX leaks information
about the enclave’s execution via various software and hardware side channels (e.g. cache
timing attacks, page-level memory access patterns), and mitigating these leaks requires even
greater understanding of the enclave platform, careful programming practices, and automatic
tool support. Closing the side channel of page-level access patterns is the focus of Chapter 9,
which presents a toolchain consisting of a compiler and verifier to automatically produce
machine code that eliminates such side channel leaks.

In summary, this part of the thesis presents a novel methodology for safely programming
enclaves and formally certifying the absence of vulnerabilities that leak secrets, both via
explicit outputs and certain side channels. As per our thesis statement, we wish to formally
certify confidentiality of the enclave, and we verify this property at the machine code level to
achieve a tiny software TCB — with verified machine code, our software TCB only includes
the verification tools themselves, which are built upon decision procedures for First Order
Logic theories.

1.3 Related Work
This dissertation presents a novel methodology for building provably secure services with

a tiny software TCB. The related work presented in this section positions this dissertation in
relation to alternate approaches for trustworthy computing and software security. Note that
there are large bodies of related work that relate to the specific contributions and technical
matter unveiled in the later chapters, and we discuss them within those chapters.

Trustworthy Computing Our overarching goal is to outsource computation on sensitive
data, without the attacker tampering with the computation or learning the sensitive data.
There are large bodies of research in the areas of cryptography and secure systems that
actively pursue this goal, albeit from different directions and assumptions.

Fully homomorphic encryption (FHE) [97], usually referred to as the holy grail of cryp-
tography, is a scheme for outsourcing computation directly on encrypted data. FHE allows
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an untrusted server to compute arbitrary, efficiently computable functions over encrypted
data, without access to the decryption key. The server produces an encrypted result that
can be decrypted by the client, such that the decrypted result matches the result of that
computation if it were performed directly on the plaintext input. However, the proposed
schemes [53] are several orders of magnitude slower than the plaintext computation, which is
a prohibitive overhead for practical applications — while some partial homomorphic schemes
are practical, they only support limited operations (e.g. addition in the Paillier cryptosys-
tem) which are well short of the functionality required for modern applications. Furthermore,
adding integrity guarantees to FHE leads to a further slowdown of several orders of mag-
nitude. Similarly, verifiable computing [52] allows a client to outsource a function to the
untrusted server, which produces a proof of correct evaluation to be verified b the client.
Similar to FHE, schemes for verifiable computing have significant performance overheads,
thus limiting their use in practical systems.

On the other end of the spectrum, there have been groundbreaking results on building
verified, trustworthy systems from the ground up. To defend against attacks on the privileged
software infrastructure, this line of work explores the use of formal methods to build provably
secure operating systems. The Ironclad project [56] and the Certikos project [55] both built
a fully verified software stack (including OS, device drivers, and cryptographic libraries)
from the ground-up. The seL4 project [65] built a microkernel and formally verified (at
the machine code level) that it provides isolation between different applications. However,
verifying system-wide properties at such low levels of abstraction requires significant amount
of manual effort and creative insight; the seL4 verification consumed nearly 22 human years
of effort [65]. Furthermore, because of this bottleneck, many of these efforts fall short of the
functionality and performance offered by contemporary commercial solutions. We contend
that this approach — i.e., building verified privileged software layers, which provide strong
guarantees but limited functionality and performance — is unlikely to scale to real-world OS
and system software.

We take a middle ground approach by taking advantage of recent developments in secure
processors. Most recently, Intel SGX [79, 8, 58] implemented primitives for creating protected
memory regions, called enclaves, that contains code and data which is inaccessible to any
code outside of the enclave (including privileged software layers such as the OS). In addition
to SGX, there have been several other commercial deployments of secure processors. ARM
TrustZone [7] implements secure mode of execution to effectively create a single privileged
enclave in an isolated address space. Academic work seeking to improve the security of
aspects of conventional processors is also abundant [38, 75, 74, 46, 90]. These platforms allow
development of applications with explicit trusted and untrusted components, where trusted
components run within the enclaves — enclaves tend to be small, separated components of
an application, and therefore more amenable to formal analysis. Regardless of the platform
used to implement enclave programs, we need techniques for writing safe programs. This
dissertation studies the problem of developing enclave programs with provable guarantees
(e.g. confidentiality of sensitive data), and because enclaves are the only trusted components,
we achieve our goal of building trustworthy cloud services with a tiny software TCB.
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Verified Applications Checking implementation code for safety is also a well studied
problem. In order to guard against attacks that violate confidentiality properties, the appli-
cation can be developed in a memory-safe language with information flow control, such as
Jif [86]. We refer the reader to an existing comprehensive survey on the topic (e.g., [100]).
Type systems proposed by Sabelfeld et al. [101], Barthe et al. [19], and Volpano et al. [121]
enable the programmer to annotate variables that hold secret values, and ensure that these
values do not leak. Balliu et al. [13] automate information flow analysis of ARMv7 machine
code. Languages and verification techniques also exist for quantitative information flow
(e.g., [57]). However, these techniques assume that the privileged software infrastructure on
which the application runs is safe, which is unrealistic due to the large number of attacks
observed in the wild. Our approach builds upon this body of work, showing how it can be
adapted to the setting where programs run on an adversarial software infrastructure, and
instead rely on trusted hardware for information-flow security. Furthermore, extending tra-
ditional type systems to enclave programs is non-trivial because the analysis must faithfully
model the semantics of the trusted hardware primitives, which is another problem that we
address in this thesis.

Complementary to the information flow analysis and program verification techniques,
secure compilation is an approach for producing programs that are correct by construction.
Patrignani et al. [95] develop abstract trace semantics for low-level code (not including
side-channels) in order to build secure compilers for enclave platforms. In another work,
Patrignani et al. [94] develop a fully abstract compiler (i.e., it forbids attacks on the target
program that cannot be modeled at the level of the source program) from an object-oriented
language to untyped assembly, which can be run within an enclave. While this line of
work is closely related to this dissertation, there are important differences that make the
two contributions complementary. First, instead of building a compiler from the ground
up, we allow developers to use mainstream languages (such as C/C++) and production-
grade compilers (such as gcc and Visual Studio) in our solution [112, 111], with the aim
of facilitating practical deployment. Second, their secure compilation scheme assumes the
safety of the underlying enclave platform. On the other hand, we formalize a set of properties
that an enclave platform must satisfy, and prove these properties on models of the enclave
platforms [116], thus extending the guarantees to lower abstraction levels — our model of
the Sanctum [38] enclave platform serves as the reference specification of its primitives. That
being said, we contend that both sets of techniques will find use in enclave programming in
practice, and the choice would depend on factors such as the threat model, TCB assumptions,
and developer constraints.

There are research proposals that offer stronger confidentiality properties, even prevent-
ing leaks via certain side channels. Oblivious RAM (ORAM) [54] protects against side
channel leaks via the program’s memory access patterns. Liu et al. [72] formalize memory
trace obliviousness, and develop a compiler for producing memory trace oblivious programs
by partitioning code and data across multiple ORAM banks for efficiency. GhostRider [70]
presents a co-designed compiler and hardware ORAM for memory trace oblivious execu-
tion. However, these defenses assume the presence of special hardware, such as an ORAM
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controller, and instead study how to use this special hardware in an efficient way. In this
dissertation, we study defenses against side channels (specifically page-level memory access
patterns) without assuming any special hardware support, which enable us to protect appli-
cations running on commodity hardware.

1.4 Thesis Organization
We first include some background material in Chapter 2, where we introduce the concept

of enclaves, their use cases, and challenges in using enclaves for developing trustworthy cloud
services. The remainder of the dissertation has two main parts.

Trusted Platforms: Modeling and Verification In Part I, we formalize an enclave
program, the enclave platform, and various models of a privileged software adversary with
varying capabilities. In Chapter 3, we present a formal model of enclave programs and their
execution. In Chapter 4, we present a formal model of the enclave platform and the privileged
software adversaries. We also define an abstract trusted platform whose operations simulate
the primitives offered by popular enclave platforms such as SGX and Sanctum. The content
of these chapters is based in part on joint work with Sriram Rajamani, Kapil Vaswani, and
Sanjit Seshia [112], and on a separate joint effort with Pramod Subramanyan, Ilia Lebedev,
Srini Devadas, and Sanjit Seshia [116]. Finally, in Chapter 5, we use the formal models
from Chapter 3 and Chapter 4 to establish a theorem that any enclave program enjoys
secure remote execution (defined in Chapter 5) when run on the abstract platform (and
consequently, when run on either SGX or Sanctum). The work in this chapter is based on
aforementioned effort with Pramod Subramanyan, Ilia Lebedev, Srini Devadas, and Sanjit
Seshia [116].

Secure Enclaves: Design and Verification Part II of the dissertation develops a novel
methodology to program enclaves that can be certified to not leak secrets, both via explicit
outputs and via specific side channels. Chapter 7 presents a methodology and automatic
tool, called Moat, to find vulnerabilities in enclave program binaries that cause it to output
secrets to unprotected memory. Moat was produced as a result of a joint effort with Sriram
Rajamani, Sanjit Seshia, and Kapil Vaswani [112]. To address the scalability concerns of
Moat, we develop /Confidential, presented in Chapter 8. We apply /Confidential to
several practical enclave programs, including several Map-Reduce programs and SPEC-CPU
benchmarks. The work in this chapter is based on joint work with Manuel Costa, Akash Lal,
Nuno Lopes, Sriram Rajamani, Kapil Vaswani, and Sanjit Seshia [111]. In Chapter 9, we
propose a novel technique and a toolchain consisting of a compiler and a verifier to produce
safe enclave programs that do not leak secrets via their page-level memory access patterns.
This chapter is based on joint work with Sriram Rajamani and Sanjit Seshia [113]. Finally,
we conclude this dissertation and propose directions for future work in Chapter 10.
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Chapter 2

Background

This chapter introduces the reader to the threat model addressed by this thesis, the
primitives offered by enclave platforms, sample applications of enclaves, and the potential
challenges that a developer faces while writing safe enclave programs. First, we motivate the
use of trusted hardware primitives by describing potential attacks on the application once
the attacker has compromised the privileged software layers e.g. OS and Hypervisor — we
refer to an attacker that has compromised these privileged computing layers as a privileged
software adversary. Next, we introduce the notion of an enclave program, and describe
the trusted primitives offered by popular enclave platforms such as Intel SGX and RISC-V
Sanctum. We also demonstrate typical use cases of enclaves via some sample applications:
a one time password service, and a map-reduce framework for processing sensitive data. We
conclude this chapter by describing the challenges in programming enclaves with provable
safety guarantees in the presence of a privileged software adversary.

2.1 Attacks from a Privileged Software Adversary
We consider the adverse setting where powerful attackers have taken control of the cloud’s

entire software infrastructure — including the privileged software layers (e.g. OS, Hypervisor,
BIOS firmware) that software services rely upon — on any number of machines in the cloud.
These attacks can be carried out by malicious datacenter insiders and remote attackers,
who exploit vulnerabilities in the large software trusted computing base of such systems —
modern operating systems and hypervisors amass several millions of code [99], and many
critical vulnerabilities have been demonstrated in these systems [33, 63]. However, we assume
the presence of trusted platforms (e.g., Intel SGX processors), which the attacker is unable
to physically tamper; we describe these trusted platforms and their primitives in Section 2.2.

Such a privileged software adversary controls the entire software stack on the machine,
which allows it to read or modify all I/O interaction. The adversary may record, replay, and
modify all I/O events, which include network packets and files written to persistent storage.
As a consequence, the attacker may perform denial-of-service, and defending against such
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attacks is beyond the scope of this work. The attacker also controls the I/O peripherals and
can program them to generate arbitrary I/O events.

By compromising the privileged software layers, the adversary also gets to read or modify
the application’s memory, which may contain sensitive code and data. Therefore, applica-
tions running on a compromised OS do not enjoy any confidentiality or integrity guarantees.
The goal of using trusted enclave platforms is to prevent confidentiality and integrity viola-
tions on the code and data of an application.

2.2 Enclaves using Trusted Hardware Primitives
Processor vendors have started to support hardware-based containers (such as Intel SGX

enclaves [61], RISC-V Sanctum enclaves [38], and ARM TrustZone trustlets [9]) for isolating
sensitive code and data from hostile or compromised hosts.

Figure 2.1 : Threat Model: The adversary controls all privileged software layers on the platform,
and all hardware units except the CPU and memory. The enclave is the only trusted software
component.

An enclave platform implements primitives to create protected memory regions, called
enclaves, that contain both code and data and are isolated from all other software in the
system. The processor monitors all accesses to the enclave: only code running in the enclave
can access the enclave’s memory. As an example, Intel’s SGX instructions enable the cre-
ation of user-mode enclaves in the hosting application’s address space. The enclave platform
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allows the enclave program to access the entire address space of the hosting application.
This enables efficient I/O interaction with the external world — system calls are disabled in
enclave mode because the OS is untrusted. The external world can only transfer control to
the enclave at statically-defined locations called entrypoints. In addition to enabling isolated
execution, the enclave platform implements primitives for generating attested statements:
code inside an enclave can get messages signed using a per-processor private key along with
a hash-based measurement of the enclave. This allows other trusted entities to verify that
messages originated from the desired enclave running on a genuine platform. Finally, we as-
sume the enclave platform implements a cryptographically secure random number generator
which the enclave can use for cryptographic operations such as key generation.

Primitives to create enclaves can also be provided by hypervisors [60, 34, 127], with the
caveat that the hypervisor becomes part of the TCB, but in this thesis we assume enclaves
are provided directly by the processor. Regardless of the infrastructure used to implement
enclaves, we require that an enclave program enjoys the following guarantees and primitives:

Isolated Execution From its creation until teardown, an enclave’s memory and registers
are protected from reads or writes by all untrusted software: other enclaves, host application,
OS, hypervisor, system management code, etc. The only way an attacker affects the enclave’s
execution is by providing inputs, but this is of the enclave’s own volition as the enclave
performs the reads from the unprotected memory (host application’s address space) to fetch
inputs. Enclaves cannot invoke system calls to perform I/O with the external world because
the OS cannot be trusted to modify the enclave’s memory, and hence, the enclave proxies all
I/O interactions via the untrusted host application by reading and writing to its memory.
Note that since inputs are untrusted and outputs are observed, the enclave must implement
necessary checks to protect integrity and confidentiality. Furthermore, the trusted platform
does not promise performance guarantees, and in fact, does not protect from denial of service
attacks — at any point, the CPU may asynchronously exit from the enclave, but it takes
necessary measures to protect the enclave’s state.

Attested Statements Since the enclaves are launched by the untrusted code (by invoking
trusted primitives), an attacker controls the initial code and data of the enclave, whose binary
is typically stored in untrusted persistent storage or unprotected memory. Consequently, to
prove to a remote user that she is communicating with the expected enclave, the hardware
platform computes a hash digest (a.k.a. measurement) of the enclave while it is being
launched, which forms the cryptographic identity of the enclave — the hash is computed over
all components of the initial state that affects execution, including code and data memory,
page table permissions, etc. On invocation of the attestation primitive, the hardware signs
the message along with the identity, thus allowing a remote user to verify that the message
originated from an enclave with the expected identity which is running on a genuine trusted
platform [93]. Enclaves typically use this primitive to authenticate messages of the initial
key-exchange protocol to establish secure channels with remote entities.
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Randomness Enclaves require a hardware-based source of entropy for random bits (e.g.
rdrand instruction on Intel CPUs) in order to perform various cryptographic operations.

2.2.1 Intel SGX Enclaves

The SGX instructions allow an OS to create an enclave containing code and data, on be-
half of a user-level host application. The enclave’s memory resides within the untrusted host
application’s virtual address space, but is protected from accesses by that host application
or any privileged software — only the enclave code is allowed to access enclave memory. Fur-
thermore, to protect against physical attacks on the RAM, the SGX processor also encrypts
(using authenticated encryption) the data stored to the RAM chip.

The OS creates an enclave using a combination of instructions: ecreate, eadd, eextend,
and einit. The OS invokes ecreate to reserve protected memory for enclave use. To
populate the enclave with code and data, the host application uses a sequence of eadd and
eextend instructions. eadd loads code and data pages from non-enclave memory to the
enclave’s reserved memory. eextend extends the current enclave measurement with the
measurement of the newly added page. Finally, einit terminates the initialization phase,
which prevents any further modification to the enclave state (and measurement) from non-
enclave code. The host application transfers control to the enclave by invoking eenter, which
targets a programmer defined entry point inside the enclave (via a callgate-like mechanism).
The enclave executes until one of the following events occur: (1) enclave code invokes eexit
to transfer control to the host application, (2) enclave code incurs a fault or exception
(e.g. page fault, divide by 0 exception, etc.), or (3) the CPU receives a hardware interrupt
and transfers control to a privileged interrupt handler. In the case of faults, exceptions,
and interrupts, the CPU saves state (registers, etc.) in State Save Area (SSA) pages within
enclave memory, and can later resume the enclave in the same state by invoking the eresume
instruction. Although a compromised OS may use this design to launch denial of service
attacks, an enclave’s private state remains inaccessible to the attacker.

The reader may have observed that before enclave initialization, code and data is open
to eavesdropping and tampering by adversaries. For instance, an adversary may modify the
enclave’s binary such that it contains a vulnerability that leaks a user’s login credentials.
SGX provides an attestation primitive called ereport to defend against this class of attacks.
The enclave program performs remote attestation by invoking ereport on a chosen message,
which generates a hardware-signed report of the message along with the enclave’s measure-
ment. The enclave program sends this report to the remote verifier, who can then check
that the message originated within an enclave with the expected measurement, running on
a genuine SGX CPU. The enclave can use egetkey to attain a hardware-generated sealing
key which is unique to that enclave (and the particular CPU), and store secrets to untrusted
storage by encrypting them with the sealing key.
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2.2.2 RISC-V Sanctum Enclaves

In contrast to SGX, Sanctum’s primitives are implemented using a combination of soft-
ware (that executes at the highest privilege level), called the monitor, and minimal hardware
extensions to the RISC-V processor architecture. That being said, it presents a similar pro-
gramming model as SGX, and also guards various forms of side channel leaks that SGX does
not defend against, e.g., cache timing leaks, revelation of faults and exceptions to the OS,
page-level memory access patterns, etc. We refer the reader to Section 4, Table 12 of [37] for
a detailed comparison between SGX, Sanctum, ARM TrustZone, and other trusted execution
platforms.

Similar to SGX, Sanctum enables an OS to launch user-mode enclaves, on the behalf
of the hosting application, by invoking a sequence of monitor API calls. The OS invokes
create_enclave to commence the enclave launch, which reserves a metadata structure within
Sanctum’s private state — the metadata structure is used throughout the lifetime of the
enclave for implementing various security checks. Next, the OS commits a subset of physical
memory by calling assign_dram_region, and a set of threads by calling load_thread. The
OS is also responsible for setting up the page table translation by invoking load_page_table
— the enclave’s page tables are placed within the enclave’s memory to avoid tampering by
the OS and leaking memory access patterns via the accessed and dirty bits in page table
entries. copy_page is used to load pages from non-enclave memory to enclave memory during
the launch process. Once the launch process is completed, the OS invokes init_enclave to
to prevent further modifications by the untrusted code. Execution alternates between the
enclave and the untrusted code; the OS enters the enclave at a pre-configured entrypoint
using enter_enclave, and the enclave exits by calling exit_enclave. The enclave can request
attested statements by communicating with a special quoting enclave (using send_message
and read_message API). The OS can choose to teardown the enclave by sending interproces-
sor interrupts to exit out of the enclave threads, flushing the translation lookaside buffers, and
invoking delete_enclave — at this point, the monitor claims all physical memory (allocated
by assign_dram_region) and zeroes them out.

Side Channel Defenses The key contributions of Sanctum, relative to SGX, are its
mechanisms for preventing certain classes of side channel leaks. Sanctum shares resources
(e.g. memory, cache, TLB, branch target buffers) amongst enclaves and the OS either in
time or in space, but never both. For instance, a CPU core’s cache is flushed on control
transfers between the OS and the enclave, whereas the last level cache is partitioned such
that an enclave cannot target the same cache set as another enclave or the OS — this
prevents the attacker from learning an enclave’s memory access pattern by observing cache
hits or misses. As another example of side channel defense, the monitor does not notify the
OS on a fault or exception generated during an enclave’s execution, which prevent revealing
page-level access pattern (from page faults). This side channel was recently exploited [125]
to extract significant amount of sensitive data from Intel SGX enclaves.
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2.3 Sample Applications of Enclaves

2.3.1 One Time Password Service

We demonstrate the use of Intel SGX primitives using an example of a one-time password
(OTP) service, although the exposition extends naturally to other trusted platforms such
as RISC-V Sanctum. OTP is typically used in two factor authentication as an additional
step to traditional knowledge based authentication via username and passphrase. A user
demonstrates ownership of a pre-shared secret by providing a fresh, one-time password that is
derived deterministically from that secret. For instance, RSA SecurID R© is a hardware-based
OTP solution, where possession of a tamper-resistant hardware token is required during login.
In this scheme, a pre-shared secret is established between the OTP service and the hardware
token. From then on, both the authentication server and the token compute a fresh one-time
password (OTP) as a function of the pre-shared secret and time duration since the secret was
provisioned to the token. The user must provide the OTP value displayed on the token during
authentication, in addition to her username and passphrase, which the server compares
to the expected value. This OTP scheme is both expensive and inconvenient because it
requires distributing tamper-resistant hardware tokens physically to the users. Although
pure software implementations have been attempted, they are often prone to infrastructure
attacks from privileged OS-level malware, making such solutions untrustworthy.

The necessary primitives for implementing this protocol securely are (1) ability to per-
form the cryptographic operations (or any trusted computation) without interference from
the adversary, (2) protected memory for computing and storing secrets, (3) root of trust for
measurement and attestation, and (4) a secure entropy source for generating Diffie-Hellman
parameters during secure channel establishment between the user’s client and the authen-
tication server. Intel SGX and RISC-V Sanctum processors provide all of these primitives.
Hoekstra et al. [59] propose the following OTP scheme based on SGX, which we implement
(shown in Figure 2.2) — in Chapter 7, we formally verify this implementation (compiled
binary) to have confidentiality properties, i.e., we prove that it does not leak secret state
to adversary-visible memory in any execution. The scheme involves two enclaves: a setup
enclave that receives the pre-shared secret from the server and saves it securely to persistent
storage for future use, and an authentication enclave that reads the saved pre-shared secret
from persistent storage and communicates to the server to perform authentication. We only
discuss the setup enclave here, though most concepts apply to the authentication enclave as
well, and other enclaves in general.

In the following protocol, an OTP server provisions the pre-shared secret to a client,
which is running on a SGX CPU and a potentially malicious OS. This involves the following
steps:

0. The host application on the client sets up an enclave (using ecreate, eadd, eextend, and
einit instructions) that contains trusted code for the client side of the protocol.

1. The client and OTP server establish establish a TLS-like secure channel. They engage in
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an ephemeral Diffie-Hellman key exchange in order to establish a symmetric session_key.
To prevent man-in-the-middle attacks, the client authenticates all messages during the key
exchange via the use of ereport instruction — the messages produced by ereport contain
a signature over the Diffie-Hellman public key dh_pubkey and the enclave’s measurement.
The signature guarantees that the report was generated by an enclave on an Intel SGX
CPU, while the measurement guarantees that the reporting enclave was not tampered
during initialization. The server signs its messages using a RSA private key, with the
corresponding public key available within a certificate. After verifying the signatures,
both the client and OTP server compute the symmetric session_key.

2. The OTP server sends the pre-shared OTP secret to the client by encrypting it with the
session_key using the AES-GCM [102] cipher, which implements authenticated encryption
with associated data. The client decrypts the message using session_key to retrieve the
pre-shared otp_secret.

3. For future use during two-factor authentication, the client requests sealing_key (using
egetkey instruction), encrypts otp_secret using sealing_key, and writes the sealed_secret
to persistent storage.

An application might use enclave code to implement trusted computation such as the
cryptographic operations, stores secrets in the enclave heap, and uses non-enclave code (host
application, OS, VMM, etc.) for untrusted computation such as I/O. SGX prevents the
enclave code from invoking any privileged instructions such as system calls, thus forcing the
enclave to rely on non-enclave code to issue system calls, perform I/O, etc. SGX allows the
enclave to access the entire address space of the host application for efficient I/O, which
allows the enclave code to pass messages to/from the non-enclave code. For instance, to
send the Diffie-Hellman public key to the server, the enclave (1) invokes ereport with
enclave_state.dh_pubkey, (2) copies the report to the unprotected host application’s memory
app_heap, (3) invokes eexit to transfer control to the host app, and (4) waits for app to
invoke the socket system calls to send the report to the bank server. Over their lifetimes,
app and enclave perform several eenter and eexit, thus alternating between trusted and
untrusted computation.

2.3.2 VC3: Trustworthy Data Analytics using SGX

VC3 [107] is a map-reduce framework for computing on sensitive data within SGX en-
claves, whose architecture can be summarized in Figure 2.3. In VC3, only the map and reduce
functions are executed within enclaves, whereas the rest of the large Hadoop stack is un-
trusted and only manages encrypted data. The map and reduce functions receive encrypted
input from the untrusted Hadoop layer, decrypt the input within the enclave’s private mem-
ory, process it, and send the encrypted result (e.g., list of key-value pairs to be sent to the
reducer) back to Hadoop.
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Figure 2.3 : Map-Reduce computation in VC3. The Hadoop layer only accesses encrypted data, and
communication between enclaves is encrypted via TLS. This figure is derived from Figure 3 of [107].

We illustrate the use of enclaves in hardening a sample Map-Reduce program that com-
putes on sensitive user data, whose reducer function is shown in Figure 2.4. We show a
simple wordcount application that counts the number of occurrences of distinct words in
a sensitive document. The reducer method (implemented within an SGX enclave) fetches
encrypted key-value pairs from the untrusted Hadoop’s memory, decrypts them, computes
a sum of all the input values, and sends the encrypted result to the user via the untrusted
Hadoop platform. Consider the following attack scenarios on this program. First, with-
out SGX-enabled protections, any kernel-level malware can extract the decrypted key-value
pairs in the reducer’s memory; hardware-based isolation guarantees of SGX prevents this
attack. Second, prior to launching the Map-Reduce program, the attacker may replace the
reducer’s binary (which was uploaded by the user) to a buggy version that emits all the
secret data to the attacker; SGX’s measurement and attestation primitives enable the user
to verify that the enclave binary is equal to the one that the user expects. Finally, the
enclave may encrypt and store secrets to disk, and SGX’s sealing primitive guarantees that
only the intended enclave is able to decrypt them. The primitives of enclave platforms (such
as SGX and Sanctum) are necessary for secure processing of sensitive data, amongst other
security-critical applications.

2.4 Challenges of Trusted Computing using Enclaves
The primitives offered by trusted enclave platforms — isolated execution, attested state-

ments, and a secure entropy source — are necessary for any form of trustworthy computing
on sensitive data, but not sufficient by themselves. The enclave programs must also be
secure, which includes, at the very least, a provable guarantee that sensitive data is never
leaked to the attacker in any execution, under any potential attack scenario — we call this
property confidentiality. However, guaranteeing that enclave programs satisfy confidentiality
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Figure 2.4 : Executed within an enclave, this reducer method computes on sensitive cleartext data.

has the following challenges.

Formal Model of Enclave Programs, Platforms, and Adversaries Proving confi-
dentiality requires precise reasoning of all potential executions of the enclave program in
the presence of a privileged software adversary, which requires formalization of the following
aspects:

• Enclave platform’s primitives, e.g., the semantics of x86 and SGX instructions — this
forms the contract between the enclave developer and the underlying enclave platform.
Furthermore, due to the large diversity in trusted execution environments available on
mainstream processors, one challenge is developing a formal framework that allows us
to reason about enclave execution generally across a wide variety of platforms; this
would also allow us to develop enclave programs that port seamlessly across different
platforms.

• Models of the privileged software adversaries, i.e., the set of allowed operations and
observations. A formal adversary model enables us to establish theorems about security
properties offered to enclave programs on enclave platforms with privileged software
adversaries.

Preventing Explicit Leaks via Outputs Like any other application, to serve a useful
purpose, an enclave must interact with the external world to receive inputs and produce
outputs, and this gives the adversary a mechanism to interact with the enclave and exploit
any of its vulnerabilities.

For instance, since the enclave fetches its inputs by reading from non-enclave memory,
the attacker can modify non-enclave memory at any time and perform time-of-check-to-time-
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...
/* size_field stored in a struct in

non-enclave memory */
memcpy(app_heap, sealed_secret, size_field);
...

long compute_sum(char *v) {
...
/* sprintf without any size checks */
sprintf(log, "%s", v); //perform logging
...

}

if (secret_age > 65) {
seniorsCount++;
specialComputation();

} else {
normalComputation();

}

Figure 2.5 : Explicit leaks from memory safety errors (left) and implicit leaks from side channels
(right)

of-use style attacks on an insecure enclave. In fact, the enclave code in Figure 2.2 (relevant
snippet repeated in Figure 2.5) has such a vulnerability: the enclave copies encrypted data
from enclave memory to non-enclave memory, but the size of the data copied is determined by
a variable size_field, which resides in a struct in non-enclave memory. Thus, by manipulating
the value of this variable the adversary can trick the enclave code into leaking secrets to
non-enclave memory. To defend against such class of attacks, the enclave should copy the
inputs to protected memory before computing on them. Furthermore, since the attacker
can access any outputs written to non-enclave memory, the enclaves should encrypt secrets
before writing them to non-enclave memory. For instance, the enclave code in Figure 2.4
(relevant snippet repeated in Figure 2.5) could be vulnerable if the compute_sum procedure
has a memory safety bug that overwrites the part of memory holding the cryptographic key
aesKey, which could be modified to an attacker-chosen value or leaked to non-enclave memory,
thus breaking the semantic security assumed of the AES encryption. As shown in Figure 2.5,
the buggy code may invoke sprintf without checking that the output buffer log is sufficiently
large; this causes sprintf to overwrite memory beyond log, which may include aesKey, or
even a code pointer (e.g. return address) on the program’s stack which leads to control
flow integrity violations [117] allowing the attacker to run arbitrary code within the enclave.
Writing safe enclaves that avoid such attacks is non-trivial, and prior experience suggests
that non-experts make similar errors as the aforementioned vulnerabilities — memory safety
bugs in software written in low-level languages such as C/C++ are one of the oldest and
most widespread problems in computer security [117].

Preventing Implicit Leaks via Side Channels To add to the developer’s woes, many
mainstream trusted platforms do not offer idealized execution guarantees. While they may
offer isolated execution, they do not necessarily offer strict confidentiality. Due to various
performance-related reasons, platforms, such as Intel SGX, do end up leaking information
about the enclave’s execution via various software and hardware side channels (e.g. cache



2.4. CHALLENGES OF TRUSTED COMPUTING USING ENCLAVES 20

timing attacks, memory access patterns), and preventing these leaks requires even greater
understanding of hardware, careful programming practices, and tool support for automati-
cally enforcing and verifying defenses. Consider the enclave snippet in Figure 2.5 where a
secret state (or input) is used to conditionally execute code within the if branch. Assume
that the adversary can observe all the page-level accesses made by the enclave to code and
data pages — we discuss in Chapter 9 how an adversary can leverage the compromised OS
on a SGX platform to observe this side channel information. Based on value of sensitive
state, if the user’s age is above 65, the attacker observes an access to the data page holding
the seniorsCount variable, which is not performed if the user’s age is below 65, thus allowing
the adversary to infer the outcome of the branch condition. Furthermore, if the x86 instruc-
tions implementing the specialComputation procedure are placed on a separate page than
the instructions implementing the normalComputation procedure, or if the procedures have
different number of instructions, then the adversary can infer the secret branch condition.
Chapter 9 contains other examples of such leaks, which are non-trivial to defend against,
and require automatic tool support.

Software defenses against side channels are still a very active area of research, as typ-
ical solutions either provide insufficient defenses, offer limited expressiveness, cause severe
performance penalties, and offer limited usability for non-expert developers. This disserta-
tion presents a novel methodology for safely programming enclaves and formally certifying
the absence of vulnerabilities that leak secrets, both via explicit outputs and certain side
channels.
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Part I

Trusted Platforms: Modeling and
Verification
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Foreword on Part I
Despite growing interest, there has only been informal security analysis of enclave pro-

grams, platforms, and threat models. This lack of formalization has several consequences.
Developers of enclave programs cannot formally reason about security of their programs:
incorrect use of hardware primitives or informal characterization of attacker’s abilities lead
to vulnerabilities in the enclave program. Furthermore, hardware designers cannot formally
state security properties of their architectures and are unable to reason about potential vul-
nerabilities of enclaves running on their hardware. This part of the thesis bridges these gaps
by developing a formal framework to reason about an enclave’s execution in the presence of
a privileged software adversary.

Specifically, we present a formal model of enclave programs and their execution (Chap-
ter 3), and a formal model of the enclave platform and the privileged software adversaries
(Chapter 4). Furthermore, to generalize our guarantees beyond a specific platform, we
propose an abstract trusted platform (Chapter 4) whose operations simulate the primitives
offered by popular platforms such as SGX and Sanctum. We then use these formal models to
establish a theorem (Chapter 5) that any enclave program enjoys a set of security properties
when run on the abstract platform (and consequently, SGX, Sanctum, etc.), thus enabling
us to reason about enclave executions on any number of enclave platforms in the presence
of a privileged adversary. The contributions in this part of the thesis are vital to our goal of
certifying confidentiality properties of enclave software with a tiny trusted computing base.
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Chapter 3

Formal Semantics of Enclave Execution

In this chapter, we define a formal semantics of enclave execution, which includes: 1) a
characterization of the enclave’s state, inputs and outputs; 2) formalization of the syntax
and semantics of enclave programs; and 3) a model of computation for enclave programs.
Not surprisingly, the model of enclave computation assumes certain properties of the enclave
platform, e.g., isolation of the enclave’s private state from privileged software layers, absence
of undocumented side channels that reveal enclave’s private state, etc. Therefore, we specify
the expected guarantee that an enclave expects from the enclave platform in Chapter 5,
termed secure remote execution, but in this chapter we assume a trusted enclave platform and
define the enclave’s semantics based on this assumption. The formal framework developed in
this chapter enables the developer (or user) to precisely define the expected runtime behavior
of an enclave in the presence of a privileged software adversary — when the user outsources
an enclave to a remote platform, she seeks a guarantee that the enclave be executed according
to the expected behavior.

In the remainder of this chapter, we define an enclave’s representation as provisioned by
the user (Section 3.1), enclave’s state (Section 3.2), inputs and outputs (Section 3.3), syntax
and semantics of enclave code (Section 3.4 and Section 3.5), and the model of computation
within enclaves (Section 3.6).

3.1 Enclave Program Representation
An enclave platform implements primitives to create protected memory regions, called

enclaves, that contain both code and data and are isolated from all other software in the
system. To outsource the enclave’s execution, the user sends the enclave program to a remote
enclave platform over an untrusted channel (Figure 3.1). The untrusted OS invokes the
enclave platform’s primitives to launch an enclave containing the program. While running,
an enclave may invoke the enclave platform’s primitives to get attested statements and
random bits. The enclave may also send outputs to the user by proxying them via the host
application’s unprotected memory.
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Figure 3.1 : Outsourced Execution of Enclave Program.

At the time of launch, an enclave is assigned a protected address range of virtual memory
containing a set of code pages, which holds the enclave’s user-mode instructions, and a set
of data pages, which can be used as enclave’s private heap and stack space. The user
specifies the expected initial state of enclave’s memory, i.e., the value stored at each virtual
address within this range, at the time of launch. The enclave’s configuration also includes
(1) the entrypoint address, which is the target of any control transfer from non-enclave mode
into this enclave, (2) the virtual address range evrange which maps the enclave’s protected
memory (i.e., each address in evrange either maps to a physical address that is owned by the
enclave or is inaccessible), and (3) permissions for each address within evrange. The initial
state of enclave memory and the aforementioned configuration forms the unique identity (or
representation) of the enclave, and must be provided by the user in order for the enclave
platform to launch the enclave. Note that since the attacker may modify the enclave’s identity
prior to launch, the enclave platform includes a hash-based measurement of this identity in
all attested statements, thus enabling the user to verify that the enclave (that produced the
attested statement) was launched with the expected initial state and configuration.

More formally, the user (in Figure 3.1) ships an enclave e = (inite, confige) — e is
the enclave’s unique identity or representation. inite specifies the enclave’s initial state of
memory at launch time, and it specifies a value at each address within the protected range
confige .evrange. The configuration confige defines the enclave’s entrypoint confige .entrypoint ,
its virtual address range confige .evrange, and its access permissions confige .acl .

3.2 Enclave’s State
Like any program, an enclave maintains some private state (inaccessible to the privileged

software adversary), receives inputs and sends outputs (both accessible by the privileged ad-
versary), and computes by invoking machine instructions (e.g., user-mode x86 instructions).
At any point of time, the enclave platform is in some state σ, which we leave abstract here
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because different enclave platforms (e.g., SGX and Sanctum) will maintain different types of
state. That being said, we can concretely define an enclave’s private state, which all enclave
platforms are required to provide to an enclave. The enclave’s state Ee(σ) is a projection
function of the platform’s state σ, and it contains a valuation of the following state variables:
(1) enclave memory vmem : VA → W which is a partial map from virtual addresses within
confige .evrange to machine words, (2) a set of general-purpose registers regs : N →W and
status flags flags : N → B, which are indexed by a natural number, (3) program counter
pc : VA, which is a virtual address within confige .evrange, and (4) configuration confige,
which is copied verbatim from e and remains constant throughout the enclave’s execution.
Each of the aforementioned components of an enclave’s state remains inaccessible to the
untrusted privileged software during an enclave’s execution — this is assumed in our defini-
tion of enclave execution, and it is implied by the platform’s safety guarantees (defined in
Chapter 5). Recall that inite specifies the state of enclave’s memory (vmem) at the time of
launch. We abuse notation slightly to also write inite(Ee(σ)) to mean that Ee(σ) is in its
launch state, i.e., the value of vmem in Ee(σ) is inite.

3.3 Enclave’s Inputs and Outputs
In addition to the private state Ee(σ), an enclave accesses non-enclave memory for reading

inputs and writing outputs, thus allowing the untrusted software to control their values —
since addresses outside confige .evrange can be read and modified by both the adversary and
the enclave e, we assume reads performed by e from these addresses return unconstrained
values. The enclave may also invoke the enclave platform’s primitive to get random numbers,
which we also treat as inputs to e. Therefore, we define enclave’s input in state σ to be Ie(σ)

.
=

〈IRe (σ), IUe (σ)〉, where IRe (σ) denotes the random input and IUe (σ) denotes the contents of
untrusted memory (which the untrusted OS may read and write). IRe (σ) is the random
number that is provided by the platform while executing the instruction in state σ (ε if
randomness was not requested in that instruction). IUe (σ) is an evaluation to non-enclave
memory, which is a partial map from virtual addresses (outside confige .evrange) to machine
words. Similarly, we define enclave’s output Oe(σ) to be a projection of the machine state
that e may write and the untrusted privileged software may read; specifically, Oe(σ) specifies
an evaluation to non-enclave memory, which is a partial map from virtual addresses (outside
confige .evrange) to words. Note that a privileged software attacker runs concurrently with
e, and therefore maintains a component of state σ that is inaccessible to e.

3.4 Syntax of Enclave Code
The enclave computes by invoking user-mode instructions for performing bitvector oper-

ations on registers, memory accesses, and invoking primitives for generating attested state-
ments, randomness, and exiting enclave mode. These instructions may read enclave’s private
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v ∈ Vars ::= regs | flags | vmem | pc
c ∈ Constants
q ∈ Relations ::= lt | gt | slt | sgt | . . .
f ∈ Functions ::= add | xor | extract | concat | . . .
e ∈ Expr ::= v | c | f(e, . . . , e) | q(e, . . . , e)
φ ∈ Formula ::= true | false | e = e | q(e, . . . , e) | φ ∧ φ | ¬φ
i ∈ Instr ::= storen(e, e) | v := loadn(e) | v := e |

jmp e | cjmp(φ, e, e) | call e | ret
exit | attest(e, e) | v := rand()

p ∈ Program ::= i ; i

Figure 3.2 : Syntax of Enclave code.

state and inputs and may update the enclave’s state and produce outputs. In this section,
we formalize the syntax for each of enclave’s allowed instructions.

To encode both CISC-like instructions in x86-64 and RISC instructions in RISC-V Sanc-
tum, we define a RISC-like grammar as shown in Figure 3.2. Each machine code instruction
in the enclave program is translated to a sequence of instructions (Instr) in the presented
language. Translators exist for lifting x86-64 instructions (and RISC-V instructions) to this
language, which bears strong resemblance to the BAP [31] intermediate language — the
BAP framework implements a translation for x86-64 to BAP intermediate language, which
we use with minor modifications 1. As we show later in this dissertation, by using this sim-
pler language, we simplify the implementation of enclave program verifiers and also reuse
large parts of the verification toolchain across different trusted hardware platforms. The
code of an enclave program, denoted p, is a sequence of instructions, with optional labels
encoding the address of that instruction — since an x86 instruction is encoded using multiple
instructions from Instr, not all instructions in p are given an address.

These instructions cause updates to the enclave’s state Ee(σ). In Figure 3.2, we list the
state variables Vars (containing regs, flags, and vmem), which are components of Ee(σ) and
are accessed by the instructions in Instr . Recall that regs are CPU registers (e.g., rax, rsp,
etc.) that are 64-bit values in the case of x64, and flags are CPU flags (e.g., CF, ZF, etc.)
that are boolean values. Virtual memory (vmem) is modeled as a map from 64-bit bit-vectors
to 8-bit bit-vectors. The instruction pointer pc stores the address of the next instruction to
be executed; although pc is a component of enclave state, it is updated automatically by the
CPU and is therefore not listed explicitly in Vars .

Memory accesses are encoded using loadn and storen functions, where n denotes the
size of the data in bytes. Assignments can be one of following two forms: (1) v := e sets
v ∈ Vars to the value of expression e, which is used to encode bitvector operations on
registers such as add, (2) reg := loadn(e) sets reg ∈ regs to the value of the memory at the

1the translation assumes single thread execution, a form of control flow integrity (which we later verify
to hold on the enclave code), and separation of code and data: executable memory is non-writable
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address that e evaluates to. Control flow is changed using call, ret, and jmp instructions,
which override the value of pc. Both call and ret are semantically equivalent to the x64 call
and return instructions, respectively — call pushes the return address on the stack, and
the ret instruction pops the return address from the stack and jumps to the instruction at
that address. jmp e encodes an unconditional jump by setting pc to the value of e in that
platform’s state; cjmp(φ, e, e) encodes conditional jumps.

Finally, an enclave may invoke primitives for generating attested statements, random
bytes, and exiting to non-enclave code. attest(e1, e2) takes as argument e1 the starting
address of a fixed-size buffer (e.g., 64 bytes), and writes the attested statement in a fixed-
size buffer starting at address e2. rand(e) produces a random byte at address e. exit sets pc
to some non-enclave address, and puts the CPU to non-enclave mode.

3.5 Semantics of Enclave Code
The enclave platform must guarantee an operational semantics for each instruction in

Instr . The operational semantics serves as a formal contract between the user (or enclave
developer) and the enclave platform, and we define the expected execution of an enclave
program based on this semantics.

We formalize the operational semantics for the instructions (Instr) in Figure 3.3. Note
that we only define the syntax and semantics for instructions executed in enclave mode —
the platform’s safety guarantee lets us assume that enclave’s state is unmodified by any
instruction executed in non-enclave mode. Let instr(σ) be the instruction executed in state
σ (computed from the instruction pointer pc and the contents of vmem). The semantics
of an instruction i ∈ Instr is given by the relation ⇓, where 〈i, σ〉 ⇓ σ′ if and only if
i = instr(σ) and there is an execution of i starting at σ and ending in σ′ (as per the
operational semantics). The instructions update the platform’s state σ, which in turn causes
updates to enclave’s state Ee(σ) and output Oe(σ) since they are projections of σ; recall
that σ contains a valuation of variables in Vars . By definition, an enclave cannot modify
anything beyond its private state Ee(σ) and output Oe(σ). The operational semantics of an
instruction ß ∈ Instr is defined as part of the platform’s transition relation  : (σi, σj) ∈  
indicates that the platform can transition from σi to σj using the operational semantics of
some instruction in Figure 3.3.

While defining the operational semantics, we axiomatize memory accesses loadn and
storen using the theory of arrays [105], and bit-vector operations (add, xor, etc) using SMT’s
bit-vector theory. We assume that attested statements are produced using a quoting scheme
that is unforgeable under chosen message attacks (UF-CMA); we do not model the cryp-
tography of this scheme, and refer the reader to [93] for a formal treatment of this subject.
Therefore, we only provide an abstract description of the semantics of attest, which produces
a signature over the input message and stores it in memory. The operational semantics al-
lows rand to return an arbitrary value. The exit instruction sets the CPU to non-enclave
mode, and the pc to an address in non-enclave memory.
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〈storen(ea, ed), σ〉 ⇓ σ
[
vmem 7→ σ(vmem)[σ(ea) := σ(ed)]

]

〈v := loadn(ea), σ〉 ⇓ σ
[

v 7→ σ(vmem)[σ(ea)]
]

〈v := e, σ〉 ⇓ σ
[

v 7→ σ(e)
]

〈jmp e, σ〉 ⇓ σ
[
pc 7→ σ(e)

]

〈cjmp(φ, e1, e2), σ〉 ⇓ σ
[
pc 7→ if (σ(φ)) {σ(e1)} else {σ(e2)}

]

〈call e, σ〉 ⇓ σ
[
pc 7→ σ(e), rsp 7→ σ(rsp− 8), vmem 7→ σ(vmem)[σ(rsp− 8) := next(σ(pc))]

]

〈ret, σ〉 ⇓ σ
[
pc 7→ σ(vmem)[σ(rsp)], rsp 7→ σ(rsp + 8)

]

〈attest(e1, e2), σ〉 ⇓ σ
[
vmem 7→ σ(vmem)[e2 . . . e2 + 428 := sign(vmem[e1 . . . e1 + 64], µ(curr(σ)))

]

〈v := rand(), σ〉 ⇓ σ
[

v 7→ ∗
]

Figure 3.3 : Operational semantics of i ∈ Instr : (σ, σ′) ∈  iff 〈i, σ〉 ⇓ σ′ and instr(σ) = i,
where instr(σ) is the instruction to be executed next when the platform is in state σ (computed
using values of vmem and pc in σ). σ

[
x 7→ y

]
denotes a state that is identical to σ, except variable x

evaluates to y. The memory update expression vmem[x := y] returns a new memory that is equivalent
to vmem, except for index x — multibyte-sized accesses follow the processor’s endianness semantics.
next(e) is the address of the subsequent instruction in vmem after decoding the instruction starting
at address e.
.
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3.6 Model of Execution within Enclaves
An enclave is a state transition system that computes by performing steps. In each step,

the enclave platform first identifies the instruction to execute (based on the current state
of vmem and pc), and then transitions to the next state based on the operational semantics
of that instruction (which we defined in Section 3.5). Our semantics of enclave execution
assumes that the platform executes instructions atomically, i.e., each step of execution is
produced by an instruction invoked by the enclave — we only consider single threaded
enclaves in this dissertation. Furthermore, the platform also ensures determinism modulo
the input Ie(σ), i.e., the next state of the enclave is a function of the current state Ee(σ)
and input Ie(σ) (which includes IUe (σ) and IRe (σ)). This is not a restriction in practice as
both Sanctum and SGX enclaves interact with the external world only via memory-based
I/O (IUe (σ)), and besides the random bits (IRe (σ)) from the platform’s entropy source, there
are no other sources of non-determinism. In other words, the privileged software only affects
the enclave by controlling the input IUe (σ) at each step. This property is an assumption
that we make while defining the enclave’s execution, so we must prove it for each enclave
platform. We must prove that the platform does not contain a vulnerability that grants
the privileged software another mechanism to affect the enclave’s execution — as we show
later (in Chapter 5), this property follows from the secure remote execution guarantee of the
enclave platform. Note that current-generation x86 processors have several privileged-mode
instructions with partially-specified behavior (e.g. SMM mode instructions); however, this
does not affect our model of enclave execution because: 1) these instructions are not allowed
in enclave mode of execution, and 2) these instructions do not affect enclave-specific micro-
architectural state, so a privileged software attacker cannot invoke them to tamper with an
enclave’s execution.

The enclave computes by performing steps, where each step executes an instruction im-
plemented by the enclave platform (which we defined in Figure 3.2 and Figure 3.3). The
enclave’s allowed instructions include bitvector operations on registers, memory accesses, and
the invocation of primitives for generating attested statements, randomness, and exiting en-
clave mode. While the platform also includes privileged instructions (e.g., MSR instructions
in x86) which a privileged software layer can invoke, we do not have to precisely define their
semantics and simply assume that they have no effect on enclave’s state Ee(σ) — again, the
platform’s guarantees (specified in Chapter 5) implies that such privileged instructions only
affect the privileged software’s state and leave the enclave’s state unmodified. This is a huge
source of relief for us because modern x86 processors have several hundred such instructions,
and to our knowledge, no formal specification exists for the entire instruction set.

This model of execution lets us define the platform’s transition relation  , where (σi,
σj) ∈  indicates that the platform can transition from σi to σj; from hereon, we write this
in infix form as σi  σj. When the platform transitions from σi to σj, we also have that
the enclave’s state is updated from Ee(σi) to Ee(σj). Execution alternates between enclave
code and non-enclave code, which includes the host application and privileged software
layers. Therefore, a state transition may occur in either enclave or non-enclave mode — let
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the function curr(σ) denote the current mode of the platform, where curr(σ) = e iff the
platform executes enclave e in state σ, else curr(σ) = OS (we write OS to mean either OS
or Hypervisor, without loss of generality). For any state transition σi  σj on this platform,
we can derive the following statements:

1. if non-enclave software is executing in σi (i.e., curr(σi) = OS), then Ee(σi) = Ee(σj).

2. if the enclave is executing in σi (i.e., curr(σi) = e), then Ee(σj) is a function of
Ee(σi) and Ie(σi). This is because a safe enclave platform ensures that an enclave e is
deterministic relative to its input Ie(σ).

State transitions of the platform are caused either via software instructions or device
I/O (via memory-mapped peripherals or direct memory access function). Since devices can
produce arbitrary values, the platform executes non-deterministically, and therefore we treat
 as a relation as opposed to a function — the sources of non-determinism for the platform
include randomness from entropy sources, direct memory accesses from I/O peripherals,
instructions that observe some physical phenomena such as CPU temperature, etc. Let us
refer to these bits of non-determinism in a particular state as IP (σ), which is only available
to the privileged software — the enclave’s source of non-determinism is captured in Ie(σ),
which may be derived from IP (σ) by the privileged software. Since IP (σ) captures all of
the platform’s non-determinism, we require that the platform’s transition relation  be
deterministic relative to IP (σ).

An execution trace of the platform is an unbounded-length sequence of states denoted
π = 〈σ0, σ1, . . . , σn〉, such that ∀i. σi  σi+1; π[j] refers to the jth element of the trace.
Since the privileged software may pause and resume e at any time, we define e’s execution
to be the subsequence of states from π where e is executing. Using the curr function, we
can filter out the steps in π where e is not executing. We write the resulting sequence as
〈σ′0, σ′1, . . . , σ′m〉2 where inite(Ee(σ

′
0)) ∧ ∀i. curr(σ′i) = e. This subsequence is the enclave’s

execution trace: 〈(Ie(σ′0), Ee(σ
′
0), Oe(σ

′
0)), . . . , (Ie(σ

′
m), Ee(σ

′
m), Oe(σ

′
m))〉.

The privileged software adversary is executing concurrently with the enclave, which allows
it to observe and tamper the enclave’s execution (as we define in Section 4.2). For the above
enclave execution trace, the adversary’s observation is 〈obse(σ

′
0), obse(σ

′
1), . . . , obse(σ

′
m)〉.

Since an execution trace of e only includes the steps where e invokes an instruction (whereas
the platform also executes privileged software), the privileged software may provide a fresh,
arbitrary input IUe (σ) in any state σ′ in 〈(Ie(σ′0), Ee(σ

′
0), Oe(σ

′
0)), . . . , (Ie(σ

′
m), Ee(σ

′
m), Oe(σ

′
m))〉.

Finally, we define the behaviors of an enclave e to be the expected execution (using the
formal semantics defined in this chapter) under any input sequence. When a user provisions
an enclave to a platform, she expects the platform to implement the enclave’s behaviors.

Definition 1 The behaviors of an enclave e, denoted JeK, is the set of finite or infinite
execution traces, containing an execution trace for each input sequence comprising values of

2In standard functional constructs, we have that 〈σ′0, σ′1, . . . , σ′m〉 = filter(λσ. curr(σ) = e, π).
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non-enclave memory and randomness at each step of execution.

JeK = {〈(Ie(σ′0), Ee(σ
′
0), Oe(σ

′
0)), . . .〉 | inite(Ee(σ0))} (3.1)

We must account for all potential input sequences in JeK because e may receive any value
of input Ie(σ) at any step. We note that JeK may contain traces of any length, and also
contain prefixes of any other trace in JeK, i.e., it is prefix-closed. We adopt this definition
of JeK because the privileged software can deny service by destroying the enclave at any
time. Due to the determinism property of enclave programs, a specific sequence of inputs
〈Ie(σ′0), Ie(σ

′
1), . . . , Ie(σ

′
m)〉 uniquely identifies a trace from JeK and determines the expected

execution trace of e under that sequence of inputs.

3.7 Summary
In this chapter, we developed a formal framework for reasoning about an enclave’s exe-

cution in the presence of a privileged software adversary. Specifically, we defined a formal
semantics of enclave execution, which includes: 1) a precise description of enclave’s state,
inputs, and outputs; 2) a formalization of the syntax and semantics of enclave programs; and
3) a model of computation for enclave programs. The contribution of this chapter is neces-
sary for our goal of formally analyzing the behavior of enclave programs in the presence of
a privileged adversary, and certifying confidentiality properties of enclave programs against
such a powerful adversary.
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Chapter 4

Formal Modeling of Trusted Platforms
and Privileged Adversaries

In Chapter 3, we developed a formal semantics for reasoning about enclave execution,
while assuming that the platform guarantees a set of security properties to the enclave e.g.
isolation of enclave private state from privileged software, etc. These properties, collectively
termed secure remote execution, are specified and verified on models of SGX and Sanctum
platforms in Chapter 5. However, any verification of an enclave platform necessitates the
development of a formal model of that platform, consisting of formalization of its state and
allowed operations. The focus of this chapter is to build a formal model of enclave platforms,
including the first formal models of SGX and Sanctum platforms.

First, to generalize our verification of enclave platforms beyond the specifics of SGX or
Sanctum, we develop an idealized abstraction, named Trusted Abstract Platform (TAP),
consisting of a small set of formally-specified primitives sufficient to implement enclave exe-
cution. The TAP is a general framework for reasoning about and comparing different enclave
platforms, adversary models and security guarantees. For enclave platform implementers, the
TAP serves as a golden model or specification of platform behavior. From the perspective of
enclave program developers, the TAP provides a means of reasoning about program security
without being bogged down by implementation details of individual enclave platforms.

Next, we formalize the attacker model by defining the set of operations and observations
that a privileged software adversary can perform on a TAP. This formalization is necessary
for proving that an enclave platform, such as SGX and Sanctum, provide security guarantees
to the enclave program.

Since we intend to use the TAP to reason about the security of Intel SGX and Sanctum,
we then develop formal models of SGX and Sanctum and present machine-checked proofs
showing that SGX and Sanctum are refinements of our idealized TAP: every operation on
SGX and Sanctum, including the operations of an adversary, can be mapped to a corre-
sponding TAP operation. Since all executions of an enclave on SGX and Sanctum can be
simulated by a TAP enclave, any safety property of TAP is also a safety property of SGX
and Sanctum models. There is a caveat that SGX only refines a version of TAP which leaks
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some side channel observations to the attacker (see Section 4.4), therefore providing a weaker
confidentiality guarantee — this form of parameterization demonstrates that the TAP allows
us to develop a taxonomy of enclave platforms, each of which provides varying guarantees
against different threat models.

This chapter is structured as follows. Section 4.1 defines the TAP, including its state
and allowed operations. Section 4.2 formalizes the attacker’s operations and observations.
Section 4.3 discusses the methodology for proving that a concrete enclave platform is a re-
finement of the TAP, and we prove the refinement property for the SGX model in Section 4.4
and the Sanctum model in Section 4.5.

4.1 The Trusted Abstract Platform

Figure 4.1 : TAP: state and operations

The TAP exposes a set of operations to the software layers, as illustrated in Figure 4.1.
It implements operations for the OS to create and schedule enclaves, and operations for the
enclave program to access memory and transfer control.

The trusted abstract platform (TAP) consists of a processor with a program counter,
general purpose registers, virtual address translation and a set of primitives to support
enclave execution. TAP is modeled as a finite state transition system, with  being the
transition relation. We now define the state variables and operations supported by TAP.

4.1.1 TAP State Variables

The states Σ of the TAP are a defined as a valuation of the state variables Vars . These
variables are described in Table 4.1. pc, regs, mem have their usual meanings. addr_map
maps individual virtual addresses to physical addresses and permissions. This is unlike a
typical processor which uses a page table to map virtual page numbers to physical page
numbers. The TAP is an abstraction and must abstract a diverse set of architectures with



4.1. THE TRUSTED ABSTRACT PLATFORM 34

State Var. Type Description

pc VA The program counter.
regs N→W Architectural registers: map from natural numbers

to words.
mem PA→W Physical memory: a map from physical addresses to

words.
addr_map VA→ (ACL× PA) Map from virtual addresses to permissions and phys-

ical addresses for current process.
cache Set→ (B× Tag) Direct-mapped cache: map from cache sets to valid

bits and cache tags.
current_eid EI Current enclave. current_eid = OS means that

no enclave is being executed.
owner PA→ EI Maps a physical address to the enclave (or OS) that

has access rights to that address.
enc_metadata EI → EM Map from enclave ids to metadata record type (EM).
os_metadata EM Record that stores a checkpoint of privileged soft-

ware state.

Table 4.1 : Description of TAP State Variables.

different page table structures and page sizes. Therefore, it maps each virtual address to a
physical address.

The TAP includes a model of cache which is used to show that the TAP preserves confi-
dentiality in the presence of a software adversary attempting cache attacks. The cache model
is of a physically-indexed physically-tagged direct-mapped cache. Note that ensuring con-
fidentiality for a direct-mapped cache also ensures confidentiality for set-associative caches.
The TAP cache model leaves the mapping of physical addresses to cache sets and mapping
of physical addresses to cache tags uninterpreted. In other words, the TAP formalism only
requires that the cache set and cache tag for each memory access be deterministic functions
of the physical address. The exact function is specified by implementations (refinements) of
TAP, which are models of SGX and Sanctum in this paper.

The variable current_eid tracks the enclave currently being executed, and it equals
OS if the CPU is in non-enclave mode . The variable owner maps each physical address
to the enclave which exclusively “owns” it. If owner[p] = e, only enclave e can access
(fetch/read/write) this word of memory. We abuse notation and use e to refer to both the
“enclave id,” a unique integer assigned by the platform to an enclave, as well the enclave
itself. Attempts to access physical address p by all other enclaves and privileged software
are blocked. owner[p] = OS means that address p is not allocated to any enclave. owner

corresponds to the EPCM in SGX and the DRAM bitmap in Sanctum. It is the primary
mechanism to enforce isolation of enclave’s private memory. enc_metadata stores metadata
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about each initialized enclave.

State var. Description

entrypoint Enclave entrypoint.
addr_map Virtual to physical mapping/permissions.
excl_vaddr Set of private virtual addresses.
measurement Enclave measurement.
pc Saved PC (in case of interrupt).
regs Saved registers (in case of interrupt).
paused Flag set only when enclave is interrupted.

Table 4.2 : Fields of the enc_metadata record.

Enclave Metadata: Table 4.2 lists various fields within the enclave metadata record.
It stores the entrypoint to the enclave, its virtual to physical mappings and what set of
virtual addresses are private to the enclave. The pc and regs fields are used to checkpoint
enclave state when it is interrupted. The paused flag is set to true only when an enclave is
interrupted and ensures that enclaves cannot be tricked into resuming execution from invalid
state.

Privileged Software Metadata: The os_metadata record contains three fields: pc, regs,
and addr_map. The pc and regs fields store a checkpoint of privileged software state.
These are initialized when entering enclave state and restored when the enclave exits. The
addr_map field is the privileged software’s virtual to physical address mapping and associated
permissions.

4.1.2 TAP Operations

Table 4.3 describes the operations supported by the TAP. We present the detailed spec-
ification (in the form of reference implementation) of these operations in Appendix A, and
use this section to present a general overview of their semantics. The operations fetch,
load, store work as usual. The platform guarantees that memory owned by enclave e is not
accessible to other enclaves or privileged software. Each of these operations update cache
state, set the access bit in addr_map, and return whether the operation was a hit or a miss
in the cache.

The virtual to physical mappings of both enclave and privileged software are controlled
using get_addr_map and set_addr_map. As enclave’s memory access pattern can leak
via observation of the access/present bits in addr_map. get_addr_map(e, v) must fail (on
a secure TAP) for virtual addresses in the set enc_metadata[e].evrange when called from
outside the enclave. However, SGX does permit privileged software to access an enclave’s
private page tables, which leads to a side channel leak. Therefore, in order to model platforms
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Operation Description

fetch(v) Fetch/read/write from/to virtual address v. Fail if
v is not executable/readable/writeable respectively
according to the addr_map or if
owner[addr_map[v].PA] 6= current_eid.

load(v)
store(v)

get_addr_map(e, v) Get/set virtual to physical mapping and associated
permissions for virtual address v.set_addr_map(e, v, p, perm)

launch(e,m, xv, xp, t) Initialize enclave e by allocating enc_metadata[e].
destroy(e) Set mem[p] to 0 for each p such that owner[p] = e.

Deallocate enclave enc_metadata[e].
enter(e), resume(e) enter enters enclave e at entrypoint, while resume

starts execution of e from the last saved checkpoint.
exit(), pause() Exit enclave. pause also saves a checkpoint of

pc and regs and sets enc_metadata[e].paused =
true.

attest(d) Return hardware-signed message containing data d
and e’s measurement: d || µ(e) || {d || µ(e)}SKp .

rand Return a random byte from a cryptographically-
secure source of entropy

Table 4.3 : Description of TAP Operations
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(
current_eid = OS ∧ e /∈ enc_metadata ∧
executable(m[t]) ∧ t ∈ xv ∧
∀p. p ∈ xp =⇒ owner[p] = OS ∧
∀v. v ∈ xv =⇒ (valid(m[v]) =⇒ m[v]PA ∈ xp) ∧
∀v1, v2. (v1 ∈ xv ∧ v2 ∈ xv) =⇒ (m[v1]PA 6= m[v2]PA)

)
⇐⇒ (launch_status = success)

Figure 4.2 : Conditions for the success of launch. Note that m[v]PA refers to physical address that
virtual address v points to under the mapping m.

such as SGX, we introduce a “setting” in the TAP, called priv_mappings, and this insecure
behavior is allowed when priv_mappings = false.

Enclave Creation: The launch(e,m, xv, xp, t) operation is used to create an enclave. The
enclave’s virtual to physical address mapping and associated permissions are specified by
m. xv is the set of enclave-private virtual addresses (evrange). It corresponds to the base
address and size arguments passed to ecreate in SGX and create_enclave in Sanctum.
xp is the set of physical addresses allocated to the enclave and its entrypoint is the virtual
address t. The launch operation only succeeds if enclave e does not already exist, if the
entrypoint is mapped to an enclave-private executable address, every virtual address in xv
that is accessible to an enclave points to a physical address in xp, and if there is no aliasing
among the addresses in xv. A precise statement of the conditions that result in a successful
launch shown in Figure 4.2. These conditions have subtle interactions with the requirements
for SRE. For example, if virtual addresses within xv are allowed to alias, an adversary can
construct two enclaves which have the same measurement but different semantics. The
potential for such attacks emphasizes the need for formal modeling and verification.

Enclave Destruction: An enclave is deallocated when the OS invokes destroy, which
zeroes out the enclave’s memory so that its private state is not leaked when the privileged
software reclaims the memory. This is necessary for confidentiality because untrusted priv-
ileged software can destroy an enclave at any time. This operation fails if the enclave is
currently running — the OS must either invoke pause or the enclave must have exited prior
to its destruction.

Enclave Entry/Exit: the untrusted OS invokes enter(e) to transfer control to the enclave
e at its configured entry point. The operation enter(e) enters enclave e by setting the pc to
its confige .entrypoint and current_eid to e. The enclave may transfer control back to the
calling OS via exit.

Enclave Pause/Resume: pause is invoked by the untrusted OS to pause execution with
enclave e (typically via a device interrupt), and return control back to the OS — TAP ensures
that the instructions are atomic, so execution stops at the instruction boundary and the TAP
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saves the current state of the enclave (general purpose registers, flags, etc.) within e’s private
memory. resume(e) is invoked by the untrusted OS to transfer control to the enclave e. The
TAP reloads the enclave’s state at the time of the last pause. Note that invoking resume
only succeeds if the enclave was pause-ed (as opposed to the enclave performing an exit).

Attested Statements: The attestation operator provided by the TAP ensures that the
user is communicating with a bona fide enclave. The attest operation can only be invoked
from within the enclave and may be used by the enclave to establish its identity as part of
an authentication protocol. attest returns a hardware-signed cryptographic digest of data
d and a measurement: d || µ(e) || {d || µ(e)}SKp . The signature uses the processor’s secret
key SKp, whose corresponding public key is signed by the trusted platform manufacturer.

Random Number Generation: The rand primitive is invoked by the enclave code to get
a cryptographically secure random byte. Enclaves typically use this for cryptography e.g.
randomized encryption.

4.1.3 Enclave State, Inputs, and Outputs and the Adversary’s State

We now precisely define the enclave’s state, inputs, and outputs. Recall from Section 3.6
that the state of an enclave e is denoted by Ee(σ). Ee(σ) is defined as the tuple

〈
Evmem(e, σ),

Eregs(e, σ), Epc(e, σ), Ecfg(e, σ)
〉
if e ∈ enc_metadata and ⊥ otherwise. The components of

this tuple are as follows:

• Evmem(e, σ) is a partial map from virtual addresses to words. It is defined to be
σ(mem[enc_metadata[e].addr_map[v]PA]) if v ∈ σ(enc_metadata[e].evrange) and ⊥
otherwise. In other words, Evmem refers to the content of each virtual memory address
in the enclave’s evrange.

• Eregs(e, σ) denotes the registers. It is σ(regs) if curr(σ) = e (when the enclave is
executing), and σ(enc_metadata[e].regs) otherwise.

• Epc(e, σ) denotes the program counter. It is σ(pc) if curr(σ) = e (when the enclave is
executing), and σ(enc_metadata[e].pc) otherwise.

• The tuple Ecfg(e, σ) consists of the following elements:

(i) σ(enc_metadata[e].addr_map)
(ii) σ(enc_metadata[e].entrypoint)
(iii) σ(enc_metadata[e].evrange)

Recall from Section 3.6 that the input to enclave e at state σ is denoted by Ie(σ), where
Ie(σ)

.
= 〈IRe (σ), IUe (σ)〉. IRe (σ) is the random number provided at the state σ. IUe (σ) refers

to the contents of each virtual address not in the enclave’s evrange. Formally, IUe (σ) is a
partial map from virtual address to words. It is σ(mem[enc_metadata[e].addr_map[v]PA]) if
each of these conditions hold: (i) enclave e is executing: curr(σ) = e, (ii) v is mapped to
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Figure 4.3 : Threat Model: The adversary controls the OS, hypervisor, all hardware except the CPU
and RAM, and other machines on the network. The enclave is the only trusted software component.

some physical address: σ(valid(enc_metadata.addr_map[v])), and (iii) v is not private: v
/∈ σ(enc_metadata[e].evrange); it is ⊥ otherwise.

The output of enclave e in state σ is denoted by Oe(σ). Since the output Oe(σ) contains
memory values outside enclave’s evrange, it is defined identically to IUe (σ).

Finally, we formalize the TAP adversary’s state. Since the privileged software adversary
can access any component of the platform’s state outside an enclave’s protected memory,
we define the adversary’s state with respect to an enclave e. From the perspective of an en-
clave e, the adversary’s state Ae(σ) is modeled as the tuple 〈S(σ), Êe(σ)〉. S(σ)

.
= 〈Svmem(σ),

Sregs(σ), Scfg(σ)〉. Svmem(σ)
.
= λv. σ(mem[os_metadata.addr_map[v]PA]) is its view of mem-

ory. Sregs(σ) denotes the privileged software’s registers: σ(regs) when the adversary is
executing, and σ(os_metadata.regs) otherwise. Scfg(σ) is the privileged software’s page
mapping: σ(os_metadata.addr_map). Êe(σ) is the state of all the other enclaves in the
system except for enclave e: Êe(σ)

.
= λe′. ITE(e 6= e′, Ee′(σ),⊥), where ITE abbreviates

if-then-else expression.

4.2 Formal Model of a Privileged Adversary
Security properties of the enclave program must be stated relative to a threat model,

which we formalize in this section. The illustration of our threat model in Figure 8.1 lists
all the system components that are under the attacker’s control — we only model privileged
software-level attacks in this work. The adversary may also control all of the system software
in the host computer, including the operating system and the hypervisor. The adversary may
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fully control all of the peripherals in the host computer, including disks and network cards.
This allows the adversary to record, replay, and modify all I/O communication, including
network packets and files, since all I/O is proxied through unprotected memory. We assume
that the attacker cannot physically extract secrets from the processor and DRAM — that
being said, SGX further removes the DRAM chip from the trusted computing base using
memory encryption and integrity verification, but other enclave platforms such as Sanctum
do not defend against attacks on DRAM chips. This adversary is general enough to model
privileged malware running in the OS and hypervisor layers, as well as a malicious system
administrator who may try to access the data by logging into the host and inspecting disks
and memory. Denial-of-service attacks are out of scope — the cloud provider or attacker
may choose to not run the enclave program or delete all of its data.

In this section, we define the effect of the adversary’s operations and observations of an
enclave’s execution. Instead of defining the adversary’s operations and observations sepa-
rately for each enclave platform, we define them for the TAP. Since each operation on the
refined model (e.g. Sanctum) can be simulated by the TAP, and since the privileged software
attacker can invoke any operation on the platform, it is sound to model the adversary’s ac-
tions at the level of TAP i.e. we do not restrict a Sanctum attacker’s abilities by specifying
them at the level of TAP.

4.2.1 Operations of a TAP Adversary

An enclave executes in the presence of such a privileged software adversary, and an enclave
platform is not required to fully isolate the enclave from the adversary; in fact, recall that the
attacker may access the inputs and outputs of the enclave, which is acceptable because the
I/O over the network should be considered untrusted. In this threat model, the attacker may
force the CPU to transfer control from the enclave to the privileged malware at any time;
for instance, the adversary may configure devices to generate interrupts, which is handled
by the OS/VMM. Once the CPU transfers out of the enclave, the adversary may execute an
arbitrary set of instructions before transferring control back to the enclave. In other words,
an adversary performs an unbounded number of adversarial operations between any pair of
instructions executed by enclave. The most general adversary, termed the MCP adversary,
is allowed to perform an unbounded number of the following actions:

1. Unconstrained updates to pc and regs.

2. Loads and stores to memory with arbitrary address (va) and data (data) arguments.

• 〈op, hitf〉 ← fetch(va)

• 〈regs[ri], hitl〉 ← load(va)

• hits ← store(va, data)

3. Modification of the adversary’s page-tables by calling set_addr_map and get_addr_map
with unconstrained arguments.



4.2. FORMAL MODEL OF A PRIVILEGED ADVERSARY 41

• set_addr_map(e, v, p, perm)

• regs[ri]← get_addr_map(e, v)

4. Invocation of TAP’s enclave operations with unconstrained arguments.

• Launch enclaves with arbitrary code: launch(e,m, xv, xp, t)

• Destroy any enclave: destroy(e)

• Enter and resume any enclaves: enter(e) and resume(e)

• Exit (exit) from and interrupt (pause) any enclave

Any adversarial computation, including malicious operating systems, hypervisors, host ap-
plications, and even other malicious enclaves, can be modeled using a combination of the
aforementioned actions. By proving TAP’s security guarantees against such an threat model
allows us to claim that TAP provides SRE guarantee against a general, privileged software
adversary, which we call the the MCP adversary.

Restricted Adversaries: In addition to MCP , we define restricted adversaries MC and
M , and use them to prove SRE guarantee of SGX against a weaker attacker with limited
observations. The MC adversary is restricted to computation based on memory values
and cache state; it ignores the value returned by get_addr_map. The M adversary only
computes using memory values; it ignores hitf , hitl and hitm returned by fetch, load and
store, respectively, in addition to the result of get_addr_map.

4.2.2 Observations of a TAP Adversary

The observation function captures what state the user expects to be attacker-visible.
Adversary M : The baseline adversaryM only observes the outputs produced by an enclave
i.e. any write by the enclave to non-enclave memory. The observation function obsMe (σ) is
a partial map from physical addresses to words and allows the adversary to observe the
contents of all memory locations not private to enclave e. It is equal to the enclave’s output
in state σ — more precisely, it is defined as σ(mem[p]) when σ(owner[p]) 6= e and ⊥ otherwise.

obsMe (σ)
.
= Oe(σ)

.
= λp. ITE(σ(owner[p]) 6= e, σ(mem[p]),⊥)

Adversary MC: The observation function obsMC
e (σ) specifies that besides contents of

memory locations that are not private to an enclave, the adversary can also observe whether
these locations are cached. It is also a partial map from physical addresses to words and
is defined to be the tuple 〈σ(mem[p]), cached(σ, p)〉 when σ(owner[p]) 6= e and ⊥ otherwise.
cached(σ, p) is true iff physical address p stored in the cache in the machine state σ.

obsMC
e (σ)

.
= λp. ITE(σ(owner[p]) 6= e, 〈σ(mem[p]), cached(σ, p)〉,⊥)

Note that the adversary cannot directly observe whether an enclave’s private memory
locations are cached. However, unless cache sets are partitioned between the attacker and
the enclave, cache attacks [129, 120] allow the adversary to learn this information.
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AdversaryMP : The observation function obsMP
e (σ) specifies that besides contents of mem-

ory locations that are not private to an enclave (i.e. M ’s observation function), the adversary
can also observe the virtual to physical mappings and associated access / permission bits for
each virtual address.

obsMP
e (σ)

.
= 〈obsMe (σ), λv. σ(get_addr_map(e, v)〉

The notation σ(get_addr_map(e, v)) refers to the result of evaluating get_addr_map(e, v)
in the state σ.
Adversary MCP : This observation function includes the observations for all aforemen-
tioned adversaries. Specifically, obsMCP

e (σ) includes observation of memory that is not pri-
vate to the enclave e, presence or absence of each virtual address (within enclave’s private
memory) in the cache, virtual to physical mappings and associated access/permission bits
for each virtual address (within enclave’s private memory).

obsMP
e (σ)

.
= 〈obsMC

e (σ), obsMP
e (σ)〉

4.3 Refinements of the TAP
We prove that models of MIT Sanctum and Intel SGX are refinements of the TAP

under certain adversarial parameters. Refinement shows that each operation, including all
adversarial operations, on Sanctum and SGX processors can be mapped to an “equivalent”
TAP action. The refinement proof implies SRE, which was proven on the TAP, also holds
for for our models of SGX and Sanctum.

4.3.1 Refinement Methodology

Let Impl = 〈ΣI , I , init I〉 be a transition system with states ΣI , transition relation  I

and initial state init I . We say that Impl refines TAP , or equivalently TAP simulates Impl ,
if there exists a simulation relation R ⊆ (ΣI × Σ) with the following property:

(
∀sj ∈ ΣI , sk ∈ ΣI , σj ∈ Σ. (4.1)

(sj, σj) ∈ R ∧ sj  I sk =⇒(
(sk, σj) ∈ R ∨ (∃σk ∈ Σ. σj  σk ∧ (sk, σk) ∈ R)

))
∧

(init , init I) ∈ R

The condition states that for every pair of states (sj, σj) (belonging to Impl and TAP
respectively) that are related by R, if Impl steps from sj to sk, then either (i) the TAP takes
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Figure 4.4 : Illustration of Stuttering Simulation.

no steps, and sk is related to σj, or (ii) there exists a state σk of TAP such that σj steps to
σk and (sk, σk) are related according to R. In addition, the initial states of Impl and TAP
must be related by R. This is illustrated in Figure 4.4. This corresponds to the notion of
stuttering simulation [30], and we require stuttering because a single invocation of launch
corresponds to several API calls in Sanctum and SGX.

Refinement states that every trace of Impl can be mapped using the relation R to a
trace of TAP ; effectively this means that TAP has a superset of the behaviors of Impl . The
security properties of the TAP are hyperproperties, which in general, are not preserved by
refinement [36]. However, the properties we consider are 2-safety properties [118] that are
variants of observational determinism [81, 98]. These are properties are preserved by refine-
ment. Therefore, the SRE properties proven on the TAP also hold for SGX and Sanctum,
as we show that these architectures (conditionally) refine the TAP.

4.4 Refinement of the TAP: Intel SGX
Intel Software Guard Extensions extend the Intel architecture to enable execution of

enclave programs.

4.4.1 SGX Overview

Enclaves in SGX are implemented in hardware (microcode), which provides an instruction
set extension [61] to create enclaves (ecreate), enter enclaves (eenter), generate attested
statements (ereport), etc. The SGX processor dedicates a contiguous region of physical
memory (called the enclave page cache, or EPC), exclusively useable for storing enclave
pages. While this provides confidentiality of enclave’s memory, SGX does not protect several
side channel leaks such as cache timing or page access patterns. The last level cache is shared
between the enclave and the adversary, and adversary memory can map to the same cache set
as the enclave’s private address, allowing the attacker to perform cache attacks [120, 129, 82,
28]. SGX also allows the OS to examine the page tables that control the enclave’s private
memory, enabling the OS to read the accessed and dirty bits, thus learning the enclave’s
memory access pattern at the page-level granularity. The OS also gets notified on page fault
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exceptions (as part of demand paging), and this is another channel to learn the enclave’s
page-level memory access patterns [109, 125].

4.4.2 SGX Model

We create a model of the SGX platform at the level of abstraction presented in the
Intel Programmer Reference manual [61]. The model contains ISA-level semantics of the
SGX instructions. However, for simplicity, it elides details such as attestation, hardware
encryption of DRAM pages, and the cryptographic protections (encryption, integrity, and
freshness) of demand paging and instead assumes several axioms about these features.

1 procedure ecreate(mem: [bv64] bv8, rbx: bv64, rcx: bv64)
2 {
3 var srcpge: bv64;
4 var secs: bv64;
5 var measurement: bv256;
6
7 assert ...; //a set of security checks
8
9 srcpge := pageinfo_srcpge(mem, rbx); //source SECS page

10 secs := rcx; //rcx holds the destination SECS page
11 mem[secs..secs+4096] := mem[srcpge..srcpge+4096]; //memcpy SECS page
12
13 epcm[secs] := create_epcm(true, PT_SECS, 0, 0);
14 measurement := SHA256(SECS_MRENCLAVE(secs_base) || SECS_SIZE(secs_base) || ...);
15 mem[SECS_MEASUREMENT_OFFSET(secs)..SECS_MEASUREMENT_OFFSET(secs) + 256] := measurement;
16 }
17
18 procedure load_8(mem: [bv64] bv8, va: bv64) : bv8
19 {
20 var check : bool; //EPCM security checks succeed?
21 var pa : bv64; //translated physical address
22 var ea : bool; //enclave access to enclave memory?
23 pa := pagewalk(mem, va);
24 ea := CR_ENCLAVE_MODE && evrange(va);
25 check := epc(pa) &&
26 EPCM_VALID(epcm[pa]) &&
27 EPCM_PT(epcm[pa]) == PT_REG &&
28 EPCM_ENCLAVESECS(epcm[pa]) == CR_ACTIVE_SECS &&
29 EPCM_ENCLAVEADDRESS(epcm[pa]) == va;
30 assert (ea => check); //EPCM security checks
31 assert ...; //read bit set and pagetable has valid mapping
32 if (!ea && epc(pa)) {return 0xff;} else {return mem[pa];}
33 }
34
35 procedure eexit(mem: [bv64] bv8, rbx: bv64)
36 {
37 regs[rip] := rbx;
38 regs[CR_ENCLAVE_MODE] := false;
39 mem[CR_TCS_PA] := 0x00;
40 }

Figure 4.5 : Models for ecreate, load, and eexit instructions

The machine’s state is a valuation of several state variables: mem, regs, and epcm. As
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their names suggest, mem denotes physical memory, regs is a collection of ISA-visible CPU
registers (e.g. rax, CR4), and epcm denotes the enclave metadata maintained by the CPU
(stored in CPU hardware) for various security checks. Physical memory mem is modeled as
a flat array, with index type of 64 bits and element type of 8 bits. mem is partitioned by
the platform into two disjoint regions: protected memory (memepc)1 for use by all enclaves
on the machine, and unprotected memory (mem¬epc) for use by all other software on the
machine. Correspondingly, we define a predicate epc such that for any physical address a,
epc(a) is true iff a is an address in memepc. Furthermore, a particular enclave program owns
a protected, contiguous region of virtual memory, called evrange, whose pages are mapped to
a subset of physical pages within memepc. For any virtual address a, evrange(a) is true iff a is
within evrange. The epcm is a finite sized array of hardware-managed structures, where each
structure stores security-critical metadata about a page in memepc (e.g. page permissions,
owner enclave, etc.).

Each SGX instruction is modeled as a stateful computation that takes a set operands
as inputs, produces an output, and updates the machine state. Figure 4.5 presents formal
models of sample SGX instructions ecreate (for launching new enclaves) and eexit (for
transferring control from an enclave to untrusted code), and the load instruction to illustrate
the revised memory access control in x86-64 to enable enclave memory — models of other
SGX instructions are included in Appendix B. These models are manually derived from the
Intel SGX reference [61], and we specify them in the Boogie verification language [42]; we
refer the reader to [42] for documentation on Boogie’s syntax, semantics, and its verification
backend based on First-Order Logic theorem proving. Each instruction is modeled as a
Boogie procedure containing stateful computation that optionally produces an output (e.g.
8-bit value from load). By using Boogie’s translation to First-Order Logic theories, we have
effectively defined the denotational semantics of SGX instructions in a combination of First-
Order theories such as Bitvectors, Arrays, and Uninterpreted Functions — for instance,
load and store primitives perform array reads and writes on mem and epcm, which are
interpreted by the Theory of Arrays [17], and arithmetic operations on registers are encoded
in the Theory of Bitvectors [105]. We now describe the sample instructions in Figure 4.5.

ecreate: The ecreate instruction is used to initiate the creation of new enclaves — the
enclave is not valid until the OS issues an einit instruction, which marks the enclave valid
and ready to be entered. After performing a range of security checks (not shown in the
model in Figure 4.5), the ecreate procedure allocates a page to hold a structure, called the
SECS, which is used throughout the duration of the enclave’s lifecycle for various security
related checks. The SECS structure stores security-critical metadata such as the enclave’s
measurement, the base and high addresses of its evrange, etc. The enclave’s measurement is
partially computed in ecreate (by hashing various attributes such as the evrange), and will
be updated in future calls to eextend and einit.

1As per Intel’s terminology, epc is an abbreviation of enclave page cache
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load: The load procedure models the memory access control implemented in Intel SGX [80];
we model both traditional checks (e.g. permission bits, valid page table mapping, etc.) and
SGX-specific security checks. First, load reads the page table to translate the virtual ad-
dress va to physical address pa (line 23) using a traditional page walk. The boolean flag ea
denotes whether this access is made by enclave code to an address within evrange. If ea is
true, then load asserts (line 30) that the following security checks succeed:

• the translated physical address pa resides in memepc (line 25)

• epcm array contains a valid entry for address pa (lines 26 and 27)

• the epcm entry (for address pa) belongs to the currently running enclave (line 28)

• the address mapping and permission bits in the page table are same as when enclave was
initialized (line 29)

If non-enclave code is accessing memepc, or if the enclave is attempting to access some other
enclave’s memory (i.e. within memepc but outside its evrange), then load returns a dummy
value 0xff (line 32); if any security check fails, then a page fault exception is raised (lines
30 and 31). We refer the reader to [80] for details on SGX memory access semantics.

eexit: Invoking eexit causes the control flow to transfer to the host application. As seen
in Figure 4.5, while evaluating eexit, the SGX processor is set to non-enclave mode, and
the program counter is set to an address in non-enclave memory (outside evrange).

4.4.3 SGX Model Refines TAP

We attempted to prove that SGX refines TAP, in that all SGX traces can be mapped
to TAP traces. However, we cannot prove SGX refinement unconditionally. We show that
refinement holds only when priv_mappings = false (see Sec. 4.1.2). This is because SGX
implements a mechanism for the attacker (OS) to view page table entries, which contains
the accessed and dirty bits. As TAP confidentiality for Adversary MCP only holds when
priv_mappings = true, SGX is not secure against MCP . Furthermore, the lack of cache
partitioning also prevents us from showing that Equation 5.5 holds, so SGX does not refine
TAP instantiated with Adversary MC. We are able to prove refinement of TAP by SGX
for the restricted adversary M . This shows SGX provides similar guarantees to Sanctum,
except for leakage through the cache and page table side-channels.

4.5 Refinement of the TAP: Sanctum Processor
Sanctum [38] is an open-source enclave platform that provide strong confidentiality guar-

antees against privileged software attackers. In addition to protecting enclave memory from
direct observation and tampering, Sanctum protects against software attackers that seek to
observe an enclave’s memory access patterns.
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4.5.1 Sanctum Overview

Sanctum implements enclaves via a combination of hardware extensions to RISC-V [11]
and trusted software at the highest privilege level, called the security monitor.
Sanctum Hardware: Sanctum minimally extends Rocket Chip [11, 10], an open source
reference implementation of the RISC-V ISA [124, 123]. Specifically, Sanctum hardware
isolates physical addresses by dividing system memory (DRAM) into regions, which use
disjoint last level cache sets, and allocating each region to an enclave exclusively. Since
enclaves have exclusive control over one or more DRAM regions, there is no leakage of
private memory access patterns through the cache. An adversary cannot create a TLB entry
that maps its virtual address to an enclave’s private cache set.
Sanctum Monitor: The bulk of Sanctum’s logic is implemented in a trusted security
monitor. The monitor exclusively operates in RISC-V’s machine mode, the highest privilege-
level implemented by the processor, and solely able to bypass virtual address translation.
Monitor data structures maintain enclave and DRAM region state. The monitor configures
the Sanctum hardware to enforce low-level invariants that comprise enclave access control
policies. For example, the monitor places an enclave’s page tables within that enclave’s
DRAM region, preventing the OS from monitoring an enclave’s page table metadata to infer
memory access patterns. The monitor exposes an API for enclave operations, including
measurement. A trusted bootloader bootstraps the system, loads the monitor and creates a
chain of certificates authenticating the Sanctum chip and the loaded security monitor.

4.5.2 Sanctum Model

Our Sanctum model combines the Sanctum hardware and the reference security moni-
tor, and includes hardware registers, hardware operations, monitor data structures and the
monitor API. The hardware registers include the DRAM bitmap which tracks ownership of
DRAM regions, page table base pointers, and special regions of memory allocated to the
monitor and for direct memory access (DMA). Hardware operations modeled include page
tables and address translation, and memory instruction fetch, loads and stores. The reference
implementation and golden specification of the monitor (i.e., Sanctum platform’s primitives)
are included in Appendix C.

4.5.3 Sanctum Model Refines TAP

The Sanctum refinement proof is expressed in three parts.
1. Concrete MMU refines Abstract MMU: We constructed an abstract model of a
memory management unit (MMU). The abstract MMU’s address translation is similar to
the TAP; it is a single-level map from virtual page numbers to permissions and physical page
numbers. In contrast, the concrete Sanctum MMU models a multi-level page table walk in
memory. We showed that the concrete Sanctum MMU model refines the abstract MMU.
We then used the abstract MMU in modeling the Sanctum Monitor. This simplifies the
simulation relation between Sanctum and TAP.
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2. Sanctum Simulates TAP: We showed that every Sanctum state and every Sanctum
operation, which includes both enclave and adversary operations, can be mapped to a corre-
sponding TAP operation. For this, (i) we constructed a simulation relation between Sanctum
states and corresponding TAP states, and (ii) we constructed a Skolem function [114] map-
ping each Sanctum operation to the corresponding TAP operation. We proved that for
every pair of states in the simulation relation, every Sanctum operation can be mapped by
the Skolem function to a corresponding TAP operation such that the resultant states are
also in the simulation relation.
3. Proof of Cache Partitioning: The Sanctum model instantiates the function pa2set
which maps physical addresses to cache sets. We showed that the Sanctum API’s init_enclave
operation and the definition of pa2set together ensure that all Sanctum enclaves’ cache sets
are partitioned, i.e., Equation 4.2 is satisfied.

∀p1, p2, σ, e. (4.2)
σ(owner[p1] = e ∧ owner[p2] 6= e) =⇒ (pa2set(p1) 6= pa2set(p2))

4.6 Summary
This chapter developed formal models enclave platforms and several models of the priv-

ileged software attacker, with varying capabilities. First, we defined an abstract model of
an enclave platform, called the Trusted Abstract Platform (TAP), and prove that concrete
enclave platforms, such as Intel SGX and Sanctum, are refinements of the TAP model —
models of SGX and Sanctum platforms are novel contributions of this dissertation. The
refinement guarantee establishes that any operation on a SGX or Sanctum platform can be
simulated by an operation exposed by the TAP; therefore any safety or k-safety property [36]
that we prove of the TAP is also satisfied by the concrete SGX and Sanctum platforms. This
is extremely valuable for us in Chapter 5 where we prove that TAP provides the secure re-
mote execution property to all enclave programs. By defining the TAP abstraction, we are
now equipped to reason about enclave programs generally, and are able to port an enclave
program onto other enclave platforms (that are refinements of TAP) without introducing
any unexpected behaviors. We also formalized the attacker model in this chapter, where we
formalized the attacker’s capabilities in terms of observations and operations. The verifi-
cation tools that we later develop in Chapter 7, Chapter 8, and Chapter 9 provide formal
assurances against these attacker models.
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Chapter 5

Formal Verification of Secure Remote
Execution on Enclave Platforms

In Chapter 3, we developed a formal semantics for reasoning about enclave execution,
while assuming that the platform guarantees security properties in the presence of a priv-
ileged adversary. When the user outsources an enclave to a remote platform, she seeks a
guarantee that the enclave be executed according to the expected behavior. This chapter
discharges the security assumption we make on the platform, by verifying that the platform
satisfies secure remote execution (SRE): any execution of that enclave on the platform must
be one of enclave’s behaviors (formalized in Equation 3.1). We formalize the SRE prop-
erty and prove that several popular enclave platforms, specifically Intel SGX and Sanctum,
satisfy SRE. The contributions of this chapter are central to our thesis goal of certifying
confidentiality properties of enclave programs with (nearly) zero trusted computing base.

First, we show how SRE can be decomposed into lower-level properties — specifically,
integrity, confidentiality, and secure measurement. Then, we prove these three properties
on the TAP model, while varying the adversary’s capabilities (recall adversaries M , MC,
MP , and MCP from Section 4.2). Since we proved in Chapter 4 that SGX and Sanctum
models refine the TAP, we automatically get that they also satisfy the three properties of
SRE (albeit under different adversaries), and therefore, SRE itself.

This chapter is structured as follows. We define SRE in Section 5.1, and discuss its decom-
position into integrity, confidentiality, and measurement properties in Section 5.2 and Sec-
tion 5.3. Section 5.4 discusses the usefulness of SRE i.e. what properties of secure compu-
tation it does and does not cover, and how to build upon SRE to develop applications with
end-to-end security properties. We prove that TAP satisfies SRE in Section 5.5, and present
various empirical results of the verification effort in Section 5.6.
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5.1 Secure Remote Execution of Enclaves
Until now, we defined the semantics of enclave execution assuming a safe enclave platform.

In this section, we formally specify this safety property, termed secure remote execution
(SRE), and discuss a method to prove that a remote platform provides the SRE guarantee.

Imagine a user who wishes to outsource the execution of an enclave program e onto
a remote platform. The user desires that the platform respect the enclave’s semantics by
executing trace(s) from JeK (defined in Equation 3.1). Since the privileged software layers on
the platform are untrusted, the user’s trust is based on guarantees provided by the hardware
platform. We propose the following notion of secure remote execution (SRE) of enclaves:

Definition 2 Secure Remote Execution of Enclaves. A remote platform performs secure
execution of an enclave program e if any execution trace of e on the platform is contained
within JeK. Furthermore, the platform must guarantee that a privileged software attacker only
observes a projection of the execution trace, as defined by the observation function obs.

It is important to note that SRE does not force the platform to execute e — the attacker
may deny service, and this is easily detectable by the user because the attacker cannot forge
attested statements as if they originated from the user’s enclave. Nor are we forcing the
platform to execute e a fixed number of times. The attacker has the capability to execute e
as many times as it wishes (with the hope of performing dictionary attacks, for example to
learn secret data), and a user can easily defend against these attacks by refusing to provision
secrets to other copies of the enclave. With that said, SRE requires the platform to execute
a trace from JeK, and recall that JeK only contains enclave executions that start in the initial
state of the enclave (see Equation 3.1). Furthermore, recall that our definition of JeK assumes
secure execution of e in that the attacker only affects e’s execution by affecting the inputs,
which are assumed to be untrusted anyway — we later state an integrity component of SRE
that validates this assumption of the enclave platform.

5.2 Proof Decomposition of SRE
A rational user will outsource the enclave only to a platform that provides a formal

guarantee of SRE. To that end, we describe a method for formally verifying that an enclave
platform provides SRE to any enclave program; we later develop machine-checked proofs
that SGX and Sanctum satisfies SRE. The key idea is to decompose the SRE property into
the following three lower-level properties:

• Secure Measurement: The platform must measure the enclave program to enable
the user to detect any changes to e’s launch state inite and configuration confige i.e.
the user must be able to verify that the platform is running an unmodified e.

• Integrity: The enclave program’s execution cannot be affected by a privileged software
attacker beyond providing inputs, i.e. the sequence of inputs uniquely determines the
enclave’s execution trace, and that trace must be contained within JeK.
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• Confidentiality: A privileged software attacker does not observe any aspect of enclave
execution beyond what is already revealed by obs. In other words, the attacker cannot
distinguish between two executions that have equivalent observations obs.

The measurement and integrity properties guarantee that the remote platform executes
a trace from JeK, while the confidentiality property ensures that the attacker does not learn
more information than what the enclave wishes to reveal. Together, these three properties
imply SRE, and we formalize each one of them in the remainder of this section.

5.2.1 Secure Measurement

During launch of an enclave e, the platform computes a hash of e’s initial contents (inite)
along with relevant configuration bits (confige). The hash-based measurement acts as a
unique identity for the enclave, which follows directly from the collision resistance assumption
of the cryptographic hash function, and the platform includes this measurement in each
attested statement. Any deviation from the desired enclave program will be detected when
the enclave sends an attested statement to the user — we assume that attested statements
are produced using a quoting scheme that is unforgeable under chosen message attacks (UF-
CMA); we do not model the cryptography of this scheme, and refer the reader to [93] for
a formal treatment of this subject. The secure measurement property states that any two
enclaves with the same measurement must also have the same semantics: they must produce
equivalent execution traces for equivalent input sequences.

Let µ(e) be the measurement of enclave e, performed when launching the enclave. The
measurement function must be such that two enclaves with the same measurement value
have identical states.

∀σ1, σ2. inite1(Ee1(σ1)) ∧ inite2(Ee2(σ2))⇒
µ(e1) = µ(e2) ⇐⇒ Ee1(σ1) = Ee2(σ2) (5.1)

Next we need to ensure that if two enclaves e1 and e2 have the same state, then they produce
equivalent execution traces for equivalent input sequences. This is the determinism property
we assumed while defining JeK in Section 3.6 of the enclave platform, so we must prove that
it holds on the enclave platform.

∀π1, π2. (5.2)(
Ee1(π1[0]) = Ee2(π2[0]) ∧
∀i. (curr(π1[i]) = e1) ⇐⇒ (curr(π2[i]) = e2) ∧
∀i. (curr(π1[i]) = e1) =⇒ Ie1(π1[i]) = Ie2(π2[i])

)
=⇒(

∀i. Ee1(π1[i]) = Ee2(π2[i]) ∧Oe1(π1[i]) = Oe2(π2[i])
)

Consider two enclaves e1 and e2 that produce execution traces π1 and π2, respectively.
Equation 5.2 states that if: (i) π1 and π2 start with the same initial state, (ii) π1 and π2
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enter and exit the enclaves in lockstep (i.e. the two enclaves execute the same number of
steps), and (iii) if the input sequences in π1 and π2 are equivalent (i.e. Ie1(π1[i]) = Ie2(π2[i])),
then the two enclaves execute identically in both traces: they have the same sequence of state
and output values (i.e. Ee1(π1[i]) = Ee2(π2[i]) ∧Oe1(π1[i]) = Oe2(π2[i])).

5.2.2 Integrity

The integrity guarantee ensures that the execution of the enclave in the presence of
attacker operations is identical to the execution of the program without the attacker’s oper-
ations. In other words, the attacker only impacts an enclave’s execution by controlling the
sequence of inputs — all other operations, such as controlling I/O peripherals and execut-
ing supervisor-mode instructions, have no effect on the enclave’s execution. Any two traces
(of the same enclave program) that start with equivalent enclave states and have the same
input sequence will produce the same sequence of enclave states and outputs, even though
the attacker’s operations may differ in the two traces.

∀π1, π2. (5.3)(
Ee(π1[0]) = Ee(π2[0]) ∧
∀i. (curr(π1[i]) = e) ⇐⇒ (curr(π2[i]) = e) ∧
∀i. (curr(π1[i]) = e) =⇒ Ie(π1[i]) = Ie(π2[i])

)
=⇒(

∀i. Ee(π1[i]) = Ee(π2[i]) ∧Oe(π1[i]) = Oe(π2[i])
)
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Figure 5.1 : Integrity property.

Figure 5.1 shows the two traces from the integrity property. The adversary’s steps are
labelled A and enclave’s steps are labelled e. Assumptions are annotated in blue, and proof
obligations are shown in red. The enclave’s inputs are assumed to be the same in both traces;
this is shown by the ≈I symbol. The initial state of the two enclaves is assumed to be the
same. The attacker performs different actions in each trace, but the integrity proof must
show that the enclave’s state and outputs do not differ: ∀i. Ee(π1[i]) = Ee(π2[i])∧Oe(π1[i]) =
Oe(π2[i]). These proof obligations are denoted by the red ≈E and ≈O symbols.
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5.2.3 Confidentiality

The enclave platform must ensure that the attacker does not observe the enclave’s exe-
cution beyond what is allowed by the observation function obs. For any enclave platform,
obs must, at the very least, include the initial memory init , configuration config , outputs
to non-enclave memory, exit events from enclave mode to untrusted code — depending on
the platform, obs may also leak certain side channels e.g. page-level access patterns on
SGX. The privileged software attacker may use any combination of machine instructions
to perform an attack, and the attacker can trivially distinguish between two different en-
claves based on the differences in obs e.g. if the two executions produce different outputs.
However, confidentiality states that no other information is leaked: two enclave executions
that produce the same observation (but with potentially differently enclave states) must be
indistinguishable to the attacker. For confidentiality to hold, the attacker must observe the
same results from executing the adversarial instructions in both traces — since the attacker
has the same sequence of states in both traces, we say that the attacker has not observed
any information about the enclave beyond what is revealed in obs. If the platform contains
a vulnerability that allows the attacker to observe different values in the two traces (with
the same observation), then attacker’s states would diverge in the two traces, and we say
that such a platform does not provide confidentiality.

∀π1, π2. (5.4)(
Ae1(π1[0]) = Ae2(π2[0]) ∧
∀i. curr(π1[i]) = curr(π2[i]) ∧ IP (π1[i]) = IP (π2[i]) ∧
∀i. curr(π1[i]) = e =⇒ obse1(π1[i+ 1]) = obse2(π2[i+ 1])

)
=⇒(

∀i. Ae1(π1[i]) = Ae2(π2[i])
)
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Figure 5.2 : Confidentiality property.

Figure 5.2 shows the two traces in the confidentiality property. As in Figure 5.1, the
attacker’s steps are labelled A and the enclave’s steps are labelled e. The two traces start off
in equivalent states but diverge (at state σi) because the two enclaves may perform different
computation. The enclave’s adversary-visible observations are assumed to be the same in
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both traces when the enclave is executing; this is shown by the blue obs≈. The platform’s
non-determinism (IP (σ)) is also assumed to be the same in both traces, otherwise the two
traces would diverge because of external inputs rather than leakage of enclave’s state. The
two traces eventually merge (to the same platform state) when the enclave is destroyed. The
theorem states that adversary state is identical: ∀i. Ae1(π1[i]) = Ae2(π2[i]); this is illustrated
in the red ≈A. We conclude that the attacker has not learned any additional information
beyond obs.

5.3 Soundness of SRE Decomposition
Theorem 1 An enclave platform that satisfies secure measurement, integrity, and confiden-
tiality property for any enclave program also satisfies secure remote execution.

Proof : Suppose that the user sends an arbitrary enclave e to a remote server for exe-
cution, and the platform launches enclave er some time later — because e is sent over
an untrusted channel, e may or may not equal er. If the user finds µ(er) 6= µ(e), then
the platform has no obligations to execute a trace from JeK. Otherwise, if µ(er) = µ(e),
we derive JerK = JeK, thanks to the measurement (Equation 5.1, Equation 5.2) and in-
tegrity properties (Equation 5.3), as per the following explanation. Equation 5.1 implies
that Eer(πr[0]) = Ee(π[0]) for any πr ∈ JerK, π ∈ JeK, i.e., equivalent hash-based measure-
ment implies equivalent initial enclave state (ignoring hash collisions). Next, Equation 5.2
implies that for any such pair of traces πr and π that have equivalent initial states, if the
inputs along the traces are equal, then the state transitions and outputs along the traces are
also equal, i.e. we derive ∀i. (Ier(πr[i]), Eer(πr[i]), Oer(πr[i])) = (Ie(π[i]), Ee(π[i]), Oe(π[i]))
from ∀i. Ier(πr[i]) = Ie(π[i]). Consequently, for each trace πr ∈ JerK, we have a trace π ∈ JeK
whose inputs, outputs, and states are equivalent, and vice versa; in other words, JerK = JeK.
Therefore, in the case µ(er) = µ(e), we prove that the two programs er and e have identical
runtime behaviors, which is a prerequisite for SRE. Finally, confidentiality (Equation 5.4)
implies that the attacker’s observation is restricted to obs .

5.4 Application of Secure Remote Execution
SRE is an important stepping stone for building practical applications with security

guarantees. Consider the problem of executing a batch job securely in the cloud. The user
sends an enclave program, which implements a function on sensitive data, to an enclave
platform in the cloud. The protocol includes the following steps:

1. The user sends an enclave program e to the cloud provider, which launches the program
on an enclave platform.

2. The user and enclave establish an authenticated TLS channel via an ephemeral Diffie-
Hellman (D-H) exchange.
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(a) User sends her public parameter gx to the enclave, where x is a randomly generated
fresh value.

(b) Enclave sends its public parameter attest(gy) to the user, in the form of an
attested statement, thus guaranteeing that a genuine enclave platform launched
the expected enclave e.

(c) User and enclave compute a shared master secret gxy, and derive symmetric session
keys sue and seu, a key for each direction.

3. The user now sends encrypted input to enclave using this shared secret: {in}sue .

4. The enclave decrypts its input, performs the computation and returns the encrypted
result to the user: {out}seu .

Consider the following security property: the attacker neither learns secret input {in}
nor the secret output {out}. To that end, the user 1) develops an enclave program that
only accepts encrypted inputs and sends encrypted outputs, and 2) specifies an observation
function (obs) where a privileged software adversary is only allowed to view the enclave’s
outputs to non-enclave memory — this is acceptable because e encrypts its outputs.

The measurement guarantees that the user will only establish a channel with the expected
enclave on a genuine enclave platform. Integrity ensures that the platform will execute a
trace from JeK, thus respecting e’s semantics. The platform may choose to not launch e or
prematurely terminate e, but such executions will not generate {out}seu and hence can be
trivially detected by the user. Integrity also ensures that the platform does not rollback the
contents of enclave’s memory while it is alive (i.e. not destroyed) as such attacks will cause the
enclave’s execution to proceed differently from JeK, and SRE guarantees JeK. SRE does not
require the platform to defend against rollback attacks on persistent storage. This protection
is not needed for the batch service because the enclave does not update {in}sue , and any
tampering to {in}sue will fail the cryptographic integrity checks. Finally, confidentiality
ensures that the enclave platform only reveals the obs function of enclave’s execution to the
software attacker, which only includes the encrypted outputs. We now have our end-to-end
security property.

Should the enclave require state beyond enclave’s memory to perform the job, it would
require integrity, freshness, and confidentiality for non-enclave state, which is not covered by
SRE. The enclave can implement cryptographic protections (e.g. Merkle tree) and techniques
for state continuity [92] to address this concern.

5.5 Proof of Secure Remote Execution for TAP
We proved three machine-checked theorems that correspond to the requirements for se-

cure remote execution as described in Section 5.2.
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TAP Integrity: We proved that the integrity result (Equation 5.3) holds for the TAP for
all three adversaries: M , MC and MCP . It shows that these adversaries have no effect on
enclave execution beyond providing inputs via non-enclave memory.
TAP Measurement: We showed that Equation 5.1 and Equation 5.2 are satisfied by the
TAP. The proof for Equation 5.2 need not include adversarial operations because integrity
ensures that an adversary cannot affect enclave’s execution beyond providing inputs.
TAP Confidentiality: We showed three confidentiality results, each corresponding to the
three TAP adversaries: M , MC, and MCP .

Confidentiality holds unconditionally for adversary M .
For adversary MC, let pa2set : PA → Set be the function that maps physical addresses

to cache sets. This function is uninterpreted (abstract) in the TAP and will be defined by
implementation. We showed that confidentiality holds for adversary MC if Equation 5.5 is
satisfied: a physical address belonging to an enclave never shares a cache set with a physical
address outside the enclave.

∀p1, p2, σ, e. (5.5)
σ(owner[p1] = e ∧ owner[p2] 6= e) =⇒ (pa2set(p1) 6= pa2set(p2))

Finally, we showed that confidentiality holds for adversary MCP if Equation 5.5 is sat-
isfied by the TAP implementation and the TAP configuration Boolean priv_mappings is
true.

5.6 Verification Results
This section discusses our models and machine-checked proofs. Our models of the TAP,

Intel SGX and MIT Sanctum are constructed using the BoogiePL [14] intermediate verifi-
cation language. BoogiePL programs can be annotated with assertions, pre-conditions and
post-conditions for procedures and loop invariants. The validity of these annotations are
checked using the Boogie verification condition generator [15], which in turn uses automated
theorem provers like the Z3 SMT solver [41]. Procedure pre- and post-conditions, in partic-
ular, enable modular verification using Boogie. For example, we specify the behavior of each
TAP operation using pre- and post-conditions and verify that the implementation of these
procedures satisfies these post-conditions. Once they are verified, TAP’s proofs of integrity,
confidentiality and secure measurement can soundly ignore the implementation and only
reason about the pre- and post-conditions of these operations.

5.6.1 BoogiePL Model Construction

The modeling and verification effort spanned eight person months, of which three person
months were spent on modeling alone, while the remaining five months were spent on the
verification effort, which mostly incorporated diagnosing proof failures and brainstorming
additional invariants to guide the theorem prover to produce the proofs. Overall, we found
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that the theorem prover (Z3 SMT solver) required substantial annotations (in the form of
invariants, preconditions, postconditions, and intermediate lemmas) to verify the proof, and
further research is needed in automatically synthesizing these annotations to reduce the
manual burden.

Description Size Verif.
#pr #fn #an #ln Time (s)

TAP 22 49 204 1752 5
Integrity 12 13 145 985 26
Measurement 6 3 100 800 6
Confidentiality 8 - 200 1388 194

MMU Model 9 13 68 739 7
MMU Refinement 3 2 38 216 8
Sanctum 23 321 44 780 1
Sanctum Refinement 12 3 94 548 11

SGX 36 113 4 1526 -
SGX Refinement 10 1 38 351 2

Total 141 518 935 9085 260

Table 5.1 : BoogiePL Models and Verification Results

Table 5.1 shows the approximate size of each of our models. #pr, #fn, #an and #ln
refers to the number of procedures, functions, annotations and lines of code respectively.
Annotations refer to the number of loop invariants, assertions, assumptions, pre- and post-
conditions that we manually specify. While Boogie can discharge some assertions automat-
ically, we found that we had to manually specify 935 annotations before it accepted our
proofs.

The rows TAP, MMUModel, Sanctum and SGX correspond to models of the functionality
of the TAP, the Sanctum MMU, Sanctum, and SGX respectively. The other rows correspond
to our proofs of SRE and refinement. In total, the models are about 4800 lines of code while
the proofs form the remaining ≈ 4300 lines of code. A significant part of the effort in
developing the proofs was finding the correct invariants to help Boogie prove the properties.

BoogiePL can only verify safety properties. But many of our theorems involve hyper-
properties [36]. We used the self-composition construction [18, 118] to convert these into
safety properties. BoogiePL is also incapable of verifying properties involving alternating
nested quantifiers, for example, ∀x. ∃y. φ(x, y). We skolemized [114] such properties to take
the form: ∀x. ∀y .(y = f(x)) =⇒ φ(x, y); f(x) is called a Skolem function and must be
manually specified.
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5.6.2 Verification Results

Table 5.1 lists the total time taken by Boogie/Z3 to check validity of all the manually
specified annotations — by verifying the annotations, we omit them from the trusted com-
puting base, which only includes the Boogie/Z3 theorem prover. The verification times for
the TAP, MMU Model and Sanctum rows is for proving that procedures in these models
satisfy their post conditions, which specify behavior and system invariants. The verification
times for the remaining rows is the time taken to prove the SRE properties and refinement.
The total computation time in checking validity of the proofs once the correct annotations
are specified is only a few minutes.

5.7 Summary
This chapter formalized the guarantee expected from an enclave platform during the

execution of any enclave program. We call this property of the platform secure remote
execution (SRE), and perform proofs demonstrating that TAP satisfies the three properties
required for SRE: secure measurement, integrity and confidentiality. Since we already proved
(Chapter 4) that Intel SGX and Sanctum are refinements of TAP under certain adversarial
conditions, we derive that Intel SGX and Sanctum also satisfy the properties required for
SRE. Overall, this chapter takes an important step towards a unified, extensible framework
for reasoning about enclave programs and platforms.
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Part II

Secure Enclaves: Design and Verification
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Foreword on Part II
The primitives offered by trusted enclave platforms are necessary for any form of trust-

worthy computing on sensitive data, but not sufficient by themselves. The enclave programs
must also be secure, which includes, at the very least, a provable guarantee that sensitive
data is never leaked to the attacker in any execution, under any potential attack scenario —
we refer to this property of the enclaves as confidentiality, which is complementary to the
confidentiality guarantee offered by the enclave platform (recall the requirements of secure
remote execution from Chapter 5). However, the burden of programming enclaves correctly
and ensuring confidentiality remains with the programmer. Guaranteeing that enclave pro-
grams satisfy confidentiality has several challenges, which we address in this part of the
thesis.

Recall the formal definition of a privileged software adversary in Chapter 4, where we
define several variants of the adversary (namely M , MC, MP , and MCP ), all of which
observe and modify non-enclave memory at all times during the enclave’s execution. Since,
an enclave will undoubtedly interact with the external world (via non-enclave memory) to
receive inputs and produce outputs, it gives the adversary a mechanism to interact with
the enclave and exploit any of its vulnerabilities. For instance, since the enclave fetches its
inputs by reading from non-enclave memory, the attacker can modify non-enclave memory
at any time and perform time-of-check-to-time-of-use style attacks on an insecure enclave.
Furthermore, since the attacker can access any outputs written to non-enclave memory, the
enclaves should encrypt secrets before writing them to non-enclave memory — however,
the programmer may make memory safety errors such as buffer overrun, dangling pointer
dereferences, etc., which may trigger subtle vulnerabilities in the enclave and write out
cleartext values. Writing safe enclaves that avoid such attacks is non-trivial, and prior
experience suggests that non-expert developers often make critical errors such as memory
corruption bugs [117], unsafe use of cryptographic operations, insufficient access control,
information flow leaks, etc. Chapter 7 and Chapter 8 present methodologies and automatic
tools to both detect and prevent such vulnerabilities.

To add to the developer’s woes, some mainstream enclave platforms do not provide
idealized execution i.e. while they may offer isolated execution, they do not necessarily offer
strict confidentiality — recall adversariesMP andMCP defined in Chapter 4. For instance,
Intel SGX leaks information about the enclave’s execution via various software and hardware
side channels (e.g. cache timing attacks, page-level memory access patterns), and protecting
these leaks requires even greater understanding of hardware, careful programming practices,
and tool support for automatically enforcing and verifying defenses. Closing the side channel
of page-level access patterns is the focus of Chapter 9, which presents a toolchain consisting
of a compiler and verifier to automatically produce machine code that hides such implicit
leaks.

In summary, this part of the thesis presents a novel methodology for safely programming
enclaves and formally certifying the absence of vulnerabilities that leak secrets, both via
explicit outputs and certain side channels.
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Chapter 6

Formalizing Confidentiality

Prior to describing tools that certify confidentiality properties, we use this chapter to
formalize confidentiality of enclave programs, with respect to both outputs and side channels.
Confidentiality can be expressed as an information-flow policy that tracks the flow of secrets
through the program, and checks whether secrets may explicitly or implicitly flow to some
state that the adversary can observe [22, 43, 23, 87].

This chapter has the following organization. Section 6.1 describes a transformation on
our model of the enclave program that models the effect of a privileged software adversary
on the enclave’s execution. Section 6.2 formalizes confidentiality with respect to an enclave’s
outputs (i.e. writes to non-enclave memory). Finally, Section 6.3 extends the confidentiality
definition from Section 6.2 to also cover side channels, specifically the page-level memory
access pattern which we mitigate in Chapter 9.

6.1 Modeling Adversary’s Effect on Enclave Execution
We defined the enclave’s model of execution in Section 3.6, where we formalized an enclave

program as a state transition system. Recall that an enclave e computes in steps, with each
step executing a machine instruction (including trusted primitives provided by the enclave
platform), where the attacker provides an input (IUe (σ)) at each step via non-enclave memory.
Although we assumed in this definition that this is the only mechanism for an attacker to
affect an enclave’s execution, we discharge this assumption in Chapter 5, where we prove
an integrity theorem that a TAP attacker that performs an unbounded number of allowed
adversarial operations can be simulated by some update to (all addresses in) non-enclave
memory. To model this attacker that provides a fresh input IUe (σ) at each step, we introduce
a havoc mem¬evrange operation that clobbers all locations not in evrange (i.e. outside enclave
memeory) with an arbitrary value — note that all of our adversaries (M , MC, MP , and
MCP ) have full access to non-enclave memory, and consequently, the ability to perform
havoc mem¬evrange. Since the attacker can execute at any time, we instrument this operation
before any enclave instruction. By interleaving havoc mem¬evrange operations with enclave’s
instructions, we capture all potential effects of the attacker on the enclave’s executions. In



6.2. CONFIDENTIALITY 62

other words, we soundly model all potential executions of the enclave in the presence of a
privileged software attacker, and the proof of secure remote execution in Chapter 5 backs
this claim.

We now precisely describe the transformation on the enclave program model. For the
reader’s convenience, we first recall the relevant formalism from Section 3.6. An execution
trace of the platform is an unbounded-length sequence of states denoted 〈σ0, σ1, . . . , σn〉, such
that ∀i. σi  σi+1. An enclave e is only executing in some of the steps of the platform’s trace,
and we write that sub-sequence as π = 〈σ′0, σ′1, . . . , σ′m〉, where inite(Ee(σ

′
0)) ∧ ∀i. curr(σ′i) =

e. To model the effect of a privileged adversary (e.g. M), for any execution trace π of
e, we interleave havoc mem¬evrange operations, thus giving us the trace 〈σ̂0, σ

′
0, σ̂1, σ

′
1, . . . ,

σ̂m, σ
′
m〉 where inite(Ee(σ

′
0)) ∧ ∀i. curr(σ′i) = e ∧ ∀i. (σ̂i, σ

′
i) ∈ havoc mem¬evrange — treat

havoc mem¬evrange as a relation that relates any pair of states that have equivalent values of
enclave e’s memory (within evrange), but arbitrary values elsewhere (¬evrange).

Furthermore, in order to include havoc mem¬evrange operations for any execution trace of
an enclave, we define the following instrumentation. Given an enclave program p, which
is a sequence of machine instructions i; . . . ; i, we instrument havoc mem¬evrange prior to each
instruction i in p. The resulting program is pM = havoc mem¬evrange; i; . . . ; havoc mem¬evrange; i
— we choose the notation pM to mean program p instrumented with the operations of an
attacker M . This instrumentation guarantees that any execution trace of pM interleaves
havoc mem¬evrange operations with the enclave’s instructions.

6.2 Confidentiality
We wish to guarantee that an enclave program does not leak its secret state to attacker-

visible state, by proving that an attacker’s observation does not include the enclave’s secrets.
More precisely, an attacker’s observation, during an enclave program’s execution, must be
independent of the enclave’s secrets. We refer to this property of an enclave program as
confidentiality. This notion of confidentiality can be formulated as a non-interference prop-
erty [81], specifically in the form of observational determinism [36]: the attacker’s observation
is a deterministic function of the attacker’s operations, and nothing else. The remainder of
this section is devoted to formalizing this definition of confidentiality for enclave programs.

From here on, we assume that the enclave program is already instrumented with the
havoc mem¬evrange operations to model the effect of a privileged software attacker, as we
describe in Section 6.1. An execution trace π starts in the initial state of the machine
following a power cycle; at some point in the trace, the adversary launches the enclave
program. From then on, π consists of alternating sequences of adversarial and enclave
instructions. We use seqA(π, i) and seqE(π, i) to denote the i-th subsequence of adversarial
and enclave instructions, respectively; Figure 6.1 illustrates these functions. For the reader’s
convenience, we now recall some notation that we developed in Section 3.6. Let the projection
function A denote the component of enclave-observable machine state that the adversary is
allowed to control; we define A(σ) = σ(mem¬evrange), where mem¬evrange denotes non-enclave
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memory. Note that the adversary may invoke privileged instructions that modify state
beyond mem¬evrange (e.g. control register CR4). However, we omit these state variables from
A because they are not included in the enclave’s state or the operational semantics, and the
trusted CPU must guarantee the operational semantics during enclave execution, regardless
of how the adversary manipulates this additional machine state — we prove the integrity
theorem in Chapter 5 that establishes exactly this guarantee.

Figure 6.1 : Illustration of confidentiality definition. The untrusted platform transfers control to
the enclave by invoking enter, and enclave transfers control back by invoking exit.

Definition 3 Confidentiality For any pair of execution traces of the enclave e, if the
adversary’s operations along the two traces are equivalent, then the adversary’s observations
along the two traces must also be equivalent.

∀π1, π2 ∈ JeK.π1 ≡A π2 ⇒ π1 ≡O π2 (6.1)

where

π1 ≡A π2 ⇔ ∀i. instr(seqA(π1, i)) ≡ instr(seqA(π2, i)) ∧ A(seqE(π1, i)[0]) ≡ A(seqE(π2, i)[0])

and

π1 ≡O π2 ⇔ ∀i. obsMe (π1[i]) ≡ obsMe (π2[i])

Confidentiality, a hyper-property defined over pairs of executions, is violated when the en-
clave produces observationally different traces for equivalent adversarial operations. Equiv-
alence is defined using relations ≡A and ≡O. The equivalence relation ≡A over pairs of
adversarial subsequences (seqA(π1, i) and seqA(π2, i)) only includes traces that 1) have equal
lengths, 2) have the same instructions, and 3) produce equivalent sequence of states, where
equivalence over states is defined modulo the projection function A. Equality of states mod-
ulo A is naturally defined to be bitwise equivalence for all locations in mem¬evrange, with the
caveat that encrypted values can differ. Specifically, using the approach of cryptographically-
masked flows [12], we treat all valid ciphertexts to be equivalent — this ensures that fetching
encrypted secret inputs will produce potentially different secret inputs in both π1 and π2,
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and allow us to reason about whether the attacker can distinguish between observations of
traces π1 and π2 with different values of secrets. Without this restriction, the antecedent
of the logical property in definition 3 would force all encrypted inputs to have equivalent
bitwise values, thereby forcing secrets to have the same values in π1 and π2, which may let
the enclave trivially satisfy confidentiality (because no difference is observed in π1 and π2).
For checking that the enclave’s observed behaviors are equivalent, we use an equivalence
relation ≡O, defined simply using the obsM from Section 4.2. As we stated before, this
definition of confidentiality is a form of non-interference property, adapted to the enclave
model of execution. We point out that this definition does not prevent leaks via the timing
channel because we model an enclave’s execution as a state transition system, abstracting
away any timing information — each state transition corresponds to a processor instruction.
This definition of confidentiality also allows leaks information via the termination channel,
thus making it termination-insensitive non-interference [64].

6.3 Page Access Obliviousness
By simply extending the observation function obs to cover side channel observations, in

addition to the contents of non-enclave memory, we extend the confidentiality definition 3 to
account for side channel leaks. Specifically, we focus on the side channel of page-level memory
access pattern, which is exposed on some enclave platforms, specifically SGX — defending
against leaks via this channel is discussed in Chapter 9. In this section, we formalize a
variant of confidentiality that states that the enclave must not produce different observations
of page-level access patterns due to different secret state. We term this property page access
obliviousness: the enclave’s page-level memory accesses is independent of its secrets.

Definition 4 Page Access Obliviousness An enclave is page access oblivious if it satisfies
confidentiality, with observation function O set to the following PA function1.

π1 ≡O π2 ⇔
PA(seqE(π1, i)) ≡ PA(seqE(π2, i))

PA(σ0, . . . , σn)
.
= [PAc(σ0) · PAd(σ0) · . . . · PAc(σn) · PAd(σn)]

PAc(σ)
.
= 〈execute, σ(rip/2p)〉

PAd(σ)
.
=



〈read, σ(rega/2
p)〉 if instr(σ) = mov regd [rega]

〈write, σ(rega/2
p)〉 if instr(σ) = mov [rega] regd

〈read, σ(rsp/2p)〉 if instr(σ) ∈ {pop reg, ret}
〈write, σ(rsp/2p)〉 if instr(σ) ∈ {push reg, call}
ε otherwise

1Note that · operator denotes list concatenation.
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The PA function permits the adversary to observe all memory accesses at the page-level
granularity (enforced by the division by page size 2p). The value of p is architecture-specific;
a page has size 4096 bytes in Intel SGX CPUs, which makes p = 12. As dictated by PA, for
each instruction executed in enclave-mode, the attacker records 1) access to a code page at
address rip to fetch the instruction, and 2) access to a data page, if the instruction triggers a
data access — for instance, push performs a write access to a data page at address rsp. This
definition of PA represents the x86-64 ISA semantics, even in the presence of optimizations
such as prefetching and caching, because the CPU evaluates the page permission check for
each memory access. The adversary also observes the type of memory access: read, write,
or execute.

6.4 Summary
This chapter defined confidentiality properties of enclave programs, with respect to both

explicit outputs (via writes to non-enclave memory), and side channel observations (specifi-
cally page-level access pattern). The verification techniques that we develop next in Chap-
ter 7 and Chapter 8 guarantee the confidentiality property of explicit outputs that we for-
malize in Definition 3. Chapter 9 develops compilation and verification techniques to ensure
that the enclave program satisfies the page access obliviousness property that we define in
Definition 4.
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Chapter 7

Moat: Verifying Confidentiality of
Enclave’s Outputs

Even though trusted platforms such as SGX and Sanctum offer isolation from privileged
adversaries, an enclave must still rely on the compromised host OS for basic services such
as storage and communication. While the platform prevents the OS from directly accessing
enclave’s memory, an enclave uses the memory it shares with the untrusted host application
to interact with the OS, and this form of interaction gives the attacker a means to control
the enclave’s inputs and outputs and potentially trigger any vulnerability in the enclave’s
code. The developer must write safe enclave programs by using their trusted primitives
correctly, using safe cryptographic protocols, avoiding traditional bugs due to memory safety
violations, etc. For instance, the enclave may suffer from exploits like Heartbleed [47] by
using vulnerable SSL implementations, and these exploits have been shown to leak secret
cryptographic keys from memory. As another example, the enclave developer may forget to
perform integrity checks on input buffers originating in untrusted memory, or may compute
on secret data directly in untrusted memory. The attacker may exploit such vulnerabilities
to extract sensitive data from enclaves. The goal of this chapter is to develop a verification
toolchain to guarantee an absence of such information leaks. An enclave developer can
use such a toolchain to prove that enclave programs satisfy confidentiality, i.e., there is no
execution that leaks a secret to the adversary-visible, non-enclave memory.

Verifying confidentiality involves tracking the flow of secrets within the application’s
memory, and proving that the adversary does not observe values that depend on secrets.
While past research has produced several type systems that verify information flows (e.g.
Jif [86], Volpano et al. [121], Balliu et al. [13]), they make a fundamental assumption that
the infrastructure (OS/VMM, etc.) on which the code runs is safe, which is unrealistic due
to privileged malware attacks. Furthermore, extending traditional type systems to enclave
programs is non-trivial because the analysis must faithfully model the semantics of SGX in-
structions and infer information flows to individual addresses within enclave memory. There-
fore, we develop a static verifier called Moat that analyzes the instruction-level behavior of
the enclave binary program. Moat employs a flow- and path-sensitive type checking algo-
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rithm (based on automated theorem proving using satisfiability modulo theories solving [17])
for automatically verifying whether an enclave program (in the presence of a privileged ad-
versary) provides confidentiality guarantees. For unsafe programs, Moat returns an exploit
demonstrating a potential leak of secret to non-enclave memory. By analyzing the binary,
we remove the compiler from our trusted computing base, and also avoid making memory
safety assumptions that are common in traditional information flow type systems based on
high-level languages. Though we study these issues in the context of TAP (which we prove
that it simulates Intel SGX and Sanctum), similar issues arise in other architectures based
on trusted hardware such as ARM TrustZone [9] and Sancus [90], and our approach is po-
tentially applicable to them as well. The theory we develop with regard to attacker models
and our verifier is mostly independent of the specifics of SGX and Sanctum.

In short, the goal of this chapter is to provide a methodology and tool support for
the programmer to write safe enclaves. This chapter has the following organization. In
Section 7.1, we give present an overview of the challenges addressed by and solutions adopted
by Moat, which is described in technical detail in Section 7.2. Section 7.3 evaluates Moat on
several case studies. We discuss several works related to Moat in Section 7.4.

7.1 Overview of Moat

In this section, we give an overview of Moat’s approach for proving confidentiality prop-
erties of enclave code (detailed exposition in Section 7.2). Moat proves that a privileged
software adversary (specifically the M adversary defined in Section 4.2; Moat does not de-
fend against side channel leaks) running on the same machine does not observe a value that
depends on Secrets, regardless of any operations performed by that adversary.

Moat accepts an enclave program in x86 Assembly, containing TAP’s enclave-mode in-
structions attest, rand, and exit. Moat is also given a set of annotations, called Secrets,
indicating 1) code locations where secret values are generated (e.g. after key generation,
decryption, etc.), and 2) memory locations where those secret values are stored. In the OTP
application presented in Section 2.3.1 (and repeated here in Figure 7.1), the Secrets include
otp_secret, session_key, and sealing_key.

We demonstrate Moat’s proof methodology on a snippet of OTP enclave code containing
lines 22-26 from Figure 7.1, which is first compiled using an off-the-shelf C compiler to
x86+SGX Assembly in Figure 7.2. Here, the enclave invokes egetkey to retrieve a 128-bit
(secret) sealing key, which is stored in the byte array sealing_key. Next, the enclave encrypts
otp_secret (using AES-GCM-128 encryption library function called encrypt) to compute the
sealed_secret. Finally, the enclave copies sealed_secret to untrusted memory app_heap (to
be written to disk). Observe that the size argument to memcpy (line 26 in Figure 2.2)
is a variable size_field which resides in non-enclave memory. The adversary can overwrite
size_field with an arbitrary value, thus triggering the buffer overrun vulnerability and causing
the enclave to leak secrets from its memory.

To reason about enclave code and find such vulnerabilities, Moat first extracts a model
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egetkey
movl $0x8080AC,0x8(%esp)
lea -0x6e0(%ebp),%eax
mov %eax,0x4(%esp)
lea -0x720(%ebp),%eax
mov %eax,(%esp)
call <AES_GCM_encrypt>
mov 0x700048,%eax
movl %eax,0x8(%esp)
lea -0x720(%ebp),%eax
mov %eax,0x4(%esp)
movl $0x701000,(%esp)
call 802080 <memcpy>

mem := egetkey(mem, ebx, ecx);
mem := store(mem,add(esp,8),8080AC);
eax := sub(ebp, 6e0);
mem := store(mem,add(esp,4),eax);
eax := sub(ebp, 720);
mem := store(mem,esp,eax);
mem := AES_GCM_encrypt(mem, esp);
eax := load(mem,700048);
mem := store(mem,add(esp,8),eax);
eax := sub(ebp, 720);
mem := store(mem,add(esp,4),eax);
mem := store(mem,esp,701000);
mem := memcpy(mem, esp);

Figure 7.2 : OTP enclave snippet (left) and its formal model p (right)

in the language that we presented in Section 3.5. We denote this model as p, which we
define in the language presented in Section 3.5 to be a sequence of TAP instructions. Recall
from Section 3.5 that an enclave program is modeled as a sequence of instructions (Instr)
with a unique entrypoint — since we are only demonstrating Moat on a tiny snippet of
enclave code, assume that the execution starts at the egetkey instruction. Figure 7.2 shows
the model p of the snippet of OTP enclave. Moat leverages the formal semantics of enclave
instructions that we developed in Section 3.5 to reason about the enclave’s behaviors.

The model extraction is built upon the BAP framework [32], which lifts popular instruc-
tion sets (including x86 and ARM) to a simpler intermediate language that resembles our
language from Section 3.5. BAP models user-mode x86 instructions precisely, including up-
dates to ISA-defined state such as registers and flags. For brevity, our model in Figure 7.2
omits all updates to flags as they are irrelevant to this code snippet. To avoid reasoning
about the probabilistic semantics of cryptographic operators, Moat does not model the im-
plementation of cryptographic routines (such as AES_GCM_encrypt in Figure 7.2). Instead,
it replaces all calls to the cryptographic routines with their specifications. For instance, in
the case of AES_GCM_encrypt, the specification states that the output ciphertext is not
secret (i.e., it can be safely output to non-enclave memory), and that it ensures memory
safety: only the allocated buffer for the ciphertext is modified by the call.

Since the enclave program executes in the presence of an active adversary, specifically
M , we must model the effects of M ’s operations on the enclave’s execution. We follow
the strategy discussed in Section 6.1. The integrity theorem of secure remote execution
(from Section 5.1) states that any sequence of operations of a privileged adversary can be
simulated by an adversary that only modifies all locations in non-enclave memory. Effec-
tively, the adversary is supplying a fresh, arbitrarily-chosen value of non-enclave memory at
each step of enclave execution — further recall from Section 3.6 that we limit the attacker’s
capability to only supplying inputs via untrusted memory, before each step of enclave’s exe-
cution. To model the adversary’s effect on p’s execution, we introduce a “havoc mem¬evrange”
operation before each enclave instruction in our model, as seen in Figure 7.3. Here, memevrange
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denotes enclave’s protected virtual address space, and mem¬evrange is all of untrusted, non-
enclave memory; havoc mem¬evrange updates each address in mem¬evrange with an arbitrarily
chosen value. According to our integrity proof in Section 5.1, this method of modeling M
accounts for all privileged adversarial operations — any property we prove on the instru-
mented model will hold at runtime when the enclave executes in the presence of a privileged
adversary. Given an enclave program model p, we denote the instrumented model as pM .

1 havoc mem¬evrange; mem := egetkey(mem, ebx, ecx);
2 havoc mem¬evrange; mem := store(mem,add(esp,8),8080AC);
3 havoc mem¬evrange; eax := sub(ebp, 6e0);
4 havoc mem¬evrange; mem := store(mem,add(esp,4),eax);
5 havoc mem¬evrange; eax := sub(ebp, 720);
6 havoc mem¬evrange; mem := store(mem,esp,eax);
7 havoc mem¬evrange; mem := AES_GCM_encrypt(mem, esp);
8 havoc mem¬evrange; eax := load(mem,700048);
9 havoc mem¬evrange; mem := store(mem,add(esp,8),eax);

10 havoc mem¬evrange; eax := sub(ebp, 720);
11 havoc mem¬evrange; mem := store(mem,add(esp,4),eax);
12 havoc mem¬evrange; mem := store(mem,esp,701000);
13 havoc mem¬evrange; mem := memcpy(mem, esp);

Figure 7.3 : Enclave Model p instrumented with Adversary M ’s operations, denoted pM .

As we discussed in Section 2.3.1, the OTP enclave implementation is vulnerable. The
size argument to memcpy (line 26 in Figure 7.1) is a field within a data structure in non-
enclave memory. This vulnerability manifests within pM as a load (line 8 of Figure 7.3),
which reads a value from non-enclave memory and passes that value as the size argument to
memcpy. To perform the exploit, the attacker M uses havoc mem¬evrange (in line 8) to control
the number of bytes that the enclave writes to non-enclave memory, starting at the base ad-
dress of sealed_secret. By setting this value to be greater than the size of sealed_secret, M
causes the enclave to leak the stack contents, which includes the sealing_key. Note that the
specification of AES_GCM_encrypt allows us to safely write out sealed_secret to non-enclave
memory because it is encrypted, but writing out other parts of memory (e.g. sealing_key) is
unsafe. We formalize a confidentiality property in Chapter 6 that captures such vulnerabil-
ities, and build a static type system in Section 7.2 which only admits programs that satisfy
confidentiality. Confidentiality enforces that for any pair of traces of the instrumented model
that differ in the values of Secrets, if M ’s operations along the two traces are equivalent
(i.e., equivalent sequences of non-enclave memories), then M ’s observations along the two
traces must also be equivalent. In other words, M ’s observation of enclave’s execution is
independent of Secrets. Note that side channels are out of scope, which is why we choose
the threat model of Moat to be the adversary M .

Our type system checks confidentiality by further instrumenting the enclave model with
ghost variables that track the flow of Secrets within registers and memory, akin to taint
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1 assert ¬Cecx;Cold
mem := Cmem; havoc Cmem;

2 assume ∀i. (ecx ≤ i < ecx + 16)→ Cmem[i]↔ true;

3 assume ∀i. ¬(ecx ≤ i < ecx + 16)→ Cmem[i]↔ Cold
mem[i];

4 havoc mem¬evrange; mem := egetkey(mem, ebx, ecx);
5 assert ¬Cesp;Cmem[add(esp, 8)] := false;

6 havoc mem¬evrange; mem := store(mem,add(esp,8),8080AC);
7 Ceax := Cebp;

8 havoc mem¬evrange; eax := sub(ebp, 6e0);
9 assert ¬Cesp ∧ (¬evrange(add(esp, 4))→ ¬Ceax);Cmem[add(esp, 4)] := Ceax;

10 havoc mem¬evrange; mem := store(mem,add(esp,4),eax);
11 Ceax := Cebp;

12 havoc mem¬evrange; eax := sub(ebp, 720);
13 assert ¬Cesp ∧ (¬evrange(esp)→ ¬Ceax);Cmem[esp] := Ceax;

14 havoc mem¬evrange; mem := store(mem, esp, eax);
15 Cmem := C_AES_GCM_encrypt(Cmem, esp);

16 havoc mem¬evrange; mem := AES_GCM_encrypt(mem, esp);
17 Ceax := Cmem[700048];

18 havoc mem¬evrange; eax := load(mem, 700048);
19 assert ¬Cesp ∧ (¬evrange(add(esp, 8))→ ¬Ceax);Cmem[add(esp, 8)] := Ceax;

20 havoc mem¬evrange; mem := store(mem, add(esp,8), eax);
21 Ceax := Cebp;

22 havoc mem¬evrange; eax := sub(ebp, 720);
23 assert ¬Cesp ∧ (¬evrange(add(esp, 4))→ ¬Ceax);Cmem[add(esp, 4)] := Ceax;

24 havoc mem¬evrange; mem := store(mem, add(esp,4), eax);
25 assert ¬Cesp;Cmem[esp] := false;

26 havoc mem¬evrange; mem := store(mem, esp, 7001000);
27 Cmem := C_memcpy(Cmem, esp);

28 arg1 := load(mem, esp); arg3 := load(mem, add(esp, 8));

29 havoc mem¬evrange; mem := memcpy(mem, esp);
30 assert ∀i. ((arg1 ≤ i < add(arg1, arg3)) ∧ ¬enc(i))→ ¬Cmem[i];

Figure 7.4 : I(pM ): enclave Model instrumented with ghost variables for tracking flow of secrets,
and assertions for checking safety of information flows.

tracking but performed using static analysis, and assertions which check for valid informa-
tion flows. Figure 7.4 illustrates this transformation for the enclave snippet from Figure 7.3.
Given an enclave model pM , which contains the attacker’s havoc mem¬evrange operations, we
denote the instrumented model (which contains ghost variables and typing assertions) as
I(pm). Moat tracks both implicit and explicit information flows [100] using the instrumen-
tation in I(pM). For each state variable x, the type system instruments a ghost variable
Cx. Cx is updated on each assignment that updates x, and is assigned to false only if x’s
value is not a function of Secrets (details in Section 7.2). For instance, Cmem[esp] in line 13
is assigned to Ceax because a secret in the eax register makes the written memory location
also secret. Furthermore, for each secret in Secrets, we set the corresponding locations in
Cmem to true. For instance, lines 1-3 assign true to those 16 bytes in Cmem where egetkey

places the secret sealing_key. Information leaks can only happen via store to mem¬evrange,
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since the adversary cannot observe memevrange. For each store instruction, the type system
instruments an assert checking that a secret value is not written to mem¬evrange (with special
treatment of memcpy for efficiency) — recall that the predicate evrange(i) is true if i is an
address in memevrange. For a program to be well-typed, all assertions in the instrumented
instrumented model must be valid along any feasible execution.

Moat feeds the instrumented program (Figure 7.4) to a static program verifier, which
uses SMT solving to explore all executions (i.e., all reachable states) and verify that the
assertions are valid along all executions. The assertion in line 30 is invalid because Cmem is
true for memory locations that hold the sealing_key. Our type system rejects this enclave
program. A fix to the OTP implementation is to replace size_field with the correct size,
which is 64 bytes. Although memory safety vulnerabilities can be found using simpler static
analysis, Moat can identify several classes of vulnerabilities using these typing assertions, at
the level of machine code.

7.1.1 Declassification

In the previous section, we claim that writing sealed_secret to mem¬evrange is safe because
it is encrypted using a secret key. We now explain how Moat evaluates whether a particular
enclave output is safe. As a pragmatic choice, Moat does not reason about cryptographic
operations for there is significant body of research on cryptographic protocol verification.
For instance, if encryption uses a key established by Diffie-Hellman, the verification would
need to reason about the authentication and attestation scheme used in that Diffie-Hellman
exchange in order to derive that the key can be safely used for encryption. Protocol verifiers
(e.g. ProVerif [25], CryptoVerif [26]) excel at this form of reasoning. Therefore, when Moat
encounters a cryptographic library call, it abstracts it as an uninterpreted function with the
conservative axiom that secret inputs produce secret output.

However, this conservative axiomatization is unnecessary because a secret encrypted with
a key (that is unknown to the adversary) can be safely output. A declassified output is
a intentional information leak of the program, which may be proven to be a safe using
other proof techniques. In our experiments, we safely eliminate declassified outputs from
information leakage checking if the protocol verifier has already proven them to be safe
outputs. For instance, since the AES-GCM cipher can be safely assumed to provide semantic
security, in Figure 7.4, AES_GCM_encrypt on line 16 is an uninterpreted function, and
C_AES_GCM_encrypt on line 15 marks the ciphertext as non-secret (i.e., public).

To collect the Declassified annotations, we manually model the cryptographic protocol
to verify using an off-the-shelf protocol verifier. The choice of protocol verifier is orthogonal
to our work. A protocol verifier accepts as input an abstract model of the protocol (in a
formalism such as spi calculus [5]), and proves properties such as confidentiality of protocol-
level secrets. We briefly describe how we use Moat in tandem with a protocol verifier. If Moat
establishes that a particular value generated by the enclave is secret, this can be added to
the set of secrecy assumptions made in the protocol verifier. Similarly, if the protocol verifier
establishes confidentiality even while assuming that an enclave’s output is observable by the



7.1. OVERVIEW OF MOAT 73

adversary, then we can declassify that output while verifying the enclave with Moat. This
assume-guarantee reasoning is sound because the adversary model used by Moat (i.e.,M) can
simulate a network adversary — a network adversary reorders, inserts, and deletes messages,
and the observable effect of these operations can be simulated by a havoc mem¬evrange.

We demonstrate this assume-guarantee reasoning on lines 22-26 of the OTP enclave
in Figure 7.4, where line 26 no longer has the memory safety vulnerability, i.e., it uses
the constant 64 instead of size_field. Despite the fix, Moat is initially unable to prove
that memcpy in line 26 of Figure 7.4 is safe because its axiomatization of aes_gcm_encrypt
is imprecise. We proceed by first proving in Moat that the sealing_key (obtained using
egetkey) is not leaked to the adversary. Next, we annotate the ProVerif model with the
assumption that sealing_key is secret, which allows ProVerif to prove that the outbound
message (via memcpy) is safe. Based on this ProVerif proof, we annotate the sealed_secret
as Declassified, hence telling Moat that the assert on line 30 of Figure 7.4 is valid.

This illustrates that protocol verification not only provides Declassified annotations,
but also specifies which values must be kept secret by the enclave to ensure that the protocol
is safe. The combination of Secrets and Declassified annotations is called a policy, and
this policy forms an input to Moat in addition to the enclave program.

7.1.2 Assumptions and Limitations

Moat has the following fundamental limitations:

• To make static analysis feasible,Moat assumes that the enclave code cannot be modified
at runtime (enforced using permissions on enclave’s pages).

• Moat assumes that the enclave program has control flow integrity. Moat does not find
vulnerabilities that exploit the control flow behavior (such as ROP attacks). This
assumption is not fundamental, and can be removed using a combination of mod-
ern runtime defenses (e.g. [6]) and static analysis tools [111]). In fact, we develop a
compiler and verifier in Chapter 8 that guards against such attacks while establishing
confidentiality of the enclave program.

• We do not consider attacks from observing side channels such as memory access pat-
terns, etc. We address this side channel in Chapter 9. We also do not address timing
channels, and the enclave program can leak secret data via (the time of ) termination.
The confidentiality guarantee checked by Moat is a form of termination-insensitive
non-interference [64].

• Moat’s type system prevents programs from accessing memory using secret-dependent
addresses, for simplicity. This may be restrictive in practice, and we find that Moat is
typically suited for programs where secrets consist only of cryptographic keys, and their
use is confined to cryptographic operations. We do relax this restriction in Chapter 8.
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• Although SGX allows an enclave to have multiple CPU threads, we only consider
single-threaded enclaves for simplicity.

The current implementation of Moat makes the following additional assumptions:

• The TAP platform, specifically the SGX and Sanctum processor, is in our trusted
computing base. Specifically, we assume that BAP models all machine instructions
faithfully, and that the concrete processor hardware fulfills the ISA-defined semantics.
This eliminates a class of attacks, such as physical tampering of the CPU and supply
chain attacks, from the threat model.

• Moat’s implementation uses the Boogie [14] program verifier, Z3 [41] SMT solver, and
BAP [32] for modeling x86 instructions. All these dependencies are in our trusted
computing base.

• We use trusted implementation of cryptographic routines (cryptopp library [1]) to de-
velop our benchmarks. Since Moat does not model their implementation, they are in
our trusted computing base.

• We assume that the enclave code does not handle exceptions, apart from page fault ex-
ceptions which are handled seamlessly by the OS/VMM. In other words, we terminate
the enclave in the event of all other exceptions (such as divide by 0).

• Moat assumes that the enclave code does not read (via load instruction) from static
save area (SSA). We have not yet found this to be a limiting assumption in any prac-
tical program, including our benchmarks. Note that this assumption does not prevent
the untrusted code from invoking eresume (which is necessary for resuming from asyn-
chronous exits).

• Moat performs a global analysis of the enclave code, and it must inline all procedure
calls to that end. While this simplifies the low-level assertions that we need to prove,
it limits scalability.

7.2 Proving Confidentiality
Moat automatically checks if the model of enclave program satisfies confidentiality (prop-

erty 6.1). Since confidentiality is a 2-safety hyperproperty (property over pairs of traces),
we cannot use black box program verification techniques, which are tailored towards safety
properties. Hence, we create a security type system in which type safety implies that the
enclave satisfies confidentiality. We avoid a self-composition approach because of compli-
cations in encoding equivalence assumptions over adversary operations in the two traces of
the enclave (property 6.1). As is standard in many type-based systems [121, 86], the typ-
ing rules prevent programs that have explicit and implicit information leaks. Explicit leaks
occur via assignments of secret values to M -observable state, i.e., mem¬evrange. For instance,
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mem := store(mem,a,d) is ill-typed if d’s value depends on a secret and evrange(a) is false,
i.e., it writes a secret to non-enclave memory. An implicit leak occurs when a conditional
statement has a secret-dependent guard, but updates M -visible state in either branch. For
instance, if (d == 42) {mem := store(mem, a, 1)} else {skip} is ill-typed if d’s value depends
on a secret and evrange(a) is false. In both examples above, M learns the secret value
d by reading mem at address a. Moat’s type system precisely models the semantics of x86
instructions and TAP primitives, and certifies the enclave only if it has no implicit or explicit
leaks. However, as we mention before, Moat’s type system prevents programs from accessing
memory using secret-dependent addresses. This may be restrictive in practice, and we find
that Moat is typically suited for programs where secrets consist only of cryptographic keys,
and their use is confined to cryptographic operations.

We now describe the specifics of Moat’s type system. A security type is either > (secret)
or ⊥ (public). At each program point, each memory location and CPU register has a security
type based on the machine instructions executed until that location. The security types are
needed at each program location because variables (especially regs) may alternate between
holding secret and public values. As explained later in this section, Moat uses the security
types in order to decide whether any computation in the enclave can produce implicit or
explicit leaks. We assume that the developer has provided the Secrets = {(l, v)} and
Declassified = {(l, v)} annotations. We don’t require the developer to provide any other
annotations; therefore, Moat implements a type inference algorithm based on computing
refinement type constraints and checking their validity using a theorem prover. In contrast,
type checking without inference would require the programmer to painstakingly provide
security types for each memory location and CPU register, at each program point — flow
sensitivity and type inference are key requirements of type checking machine code.

Moat’s type inference algorithm computes first-order logical constraints under which an
expression or statement takes a security type. A typing judgment ` e : τ ⇒ ψ means that the
expression e has security type τ whenever the constraint ψ is satisfied. An expression of the
form op(v1, . . . , vn) (where op is a relation or function) has type τ if all variables {v1, . . . , vn}
have type τ or lower. That is, an expression has type ⊥ iff its value is independent of Secrets.

For an enclave program p to have type τ , every assignment in p must update a state
variable whose security class is τ or higher. We write this typing judgment as [τ ] ` p ⇒
〈ψ,F〉, where ψ is a first-order (SMT) formula and F is a set of first-order (SMT) formulae.
Each satisfiable interpretation of ψ corresponds to a feasible execution of p. F contains a
SMT formula for each instruction i in p (recall that p is a sequence of instructions), such
that the formula is valid iff that instruction does not leak secrets. We present our typing
rules in Figure 7.5, which assume that the enclave model is first converted to single static
assignment form. An instruction i has type τ if we derive [τ ] ` i ⇒ 〈ψ,F〉 using the typing
rules, and prove (using a First-Order Logic theorem prover) that all formulae in F are valid.
If i has type >, then i does not updateM -visible state, and thus cannot contain information
leaks. Having type > also allows i to execute in a context where a secret value is implicitly
known through the guard of a conditional statement. On the other hand, type ⊥ implies
that i either does not update M -observable state or the update is independent of Secrets.
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We now explain some of our typing rules from Figure 7.5. For each variable v ∈ Vars ,
our typing rules introduce a ghost variable Cv that is true iff v has security type >. For a
scalar register v, Cv is a boolean; for an array variable v, Cv (e.g. Cmem) is an array and Cv[i]
denotes the security type for each location i. The exp1 rule allows inferring the type of any
expression e as >. The exp2 rule allows inferring an expression type e as ⊥ if we derive Cv to
be false for all variables v in the expression e. The storeL rule marks the memory location as
secret if the stored data is secret. In case of secret data, we assert that the updated location
is within mem¬evrange; we also assert that the address is public to prevent implicit leaks. Since
the storeH rule types store instructions as >, it unconditionally marks the memory location
as secret. This is necessary because the store may execute in a context where a secret is
implicitly known through the guard of a conditional statement. The load rule marks the
updated register as secret if the memory location contains a secret value. The attestL rule
types the updated memory locations as per SGX semantics. attest takes 64 bytes of data
(that the programmer intends to bind to the measurement) at address in ecx, and copies
them to memory starting at address edx + 320; the rest of the report has public data such
as the MAC, measurement, etc. Hence, Cmem retains the secrecy level for the 64 bytes of
data, and assumes false for the public data. Similar to storeH, attestH unconditionally
marks all 432 bytes of the report as secret. Notice that we do not assert that attest writes
to enclave memory since this is checked by the TAP. exit jumps to the host application
without clearing regs. Hence, the exit rule asserts that those regs hold public values.

Observe that we do not include any rules for procedure calls and returns. This is because
Moat inlines all procedure calls in the enclave’s main method, and performs a global anal-
ysis of the resulting program. While this certainly limits the scalability of Moat, it allows
our typing rules to be simpler. We present an alternative technique for verifying enclaves
in Chapter 8 which relaxes this limitation.

Theorem 2 For any enclave program p such that [τ ] ` p⇒ (ψ,F) is derivable (where τ is
either > or ⊥) and all formulae in F are valid, p satisfies property 6.1.

Moat implements this type system by translating each instruction i in pM to I(i) using the
rules in Figure 7.6. Observe that we introduce Cpc to track whether confidential information is
implicitly known through the program counter. If a conditional statement’s guard depends on
a secret value, then we set Cpc to true within the then and else branches. Moat invokes I(pM)
and applies the instrumentation rules in Figure 7.6 recursively. Figure 7.4 demonstrates an
example of instrumenting pM . Moat then feeds the instrumented program I(pM) to an off-the-
shelf program verifier, which explores all feasible executions, and proves validity all assertions
or finds a counter-example. Our implementation uses the Boogie [14] program verifier, which
receives I(pM) and generates verification conditions in the SMT format. Boogie uses the
Z3 [41] theorem prover (SMT solver) to prove the verification conditions. An advantage
of using SMT solving is that a typing error is explained using counter-example execution,
demonstrating the information leak and exploit.
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(exp1 )
` e : > ⇒ true

(exp2 )
` e : ⊥ ⇒

∧
v∈V ars(e)

¬Cv

[>] ` i⇒ 〈ψ,A〉
(coercion)

[⊥] ` i⇒ 〈ψ,A〉

(skip)
[>] ` skip⇒ 〈true, {∅}〉

(assume)
[τ ] ` assume φ⇒ 〈φ, {∅}〉

(assert)
[τ ] ` assert φ⇒ 〈φ, {φ}〉

(scalar)
[τ ] ` x′ := e⇒ 〈(x′ = e) ∧ (Cx′ ↔

∨
v∈V ars(e)

Cv), {∅}〉

` ea : ⊥ ⇒ ψa (load)
[τ ] ` x′ := load(mem, ea)⇒ 〈(x′ = load(mem, ea)) ∧ (Cx′ ↔ Cmem[ea]), {ψa}〉

` ea : ⊥ ⇒ ψa (storeH )
[>] ` mem′ := store(mem, ea, ed)⇒
〈mem′ = store(mem, ea, ed) ∧ Cmem′ = Cmem[ea := true], {evrange(ea) ∧ ψa}〉

` ea : ⊥ ⇒ ψa ` ed : ⊥ ⇒ ψd (storeL)
[⊥] ` mem′ := store(mem, ea, ed)⇒
〈mem′ = store(mem, ea, ed) ∧ Cmem′ = Cmem[ea := ψd], {ψa ∧ (¬evrange(ea)→ ψd)}〉

(attestL)
[⊥] ` mem′ := attest(mem, ebx, ecx, edx)⇒
〈mem′ = ereport(mem, ebx, ecx, edx) ∧
∀j. (edx ≤ j < edx + 320)→ ¬Cmem′ [j]
∧ (edx + 320 ≤ j < edx + 384)→ Cmem′ [j]↔ Cmem[ecx + j − edx− 320]
∧ (edx + 384 ≤ j < edx + 432)→ Cmem′ [j]↔ false
∧ ¬(edx ≤ j < edx + 432)→ Cmem′ [j]↔ Cmem[j], {¬Cedx}〉

(attestH )
[>] ` mem′ := attest(mem, ebx, ecx, edx)⇒
〈mem′ = ereport(mem, ebx, ecx, edx) ∧
∀j. (edx ≤ j < edx + 432)→ (Cmem′ [j]↔ true)
∧ ¬(edx ≤ j < edx + 432)→ (Cmem′ [j]↔ Cmem[j]), {¬Cedx}〉

(exit)
[τ ] ` mem′, regs′ := eexit(mem)⇒ 〈(mem′, regs′) = eexit(mem), {∀r ∈ regs. ¬Cr}〉

[τ ] ` i1 ⇒ 〈ψ1,F1〉 [τ ] ` i2 ⇒ 〈ψ2,F2〉 (seq)
[τ ] ` i1; i2 ⇒ 〈ψ1 ∧ ψ2,F1 ∪ {ψ1 → f2 | f2 ∈ F2}〉

` e : τ ⇒ ψ [τ ] ` i1 ⇒ 〈ψ1,F1〉 [τ ] ` i2 ⇒ 〈ψ2,F2〉 (ite)
[τ ] ` if (e) {i1} else {i2} ⇒ 〈(e→ ψ1) ∧ (¬e→ ψ2), {ψ} ∪ {e→ f1 | f1 ∈ F1} ∪ {¬e→ f2 | f2 ∈ F2}〉

Figure 7.5 : Typing Rules for pM
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Instruction i Instrumented Instruction I(i)

assert φ assert φ
assume φ assume φ
skip skip
havoc mem¬epc havoc mem¬epc
x := e Cx := Cpc ∨

∨
v∈V ars(e) Cv; x := e

x := load(mem, e) assert
∧
v∈V ars(e) ¬Cv;

Cx := Cpc ∨ Cmem[e]; x := load(mem, e)
mem := assert

∧
v∈V ars(ea) ¬Cv; assert Cpc → evrange(ea);

store assert (¬Cpc ∧ ¬evrange(ea))→ (
∧
v∈V ars(ed) ¬Cv);

(mem, ea, ed) Cmem[ea] := Cpc ∨
∨
v∈V ars(ed) Cv;

mem := store(mem, ea, ed)
mem := assert ¬Cedx; Cold

mem := Cmem; havoc Cmem;
ereport assume ∀j. (edx ≤ j < edx + 320)→ Cmem[j] = Cpc;
(mem, ebx, ecx, edx) assume ∀j. (edx + 320 ≤ j < edx + 384)→

Cmem[j] = (Cpc ∨ Cold
mem[ecx + j − edx− 320]);

assume ∀j. (edx + 384 ≤ j < edx + 432)→
Cmem[j] = Cpc;

assume ∀j. ¬(edx ≤ j < edx + 432)→ Cmem[j] = Cold
mem[j];

mem := ereport(mem, ebx, ecx, edx)
mem := assert ¬Cecx; Cold

mem := Cmem; havoc Cmem;
egetkey assume ∀j. (ecx ≤ j < ecx + 16)→ Cmem[j];
(mem, ebx, ecx) assume ∀j. ¬(ecx ≤ j < ecx + 16)→ Cmem[j] = Cold

mem[j];
mem := egetkey(mem, ebx, ecx)

mem, regs := assert ∀r ∈ regs. ¬Cr;
eexit(mem, ebx) mem, regs := eexit(mem)
i1 ; i2 I(i1); I(i2)
if(e){i1}else{i2} Cin

pc := Cpc;
Cpc := Cpc ∨

∨
v∈V ars(e) Cv;

if (e) {I(i1)} else {I(i2)};
Cpc := Cin

pc

Figure 7.6 : Instrumentation rules for pM
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7.3 Evaluation
Moat’s implementation comprises (1) translation from machine code program to p using

BAP, (2) transformation to pM by instrumenting havoc mem¬evrange operations before each
instruction i in p, (3) transformation to I(pM) using the rules in Table 8.1, and (4) invoking
Boogie/Z3 [41] Theorem Prover to prove validity of all assertions in I(pM) (modulo explicit
declassifications, provided by the user).

7.3.1 Optimizations

Our primary objective with Moat was to build a sound verifier for proving confidentiality
in the presence of an active adversary. However, we recognize certain scalability challenges,
and implement the following optimizations to help Z3 prove the typing assertions. First,
we only introduce havoc mem¬evrange prior to load instructions because only a load can be
used to read non-enclave memory mem¬evrange, and other instructions are not affected by
the contents of non-enclave memory. Furthermore, we axiomatize specific library calls such
as memcpy and memset, because their loopy implementations incur significant verification
overhead.

7.3.2 Case Studies

We now describe some case studies which we verified using Moat and ProVerif in tandem,
and summarize the results in Figure 7.7. We use the following standard crytpographic nota-
tion and assumptions. m1| . . . |mn denotes concatenation of nmessages. We use a keyed-hash
message authentication function MACk(text) and hash function H(text), both of which are
assumed to be collision-resistant. For asymmetric cryptography, K−1

e and Ke are principal
e’s private and public signature keys, where we assume that Ke is long-lived and distributed
within certificates signed by a root of trust authority. Digital signature using a key k is writ-
ten as Sigk(text); we assume unforgeability under chosen message attacks. We assume that
the processor vendor provisions each TAP processor with a unique private key K−1

TAP that is
available to a special quoting enclave. Using a protocol with the quoting enclave, an enclave
can invoke attest to produce quotes, which is essentially a signature (using the private key
K−1
SGX) of the data produced by the enclave and its measurement. We write a quote pro-

duced on behalf of enclave e as Quotee(text), which is equivalent to SigK−1
TAP

(H(text) | Me)
— measurement of enclave e is written as Me. N is used to denote nonce. Finally, we
write Enck(text) for the encryption of text, for which we assume indistinguishability under
chosen plaintext attack. We also use AEnck(text) for authenticated encryption, for which we
assume indistinguishability under chosen plaintext attack and integrity of ciphertext. We
use cryptopp [1] to implement the above cryptographic operations, and we do not verify its
implementation.
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One-time Password Generator The abstract model of the OTP secret provisiong pro-
tocol (presented in detail in Section 2.3.1), where client runs in a SGX enclave, bank is a
trusted remote service, and disk denotes client-side storage that is under adversary’s control:

bank → client : N

client→ bank : N | gc | Quoteclient(N | gc)
bank → client : N | gb | SigK−1

bank
(N | gb) | AEncH(gbc)(secret)

client→ disk : AEncKseal
(secret)

First, we use Moat to prove that gbc and Kseal are not leaked to the attacker M . Next,
ProVerif uses secrecy assumption on gbc and Kseal to prove that secret is not leaked to a
network adversary. This proof allows Moat to declassify client’s output to disk during type
checking (Figure 7.5). Moat successfully proves that the client enclave satisfies confidential-
ity.

Notary Service We implement a notary service described in [56] but adapted to run
on SGX. The notary enclave assigns logical timestamps to documents, giving them a total
ordering. The notary enclave responds to (1) a connect message for obtaining the attestation
report, and (2) a notarize message for obtaining a signature over the document hash and the
current counter.

user → notary : connect | N
notary → user : Quotenotary(N)

user → notary : notarize | H(text)

notary → user : counter | H(text) |
SigK−1

notary
(counter | H(text))

The only secret here is the private signature key K−1
notary. First, we use Moat to prove

that K−1
notary is not leaked to the attacker M . This proof fails because the output of Sig (in

the response to notarize message) depends on the secret signature key — Moat is unaware of
cryptographic properties of Sig. ProVerif proves that this message does not leak K−1

notary to a
network adversary, which allows Moat to declassify this message and prove that the notary
enclave satisfies confidentiality.

End-to-End Encrypted Instant Messaging We implement the off-the-record messag-
ing protocol [27], which provides perfect forward secrecy and repudiability for messages
exchanged between principals A and B. We adapt this protocol to run on SGX, thus provid-
ing an additional guarantee that an infrastructure attack cannot compromise the ephemeral
Diffie-Hellman keys, which encrypt and integrity-protect the messages between A and B.
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We only present a synchronous form of communication here for simplicity.

A→ B : ga1 | SigK−1
A

(ga1) | QuoteA(SigK−1
A

(ga1))

B → A : gb1 | SigK−1
B

(gb1) | QuoteB(SigK−1
B

(gb1))

A→ B : ga2 | EncH(ga1b1 )(m1) | MACH(H(ga1b1 ))(g
a2 |

EncH(ga1b1 )(m1))

B → A : gb2 | EncH(ga2b1 )(m2) | MACH(H(ga2b1 ))(g
b2 |

EncH(ga2b1 )(m2))

A→ B : ga3 | EncH(ga2b2 )(m3) | MACH(H(ga2b2 ))(g
a3 |

EncH(ga2b2 )(m3))

The OTR protocol only needs a digital signature on the initial Diffie-Hellman exchange
— future exchanges use MACs to authenticate a new key using an older, known-authentic
key. For the same reason, we only append a SGX quote to the initial key exchange. First, we
use Moat to prove that the Diffie-Hellman secrets computed by penc (i.e., ga1b1 , ga2b1 , ga2b2)
are not leaked to the attacker M . Next, ProVerif uses this secrey assumption to prove that
messages m1, m2, and m3 are not leaked to the network adversary. The ProVerif proofs
allows Moat to declassify all messages following the initial key exchange, and successfully
prove confidentiality.

Query Processing over Encrypted Table In this case study, we evaluate Moat on a
stand-alone application, removing the possibility of protocol attacks and therefore the need
for any protocol verification. We build a database table containing two columns: name which
is deterministically encrypted, and amount which is nondeterministically encrypted. A user
wishes to select all rows with name “Alice” and sum all the amounts. We partition this
computation into two parts: unprivileged computation (which selects the rows) and enclave
computation (which computes the sum).

Benchmark x86+TAP BoogiePL Moat Policy
instructions statements proof Annotations

OTP 188 1774 9.9 sec 4
Notary 147 1222 3.2 sec 2
OTR IM 251 2191 7.8 sec 7
Query 575 4727 55 sec 9

Figure 7.7 : Summary of experimental results. Columns are (1) instructions analyzed by Moat
(which does not include the cryptographic library), (2) size of I(pM ), (3) proof time, (4) number of
secret and declassifed annotations
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7.4 Related Work
The work in this chapter relates three somewhat distinct areas in security.
Secure Systems on Trusted Hardware. In recent years, there has been growing interest
in building secure systems on top of trusted hardware. Sancus [90] is a security architecture
for networked embedded devices that seeks to provide security guarantees without trusting
any infrastructural software, only relying on trusted hardware. Intel SGX [59] seeks to
provide similar guarantees via extension to the x86 instruction set. There are some recent
efforts on using SGX for trusted computation. Haven [21] is a system that exploits Intel
SGX for shielded execution of unmodified Windows applications. It links the application
together with a runtime library OS that implements the Windows 8 API. However, it does not
provide any confidentiality or integrity guarantees, and includes a significant TCB. VC3 [107]
uses SGX to run map-reduce computations while protecting data and code from an active
adversary. However, VC3’s confidentiality guarantee is based on the assumption that enclave
code does not leak secrets, and we can use Moat to verify this assumption. Santos et al. [104]
seek to build a trusted language runtime for mobile applications based on ARMTrustZone [9].
These design efforts have thrown up very interesting associated verification questions, and
Moat seeks to address these with a special focus on Intel SGX and Sanctum.
Verifying Information Flow on Programs. Checking implementation code for safety
is also a well studied problem. Type systems proposed by Sabelfeld et al. [101], Barthe et
al. [19], and Volpano et al. [121] enable the programmer to annotate variables that hold secret
values, and ensure that these values do not leak. Balliu et al. [13] automate information flow
analysis of ARMv7 machine code, and Constanzo et al. [39] discuss verification of information
flow security for C and Assembly programs. Languages and verification techniques also
exist for quantitative information flow (e.g., [57]). However, these works assume that the
infrastructure (OS/VMM, etc.) on which the code runs is safe, which is unrealistic due to
malware and other attacks. Our approach builds upon this body of work, showing how it
can be adapted to the setting where programs run on an adversarial OS/VMM, and instead
rely on trusted hardware for information-flow security.
Cryptographic Protocol Verification. There is a vast literature on cryptographic pro-
tocol verification (e.g. [25, 26]). Our work builds on top of cryptographic protocol verifiers
showing how to use them to reason about protocol attacks and to generate annotations for
more precise verification of enclave programs. In the future, it may also be possible to con-
nect our work to the work on correct-by-construction generation of cryptographic protocol
implementation [51].

7.5 Summary
Despite the isolation guarantees that TAP offers against a privileged adversary, vulner-

abilities in the enclave itself (e.g. incorrect use of TAP’s primitives, memory safety errors,
etc.) can be exploited to extract secrets from the enclave. In this chapter, we introduce the
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first technique to formally verify properties of enclave programs. Specifically, we present a
sound verification methodology (based on automated theorem proving and information flow
analysis) for proving that an enclave program running on TAP does not contain a vulnerabil-
ity that causes it to reveal secrets to the adversary. We introduce Moat, a tool which formally
verifies confidentiality properties of applications running on the TAP. We evaluate Moat on
several applications, including a one time password scheme, off-the-record messaging, notary
service, and secure query processing.
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Chapter 8

/Confidential : Scalably Verifying
Confidentiality of Enclave’s Outputs

In the previous chapter, we presented a verification technique, called Moat [112], to auto-
matically verify that enclave programs satisfy confidentiality guarantees, even in the presence
of a privileged adversary. While Moat implements a sound verification technique, it does not
scale beyond enclaves containing few hundred x86 instructions — the inefficiency of Moat
stems from global analysis of the entire enclave’s code (i.e., lack of modular reasoning), and
fine-grained tracking of the flow of secrets in enclave’s memory at the level of machine code.
Furthermore, Moat incurs a heavy manual effort as the user must annotate secrets within the
machine code, and also declassify outputs when necessary. This chapter address the afore-
mentioned scalability and automation concerns in Moat. Apart from Moat, other approaches
to certifying confidentiality use programming languages that can express information-flow
policies [44, 121, 100]. However, these approaches require use of particular programming
languages, incur a heavy annotation burden, and place the compiler and the language run-
time in the Trusted Computing Base (TCB) [103]. This chapter also explores certifying the
machine code loaded into enclaves (similar to Moat) to avoid these trust dependencies. In
short, the goal of this chapter to guarantee confidentiality properties of enclave programs,
but with far greater scalability and automation compared to previous approaches, and a tiny
TCB (containing First-Order Logic decision procedures).

We propose to verify a specific confidentiality policy: the code inside the enclave can
perform arbitrary computations within the region, but it can only generate output data
through an encrypted channel. We refer to this property as Information Release Confinement
or IRC. This is a meaningful confidentiality policy because it guarantees that attackers can
only observe encrypted data. We exclude covert channels and side channels (e.g., timing,
power) from our threat model. Previous experience from building sensitive data analytics
services using enclaves suggests that IRC is not unduly restrictive. For example, in VC3 [107],
only map and reduce functions are hosted in enclaves; the rest of the Hadoop stack is
untrusted. Both mappers and reducers follow a stylized idiom where they receive encrypted
input from Hadoop’s untrusted communication layer, decrypt the input, process it, and send
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encrypted output back to Hadoop. No other interaction between these components and the
untrusted Hadoop stack is required.

Figure 8.1 : Recall the threat model: The adversary M controls the host OS, hypervisor, and any
hardware beyond the CPU package, which may include storage devices. The adversary also controls
all other machines and the network. The enclave is the only trusted software component.

Scalably verifying IRC is challenging, because we aim to have a verification procedure
that can automatically certify machine code programs, without assuming the code to be type
safe or memory safe; for example, programs may have exploitable bugs or they may unin-
tentionally write information out of the enclave through corrupted pointers. Our approach
is based on decomposing programs into a user application (U) that contains the application
logic and a small runtime library (L) that provides core primitives such as memory manage-
ment and encrypted channels for communication. We restrict the interaction between the
user application and the untrusted platform to the narrow interface implemented by L.

The main contributions of this chapter are: (1) a design methodology to program enclaves
using a narrow interface to a library, (2) a notion called Information Release Confinement
(IRC), which allows separation of concerns while proving confidentiality in the presence of a
privileged adversary (that controls the OS, hypervisor, etc.), and (3) a modular and scalable
verification method for automatically checking IRC directly on application binaries.

This chapter has the following organization. In Section 8.1, we give present the overall
approach and key ideas of /Confidential . Section 8.2 discusses the relationship between
IRC and confidentialty (which we defined in Chapter 6), and shows how a proof of IRC can
be decomposed into properties of U and L. We discuss the methodology for static verifica-
tion of U code in Section 8.3, and several aspects of the implementation of /Confidential
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in Section 8.4. Next, we evaluate /Confidential on several large enclave programs in Sec-
tion 8.5. Finally, we discuss several related works in Section 8.6.

8.1 Overview of /Confidential

/Confidential decomposes the enclave program into a user application (U), written
by the developer, and runtime library (L) that is written once and for all. /Confidential
mandates that U satisfy IRC, which restricts the interaction between U and the untrusted
platform to the narrow interface implemented by L — L implements primitives for secure
communication with remote parties, cryptographically protected file storage, memory man-
agement, etc. A key contribution of /Confidential is how this methodology enables
decomposing the confidentiality verification in two parts. For L, we need to verify that it
implements a secure encrypted channel and memory management correctly; L is a small
library that can be written and verified once and for all. For U , we need to verify a series
of constraints on memory loads, stores, and control-flow transitions. Specifically, we need
to check that stores do not write data to non-enclave memory (since all interaction with
the untrusted platform must go through L), stores do not corrupt control information (e.g.,
return addresses and jump tables) inside the enclave, stores do not corrupt the state of L,
loads do not read cryptographic state from L (since using cryptographic state in U could
break the safety of the encrypted channel [24]), calls go to the start of functions in U or
to the entry points of API functions exported by L, and jumps target legal (i.e., not in the
middle of) instructions in the code. These checks on U are a weak form of control-flow
integrity, and along with restrictions on reads and writes, enforce a property which we call
WCFI-RW. We show that the functional correctness of L combined with WCFI-RW of U
implies our desired confidentiality policy (IRC).

This chapter formalizes WCFI-RW and propose a two-step process to automatically verify
that an application satisfies WCFI-RW. We first use a compiler that instruments U with
runtime checks [107]. Next, we automatically verify that the instrumentation in the compiled
binary is sufficient for guaranteeing WCFI-RW. Our verifier generates verification conditions
from the machine code of the application, and automatically discharges them using an SMT
solver. This step effectively removes the compiler as well as third-party libraries from the
TCB. By verifying these libraries, users can be certain that they do not leak information
either accidentally, through exploitable bugs, or by intentionally writing data out of the
enclaves.

This approach is significantly different from verifying arbitrary user code with uncon-
strained interfaces for communication with the untrusted platform. We require no annota-
tions from the programmer — all of U ’s memory is considered secret. The TCB is small —
it includes the verifier but does not include U or the compiler. Furthermore, the assertions
required to prove WCFI-RW are simple enough to be discharged using an off-the-shelf Satis-
fiability Modulo Theories (SMT) solver. The verification procedure is modular, and can be
done one procedure at a time, which enables the technique to scale to large programs. Our
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experiments suggest that our verifier can scale to real-world applications, including map-
reduce tasks from VC3 [107]. In the remainder of this section, we describe the challenges
addressed and solutions adopted by /Confidential.

1 void Reduce(BYTE *keyEnc, BYTE *valuesEnc,
2 BYTE *outputEnc) {
3 KeyAesGcm *aesKey = ProvisionKey();
4
5 char key[KEY_SIZE];
6 aesKey->Decrypt(keyEnc, key, KEY_SIZE);
7
8 char valuesBuf[VALUES_SIZE];
9 aesKey->Decrypt(valuesEnc, valuesBuf, VALUES_SIZE);

10 StringList *values = (StringList *) valuesBuf;
11
12 long long usage = 0;
13 for (char *value = values->begin();
14 value != values->end();
15 value = values->next()) {
16 long lvalue = mystrtol(value, NULL, 10);
17 usage += lvalue;
18 }
19
20 char cleartext[BUF_SIZE];
21 sprintf(cleartext, "%s %lld", key, usage);
22 aesKey->Encrypt(cleartext, outputEnc, BUF_SIZE);
23 }

(a) Sample reducer method

1 void Reduce(Channel<char*>& channel) {
2 char key[KEY_SIZE];
3 channel.recv(key, KEY_SIZE);
4
5 char valuesBuf[VALUES_SIZE];
6 channel.recv(valuesBuf, VALUES_SIZE);
7 StringList *values = (StringList *) valuesBuf;
8
9 long long usage = 0;

10 for (char *value = values->begin();
11 value != values->end();
12 value = values->next()) {
13 long lvalue = mystrtol(value, NULL, 10);
14 usage += lvalue;
15 }
16
17 char cleartext[BUF_SIZE];
18 sprintf(cleartext, "%s %lld", key, usage);
19 channel.send(cleartext);
20 }

(b) Reducer method using secure channels

Figure 8.2 : Reducer method illustrating the challenges of proving confidentiality.

8.1.1 Verifying confidentiality.

We illustrate the challenges in verifying that code running inside an enclave satisfies
confidentiality. Consider the Reduce method in Figure 8.2, which acts as a reducer in a
map-reduce job and is implemented within an enclave. To protect sensitive data during the
computation, the data remains encrypted outside an enclave (i.e., the map-reduce framework,
such as Hadoop, never observes sensitive data in cleartext) and is only decrypted within the
mapper and reducer functions which are implemented within enclaves. The reducer receives
encrypted a key and list of values from different mappers. The method first provisions an
encryption key (of type KeyAesGcm, not to be confused with the data key) by setting up a
secure channel with a component that manages keys (not shown for brevity). It decrypts
the key and values, computes the sum of all values, and writes the output to a buffer. The
buffer is encrypted and written to a location outside the enclave specified by the map-reduce
framework.

Proving that this Reducemethod preserves confidentiality is challenging. The code writes
the result of the computation to a stack-allocated buffer without checking the size of the
inputs. This may result in a vulnerability that can be exploited to overwrite the return
address, execute arbitrary code and leak secrets. Therefore, the proof must show that the
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cumulative size of key and result does not exceed the buffer size. Such a proof may require
non-modular reasoning since the sizes may not be defined locally. Furthermore, Reduce
writes to a location outside the enclave. The proof must show that the data written is either
encrypted or independent of secrets. The latter requires precise, fine-grained tracking of
secrets in the enclave’s memory. Also, unrelated to the application logic, we note that the
Reduce method manually provisions its encryption keys. Therefore, a proof of confidentiality
must also show that the key exchange protocol is secure, and that the keys are neither leaked
by the application, nor overwritten by an adversary. Finally, the proof must also show that
the compilation to machine code preserves semantics of source code. Therefore, building a
scalable and automatic verifier for confidentiality is challenging for arbitrary user code.

8.1.2 Restricted interface.

We propose a design methodology to separate various concerns in ensuring confidentiality,
and enable simpler and scalable tools to automatically verify confidentiality. In our method-
ology, the user application U is statically linked with a runtime library L that supports a
narrow communication interface. During initialization, the runtime is configured to setup a
secure channel with another trusted entity and provision secrets, e.g., the encryption key.
At runtime, U can use L’s APIs to allocate memory (via malloc and free) and send or
receive data over the secure channel (via send and recv). Figure 8.2(b) shows the Reduce
method that has been rewritten to use this interface. The method calls recv to retrieve data
from the channel, which reads and decrypts encrypted values from outside the enclave. After
computing the result, the method calls send to write data to the channel, which internally
encrypts the data and writes it to a location outside the enclave. Observe that there are no
writes to non-enclave memory directly from this Reduce method.

Restricting the application to this interface serves an important purpose — it allows us
to decompose the task of verifying confidentiality into two sub-tasks: (1) checking that the
user application U communicates with the external world only through this interface, and (2)
checking that the implementation of the interface in L does not leak secrets. /Confidential
implements verification of Information Release Confinement (IRC): U can only write to
non-SIR memory by invoking the send API. Proving information leakage properties of the
implementation of send (e.g., strong encryption property, resistance to various side channels,
etc.) would require one-time human-assisted verification of the library code L, and is left for
future work. We feel that IRC is an important stepping stone for achieving confidentiality
guarantees of enclaves against various adversaries.

We do not find this narrow interface to be restrictive for our target applications: trusted
cloud services, which are typically implemented as a collection of distributed and trusted
entities. In this setting, the application (U) only sends and receives encrypted messages
from remote parties. We use this approach in practice to build sensitive data analytics,
database services, key manager, etc.
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Figure 8.3 : Memory layout of enclave and instrumentation sequence for unsafe stores in the
application code (U).

8.1.3 Checking IRC.

For scalable and automatic verification, we further decompose IRC into a set of checks
on U and contracts on each of the APIs in L. First, we verify that U satisfies WCFI-RW: U
transfers control to L only through the API entry points, and it does not read L’s memory
or write outside U ’s memory. Apart from the constraints on reads and writes, WCFI-RW
requires a weak form of control-flow integrity in U . This is needed because if an attacker
hijacks the control flow of U (e.g., by corrupting a function pointer or return address), then
U can execute arbitrary instructions, and we cannot give any guarantees statically. Next,
we identify a small contract on L that, in conjunction with WCFI-RW property of U , is
sufficient for proving IRC. The contracts on L (defined in section 8.2.2) ensure that L does
not modify U ’s state to an extent that WCFI-RW is compromised (e.g. by tampering code
pointers within U ’s stack frame).

From here on, we describe how we check WCFI-RW directly on the machine code of U ,
which enables us to keep the compiler and any third-party application libraries out of the
TCB. Third-party libraries need to be compiled with our compiler, but they can be shipped
in binary form. Furthermore, to help the verification of WCFI-RW, our (untrusted) compiler
adds runtime checks to U ’s code, and we use the processor’s paging hardware to protect L’s
memory — although the attacker controls the page tables, the processor protects page table
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entries that map to enclave’s memory. We use the same runtime checks on memory writes
and indirect calls as VC3 [107], but we implement efficient checks on memory reads using
the paging hardware.

Next, we describe the checks instrumented in the binary by the compiler. We first note
that U and L share the same address space (Figure 8.3). The code segments of both U and
L are placed in executable, non-writable pages. The region also contains a stack shared by
both U and L. We isolate L from U by using a separate heap for storing L’s internal state.
The compiler enforces WCFI-RW by instrumenting U with the following checks:

• Protecting return addresses: To enforce that writes through pointers do not corrupt
return addresses on the stack, the compiler maintains a bitmap (write_bitmap in
Figure 8.3) to record which areas in U’s memory are writable. The write_bitmap is
updated at runtime, while maintaining the invariant that a return address is never
marked writable. Address-taken stack variables are marked writable by inlined code
sequences in function prologues, and heap allocations and address-taken globals are
marked writable by the runtime library. store instructions are instrumented with an
instruction sequence (instructions from label L1 to L2 in Figure 8.3) that reads the
write_bitmap and terminates the enclave program if the corresponding bit is not set.
Note that the bitmap protects itself: the bits corresponding to the bitmap are never
set.

• Protecting indirect control flow transfers: The compiler maintains a separate
bitmap (call_bitmap in Figure 8.3) that records the entry points of procedures in U
and APIs of L. The compiler instruments indirect calls with an instruction sequence
that reads the bit corresponding to the target address, and terminates the enclave
program if that bit is unset. Indirect jumps within the procedure are also checked to
prevent jumps to the middle of instructions; the checks consist of a range check on
indices into jump tables (which are stored in read-only memory).

• Preventing writes outside enclaves: The compiler adds range checks to prevent
writes to non-enclave memory (instructions from label L0 to L1 in Figure 8.3).

We note that the compiler’s instrumentation offers a stronger guarantee than IRC, and
prevents several forms of memory corruption inside the SIR. Specifically, the checks guaran-
tee: 1) integrity of all data that is not address-taken, 2) detection of all sequential overflows
and underflows on heap and stack, 3) integrity of return addresses, and 4) forward edge CFI.
Future work may be able to verify of all these properties, but for this work we focus on
verifying that the compiler’s instrumentation is sufficient to guarantee WCFI-RW, because
WCFI-RW together with the correctness of L implies IRC (as we show in Theorem 1), and
IRC is a strong property that provides meaningful security guarantees.

Preventing U from accessing L’s memory is also important because L keeps cryptographic
secrets; allowing U to read such secrets could break the typical assumptions of encryption
algorithms (e.g., a key should not be encrypted with itself [24]). We achieve this efficiently



8.2. DECOMPOSING PROOF OF CONFIDENTIALITY 91

by requiring L to store any such secrets in its own separate heap, and using TAP’s memory
protections to set page permissions to disable read/write access before transferring control
to U . Note that we cannot use page permissions to prevent writes to non-enclave memory,
because those page tables are controlled by a privileged adversary, e.g., kernel-level malware.

Let’s reconsider the Reduce method in Figure 8.2(b). Compiling this method with the
preceding runtime checks and necessary page permissions ensures that any vulnerability (e.g.,
line 17) cannot be used to violate WCFI-RW. Any such violation causes the program to
halt.

To achieve good performance, the compiler omits runtime checks that it can statically
prove to be redundant (e.g., writes to local stack-allocated variables). However, compilers are
large code bases and have been shown to have bugs and produce wrong code at times [128,
83, 68, 77, 20]. The rest of this chapter describes our approach for automatically verifying
that the machine code of U satisfies WCFI-RW, thereby removing the compiler from the
TCB. We also show that such a U satisfies IRC when linked with an L that satisfies our
contract (defined in section 8.2.2).

8.2 Decomposing Proof of Confidentiality
In this section, we discuss how to verify confidentiality of an enclave program, as we

defined in Definition 3 within Chapter 6. Since we must reason about U ’s behaviors in the
presence of a privileged adversary M (defined in Section 4.2), /Confidential instruments
M ’s havocing operations to non-enclave memory, in the same method as Moat (see Sec-
tion 6.1). We call this instrumented model UM , and perform verification of UM .

Confidentiality, as we defined in Definition 3, is expressed as a hyper-property [36], where
we require that the adversary cannot infer secret state based on observations of non-enclave
memory. Automatically checking if a program satisfies confidentiality usually requires precise
tracking of the memory locations that may contain secrets during execution, which is the
algorithm that we implemented within Moat. This is accomplished with either a whole-
program analysis of UM , which is hard to scale for machine code, or fine-grained annotations
that specify locations with secrets, which is cumbersome for machine code [112]. We follow
a different approach in order to scale the verification to large programs without requiring
any annotation.

We expect UM to communicate with non-enclave entities, but follow a methodology where
we mandate all communication to occur via the send and recv APIs in L. We require (and
verify) that UM does not write to non-enclave memory. Instead, UM invokes send, which
takes as an argument a pointer to the input buffer, and encrypts and integrity-protects
the buffer before copying out to non-enclave memory. This methodology leads to a notion
called information release confinement (IRC), which mandates that the only operations in
UM that update non-enclave memory (apart from M ’s havoc operations) are the call send
statements. In other words, the only I/O interaction between the enclave and the attacker-
controlled state occurs via the trustworthy runtime library L, which enforces cryptographic
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protections on the I/O.

Definition 5 Information Release Confinement. An execution trace [σ0, . . . , σn] of
UM satisfies information release confinement or IRC, if all updates to the adversary ob-
servable state (i.e., mem¬evrange) in [σ0, . . . , σn] are caused by either call send operations or
havoc¬evrange mem operations (from M), i.e., IRC([σ0, . . . , σn]) iff:

∀ i ∈ {0, . . . , n− 1} .
(stmt(σi) 6= call send ∧ stmt(σi) 6= havoc¬evrange mem)⇒
(∀ a. ¬evrange(a)⇒ σi(mem)[a] = σi+1(mem)[a]) (8.1)

UM satisfies IRC iff all traces of UM satisfy IRC.

IRC and Confidentiality. IRC is an important building block in guaranteeing confiden-
tiality, as defined in Definition 3. IRC ensures that, in any execution, the only outbound
communication with the environment is via send. Hence, we can arrange for send to encrypt
all its received data before transmitting it, to prevent explicit information leaks. In order
for the encrypted data to be confidential, we additionally need to ensure that the encryption
key in L does not leak or gets overwritten. The definition of IRC enables us to separate
properties we require from the application code UM , and properties we require from L, in
order to guarantee confidentiality.

It is important to note that IRC is not sufficient for protecting secrets from all side chan-
nels. Observations of the number and timing of send invocations, memory access patterns,
electromagnetic radiation, etc. potentially reveal secrets. Nevertheless, if an application UM
satisfies IRC, then we can eliminate certain channels and obtain various degrees of confiden-
tiality by imposing additional constraints on the implementation of send. We can arrange
for send to output messages with constant-sized buffers (using appropriate padding) to pre-
vent the adversary from making any inference based on message sizes. In addition, we can
arrange for send to do internal buffering and produce sequences of output messages that
are separated by an interval that is independent of secrets, to prevent the adversary from
making any inference based on timing. These defenses impose additional constraints only on
the implementation of send. We plan to explore guaranteeing such properties of our send
implementation in future work.

In the remainder of this section, we formalize the properties on both UM and L, such
that the enclave satisfies the IRC property. To decouple the verification, we decompose
IRC into 1) checking WCFI-RW of UM , and 2) checking correctness properties of L’s API
implementation.

8.2.1 WCFI-RW Property of UM
WCFI-RW further decomposes into the following two properties:

(a) A weak form of control flow integrity (CFI) of UM . A trace of UM satisfies weak CFI
if 1) each call statement in the trace targets the starting address of a procedure in
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U or API entry point of L, 2) each ret statement in the trace uses the return address
saved by the matching call statement in that trace, 3) each jmp statement in the trace
targets a legal instruction within the procedure or the starting address of a procedure
in U ’s code.

(b) UM does not read from or write to L’s memory, and does not write to non-enclave
memory.

WCFI-RW guarantees that UM only calls into L at allowed API entrypoints, which allows
us to soundly decouple the verification of UM from L. WCFI-RW prevents a large class of
CFI attacks (e.g., ROP attacks): backward control edges (returns) are fully protected, and
forward edges (calls and jumps) are significantly constrained. Furthermore, observe that by
preventing jumps into the middle of instructions, we guarantee that the code of UM that we
statically verify is same that will execute at runtime. However, this form of CFI is weaker
than standard CFI [4] because it allows a procedure in UM to call any other procedure in
UM . In other words, a program that satisfies WCFI-RW may exhibit control transfers that
are not present in the source program, and this can bootstrap certain control-flow attacks.
Nevertheless, for any such attack that is not blocked by WCFI-RW, we prove that they
still cannot break IRC (soundness theorem in section 8.2.3); in the end, the attacker only
observes encrypted values.

To formalize WCFI-RW, we construct a monitor automaton W (defined next) from UM
to check whether UM satisfies WCFI-RW, similar in spirit to prior works on CFI [4, 50].
W is synchronously composed with UM , such that the statements executed by UM form
the input sequence of W . We say that WCFI-RW is violated whenever W reaches a stuck
state during the execution of UM . The formalization of WCFI-RW requires the following
predicates over addresses in the region (illustrated in Figure 8.3). For any enclave address
a, AddrInHeap(a) is true if a belongs to U ’s heap. AddrInStack(a) is true if a belongs to
the enclave’s stack (which is shared by both U and L). AddrInU(a) is true if a belongs to
U ’s memory (stack, globals, or heap), and AddrInL(a) is true if a belongs to L’s memory
(globals or heap). AddrInCode(a) is true if a belongs to the enclave’s code (either U or L’s
code). Finally, writable(mem, a) is true iff the bit corresponding to address a is set in the
write_bitmap.

Definition 6 WCFI-RW Monitor Automaton
W = (Q,Σ,Γ, δ, q0, Z0, F ) is a generalized pushdown automaton where Q = {σ} is its set
of states, Σ = { call e, ret, jmp e, v := e, v := loadn(ea), storen(ea, ed), havoc¬evrange mem

} is its set of inputs, Γ = {a | AddrInCode(a)} is its finite set of stack symbols, q0 =
σentry is its initial state (σentry being the machine state following the jump from L into
U ’s entry point), Z0 = aentry is its initial stack, F = Q is its set of accepting states, δ:
(Q × Σ × Γ∗) → P(Q × Γ∗) is its transition function. Furthermore, let next(pc) be the
address of the subsequent instruction in U after decoding the instruction starting at address
pc, and σ′ be the state resulting from executing an instruction i ∈ Instr starting in σ, i.e.,
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(σ, σ′) ∈ (as per the operational semantics in Figure 3.3). The transition function δ of the
monitor automaton W is as follows:

δ(σ, call e, γ) =

{
{(σ′, next(σ(pc)) · γ)} iff ψcall

∅ otherwise

where ψcall
.
= σ(e) is the address of a procedure entry in U

δ(σ, call x, γ) = {(σ′, γ)}

where x ∈ {malloc, free, send, recv}

δ(σ, ret, a · γ) =

{
{(σ′, γ)} iff σ(mem)[σ(rsp)] = a

∅ otherwise

δ(σ, jmp e, γ) =

{
{(σ′, γ)} iff ψjmp

∅ otherwise

where ψjmp
.
= ψcall ∨ σ(e) is an instruction in current procedure

δ(σ, flag := e, γ) = {(σ′, γ)} where flag ∈ flags

δ(σ, rsp := e, γ) =

{
{(σ′, γ)} iff ψrsp

∅ otherwise

where ψrsp
.
= AddrInU(σ(e))

δ(σ, reg := e, γ) = {(σ′, γ)} where reg ∈ regs \ {rsp}

δ(σ, reg := loadn(ea), γ) =

{
{(σ′, γ)} iff ψload

∅ otherwise

where ψload
.
= ¬AddrInL(σ(ea)) ∧ ¬AddrInL(σ(ea) + n− 1)

δ(σ, storen(ea, ed), γ) =

{
{(σ′, γ)} iff ψstore

∅ otherwise

where ψstore
.
= AddrInU(σ(ea)) ∧ AddrInU(σ(ea) + n− 1)

δ(σ, havoc¬evrange mem, γ) = {(σ′, γ)}
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Definition 7 WCFI-RW
WCFI-RW is violated in an execution trace [σ0, . . . , σn] when no transition exists in W for
an instruction in [σ0, . . . , σn], i.e., W gets stuck. Formally, WCFI-RW([σ0, . . . , σn]) iff (with
starting state σ0 = σentry and initial stack γ0 = aentry):

∃γ0, . . . , γn ∈ Γ∗ .
n−1∧
k=0

(σk+1, γk+1) ∈ δ(σk, instr(σk), γk)

UM satisfies WCFI-RW if all traces of UM satisfy WCFI-RW.

The role of the pushdown stack in Definition 6 is to match the calls and returns. W only
modifies the pushdown stack on call and ret statements, and updates the state as per the
operational semantics defined in Figure 3.3. We now describe each case in the definition of
the transition function δ ofW . On a call to a procedure in U ,W pushes the return address
(i.e., the address of the subsequent instruction) onto the pushdown stack, for use by the ret
statement. On a call to L’s API, since L only contributes one step to the trace, and since
correctness of L’s APIs (section 8.2.2) guarantees that the call returns to the call site, W
does not push the return address onto the pushdown stack. A ret produces a valid transition
only when the topmost symbol on the pushdown stack matches the return address on the
machine’s stack; this transition pops the topmost element off the pushdown stack. A jmp

produces a valid transition if it targets a legal instruction in the current procedure, or the
beginning of a procedure in U . Assignment to rsp succeeds if the new value is an address in
U ’s memory — this constraint is needed because call and ret accesses mem at address rsp,
and WCFI-RW requires stores to be contained within U ’s memory. Other registers and flags
can be assigned to arbitrary values. Finally, to satisfy WCFI-RW’s constraints on reads and
writes, a load succeeds iff the address is not within L’s memory, and a store succeeds iff
the address is within U ’s memory.

8.2.2 Correctness of L’s API Implementation

While we strive for full functional correctness of L, the following contract (in conjunction
with WCFI-RW of UM) is sufficient for proving IRC of the enclave.

(a) malloc(size) (where the return value ptr is the starting address of the allocated
region) must not 1) modify non-enclave memory or stack frames belonging to U , 2)
make any stack location writable, or 3) return a region outside U ’s heap. Formally,
when instr(σ) = call malloc, we write σ  σ′ with the following conditions:

. ∀a. (¬evrange(a) ∨ (AddrInStack(a) ∧ a ≥ σ(rsp)))⇒ σ(mem)[a] = σ′(mem)[a]

. ∀a. AddrInStack(a)⇒ (writable(σ(mem), a)⇔ writable(σ′(mem), a))

. σ′(ptr) = 0 ∨ ((σ′(ptr) ≤ σ′(ptr) + σ(size)) ∧
AddrInHeap(σ′(ptr)) ∧ AddrInHeap(σ′(ptr) + σ(size)))
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First, by forbidding malloc from modifying U ’s stack above rsp, we prevent malloc
from overwriting return addresses in U ’s stack frames. Second, by forbidding malloc
from making a stack location writable, we prevent a return address from being cor-
rupted later by code in U — malloc should only modify the write_bitmap to make the
allocated region writable. Both restrictions are paramount for preventing WCFI-RW
exploits. Finally, we require malloc to return a region from U ’s heap (or the null
pointer), and ensure that a machine integer overflow is not exploited to violate IRC.

(b) free(ptr) must not 1) modify non-enclave memory or stack frames belonging to U , or
2) make any stack location writable. Formally, when instr(σ) = call free, we write
σ  σ′ with the following conditions:

. ∀a. (¬evrange(a) ∨ (AddrInStack(a) ∧ a ≥ σ(rsp)))⇒ σ(mem)[a] = σ′(mem)[a]

. ∀a. AddrInStack(a)⇒ (writable(σ(mem), a)⇔ writable(σ′(mem), a))

These constraints are equivalent to the constraints on malloc, and are likewise paramount
for preventing WCFI-RW exploits. Note that we do not require malloc to return a pre-
viously unallocated region, nor do we require free to mark the freed region as invalid;
full functional correctness would require such properties. WCFI-RW does not assume
any invariants on the heap values, and therefore vulnerabilities such as use-after-free
do not compromise WCFI-RW.

(c) send(ptr,size) must not make any address writable or modify the stack frames be-
longing to U . Formally, when instr(σ) = call send, we write σ  σ′ with the
following conditions:

. ∀a. (AddrInBitmap(a) ∨ (AddrInStack(a) ∧a ≥ σ(rsp)))⇒ σ(mem)[a] = σ′(mem)[a]

send is used to encrypt and sign the message buffer before writing to non-enclave
memory, and it is the only API call that is allowed to modify non-enclave memory.
However, we forbid send from modifying a caller’s stack frame or the bitmap. By
preventing send from modifying U ’s stack above rsp, we prevent send from overwriting
a return address in any of U ’s stack frames. Furthermore, send cannot modify the
bitmap and make any location writable, thereby preventing a return address from
being modified later by some code in U .

(d) recv(ptr,size) must 1) check that the destination buffer is a writable region in U ’s
memory, and 2) not modify any memory location outside the input buffer. Formally,
when instr(σ) = call recv, we write σ  σ′ with the following conditions:

. ∀a. (σ(ptr) ≤ a < σ(ptr) + σ(size))⇒ (writable(σ(mem),a) ∧ AddrInU(a))

. ∀a.¬(σ(ptr) ≤ a < σ(ptr) + σ(size))⇒ σ(mem)[a] = σ′(mem)[a]

. σ(ptr) ≤ σ(ptr) + σ(size)
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recv is used to copy an encrypted, signed message from non-enclave memory, decrypt
it, verify its signature, and copy the cleartext message buffer to U ’s memory. The
first two constraints ensure that the message is written to a writable memory region
within U (which guarantees that a return address is not modified by recv), and that
the cleartext message is not written out to non-enclave memory. The final constraint
ensures that an integer overflow is not exploited to violate IRC.

In addition to the contracts above, we check the following contracts for each of malloc,
free, send, and recv:

• page permissions, following the API call, are set to prevent read and write access to
L’s memory. Write access is disabled to prevent U from corrupting L’s state, whereas
read access is disabled to prevent reading L’s secrets.

• stack pointer rsp is restored to its original value.

• the API call satisfies the application binary interface (ABI) calling convention (Win-
dows x64 in our implementation)

We assume that the implementation of L satisfies the above contracts. Since L is written
once, and used inside all enclaves, we could potentially verify the implementation of L once
and for all manually.

8.2.3 Soundness

Theorem 3 If UM satisfies WCFI-RW and the implementation of L’s API satisfies the
correctness properties given in section 8.2.2, then UM satisfies IRC.

A proof of Theorem 3 is given in Appendix D.

8.3 Verifying WCFI-RW
In the remainder of this chapter, we describe an automatic, static verifier for proving that

a user-provided UM satisfies the WCFI-RW property. Verifying such a property at machine
code level brings up scalability concerns. Our benchmarks consist of enclave programs that
are upwards of 100 KBs in binary size, and therefore whole-program analyses would be
challenging to scale. Intra-procedural analysis, on the other hand, can produce too many false
alarms due to missing assumptions on the caller-produced inputs and state. For instance,
the caller may pass to its callee a pointer to some heap allocated structure, which the callee
is expected to modify. Without any preconditions on the pointer, a modular verifier might
claim that the callee writes to non-enclave memory, or corrupts a return address, etc.

Instead of verifying WCFI-RW of arbitrary machine code, our solution is to generate
machine code using a compiler that emits runtime checks to enforce WCFI-RW, and auto-
matically verify that the compiler has not missed any check. Our compiler emits runtime
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checks that enforce that unconstrained pointers (e.g., from inputs) are not used to corrupt
critical regions (e.g., return addresses on the stack), write to non-enclave memory, or jump
to arbitrary code, etc. As our experiments show, the presence of these checks eliminates
the unconstrained verification environments described above. Consequently, most verifica-
tion conditions (VCs) that we generate can be discharged easily. Even in cases where the
compiler eliminates checks for efficiency, the compiler does not perform any inter-procedural
optimization, and we demonstrate that a modular verifier can prove that eliminating the
check is safe.

8.3.1 Runtime Checks

We use the compiler to 1) prepend checks on store instructions to protect return ad-
dresses in the stack, 2) prepend checks on store instructions to prevent writes to non-enclave
memory, and 3) prepend checks on indirect call and jmp instructions to enforce valid jump
targets. We also use the processor’s page-level access checks for efficiently preventing reads
and writes to L’s memory by code in UM .

Runtime Checks on Stores: To enforce that writes through pointers do not corrupt
return addresses on the stack, the compiler maintains a bitmap (see write_bitmap in Fig-
ure 8.3) to record which areas in U ’s memory are writable, while maintaining the invariant
that a return address is never marked writable. The write_bitmap maps every 8-byte slot
of U ’s memory to one bit, which is set to one when those 8 bytes are writable. The bitmap is
updated at runtime, typically to mark address-taken local variables and malloc-returned re-
gions as writable, and to reset the bitmap at procedure exits or calls to free. For instance,
if a caller expects a callee to populate the results in a stack-allocated local variable, the
caller must mark the addresses of that local variable as writable before invoking the callee.
A store instruction is prepended with an instruction sequence that reads the write_bitmap
and terminates the enclave program if the corresponding bit is zero (see instructions from
L1 to L2 in Figure 8.3). This check on store can enable stronger properties than backward
edge CFI in that it also prevents many forms of memory corruptions. While this gives us
stronger security guarantees at runtime, we only require a weak form of CFI for proving
WCFI-RW.

In addition, the compiler prepends store with range checks that prevent writes outside
the enclave memory (see instructions from L0 to L1 in Figure 8.3).

Finally, we use the processor’s paging instructions to revoke write permissions on L’s
memory while UM executes, and to reinstate write permissions following an API call to L —
we also use page permissions to make code pages and the call_bitmap non-writable at all
times. The TAP guarantees that the processor respects the page permissions of SIR memory
— in the case of Intel SGX 2.0, the processor provides the emodpr instruction to change page
permissions of enclave’s memory. The TAP processor performs the page-level access checks
without any noticeable performance overhead. Note that we cannot use the page permissions
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to prevent writes to non-enclave memory because the adversary M controls the page tables
for non-enclave memory.

Runtime Checks on Loads: WCFI-RW mandates that UM does not load from L’s
memory. This ensures that UM never reads secrets such as the secure channel’s cryptographic
keys, which is necessary because strong encryption properties no longer hold if the key itself
is used as plain text. To that end, L disables read access to its memory by setting the
appropriate bits in the page tables. On each API call, L first sets the page permissions to
allow access to its own memory, and then resets it before returning back to U .

On a side note, although we would like UM to only read enclave memory (and use recv to
fetch inputs from non-SIR memory), we avoid introducing range checks for two reasons: 1)
WCFI-RW does not require this guarantee, and 2) loads are frequent, and the range checks
incur significant additional performance penalty.

Runtime Checks on Indirect Control Transfers: The compiler maintains a separate
bitmap (see call_bitmap in Figure 8.3) that records the entry points of procedures in U
and APIs of L. The call_bitmap maps every 16-byte slot of U ’s memory to one bit, and
the compiler accordingly places each procedure’s entry point in code at a 16-byte aligned
address. The compiler prepends indirect calls with an instruction sequence that reads the
bit within call_bitmap corresponding to the target address, and terminates the enclave
program if that bit is zero. Indirect jumps to within the procedure are also checked to
prevent jumps to the middle of x64 instructions, which can lead to control-flow hijacks.

The reader may question our choice of runtime checks, as one could simply instru-
ment instructions implementing the validity checks on the corresponding transitions in the
WCFI-RW monitorM (from Definition 6). However, this would require us to build a prov-
ably correct implementation of a shadow stack within enclave memory, and use the shadow
stack during call and ret instructions to check that the processor uses the same return
address as the one pushed by the matching call instruction. However, it is non-trivial to
protect the shadow stack from code running at the same privilege level — doing so might
require the very techniques that we use in our runtime checks.

8.3.2 Static Verifier for WCFI-RW

We present a modular and fully automatic program verifier, called /Confidential,
for checking that the compiler-generated machine code satisfies the WCFI-RW property.
Since runtime checks incur a performance penalty, the compiler omits those checks that it
considers to be redundant. For instance, the compiler eliminates checks on writes to local
scalar variables (and therefore does not need to make them writable in the write_bitmap)
and to variables whose addresses are statically known. The compiler also tries to hoist
checks out of loops whenever possible. These optimizations do not compromise WCFI-RW,
and /Confidential proves them safe so as to avoid trusting the compiler. Since we verify
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WCFI-RW at the machine code level, we do not need to trust the implementation of these
optimizations.

/Confidential is based on a set of proof obligations for verifying that the output
machine code (modeled as UM) satisfies WCFI-RW. It modularly verifies each procedure
in isolation and is still able to prove WCFI-RW for the entire program — this soundness
guarantee is formalized as a theorem that we present later in this section. It is important to
note that modular verification is possible because the compiler does not perform any global
analysis to optimize away the runtime checks. /Confidential generates proof obligations
for each store, load, call, ret, jmp, and rsp update in the procedure. While generating
proof obligations, /Confidential does not distinguish instructions based on whether they
originated from U ’s source code or the runtime checks, since the compiler is untrusted.
These proof obligations are implemented by instrumenting UM with static assertions, which
are discharged automatically using an SMT solver by the process of VC generation. We
present the instrumentation rules in Table 8.1, and describe them below.

Instr i Instrumented Instr I(i)

call e assert policy(e) ∧ (∀i. (AddrInStack(i) ∧ i < rsp)⇒ ¬writable(mem, i)) ∧
(rsp ≤ old(rsp)− 32);

call e

storen(ea, ed) assert (
∨{ea,ea+n−1}
i (AddrInStack(i)∧

i ≥ old(rsp) ∧ ¬(old(rsp) + 8 ≤ i < old(rsp) + 40)))⇒ writable(mem, ea);

assert (
∧{ea,...,ea+n−1}
i (AddrInBitmap(i)⇒

(b(mem, i, ed[8 ∗ (i+ 1− ea) : 8 ∗ (i− ea)]) < old(rsp)− 8)));
assert evrange(ea) ∧ evrange(ea + n− 1);
storen(ea, ed)

rsp := e assert (e[3 : 0] = 000 ∧ e ≤ old(rsp));
rsp := e

ret assert (rsp = old(rsp)) ∧ (∀i. (AddrInStack(i) ∧ i < old(rsp))⇒ ¬writable(mem, i));
ret

jmp e assert (start(p) ≤ e < end(p))⇒ legal(e);
assert ¬(start(p) ≤ e < end(p))⇒ (rsp = old(rsp) ∧ policy(e) ∧

(∀i. (AddrInStack(i) ∧ i < rsp)⇒ ¬writable(mem, i));
jmp e

Table 8.1 : Instrumentation rules for modularly verifying WCFI-RW

The instrumentation rules use the following functions, which are defined for a given U :

• policy(e) is true iff address e is the starting address of a procedure in U or an API
entrypoint of L. This predicate is consistent with the state of call_bitmap, which
remains constant throughout the enclave’s execution.

• writable(mem, e) is true iff the bit corresponding to address e is set to one in the
write_bitmap region of mem.
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• b(mem, ea, ed) is a partial function (only defined for values of ea for which AddrInBitmap(ea)
holds) that returns the largest address that is marked writable as a result of executing
store(ea, ed)

• start(p) returns the starting address of procedure p

• end(p) returns the ending address of procedure p

• legal(e) is true for any e that is the starting address of an instruction in U — we need
this predicate because x64 instructions have variable lengths.

• old(rsp) is the value of rsp at procedure entry, and is modeled as a symbolic variable
because the procedure may be called at an arbitrary depth in the call stack.

Functions policy, start, and end are defined by parsing the executable (DLL format)
produced by the compiler. legal is defined by disassembling the executable code, which is a
precursor to the formal modeling step that produces UM . Since the memory layout and code
pages remain constant throughout execution, these functions are defined once for a given
U and are independent of the current state. Functions writable and b are evaluated on the
contents of write_bitmap within mem, and their definition involves a load from mem and
several bitvector operations. We also recall predicates AddrInStack, AddrInBitmap, AddrInL,
and evrange from section 8.2, which are used to define various regions in the SIR’s memory
(see Figure 8.3).

Static Assertions on Calls: On each statement of the type call e, we assert that 1)
the target address e is either a procedure in U or an API entrypoint in L, 2) all addresses
in the callee’s stack frame are initially unwritable, and 3) the caller follows the x64 calling
convention by allocating 32 bytes of scratch space for use by the callee.

Static Assertions on Stores: UM may invoke storen(ea, ed) on an arbitrary virtual ad-
dress ea with arbitrary data ed. Hence, we must argue that the proof obligations prevent
all store instructions that violate WCFI-RW. We case split this safety argument for each
memory region in the virtual address space (Figure 8.3). The call_bitmap, the code pages,
and L’s memory are marked non-writable in the page tables — store to these areas results
in an exception, followed by termination. Within U ’s memory, /Confidential treats all
writes to the heap and globals as safe because WCFI-RW does not require any invariants on
their state — while the heap and global area may store code and data pointers, /Confi-
dential instruments the necessary assertions on indirect control transfers and dereferences,
respectively. We are left with potential stores to U ’s stack, write_bitmap, and non-SIR
memory, and their proof obligations are:

• AddrInStack(ea): if ea is an address in a caller’s stack frame but not in the 32-byte
scratch space (which is addressed from old(rsp) + 8 to old(rsp) + 40), then ea must be
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marked by the write_bitmap as writable. On the other hand, UM is allowed to write
arbitrary values to the current stack frame or the 32-byte scratch space.

• AddrInBitmap(ea): only addresses in the current stack frame can be made writable.
It suffices to check that the largest address whose write permission is being toggled
is below old(rsp). Note that unaligned stores may change two words at once. Since
the instrumentation code only checks the write permissions of the first word (for per-
formance reasons), we further restrict the largest address to be below old(rsp)− 8 to
account for unaligned stores of up to 8 bytes.

• evrange(ea): WCFI-RW mandates that UM does not store to non-enclave memory,
for which /Confidential generates a proof obligation: assert evrange(ea).

Static Assertions on Assignments to rsp: For each statement of the type rsp := e, we
check that the new stack pointer e 1) is 8-byte aligned, 2) does not point to a caller’s stack
frame (i.e., must not be greater than the old rsp). The constraint that the rsp never points
to a caller’s stack frame is necessary for modular verification. We use a guard page (i.e., a
page without read or write page permissions) to protect against stack overflows — in the
case where the procedure needs stack space larger than a page, we check that the compiler
introduces a dummy load that is guaranteed to hit the guard page and cause an exception,
thus preventing the procedure from writing past the guard page.

Static Assertions on Returns: For each ret statement, we check that 1) rsp has been
restored to its original value, and 2) the procedure has reset the write_bitmap so that all
addresses in the current stack frame are unwritable.

Static Assertions on Jumps: A jmp is safe if it either targets a legal address within the
current procedure p (i.e., not in the middle of an instruction), or the start of a procedure
(often used for performing tail calls). In the case of jmp to a procedure, we check the same
properties as a call instruction, except that rsp is restored to its original value.

Syntactic Check for TAP primitives: Code in UM runs at the same privilege level as
L, and hence may invoke TAP’s instructions to override page permissions (such as emodpr
in SGX 2.0). Since L performs all the cryptographic operations, and implements all security
critical logic on behalf of U , we require that U not invoke any of TAP’s primitives, and
only permit L to invoke them. We simply check for the presence of such instructions (e.g.
any SGX instruction) in U , which is captured by a regular expression on the disassembled
machine code.
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Instr i Instrumented Instr I(i)

storen assert (
∨{ea,ea+n−1}
i (AddrInStack(i) ∧ i ≥ old(rsp) ∧ ¬(old(rsp) + 8 ≤ i < old(rsp) + 40)))⇒

(ea, ed) writable(mem, ea);

assert
∧{ea,...,ea+n−1}
i (AddrInBitmap(i)⇒

(old(rsp)− estimate ≤ b(mem, i, ed[8 ∗ (i+ 1− ea) : 8 ∗ (i− ea)]) < old(rsp)− 8));
assert evrange(ea) ∧ evrange(ea + n− 1);
storen(ea, ed)

call e assert policy(e) ∧ (rsp ≤ old(rsp)− 32) ∧ (rsp ≤ old(rsp)− estimate);
call e

ret assert (rsp = old(rsp)) ∧ (∀i. (i < old(rsp) ∧ i ≥ old(rsp)− estimate)⇒ ¬writable(mem, i));
ret

Table 8.2 : Optimized instrumentation rules for store, call, and ret statements

8.3.3 Optimization to the Proof Obligations

If we can estimate the stack size needed for a procedure, then we can optimize the proof
obligations for store, ret, and call statements (see Table 8.2). The modifications are:

• store: further assert that updating the write_bitmap does not mark any address
below the estimated stack space to be writable.

• call: further assert that the current rsp is not within the estimated stack space (which
would otherwise falsify the callee’s precondition that the stack space is non-writable).
The modified assertion on store also allows us to omit the proof obligation that all
addresses below the current rsp are non-writable (prior to the call).

• ret: now asserts non-writability of only the addresses in the estimated stack space,
instead of all addresses below the old(rsp). Since the range of addresses is bounded, we
instantiate the ∀ quantifier, and help the SMT solver to eliminate hundreds of timeouts
in our experiments.

Although the optimization is sound for any positive value of estimate, we are able to
compute a precise value for all of our benchmarks. The estimate is computed by aggregating
all the stack subtractions and checking that there is no assignment to rsp within a loop.
If rsp is assigned within a loop body, then the optimization is disabled. Furthermore, this
optimization may lead to false positives in rare cases of safe programs, in which case we
also try verifying using the unoptimized implementation. For instance, this may happen if a
procedure decrements rsp after making a procedure call, but we have not encountered such
cases in our evaluation.

8.3.4 Soundness

The following theorem states that our proof obligations imply WCFI-RW.
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Theorem 4 (Soundness of I) Let p be a procedure in UM , and I(p) be procedure p instru-
mented with the assertions given in Table 8.1 (or using the optimizations in Table 8.2). If
for each p in UM , I(p) is safe (i.e., no trace of I(p) violates an assertion), then UM satisfies
WCFI-RW.

A proof of Theorem 4 is given in Appendix D.

8.4 Implementation
We develop a toolchain for building IRC-preserving enclaves. The developer first compiles

U ’s code (written in C/C++) using the compiler [107], to insert checks on indirect control-
flow transfers, and checks on stores to prevent tampering of return addresses and to prevent
stores from exceeding the enclave region — the instrumentation also protects against several
classes of memory corruption errors, but we do not leverage these guarantees for proving
IRC.

/Confidential takes as input a DLL with U ’s code, and an implementation of L that
provides the expected guarantees (defined in Section 8.2). First, /Confidential parses
the DLL to extract all the procedures. Next, for each procedure, /Confidential invokes
the Binary Analysis Platform (BAP [31]) to lift the x64 instructions to instructions in our
language (Figure 3.2), which are then modeled straightforwardly in BoogiePL [14]. The only
caveat is that indirect jmp and call instructions require some preprocessing before mod-
eling them in BoogiePL (since the control flow must be statically known before generating
verification conditions), and we discuss this detail later in this section.

Next, for proving WCFI-RW, /Confidential instruments each procedure with assert

statements as given in Table 8.1 and Table 8.2. The Boogie verifier [14] generates VCs and
automatically discharges them using the Z3 SMT solver [41]. If all assert statements in all
procedures are valid, then by Theorem 3 and Theorem 4, UM satisfies IRC. /Confiden-
tial checks the validity of each assert in parallel, which in combination with the modular
analysis, allows /Confidential to scale to realistic enclave programs.

Modeling Procedure Calls Since the analysis is modular, /Confidential replaces
each procedure call by a havoc to the machine state in lieu of specific procedure summaries.
The havoc is performed by assigning fresh, symbolic values to volatile registers and CPU
flags, and assigning a fresh, symbolic memory (called new_mem below) which is subject to
certain constraints as shown below. We encode the constrained havoc to machine state using
the following statements in order, which are instrumented after the call statement in UH.

. assume ∀i. (AddrInStack(i) ∧ i < old(rsp) ∧
¬writable(mem, i))⇒ load8(mem, i) = load8(new_mem, i)
A callee procedure may have an unbounded number of store instructions that can mod-
ify any memory location marked writable in the write_bitmap — the havoc must
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preserve the non-writable locations in the current stack frame because our instrumen-
tation guarantees that a callee cannot change their writability (as opposed to the heap
which may be made writable by calling malloc, and then modified).

. assume ∀i. AddrInStack(b(mem, i, 11111111))
⇒ load1(mem, i) = load1(new_mem, i)
Our instrumentation guarantees that a portion of the write_bitmap (specifically the
part that controls stack addresses) is restored on ret, which validates this assumption.

. mem := new_mem
This step assigns a new memory that is related to the old memory by the above assume
statements.

. havoc rax, rcx, rdx, r8, r9, r10, r11;
This step havocs all volatile registers (as defined by the Windows x64 calling conven-
tion) with fresh, symbolic values.

. havoc ZF, AF, OF, SF, CF, PF;
The callee may cause arbitrary updates to the CPU flags, which is modeled by this
havoc.

The constrained havoc above models an arbitrary U procedure that has an unbounded
number of instructions of any type — we prove this lemma within the proof of the soundness
theorem 4. The constrained havoc (in the statements above) is followed by a jump to the next
instruction, as computed during disassembly. This is sound because WCFI-RW guarantees
that the callee uses the return address placed by the caller. There is a caveat that a call to
L’s API is replaced by its contract (defined in section 8.2.2) in lieu of the constrained havoc
defined above.

We also assume the following preconditions at the beginning of each procedure:

. ∀i. (AddrInStack(i) ∧ i < old(rsp))⇒ ¬writable(mem, i)
This assumption treats all addresses in the local stack frame as non-writable upon
procedure entry. It is upon the procedure to explicitly update the write_bitmap to
make parts of its stack frame writable. This precondition is sound since we also enforce
it at all call sites.

. AddrInStack(old(rsp)) ∧ old(rsp)[3 : 0] = 000
We assume the initial stack pointer must be within the stack region and that it is
8-byte aligned. This precondition is sound because we enforce this property on every
assignment to rsp.

Modeling Indirect Control Transfers. In order to use VC Generation and SMT solving,
we need to statically approximate the set of jump targets for each register-based indirect
jump. While we can use standard off-the-shelf value analysis, we observed that the compiler
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idiomatically places a jump table in memory, which is indexed dynamically to compute the
target. Correspondingly, our verifier determines the base address of the jump table and
reads its contents to compute the set of potential jump targets; this step is not trusted. An
indirect jump is then modeled as a “switch” over direct jump statements to the potential
targets, with the default case being assert false. The presence of assert false allows the
approximation step to be untrusted. Indirect calls are handled using a similar method as
direct calls; we introduce a constrained havoc on writable memory, volatile registers, and all
CPU flags.

Modeling Havocs fromM . While our adversary model requires inserting havoc¬evrange mem
before each statement in U , it is efficient and sound to do so only before load statements [112].
We havoc the result of a load statement if the address is a location in non-enclave memory;
reg := loadn(e) is transformed to if (evrange(e)) {reg := loadn(e)} else {havoc reg}.

Verifying Procedures with Loops. /Confidential uses a candidate loop in-
variant that a portion of the write_bitmap (specifically the part that controls stack ad-
dresses) is preserved across loop iterations — we expect this invariant to hold because 1)
the compiler tends to set the write_bitmap only in the procedure’s prologue, which occurs
before loop bodies, and 2) our proof obligations guarantee that callees preserve this portion
of the write_bitmap. Empirically, we find that this loop invariant is sufficient for proving
our assertions within loop bodies.

8.5 Evaluation
We evaluate /Confidential on several enclave programs that process sensitive data,

and we summarize the results in Table 8.3 and Figure 8.4. We choose the three largest
Map-Reduce examples from VC3 [107]: Revenue, IoVolumes, and UserUsage. UserUsage
and IoVolumes processes sensitive resource usage data from a cloud platform. IoVolumes
processes storage I/O statistics, and UserUsage aggregates the total execution time per user.
Revenue reads a log file from a website and calculates the total ad revenue per IP address.
Each of these benchmarks implement the mappers and reducers within the enclaves, and
place large parts of the untrusted Hadoop stack outside the enclave boundary. Performance
evaluation of these applications is described in [107], which reports that the average cost of
the run-time checks is 15%. We also experiment with three SPEC CPU2006 benchmarks:
bzip2, astar, and lbm.

As Table 8.3 and Figure 8.4 show, /Confidential is able to prove almost all assertions
needed to check WCFI-RW in less than 20 seconds each, which demonstrates the potential in
scaling our approach. We performed full verification of the lbm benchmark (i.e., no timeouts
or false positives), which took roughly 3 hours of wall clock time. We also discovered few
procedures across many benchmarks that have instructions that BAP [31] could not process,
and we plan to experiment with alternative tools in future.
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All benchmarks were compiled with the optimization level at -O2. All experiments were
performed on a machine with 160GB RAM and 12 Intel Xeon E5-2440 cores running at
2.40GHz. As mentioned previously, /Confidential parallelizes the verification by spawn-
ing several instances of the Z3 SMT solver, where each instance is responsible for proving
one of the instrumented static assertions.

Benchmark Code Verified Timed out False
Size Asserts Asserts Positives

UserUsage 14 KB 2125 2 4
IoVolumes 17 KB 2391 2 0
Revenue 18 KB 1534 3 0
lbm 38 KB 1192 0 0
astar 115 KB 6468 2 0
bzip2 155 KB 10287 36 0

Table 8.3 : Summary of results.

Figure 8.4 : Summary of performance results

False Positives. We found four assertions that produced spurious counterexample traces,
all within a single procedure of UserUsage. The violating procedure is a C++ constructor
method, which writes the vtable pointer in the newly allocated object. Since the memory
allocator terminates the enclave if it fails to allocate memory, the compiler optimizes away
the range checks on the pointer returned by the memory allocator — this is the only observed
instance of the compiler performing global optimization. Since /Confidential does not
do any global analysis, it flags this method as unsafe. We circumvent this issue by disabling
this optimization.
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Timeouts. Prior to implementing the optimizations in section 5.3, we had experienced
several hundred timeouts. After the optimizations, only roughly 0.2% of all assertions (across
all benchmarks) do not verify within the 20 minute timeout, as shown in Table 8.3. The
main source of complexity in the generated VC comes from the combination of quantifiers
and multiple theories such as arrays and bitvectors that are typically hard for SMT solvers.
Another reason is the presence of a few large procedures in the SPEC benchmarks — largest
procedure has above 700 x64 instructions and 5200 BoogiePL statements — which generated
large SMT formulas. These large procedures (considering those above 420 x64 instructions
and 3500 BoogiePL statements) accounted for 31 (69%) timeouts. We found that all of these
assertions are associated with store instructions, and they enforce that the store targets
a writable region in memory — one feature of these large procedures is heavy use of the
stack space in memory, potentially causing the SMT solver to reason heavily about aliasing
in order to prove that the target address is marked non-writable. Ten (22%) of the timeouts
are on assertions associated with ret instructions, where the solver struggled to prove that
all locations in the current stack frame are made non-writable (even with the optimization in
section 5.3) — unless the procedure explicitly resets the write_bitmap prior to the ret, the
SMT solver must prove that none of the stores in the procedure are unsafe. The remainder
of the timeouts, roughly 9%, were neither on the return instructions, nor in large procedures
— we find that they are associated with store instructions, where the solver is able to prove
that the store targets the write_bitmap but not whether the written value is safe.

We manually investigated the assertions that time out (by experimenting at the level of
the BoogiePL program) and were able to prove some of them using additional invariants and
abstractions, without requiring any specific knowledge of the benchmark or its source code.
Although we machine check these proofs (using Boogie and Z3), we continue to count them
as timeouts in Table 8.3, since our goal is to have a fully automatic verifier of WCFI-RW.
For roughly half of the timeouts observed on ret instructions, we hypothesized intermediate
lemmas (a few instructions prior to the ret) and simplified the VC by introducing a havoc
to mem followed by an assume that is strong enough needed to prove the final assertion —
we also prove that the intermediate lemma holds prior to the havoc, making this transfor-
mation sound. Specifically, for a stack address a, we either 1) havoc the write_bitmap if
the procedure contains instructions to reset the write_bitmap corresponding to address a,
and these instructions are sufficient to prove the final assertion ¬writable(mem, a), or 2) we
introduce assert ¬writable(mem, a) at earlier points in the program, if the procedure does
not make a writable. This approach eliminates 6 of the 10 timeouts on ret instructions.

We also experimented with the 31 timeouts on store instructions within the large proce-
dures. With the exception of 3 of these 31 timeouts, we were not able to get Z3 to prove the
assertions, even after simplifying the VC with intermediate lemmas and havoc statements.
These 3 assertions were at relatively shallow depths in the control flow graph of the proce-
dure, where there are fewer loads and stores leading to the assertion. Finally, we tried the
CVC4 [16] solver, but we did not succeed in eliminating any more timeouts.

Having performed this investigation, we are hopeful that with improving SMT solvers
and better syntactic heuristics for simplifying the VCs, we will eliminate all timeouts.
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8.6 Related Work
Confinement of programs to prevent information release has been studied for many

years [67]. We are interested in achieving confinement in user programs, even with buggy or
malicious privileged code. We use trusted processors [80, 9, 90, 69] to create isolated memory
regions where we keep confidential application code and data, but our techniques are also
applicable if isolation is provided by the hypervisor [60, 34, 127], or runtime checks [40].
Independently of the isolation provider, we need to reason about the application code to
provide formal guarantees of confinement, which is the goal of /Confidential .

Our method to check for WCFI-RW draws inspiration from prior work to perform instru-
mentation in order to satisfy control-flow integrity (CFI [4, 89]) and software fault isolation
(SFI [122, 78, 108]). Like SFI, we introduce run-time checks to constrain memory references.
Our run-time checks are similar to the ones used in VC3 [107], but importantly we use the
paging hardware to check reads, which is more efficient than relying on compiler instru-
mentation. Unlike VC3, we verify that our checks guarantee IRC. Native Client [130] also
enforces a form of SFI, but its run-time checks for 64-bit Intel processors would require us
to create enclaves with a minimum size of 100GB [108], which is not practical for our target
environment (x86-64 CPUs with SGX extensions). This is because the enclave’s address
space must be statically configured and physically mapped by the CPU upon the enclave’s
creation, whereas the 64-bit Native Client scheme was implemented in a setting where the
virtual address space can be large. Our run-time checks also enforce stronger security prop-
erties; for example, Native Client does not guarantee that calls return to the instruction
immediately after the call. Native Client ultimately enforces a different policy: it aims to
sandbox browser extensions and trusts the host OS, while we aim to isolate an application
from a hostile host. This requires us to model a powerful, privileged adversary (M) while
reasoning about the application’s execution.

There have also been efforts to perform SFI with formally verified correctness guaran-
tees. RockSalt [84] uses Coq to reason about an x86 processor model and guarantee SFI;
it works for 32-bit x86 code, while our system works for the x86-64 ISA. ARMor [133] uses
HOL to reason about ARM processor model and guarantee SFI. Native Client, XFI [49]
and [132] include verifiers that work on machine code. Our verification scheme is different
from these works since it uses different runtime checks (which provide stronger guarantees)
and it supports aggressive compiler optimizations that remove redundant checks. We require
more complex reasoning and thus use an SMT solver to build our verifier.

Unlike all of the above works, our ultimate goal is preserving confidentiality of a trusted
application running in an untrusted and hostile host. Our specific definition of WCFI-RW,
together with contracts we assume on the library methods guarantees IRC, which is the
novel aspect of our work. We also prove that all the pieces (the compiler checks, the static
verification, and the contracts on library methods) all combine together and guarantee IRC.
Moat [112] has the same goal as our work, and the main difference is that Moat works for
any code, and our work requires the application to perform all communications through a
narrowly constrained interface. On the flip-side, Moat performs global analysis, tracks secrets
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in a fine-grained manner, and is not scalable beyond programs containing few hundred x86
instructions. In contrast, /Confidential is modular, avoids fine-grained tracking of secrets,
and hence scales to larger programs. As mentioned before, our notion of confidentiality does
not prevent information leaks via side channels such as memory access patterns. This channel
has been addressed in GhostRider [71], which presents a co-designed compiler and hardware
(containing Oblivious RAM) for guaranteeing memory trace oblivious computation.

Translation validation (e.g., [96, 88, 119, 115]) is a set of techniques that attempt to
prove that compiler optimizations did not change the semantics of the program given as
input (after the optimizer run). The approach in /Confidential is similar in spirit to
translation validation since we use an off-the-shelf, untrusted compiler and validate whether
the code it produced satisfies the security properties we are interested in.

8.7 Summary
We presented a methodology for designing enclave programs, which enables certification

of applications that need their code and data to remain confidential. Our methodology
comprises enforcing the user code to communicate with the external world through a narrow
interface, compiling the user code with a compiler that inserts run-time checks that aid
verification, and linking it with a verified runtime that implements secure communication
channels. We formalized the constraints on user code as Information Release Confinement
(IRC), and presented a modular automatic verifier to check IRC. We believe that IRC,
together with additional requirements on the implementation of the runtime, can guarantee
a strong notion of confidentiality.
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Chapter 9

Ensuring Page Access Obliviousness

While previous chapters on Moat and /Confidential protected enclaves from attacks
that extract sensitive data via outputs (i.e., writes made by enclave to non-enclave memory),
a sophisticated attacker can also recover the same data via any side channel exposed by the
platform. For instance, on Intel SGX, the attacker can use the compromised OS to observe
cache and page-level memory access patterns, which can divulge the same sensitive data that
Moat and /Confidential were designed to protect. Recently, Xu et al. [125] demonstrated
a side-channel exploit that extracts secrets from an enclave by observing its access pattern
to code and data pages, which depends on sensitive data in a typical application. Therefore,
in addition to protecting the enclave’s outputs (e.g. by using tools such as Moat and /Con-
fidential), the developer faces the burden of programming the enclaves correctly against
privileged attacks that use side channels to infer an enclave’s secrets. Practical defenses
against such a privileged adversary is an open research problem. This chapter addresses the
problem of defending against an adversary that can observe page-level access patterns of
an enclave program — in other words, we show how to harden enclaves against a stronger
threat model MP , defined in Section 4.2.

In Chapter 6, we formalized a confidentiality property, termed page access obliviousness
(PAO), that asserts that the adversary’s observation of page accesses must be independent
of the enclave’s secrets. Our key contribution is a method for compiling high-level source
programs to machine code (containing x86-64 and TAP instructions) such that the machine
code satisfies PAO, and a method for efficiently verifying that the enclave binary provably
satisfies PAO. This is a first step towards making the developer blissfully unaware of the
sophisticated attacks that can be mounted by a privileged adversary, allowing them to focus
entirely on application logic.

In summary, this chapter makes the following novel contributions:

1. We present a toolchain, consisting of a type system and compiler, that automatically
enforces PAO while compiling to machine code, and implements a stochastic optimiza-
tion phase to reduce runtime and memory overheads.

2. To reduce our trusted computing base, we develop a separate verifier that analyzes the
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compiled machine code to prove PAO. To further simplify the verifier, we design a typed
assembly language, where the typing annotations accompany the machine instructions
and reduce the verification task to efficient type checking.

3. We evaluate the toolchain on several machine learning algorithms and image processing
routines, for which attacks have been demonstrated in [125].

The rest of this chapter has the following organization. Section 9.1 presents an overview
of the PAO-enforcing compilation scheme, and the various challenges it must address. Sec-
tion 9.2 discusses the internals of the compiler, and Section 9.3 discusses the machine code
verifier which proves that the compiler output binary satisfies PAO. We evaluate the compiler
and verifier tools in Section 9.4, and finally discuss related work in Section 9.5.

9.1 Overview
Page access Obliviousness (PAO), as defined in Definition 4, requires that the program

exhibit the same ordering of accesses to memory pages regardless of the values of its se-
crets. We implement PAO enforcement within a compiler for EncLang, a general-purpose
language for programming enclaves. The rationale for developing EncLang is two-fold: 1)
memory accesses in mainstream languages (such as C, Rust) are determined by the com-
piler implementation, which offers us no control over the placement of objects and code in
memory, thus hindering a static scheme for enforcing PAO — a dynamic scheme for LLVM
bytecode [110] has been proposed, but with prohibitively high performance overheads; 2) be-
cause enclaves do not trust non-enclave software, they cannot use legacy software toolchains
and thus present a rare opportunity for clean slate programming and verification. Our
compiler accepts arbitrary programs in EncLang and obliviates the page accesses in the
compiled x86-64 program, i.e., it satisfies PAO by making page access pattern independent
of secrets. For instance, the compiler ensures that secret-dependent branches fetch instruc-
tions from the same (sequence of) pages in both branches. The compiler also performs stack
allocation and lays out data structures in the enclave’s heap so that a memory access via a
secret address (e.g. array access with a secret index) generates a deterministic page access
sequence in all executions. During this process, the compiler instruments dummy memory
accesses or inserts padding space between objects in memory to obliviate the page accesses.
For performance, the compiler also performs stochastic optimization, based on Markov Chain
Monte Carlo sampling, to reduce the increase in code and data size of compiled programs.
Although we implement these techniques in a compiler for EncLang, the ideas are gener-
ally applicable to mainstream languages. Moreover, we use EncLang to only program the
enclave components of an application, which we empirically observe to be a small fragment
of the entire application (e.g. map and reduce functions in VC3).

Next, we develop a separate verifier that proves that the output machine code satisfies
PAO. The gains are two-fold: 1) the compiler is no longer trusted, thereby freeing us to
implement aggressive optimizations without inadvertently sacrificing PAO, and 2) the verifier
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is significantly simpler, and shrinks the size of our TCB, which now includes only the CPU
hardware and our verifier. Furthermore, to alleviate the complexity of verifying arbitrary
machine code, we engineer the compiler to supply (untrusted, but useful) hints to the verifier
— we follow the typed assembly language paradigm of having the compiler output typing
annotations along with the machine code, and create a set of simple typing judgments for
efficient verification.

In the remainder of this section, we cover the key ideas behind our PAO-enforcing com-
pilation and the machine code verification of PAO.

9.1.1 Threat Model

Our threat model was formalized earlier in Section 4.2, where we define the adversaryMP
that observes both non-enclave memory and page-level accesses to memory (both enclave
and non-enclave memory). In this subsection, for the reader’s convenience, we recall the
threat model, and the various operations and observations that the attacker MP is allowed.

We assume a software adversary that has full control of all system software: OS, hyper-
visor, system management mode firmware, and BIOS. As a result of these privileges, the
adversary has full control over non-enclave memory, I/O peripherals, disks, and network;
it may record, replay, or modify network messages and disk contents. The adversary may
force the CPU to transfer control from the enclave to the untrusted OS at any time during
execution (by generating an interrupt, for example). Once the CPU transfers control to the
adversary, the adversary may execute an arbitrary adversarial operations before transferring
control back to the enclave.

To allow an OS autonomy over memory paging decisions, Intel SGX places the page tables
under the OS control. For security, the CPU implements an inverse page table mapping to
ensure that the OS cannot change the physical mapping for any address in enclave’s region.
However, at any point, the attacker may modify the page table entries to the effect of
inducing a page fault on each enclave memory access (e.g. by clearing the valid bit). That
being said, the OS’ page fault handler only needs to know the accessed page (and not all
bits of the address), hence the CPU clears the page offset bits from the faulting address
(12 least significant bits for 4KB-sized pages) prior to delivering the page fault exception.
This reveals the enclave’s memory access patterns only at the page-level granularity. Recent
attacks [125] on enclaves have extracted secrets via this channel, and preventing such leaks
is the focus of this chapter.

Defenses against hardware attacks are out of scope for this paper. For instance, we assume
that the adversary cannot physically attack the CPU package to extract secrets nor snoop
on the hardware bus connecting the CPU and DRAM. The latter assumption prevents the
adversary from learning access patterns at the byte-level granularity, which would necessitate
a more sophisticated defense. We also don’t defend against timing leaks, which may result
from 1) timing of page accesses, 2) cache timing attacks which the attacker uses to infer
access patterns at a cache-line granularity.
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9.1.2 Challenges in Guaranteeing Page Access Obliviousness

PAO is a specific instantiation of a more general property of confidentiality based on non-
interference, and it states that the adversary’s observations of page accesses during enclave
execution must be independent of the enclave’s secrets. However, guaranteeing PAO for any
application has its set of challenges. Consider a sample enclave in Figure 9.1, which evaluates
a decision tree to classify an input instance — while we write this enclave in EncLang, its
syntax and semantics is natural and similar to C, and we refer the reader to Section 9.2
for details on EncLang. The decision tree and the evaluate algorithm are known to the
adversary, whereas the input instance and output decision must be kept confidential — to
that end, we encrypt the output before writing to non-enclave memory. To classify the
instance, the procedure traverses the tree (stored as a flattened array) starting from the root
node, until it reaches a leaf node (which is any node with a non-zero value in the decision
field); the evaluation uses an index variable to record the current node in the traversal. At
each interior node, the procedure compares the value of a decision variable with a threshold
value, and recurses on either the left or right subtree based on the outcome. Note that, for a
large decision tree, the left and right children may lie on separate data pages. Furthermore,
the code implementing the left and right traversal may lie on separate code pages. Therefore,
the path taken through the tree reveals predicates that hold on the secret instance, which
the attacker infers by monitoring the enclave’s accesses to code and data pages. To remedy
such leakages, amongst other measures, the enclave developer must ensure that the page
accesses are independent of the path, a property entailed by PAO. Guaranteeing PAO for
the evaluate procedure has the following challenges:

• In the case of an unbalanced decision tree, evaluate terminates after varying number of
iterations (based on secret), and the attacker may infer the path length by counting
the number of page accesses. In other words, each invocation of evaluate leaks at most
log2 k bits of secret, where k is the height of our decision tree.

• We have a secret-dependent conditional statement (line 23). Monitoring the enclave’s
accesses to the code pages allows the attacker to infer which branch is taken, if any of
the instructions implementing the if branch (line 25) is placed in a different page than
the instructions implementing the else branch (line 27). Mainstream compilers often
optimize for code size and performance, but make no effort to control the layout of
instructions.

• We find several data accesses where the address depends on a secret value. For instance,
in lines 22 - 27, the array access tree[index] computes a reference to a node within the
tree, where index is a secret; this makes the address evaluate to a secret value. In the
case that tree is stored across multiple pages — because the tree size is larger than
a single page, or due to layout decisions made by the compiler — the attacker infers
some bits of the secret index by monitoring the enclave’s accesses to data pages.
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1 global tree:
2 array[2^k-1]
3 struct {
4 left : idx<2^k><public>, /* index of left subtree*/
5 right : idx<2^k><public>, /* index of right subtree*/
6 decision : uint64<public>, /* != 0 for leaf node */
7 dvar : idx<d><public>, /* decision variable */
8 threshold : uint64<public> /* threshold value */
9 };

10
11 void evaluate(instance : ref array[d]<secret> uint64 )
12 {
13 local decision: uint64<secret>; /* evaluation result */
14 local index: idx<2^k><secret>; /* values 0 to 2^k-1 */
15
16 index := 0; /* start traversal at root */
17 decision := 0; /* terminates when non 0 */
18
19 while (decision = 0) {
20 /* for (0..k) { */
21 if (decision = 0) {
22 decision := tree[index]->decision;
23 if (instance[tree[index]->dvar] <=
24 tree[index]->threshold) {
25 index := tree[index]->left; /* recurse left */
26 } else {
27 index := tree[index]->right; /* recurse right */
28 }
29 }
30 }
31 send(decision);
32 }

Figure 9.1 : Decision tree evaluation illustrating some challenges in guaranteeing page access
obliviousness.

9.1.3 Compilation for Page Access Obliviousness

We develop a compiler for producing PAO-satisfying x86-64 code from arbitrary En-
cLang programs. First, a type system (described in Section 9.2.5) flags violations where
the enclave leaks secrets in ways that an automatic compiler cannot fix (without developer
intervention): loops with secret-dependent condition, i.e., secret number of iterations, ex-
plicit leaks via assignment of secret values to public state, and implicit leaks via assignment
to public state within a secret conditional branch — these typing restrictions are common
amongst type systems for non-interference and side-channel mitigations. In the evaluate pro-
cedure in Figure 9.1, the developer replaces the secret-dependent loop condition (line 19)
with a loop that executes for fixed number of iterations (line 20), thus trivially satisfying the
typing rule that loop exit conditions must only depend on public values. The type checker
finds no other violations.

The compiler (described in Section 9.2) then compiles to x86-64 code, listed in Fig-
ure 9.2(a), while also enforcing PAO by controlling the layout of data structures and in-
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structions in memory — where necessary, it generates dummy page accesses to obliviate the
access patterns, as discussed below. It takes the following necessary measures for our sample
enclave.

Even with the fix on line 20, the enclave remains vulnerable — the program effectively
stops computing and does not perform data accesses once the traversal reaches a leaf node
(i.e., condition on line 21 evaluates to false), thus allowing the adversary to infer the path
length by counting the accesses to the data pages. To correctly conceal this leakage, the
compiler places dummy accesses in the else branch (corresponding to the if on line 21)
to account for the imbalance in the tree. As seen in Figure 9.2(a), the dummy accesses are
performed using instructions within the address range 0x96 to 0xbe, and they target the
same sequence of pages as the two program paths in the input program — this is achieved
via dummy reads from the same object, and by controlling the placement of objects.

Second, to prevent secrets from leaking via data accesses (e.g. tree[index], where the
address depends on a secret), the compiler must either 1) layout the tree to fit entirely
within a page (if possible), causing all accesses to the tree to target the same page, or 2)
allow the tree to span multiple pages, and introduce dummy accesses to all pages except
the page containing tree[index]. For a simpler presentation, the compilation in Figure 9.2
assumes that the tree object fits within a single page — Section 9.2.1 presents a general
scheme that handles objects of arbitrary size. Despite this simplifying assumption, we must
generate dummy accesses to tree in the else branch (corresponding to the if on line 21).
A dummy read (e.g. instruction 0x9e, which mimics 0x35) is performed by fabricating an
address within the tree. A dummy write (e.g. instruction at 0xa6, which mimics 0x3d) is
performed by first issuing a dummy read (instruction 0xa2, which we compensate by adding
instruction 0x39 in the original path), and then writing the read value back at the same
address, thus preventing dummy accesses from modifying state.

Finally, To hide control decisions based on secret input (line 23), the compiler lays out
the instructions from both branches onto the same page, when possible. Inevitably, to handle
cases where the cumulative code within the branches of a secret conditional cannot be fit onto
a single page, the compiler partitions code across pages such that the sequence of code page
accesses is equivalent in the two branches — the compiler splits each branch into snippets,
and maps snippets to pages such that the nth chunk of both branches have equal number of
instructions and occupy the same page. Finally, the compiler instruments nop instructions
to equalize the number of instructions (code accesses) in the two branches. Further details
are presented in Section 9.2.3. For simplicity, we elide the nop instructions in Figure 9.2,
and also manage to place all of the compiled machine code for evaluate within one page.

Verifying Page Access Obliviousness An enclave violates PAO if executions with dif-
ferent secret values produce different sequences of page accesses. We verify that the output
machine code satisfies PAO, thus removing the compiler’s implementation from the trusted
computing base.

In this paper, we show that verifying PAO requires sound (but necessarily incomplete)
algorithms for alias analysis and control flow analysis — in practice, we are able to implement
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a simple, yet precise algorithm for these analyses because our compiler produces idiomatic
code and supplies hints to the verifier, following the paradigm of typed assembly language.
First, our verifier takes the enclave program as input and computes its control flow graph
(CFG), as shown in Figure 9.2(b). Next, our verifier performs an alias analysis, annotating
each memory access with a set of objects that the access may target. We show the aliases
within curly braces in Figure 9.2(b); the verifier also annotates the aliases for the dummy
accesses along the else branch (shown within the dotted box in the CFG), corresponding to
the if in line 21. The verifier uses these analyses to prove PAO: for any pair of executions
of the enclave binary (that only differ in secret values), the sequence of page accesses must
be equivalent, where two accesses are equivalent if they target the same page and have
same type (read / write / execute). The machine code in Figure 9.2 satisfies PAO trivially
because the alias analysis computes only one object for each memory access, and all paths
have equivalent sequence of accesses to code and data pages.

9.2 PAO-Enforcing Compilation
This section presents an algorithm for obliviating data accesses at the machine code

level (Section 9.2.1), a stochastic optimization step for lowering runtime overheads of this
defense (Section 9.2.2), and an algorithm for obliviating code accesses (Section 9.2.3). We
also present EncLang (Section 9.2.4) and its compiler (Section 9.2.5, Section 9.2.6 ), which
implements these algorithms to produce PAO-satisfying machine code.

9.2.1 Obliviating Data Accesses

Consider the following secret-dependent conditional branch:
if (s) { /* s: bool<secret> */
b[i] := a[k]; /* a: array[5000] uint8<public> */

} else { /* b: array[10] uint8<secret> */
c := 0; /* c: uint64<secret> */

}

Consider two execution traces of this enclave, denoted π1 and π2, which have potentially
different values of secret state variables. With different values of the secret s in executions
π1 and π2 (from definition 3), the attacker observes different data accesses in π1 and π2:

• π1 (if branch): RJsK, RJa[k]K, W Jb[i]K

• π2 (else branch): RJsK, W JcK

Here, RJK andW JK indicate read and write operation, respectively — we defer the treatment
of code accesses (for fetching instructions) to section 9.2.3. A strawman PAO-enforcement
scheme obliviates page accesses in the two branches by introducing dummy read (R̂JeK) and
dummy write (Ŵ JeK) operations, which are guaranteed to 1) target the same page as the real
read (RJeK) and write (W JeK) operations that they mimic, and 2) not cause any side-effect
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on the program’s state. This approach results in the following data accesses along the two
branches of the above program:

• π1 (if branch): RJsK, RJa[k]K, W Jb[i]K, Ŵ JcK

• π2 (else branch): RJsK, R̂Ja[k]K, Ŵ Jb[i]K, W JcK

The implementation of dummy operations R̂JK and Ŵ JK, which execute in a different
code path than the real operations they mimic, must compute the same address or at least
an address to the same page. This is trivial for scalar objects (e.g. variable c, which has a
fixed location on the program stack). In the case where the object spans multiple pages (e.g.
larger-than-page array a in RJa[k]K), we cannot statically identify a unique page targeted by
a read / write operation — in general, the address may be computed using a secret (e.g.
secret k in a[k]), and secrets may evolve to different values within the two branches of a
secret-dependent conditional. Therefore, the dummy operation R̂Ja[k]K must access each
page that contains some part of the object, which also forces us to access the same pages to
implement the real RJa[k]K lest we violate PAO. In other words, the RJK, R̂JK, W JK, and Ŵ JK
operators — defined in Figure 9.3 and described below — may perform multiple memory
accesses for each read / write operation.

As a first step, given a RJeK orW JeK operation to mimic, we perform a best-effort analysis
to identify the object being targeted by the reference e, hereby called the statically-identifiable
object. The statically-identifiable object, or si(e), denotes a (contiguous) region of memory
that is guaranteed to contain the address e, in all executions of the program. EncLang
provides two constructs for computing references: the  operator converts a reference to a
struct into a reference to the named field, and the [.] operator returns a reference to the
indexed array element — both operators have standard C-like semantics. We compute si(e)
syntactically by traversing struct accesses in e until we arrive at a scalar or an array access —
we stop the recursion at an array access to avoid performing range analysis, thereby allowing
the computation of si to be syntactic. For instance, si(a[k]) is a; si(w x[y z]) is w x;
si(w x) is w x; si(s) is s. In general,

si(e)
.
=


id where e← id

si(ea) where e← ea[ei]

si(es) where e← es  id and es contains array access
e where e← es  id and es has no array access

Figure 9.3 defines the machine code implementation of the RJeK, W JeK, R̂JeK, and Ŵ JeK
operators. If si(e) resolves to a scalar value (i.e., ref cell in EncLang), then both RJeK and
R̂JeK execute a single mov instruction to read the value. Else, we perform a linear scan over
all pages that contain the array referenced by si(e) (as illustrated in Figure 9.3). To do so,
it suffices to know the size of the array referenced by si(e), which we compute using the
type inference in EncLang (Section 9.2.5) — the base address can be evaluated at runtime.
Assuming the worst case layout of si(e), where the object may span upto d size(si(e)) / 2p e
+ 1 pages, we perform the linear scan in R̂JeK by issuing dummy loads from all these pages,
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and perform the linear scan in RJeK by issuing a real load to the page containing address
e and dummy loads to the remaining d size(si(e)) / 2p e pages. To an attacker, a real load
is indistinguishable from a dummy load — PAO is preserved by having equivalent number
and type of page accesses in RJeK and R̂JeK. Observe that a dummy load targets the lowest
address of a page (i.e., bottom p bits are 0), and discards the result of the load, whereas
a real load targets the intended address e and saves the result in rax. The implementation
is similar for W JeK and Ŵ JeK. The linear scan uses dummy stores that target the lowest
address of a page, and first loads a value from that address, and then stores that same value
back. Meanwhile, a real store first loads a value from the target address into a dead register,
and then stores the new value — to an attacker, a real store is indistinguishable from a
dummy store. The implementation makes use of an oblivious move primitive called omove,
which we borrow from [91]. Effectively, dst := omove(c, x, y) performs a conditional move
without introducing a conditional branch — it moves both x and y into temporary registers,
evaluates c, and uses the cmovz instruction to move either x (if c is true) or y (if c is false)
into dst.

Note that the compiler only introduces dummy operations R̂JeK and Ŵ JeK within secret-
dependent conditional branches. Code within public conditionals do not require any PAO-
related defenses, as the program executes the same branch in both π1 and π2, and hence
the attacker observes equivalent page accesses. Although, for simplicity, our example only
contains one conditional statement, the algorithm handles arbitrary nesting of conditional
statements. This section proposed a naive, but sound defense for enforcing PAO; the follow-
ing section optimizes the program to remove unnecessary dummy accesses, without compro-
mising soundness.

9.2.2 Stochastic Optimization of Dummy Accesses

So far, our strategy for obliviating data accesses assumed the worst-case layout of objects
in memory. First, the RJK and W JK operators produce d size(si(e)) / 2p e + 1 page accesses,
accounting for the pathological case where even a two-byte object can span two pages — we
observe this phenomenon in W Jb[i]K, which needs only one page access if the 10-byte array
b can be placed entirely within a page. Second, the strategy of introducing one dummy
operator for each real operator in the other path assumes the worst case setting where all
objects are placed in unique pages, which is rarely the case — we observe this phenomenon
in the toy example from section 9.2.1, where both Ŵ Jb[i]K and Ŵ JcK can be elided objects
if b and c are placed in the same page. With this insight, we have an optimized sequence of
data accesses:

• π1 (if branch): RJsK, RJa[k]K, W Jb[i]K

• π2 (else branch): RJsK, R̂Ja[k]K, W JcK

We formulate this program transformation as a stochastic optimization problem, and
solve it using Markov Chain Monte Carlo (MCMC) sampling, which quickly explores a large
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search space of program rewrites. The cost function to optimize is the number of dummy
page accesses. The MCMC sampling chooses amongst two candidate moves:

1. Map objects to pages: Randomly select a stack-allocated object and place it onto a
random page (on the current stack frame) that has enough contiguous, free memory.

2. Dummy accesses: Randomly select a pair of R̂JK (or Ŵ JK) operations and remove it
from the program. Or, for ergodicity [106], create a pair of R̂JK (or Ŵ JK) operations,
each with a randomly chosen object as the argument.

These optimizations require the compiler to control the placement of local, stack-allocated
objects. We assume no control over heap layout as it is performed by malloc, and the layout
of globals is performed independently of all procedures — in principal, these can be optimized
as well, but that would add unmanageable complexity to the compiler.

9.2.3 Obliviating Code Accesses

The branches of a secret-dependent conditional may contain unequal number of instruc-
tions, and hence produce unequal number of code page accesses in execution traces π1 and
π2 — in fact, the reader may notice in Figure 9.3 that although our implementation of
RJeK produces equal number of data accesses as R̂JeK, RJeK uses far more instructions. To
obliviate the code accesses, the compiler instruments nop instructions on the same page
as the instructions being mimicked — we apply this defense after the transformations in
sections 9.2.1 and 9.2.2, ensuring that enough code accesses are interleaved with the data
accesses to satisfy PAO. Note that this instrumentation is only applied to secret-dependent
conditionals.

The nop instrumentation ensures that all paths within a secret-dependent conditional
have equal number of x86-64 instructions, thus guaranteeing that equal number of code
page accesses. However, this is not enough for PAO. Without consideration to code layout,
instructions in different branches may get placed onto separate pages. This may happen
if there is not enough space left on the current code page, or if the cumulative size of the
branches is larger than a page. In such cases, we split each branch into a sequence of
snippets, map snippets onto pages such that the nth snippet of both branches has equal
number of instructions and occupies the same page, and stitch the snippets together using
unconditional jumps.

9.2.4 The EncLang Language

Our goal is to empower the developer with a PAO-enforcing compiler and verifier toolchain,
which implements the defenses in sections 9.2.1-9.2.3. Modifying off-the-shelf compilers for
mainstream languages would require significant overhaul. We must at the very least: (1)
add security types to identify secret branch conditions — in the case of C/C++, the type
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system is also unable to strictly enforce type and memory safety, making it exceedingly dif-
ficult to statically reason about aliasing, control flow, and object sizes (e.g. evaluating si
in 9.2.1); (2) extend the operational semantics to define memory accesses for each expression
and statement in the language and enforce these semantics in all phases of the compilation —
mainstream languages (e.g. C, Rust) leave these details to a compiler; (3) extend the com-
piler implementation with techniques proposed in this paper: issue dummy accesses, place
nop instructions, arrange objects in data pages, arrange instructions in code pages, etc. —
mainstream compilers don’t offer this level of control over the code generation. Therefore,
we implement our PAO enforcement within a compiler for a new language, called EncLang,
that is mostly inspired from Ivory [48], Cyclone [62] and the work by Jones [45]. Note that
EncLang is used to program the enclave components, whereas the rest of the application
is developed using legacy toolchains. Figure 9.4 presents the syntax, and the rest of this
section discusses the key features of EncLang.

Establishing memory safety is paramount for enforcing PAO— a memory safety violation,
such as a control flow attack, may perform arbitrary, malicious computation within enclaves,
making it infeasible to give any meaningful security guarantee. To that end, the EncLang
restricts how references to objects are computed and stored. The language forbids out-of-
bounds access and nullable pointers. The developer may allocate memory for either primitive
types (cell β, where β is a machine word type) or aggregate structures of type struct and
array. The array size must be declared statically, and the array is indexed using a special
integer type idx〈k〉, which represents values from 0 to k− 1. All allocations are either local
(in the current procedure’s stack frame), global, or on the heap (managed with malloc and
free). Though we intend to relax this restriction in future work, we force the programmer to
specify the type of the object (which also specifies its size) as an argument to malloc, in lieu
of introducing runtime bounds checks. Allocations (via local, global, and malloc) bind the
object’s name to a reference that points to the base of the object. The  operator converts
a reference to a struct into a reference to the named field, and the [.] operator returns a
reference to the indexed array element (if the type checker can prove that the index’s type
cannot allow an out-of-bounds access). These are the only two ways of computing references
to objects in memory (pointer arithmetic is disallowed), and we also prevent references from
being stored in memory to keep alias analysis simple yet precise (though we intend to relax
this in future). Once a reference to a cell is obtained, deref and store is used to read and
write a machine word.

A program may save intermediate results on the local stack using let statements and
local declarations. A procedure (including malloc, free) is invoked using a call statement, and
execution terminates within the procedure at the ret statement. Our type checker guarantees
that references to stack allocated objects are not returned from a procedure, thus eliminating
the possibility of a dangling pointer.

A standard feature of information flow type systems is a secrecy type, which has two
values: public (⊥) or secret (>). EncLang allows both values (i.e., cell) and references to
have type⊥ or>— a secret reference indicates that the pointer is computed using secrets e.g.
a[i], where i is secret. The type checker uses these types to identify illegal information flows
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(e.g. storing a secret value in a public state variable), and the PAO enforcement algorithm
(Section 9.2.1-Section 9.2.3) uses these types to identify the secret-dependent branching
conditions.

Advantages of using EncLang for PAO The compiler can perform simple, yet pre-
cise, alias analysis to determine the set of objects that are potentially targeted by a store or
deref.This is because the language provides limited constructs ( and [.]) to compute point-
ers, and such pointers are always computed in a small number of registers and never saved
in memory. In principle, we can relax these language restrictions, and develop sophisticated
alias analysis, value analysis, etc. as part of the PAO-enforcing compilation. However, we
find these challenges to be orthogonal to the key problems addressed in this work.

Const
n ::= N
c ::= true | false | 0bv8 | . . . | 18446744073709551615bv64

Vars
v ::= id

Ops
⊗ ::= + | � | � | ∗ | = | < | ∧ | ∨ | ¬ | . . .

Region
r ::= local | global | heap

Types
l ::= public(⊥) | secret(>)
τ ::= ref〈l〉 r α | β
β ::= bool〈l〉 | sint〈n, l〉 | uint〈n, l〉 | idx〈n, l〉
α ::= array n α | struct{id : α, . . . , id : α} | cell β〈l〉

Expr
e ::= v | c | e⊗ e | e id | e[e] | deref e

Stmt
s ::= s ; s | local v : α in s | let v = e in s | store e e | ret e

call v = id(e, . . .) in s | if (e) {s} else {s} | while(e) {s}
Prog

p ::= proc id(v : τ, . . . , v : τ → τ){s} | var v : α | p; . . . ; p

Figure 9.4 : EncLang syntax

9.2.5 Type Checking of EncLang programs

Figure 9.5 presents a type system for EncLang. The type checker flags information flow
violations that a compiler cannot automatically repair e.g. assigning secrets to public state
variables. A typing judgment for a well-typed statement s has the form Γ, lc `s s, where Γ
is the typing environment and lc is the secrecy context: true if the statement occurs within a
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v 7→ τ ∈ Γ

Γ `e v : τ

id 7→ τ1, . . . , τn → τ ∈ Γ

Γ `e id : τ1, . . . , τn → τ

∃r. Γ `e e : ref〈lr〉 r cell β〈lv〉
LOAD

Γ `e deref e : β〈lr t lv〉

Γ `e e : ref〈l〉 r struct {. . . , id : α, . . .}
STRUCT

Γ `e e id : ref〈l〉 r α
Γ `e ea : ref〈l〉 r array n α Γ `e ei : idx〈n′, l′〉 n′ ≤ n

ARRAY
Γ `e ea[ei] : ref〈l t l′〉 r α

∃r. Γ `e ea : ref r〈lr〉 cell β〈lv〉 Γ `e ed : β〈ld〉 ld t lr t lc v lv
STORE

Γ, lc `s store ea ed

Γ[v 7→ ref〈⊥〉 local α], ⊥ `s s
LOCAL-BIND

Γ, ⊥ `s local v : α in s

Γ `e e : τ Γ[v 7→ τ ], lc `s s
LET-BIND

Γ, lc `s let v = e in s

Γ `e e : bool〈l〉 Γ, lc t l `s s1 Γ, lc t l `s s2
COND

Γ, lc `s if (e) {s1} else {s2}

Γ `e e : bool〈⊥〉 Γ,⊥ `s s
WHILE

Γ, ⊥ `s while(e)s

Γ `e e1 : τ1 . . .Γ `e en : τn Γ `e id : τ1, . . . , τn → τ Γ[v 7→ τ ], ⊥ `s s
CALL-BIND

Γ, ⊥ `s call v = id(e1, . . . , e1) in s

Γ, lc `s s1 Γ, lc `s s2 SEQ
Γ, lc `s s1; s2

Γ `e e : τ ¬∃α, l. τ 6= ref〈l〉 local α
RET

Γ, ⊥ `s ret e

∀ var v : α ∈ p. v 7→ ref global α ∈ Γ Γ[v1 7→ τ1, . . . , vn 7→ τn], ⊥ `s s each path in id ends in ret e : τ
PROC

Γ `p proc id(v1 : τ1, . . . , vn : τn → τ){s}

∀ proc id(v1 : τ1, . . . , vn : τn → τ){s} ∈ p. Γ `p proc id(v1 : τ1, . . . , vn : τn → τ){s})
PROGRAM` p

Figure 9.5 : Typing rules for EncLang. Typing environment Γ::=∅ | v 7→ τ, Γ
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secret-based conditional. A well-typed expression e has a typing judgment Γ `e e : τ , where
τ is the inferred type. To check for valid information flows, we define a subtyping relation
v: ⊥ is a subtype of >, which creates a lattice with the join operator t: l1 t l2 is equal to
⊥ if l1 = ⊥ ∧ l2 = ⊥, and > otherwise.

The typing rules for LOAD and STORE mandate that deref and store recieve a reference
to a primitive (cell) type, which is computed using a combination of array indexing and struct
field accesses. In the case of store statements, the type checker checks that the secrecy type
of reference (lr) and the secrecy type of the written value (ld) are subtypes of the referenced
cell’s secrecy type (ld) — a secret reference can be thought of as a secret-based choice over
a set of cells, and therefore must not be used to modify a public cell. The type system
also checks that no store is made to a public cell in a secret context, which is a standard
feature of type systems for non-interference. A load (deref) produces a secret value if it uses
either a secret reference or a reference to a secret-valued cell. Both CALL-BIND and RET
rules enforce that call and ret statements are performed in a public context — forcing calls
(including malloc and free) to occur in a public context allows the PAO enforcement to be
modular. The COND rule checks that both branches are well-typed in the security context
determined by the branch condition. The LOOP rule forbids loops with a secret branching
condition — secret (number of) loop iterations causes the (number of) page accesses to
depend on a secret, and therefore hinders PAO enforcement. The ARRAY rule checks that
the index expression of type idx〈k〉 does not cause out-of-bounds access on an array of size
n by requiring k ≤ n.

9.2.6 Compiling EncLang to Typed Assembly Language

To produce PAO-satisfying code, the compiler must control the placement of stack-
allocated objects and instructions, using the algorithms from Section 9.2.1-Section 9.2.3.
However, these algorithms operate at the level of read / write operations and machine in-
structions, which is produced after compilation. This circular dependency is broken by
compiling the EncLang program in phases: 1) produce machine code with placeholders
for the location of stack-allocated objects, 2) obliviate data accesses and optimize using
MCMC sampling, which computes the location for stack-allocated objects, 3) obliviate code
accesses, which computes the location for each instruction in the compiled program, and
4) assign placeholders from phase 1 using the locations computed in phase 2. The (nearly)
entire implementation of the compiler’s phase 1 is formalized in Figure 9.6; phases 2 and 3
are described in Section 9.2.1 and Section 9.2.3.

During phase 1, the compiler maintains a context φ = (φL, φG, φB, φδ), which is read and
modified during compilation to x86-64, as seen in Figure 9.6. Computed in phase 2, φL maps
stack-allocated objects to locations in the current stack frame, specified as an offset relative
to the frame pointer rbp — this is left as a placeholder in phase 1. φB tracks the location of
bindings (produced by call and let statements), and is modified each time the compilation
encounters such statement. φG maps globally-scoped objects to fixed, statically-computed
addresses in the enclave address space.
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The compiler is modular: each procedure p in the enclave is compiled independently
by invoking PφJpK. The procedure first pushes the callee-preserved registers on the stack,
generates a code block called prologue (which we describe later), and invokes compilation on
the procedure’s body. A statement s is compiled using SφJsK, which recursively compiles the
constituent statements (using SJK) and expressions (using EJK), while making use of context
φ. For any expression e, EφJeK stores the evaluation result in rax and is allowed to use rdx
in any way. This process also produces RJeaK and W JeaK primitives, which is used in phase
2 to obliviate data accesses.

Recall that phase 2 produces φL, a mapping from stack-allocated object to its location on
the stack frame (potentially many pages), by using stochastic optimization to assign multiple
objects onto a page. However, the compiler cannot compute the base address of the local
stack frame (as the procedure can be called via an arbitrary call chain), and this hinders our
ability to implement φL. For this reason, the compiled program maintains two stacks: 1) a
bindings stack used for storing bound variables (produced by a call or let) and intermediate
results while evaluating expressions, and 2) a locals stack used for storing stack-allocated
objects, which we will align at the page-boundary. The bindings stack bears resemblance to
the stack used in a stack-based procedural language, and is accessed using the frame pointer
rbp and stack pointer rsp. On the other hand, the locals stack is accessed relative to the
register rsi, which we modify in the prologue to be the next page boundary, and it remains
constant throughout the procedure — there is a caveat that if the procedure’s stack space
requirement can be met within the current page (e.g. it uses small objects), then we do not
page-align rsi. This invariant on rsi enables the compiler to statically layout the objects to
comply with the φL mapping and satisfy PAO.

Section 9.3 describes an independent verifier which certifies the compiled machine code.
We follow the typed assembly language paradigm [85] of: 1) a strongly-typed source lan-
guage, EncLang, 2) a type-preserving compiler, and 3) a strongly-typed assembly language
(TAL from here on). As seen in the right-most column of Figure 9.6, each update to a
register accompanies an annotation assigning its new type, derived using the type inference
rules in Figure 9.5. The type annotations on registers, which are used for computing both
references and values, simplifies information flow tracking and alias analysis of the otherwise
unstructured, untyped machine code.

9.2.7 Supporting Heap Allocation and Procedure Calls

Since malloc enjoys complete control over the placement of objects within the heap,
we obliviate heap accesses by performing R̂J.K and Ŵ J.K in the other branches of a secret
conditional, using the technique described in Section 9.2.1. Procedure arguments are treated
similarly, the compiler has no knowledge of their location. The R̂J.K and Ŵ J.K requires the
size of the object to be statically known. Therefore, our malloc and free routines require the
type of the requested object.
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9.3 Verifying PAO
The verifier proves that for any pair of executions of the enclave binary (that only differ

in secret values), the sequence of page accesses must be equivalent, where two accesses are
equivalent if they target the same page and have same type (read / write / execute). The
verifier independently analyzes each procedure because the compiler is modular and does
not optimize globally. For each procedure, the verifier must:

1. Enumerate secret-dependent paths Enumerate all paths in the procedure such that
each constituent path represents a unique evaluation of a secret-dependent conditional —
number of paths is worst case exponential in the number of secret-dependent conditionals
within the procedure. The compiler assists this step by providing secrecy types of CPU
flags at all conditional jumps in the TAL program (see Figure 9.6). Furthermore, the lack
of indirect jumps in the binary enables simple, yet precise control flow analysis.

2. Identify sequence of memory accesses : The verifier computes the sequence of
memory accesses that the CPU performs on each path. This step is purely syntactic, and is
implemented verbatim as the definition of PAO in Section 6.3.

3. Identify target page(s) for each access : The verifier computes the exact code
page for each instruction, which is given verbatim in the enclave executable. Identifying the
target pages for data accesses ordinarily necessitates an alias analysis which identifies the
object(s) targeted by a reference, and recovering the mapping from objects to pages. We
circumvent these analyses with a key insight: for any reference e, the verifier only needs
to determine the statically-identifiable object si(e) (defined in Section 9.2.1), for which the
typing annotations are sufficient. In other words, the verifier can establish the equivalence
of any two page accesses, which use references e1 and e2, knowing only si(e1) and si(e2).
This is due to a combination of reasons: 1) our primitives RJeK, etc. use only the knowledge
of si(e) to generate the memory accesses, 2) for any reference e, the semantics of EncLang
ensures that si(e) evaluates to the same object in all paths, and 3) the verifier is able to infer
when different local objects (si(e1) 6= si(e2)) are mapped to the same page by leveraging the
fact that all local objects are addressed relative to a fixed frame pointer.

Having performed these steps, the verifier asserts that the sequence of page accesses is
equivalent in all the enumerated paths. Furthermore, to avoid trusting the compiler, the
verifier also proves validity of the typing annotations (relative to the corresponding machine
code) using a set of typing judgments.

9.4 Evaluation
To study the performance impact of automatic PAO enforcement, we implement an open-

source toolchain consisting of a compiler from EncLang to TAL, and a verifier for certifying
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Benchmark Code Size Code Size Data Size Data Size
(no PAO) (PAO) (no PAO) (PAO)

k-means 1638 B 1668 B 1784 B 1784 B
Decision Tree 1058 B 3082 B 416 B 416 B

SVM 1368 B 1408 B 2008 B 2008 B
CNN Classifier 1637 B 1667 B 45312 B 45312 B
IDCT (1 dim) 4574 B 10725 B 592 B 592 B
IDCT (2 dim) 7424 B 13575 B 664 B 664 B
AES Blk Cipher 5173 B 5203 B 488 B 488 B

Table 9.1 : Summary of results.

Figure 9.7 : Overhead in Runtime and Page Accesses

PAO on the output TAL. Along with the TAL, the toolchain produces executables that we
run natively on a 3.2 GHz 6th Generation Intel CPU (with SGX instruction set enabled and
96 MB available for enclave memory).

We evaluate this toolchain on several enclave programs that compute on sensitive data.
We sample standard machine learning algorithms: k-means clustering, training of SVM clas-
sifier (based on a cache oblivious algorithm from [91]), decision tree evaluation (Figure 9.1),
and a convolutional neural network (CNN). In the case of k-means clustering, the input
points and the k=10 trained clusters must be kept secret. The training of SVM classifier
must ensure that the learned weights are kept secret. The CNN (trained offline) must ensure
that the image to be classified must be kept secret. We also experiment with the inverse
discrete cosine transform (IDCT) routine (both one and two dimensions) from a JPEG de-
coder, whose page fault patterns were exploited by Xu et al. [125] to infer edges in the secret
input images. To compare with [110], we also evaluate on the AES block cipher (we only
evaluate encryption).
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The compiler takes roughly 2-3 seconds to compile each of these benchmarks, most of
which is spent in the MCMC optimization. The verifier uses the typing annotations generated
by the compiler in order to produce the proof, and this takes under 1 second for all of these
benchmarks. Table 9.1 compares vanilla compilation with PAO-enforcing compilation, with
respect to memory consumption for code and data pages. Across all the benchmarks, we
observe an average of 81 % increase in code size, and 0 % increase in memory requirements
because the compiler successfully rearranged local objects without introducing any padding
space. That being said, the runtime overhead is significantly lower than code size overhead
(81 %) because the added x64 instructions are distributed across multiple control branches.

Figure 9.7 reports the performance overheads for runtime and number of page accesses,
using standard datasets (e.g. UCI Repository [3]) for machine learning programs and 106

invocations with randomly generated inputs for IDCT and AES programs. The overhead
denotes the increase in these metrics when enforcing PAO, and is reported after averaging
over 10 runs on a large dataset, or a million invocations . We observe a non-negative overhead
(%) because our algorithm instruments dummy accesses, which lead to additional data and
code accesses (to fetch the added instructions). In general, we find that programs with
more conditional branches (in a secret context) incur higher code size overheads because the
EncLang compiler places dummy code and data accesses to determinize the page access
sequence across all branches, which leads to additional x86 instructions. Specifically, IDCT
incurs higher runtime overheads because the libjpeg implementation skips the complex
computation when the input image satisfies a condition [125], and such optimization violates
PAO because the attacker observes different page accesses based on secret input. Similarly,
the decision tree classification incurs a high overhead because the oblivious implementation
must perform a fixed number of tree traversals for all inputs. On the other hand, we find
that k-means, SVM, CNN classification, and AES incur low overheads as the computation
is data-intensive and primarily occurs outside of secret conditionals. Specifically, CNN and
AES show negligible overhead as all array accesses use public indices, and loops use constant
bounds; our compiler infers that they have no secret-dependent code or data accesses.

9.5 Related Work
Shinde at al. [110] develop an instrumentation scheme (at the LLVM IR level) for en-

forcing page fault obliviousness — computational security definition as opposed to non-
interference — of programs written in a subset of C/C++. Their approach, termed deter-
ministic multiplexing, copies all code and data blocks at the same level of the execution
"tree" to a temporary page, and dynamically selects the appropriate code and data based
on the current program path. Although [110] addresses the same side channel attack as this
paper, there are several important differences. First, we protect against a stronger adversary
that can observe all page accesses, whereas the attacker in [110] only observes changes in
page accesses, i.e., the attacker cannot count accesses within a single page. A realistic attack
scenario can invalidate a page table entry at any time (e.g. OS getting interrupted by a
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device). Therefore, the defense in [110] potentially leaks a bit of information on each page
access, which is problematic for long-running enclaves. Second, we develop a binary veri-
fier to certify PAO. On the contrary, [110] makes unspecified assumptions such as memory
safety — a control flow exploit can bypass their instrumentation, and worse, spill secrets
directly to untrusted memory. Furthermore, [110] incurs a large software TCB comprising
the C compiler, LLVM assembler, and their instrumentation scheme. Our software TCB
contains just the TAL verifier. Finally, [110] obliviates by transforming the compiled LLVM
program. While this allows them to target mainstream languages, their scheme incurs 705x
average runtime overhead — they reduce this overhead using developer annotations, which
may compromise soundness. We show that by carefully designing the semantics and com-
piler of EncLang, we can optimize the PAO enforcement to incur an average 49% overhead
across various benchmarks.

Ohrimenko et al. [91] manually develop machine learning algorithms that guarantee data-
obliviousness at a cache-line granularity; their ideas inspired our primitives for oblivious
dummy accesses. Cache side-channel defenses are complementary to our work because pages
and cache sets are addressed by disjoint bits in a virtual address.

Oblivious RAM (ORAM) [54] protects against side channel leaks via the program’s mem-
ory access patterns. Liu et al. [72] formalize memory trace obliviousness, and develop a com-
piler for producing memory trace oblivious programs by partitioning code and data across
multiple ORAM banks for efficiency; in a follow-up work, Liu et al. [73] develop ObliVM,
a tool to compile high-level source programs to an oblivious representation that leverages
ORAMs to efficiently perform dynamic memory accesses (in lieu of performing a linear
scan). GhostRider [70] presents a co-designed compiler and hardware ORAM for memory
trace oblivious execution. Although these techniques provide stronger guarantees than our
work, they require a novel hardware platform with ORAM support, whereas we target com-
modity SGX machines. An interesting question arises whether an ORAM controller can be
implemented within an SGX enclave in our threat model. As [110] explains, ORAM con-
structions require a private stash for shuffling data blocks, whereas our attacker can observe
accesses to all pages in memory. Furthermore, to adapt the ORAM algorithm (e.g. Path
ORAM) in our compiler, we need to "compose" the ORAM logic with the enclave program,
effectively evaluating the ORAM logic on each instruction. Our compiler can be seen as a
static scheme for achieving obliviousness, and it uses the type system and program behavior
to optimize the performance overheads.

9.6 Summary
This chapter develops tools for enforcing PAO (Definition 4) automatically. The toolchain

comprises 1) a compiler for EncLang that automatically enforces PAO, 2) a stochastic
optimization to reduce the runtime overhead, and 3) a verifier to certify the compiled machine
code. The toolchain provably guarantees PAO while achieving a tiny trusted computing base,
which only includes the enclave platform and the verifier’s implementation.
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Chapter 10

Conclusion and Future Work

This chapter summarizes the contributions of this thesis and proposes several directions
for future research.

10.1 Closing Statement
Security-critical applications that compute on sensitive data constantly face threats due

to vulnerabilities in the application’s code, and privileged software layers including the OS,
Hypervisor, etc. With the development of trusted hardware primitives by several proces-
sor vendors, applications can be designed with separate untrusted and trusted components,
which are called enclaves — in this paradigm, enclaves are the only trusted software compo-
nents, and hence, must not contain any vulnerabilities that can be exploited to leak sensitive
data to the adversary. The developer must exercise extreme care to ensure that all of the
enclave’s interaction with the untrusted platform are safe (e.g., by encrypting outputs and
persistent storage) — this includes any side channels exposed by the specific hardware plat-
form (e.g. page-level access patterns in SGX). This thesis makes several novel contributions
towards techniques for building and verifying enclave programs with confidentiality guaran-
tees, while accounting for the effects of a privileged software-level adversary.

Since we are developing techniques for writing safe enclaves, the first part of this thesis
develops a formal framework for reasoning about an enclave’s semantics i.e. its set of be-
haviors in the presence of a privileged adversary. Chapter 3 develops a formal semantics of
enclave execution, which precisely defines the enclave’s state, inputs and outputs, and the
model of execution. In order to ensure that enclaves behave according to their semantics on
real platforms, and in the presence of a privileged attacker, we formally specify the behavior
of the hardware primitives in Chapter 4. Furthermore, to generalize our analysis beyond a
specific enclave platform, we develop an abstract model (called Trusted Abstract Platform,
or TAP in short) and show that popular platforms such as Intel SGX and MIT Sanctum are
instantiations of the TAP. We also formalize the operations and observations of the privileged
attacker. Finally, in Chapter 5, we prove that the TAP provides secure remote execution to
any enclave. That is, any enclave that is launched on a TAP enjoys integrity, confidentiality,
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and secure measurement properties, which ensures that enclaves behave according to the
expected semantics that we defined in Chapter 3.

The second part of the thesis develops novel techniques for designing and verifying en-
clave programs with provable confidentiality properties, even in the presence of a privileged
adversary. Since an enclave communicates with remote entities via the untrusted platform,
any output produced by an enclave is visible to the adversary. To address potential leaks
of sensitive data via such outputs, we develop a machine code verifier in Chapter 7, called
Moat, that accepts the enclave’s binary as input, statically analyzes all potential executions,
and either produces a proof of confidentiality or flags a potential leak. Although Moat is
sound, it does not scale beyond tiny enclave programs due to its approach of precisely track-
ing the flow of secrets in memory, at the level of machine code. We address these scalability
limitations in Chapter 8, where we impose a design constraint (termed information release
confinement) that all interaction between a potentially vulnerable enclave and the untrusted
platform take place via a trusted runtime library — the library automatically enforces cryp-
tographic protections, such as encryption of all outbound messages and file I/O. With this
design constraint, we simplify the verification to only prove that the developer-provided en-
clave module does not write directly to non-enclave memory, nor violate a form of control
flow integrity — we empirically demonstrate that this verification is significantly simpler
than the one performed by Moat, and hence, also much more scalable. Note that both Moat
and /Confidential provide confidentiality against an attacker that observes an enclave’s
output (i.e., writes to non-enclave memory). Finally, we note that some hardware platforms
expose certain side channel leaks e.g. cache timing, memory access patterns — these side
channels are exposed on SGX but not Sanctum. To address leaks via the side channel of
page-level memory access pattern, in Chapter 9, we develop a compiler that automatically
produces safe machine code (i.e. page access sequence is independent of the enclave’s se-
crets), and a verifier that further proves that the compiler’s output code is indeed safe, thus
removing the compiler from the trusted computing base. The contributions of Chapter 9 al-
low us to develop enclave programs that protect sensitive data in the presence of a privileged
software adversary that also observes page-level access patterns.

10.2 Future Work
We conclude with a discussion of future research directions influenced by the work pre-

sented in this thesis.

Applications An important subject of future research is the design of cloud-based systems,
such as databases, data analytics systems, and web servers, that leverage trusted hardware to
provide strong security (e.g. confidentiality, integrity, freshness) guarantees while maintain-
ing the level of performance available in off-the-shelf, unprotected systems. While there has
been some research in building database engines and Map-Reduce frameworks [107] that use
enclave platforms to perform security-critical functions, the performance impact has been



10.2. FUTURE WORK 135

significant.

Application Partitioning Throughout this thesis, we presented several applications and
benchmarks with enclave components, which we manually developed by partitioning the ap-
plication into untrusted and trusted components, where the trusted components were run
within enclaves. However, for most real-world applications, such partitioning is a significant
manual undertaking, and any programming error (that does not move all of the sensitive com-
putation to the enclave) can be exploited by the adversary. Important directions for future
research include tools and techniques to enable the developer to (semi) automatically parti-
tion applications into trusted and untrusted components, while guaranteeing confidentiality
properties and minimal performance overheads. Undoubtedly, these tools would require hints
or annotations from the developer (e.g. which state variables hold secret data), in which
case, further research is needed on how to enable the developer to express such hints.

Hardware Verification In this thesis, we formally specify the semantics of trusted hard-
ware primitives, and simply assume that the hardware implementation satisfies this speci-
fication. For instance, we formalize the property of secure remote execution on an enclave
platform, which decomposes into sub-properties (such as confidentiality, integrity, and se-
cure measurement) of the hardware. Verifying that the low-level hardware implementation
satisfies these properties, which are actually formalized as hyper-properties, requires further
research in modeling and verification.
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Appendix A

TAP Model

In this appendix chapter, we present our model of the TAP in full detail, which was
described earlier in Chapter 4. We include the reference implementation (in BoogiePL [14])
of all TAP operations: launch, enter, resume, exit, pause, and destroy.

1 procedure launch(
2 /* eid. */ eid : tap_enclave_id_t,
3 /* VA to PA. mapping */ addr_valid : addr_valid_t,
4 /* VA to PA mapping */ addr_map : addr_map_t,
5 /* excl vaddr */ excl_vaddr : excl_vaddr_t,
6 /* excl paddr */ excl_paddr : excl_map_t,
7 /* entrypoint. */ entrypoint : vaddr_t
8 )
9 returns (status : enclave_op_result_t)

10 {
11 var i, k : int;
12 var mappings_alias_v : bool;
13 var paddr : wap_addr_t;
14 var va : vaddr_t;
15 var cache_conflict : bool;
16
17 // ensure cpu mode is valid.
18 if (cpu_enclave_id != tap_null_enc_id) {
19 status := enclave_op_invalid_arg; return;
20 }
21 // ensure eid is valid.
22 if (!valid_enclave_id(eid) || tap_enclave_metadata_valid[eid]) {
23 status := enclave_op_invalid_arg; return;
24 }
25 // the entrypoint must be mapped and exclusive.
26 if (!tap_addr_perm_x(addr_valid[entrypoint]) || !excl_paddr[addr_map[entrypoint]] ||

!excl_vaddr[entrypoint]) {
27 status := enclave_op_invalid_arg; return;
28 }
29 // Ensure none of the paddr’s are already exclusive.
30 paddr := k0_wap_addr_t;
31 ...

Figure A.1 : Reference implementation of launch: only first half listed here, with second half pre-
sented in Figure A.2
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1 ...
2 while (LT_wapa(paddr, kmax_wap_addr_t)) {
3 if (excl_paddr[paddr]) {
4 if (cpu_owner_map[paddr] != tap_null_enc_id) {
5 status := enclave_op_invalid_arg; return;
6 }
7 }
8 if (cpu_owner_map[paddr] == eid) {
9 status := enclave_op_invalid_arg; return;

10 }
11 paddr := PLUS_wapa(paddr, k1_wap_addr_t);
12 }
13
14 if ((excl_paddr[paddr] && cpu_owner_map[paddr] != tap_null_enc_id) ||
15 (cpu_owner_map[paddr] == eid)) {
16 status := enclave_op_invalid_arg; return;
17 }
18 // check if the private addresses alias with anything else (paddr).
19 call mappings_alias_v := do_mappings_alias_v(excl_vaddr, addr_map);
20 if (mappings_alias_v) {
21 status := enclave_op_invalid_arg; return;
22 }
23
24 // check if the private virt address map to a shared phys addr
25 va := k0_vaddr_t;
26 while (LT_va(va, kmax_vaddr_t)) {
27 if (excl_vaddr[va]) {
28 if(!excl_paddr[addr_map[va]] || !tap_addr_perm_v(addr_valid[va])) {
29 status := enclave_op_invalid_arg;
30 return;
31 }
32 }
33 va := PLUS_va(va, k1_vaddr_t);
34 }
35 if (excl_vaddr[va] && (!excl_paddr[addr_map[va]] || !tap_addr_perm_v(addr_valid[va]))) {
36 status := enclave_op_invalid_arg; return;
37 }
38 // Set the CPU owner map.
39 paddr := k0_wap_addr_t;
40 while (LT_wapa(paddr, kmax_wap_addr_t)) {
41 if (excl_paddr[paddr]) { cpu_owner_map[paddr] := eid; }
42 paddr := PLUS_wapa(paddr, k1_wap_addr_t);
43 }
44 if (excl_paddr[paddr]) { cpu_owner_map[paddr] := eid; }
45
46 // regs are zeroed out.
47 call cache_conflict := does_enclave_conflict(eid);
48
49 tap_enclave_metadata_valid[eid] := true;
50 tap_enclave_metadata_addr_map[eid] := addr_map;
51 tap_enclave_metadata_addr_valid[eid] := addr_valid;
52 tap_enclave_metadata_addr_excl[eid] := excl_vaddr;
53 tap_enclave_metadata_entrypoint[eid] := entrypoint;
54 tap_enclave_metadata_pc[eid] := entrypoint;
55 tap_enclave_metadata_regs[eid] := kzero_regs_t;
56 tap_enclave_metadata_paused[eid] := false;
57 tap_enclave_metadata_cache_conflict[eid] := cache_conflict;
58
59 status := enclave_op_success;
60 }

Figure A.2 : Reference implementation of launch: second half listed here, with first half presented
in Figure A.1
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1 procedure enter(eid: tap_enclave_id_t) returns (status : enclave_op_result_t)
2 {
3 if (!valid_enclave_id(eid) ||
4 !tap_enclave_metadata_valid[eid] ||
5 cpu_enclave_id != tap_null_enc_id)
6 {
7 status := enclave_op_invalid_arg;
8 return;
9 }

10
11 status := enclave_op_success;
12 // save context.
13 untrusted_regs := cpu_regs;
14 untrusted_addr_valid := cpu_addr_valid;
15 untrusted_addr_map := cpu_addr_map;
16 untrusted_pc := cpu_pc;
17 // restore enclave context.
18 cpu_enclave_id := eid;
19 cpu_addr_valid := tap_enclave_metadata_addr_valid[eid];
20 cpu_addr_map := tap_enclave_metadata_addr_map[eid];
21 cpu_pc := tap_enclave_metadata_entrypoint[eid];
22 }

Figure A.3 : Reference implementation of enter, used to transfer control to an enclave

1 procedure resume(eid: tap_enclave_id_t)
2 returns (status : enclave_op_result_t)
3
4 {
5 if (!valid_enclave_id(eid) ||
6 !tap_enclave_metadata_valid[eid] ||
7 !tap_enclave_metadata_paused[eid] ||
8 cpu_enclave_id != tap_null_enc_id)
9 {

10 status := enclave_op_invalid_arg;
11 return;
12 }
13
14 // save context.
15 untrusted_regs := cpu_regs;
16 untrusted_addr_valid := cpu_addr_valid;
17 untrusted_addr_map := cpu_addr_map;
18 untrusted_pc := cpu_pc;
19 // restore enclave context.
20 cpu_enclave_id := eid;
21 cpu_addr_valid := tap_enclave_metadata_addr_valid[eid];
22 cpu_addr_map := tap_enclave_metadata_addr_map[eid];
23 cpu_pc := tap_enclave_metadata_pc[eid];
24 cpu_regs := tap_enclave_metadata_regs[eid];
25 status := enclave_op_success;
26 }

Figure A.4 : Reference implementation of resume, used to resume execution within an enclave
following an asynchronous interrupt
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1 implementation exit()
2 returns (status : enclave_op_result_t)
3 {
4 var eid : tap_enclave_id_t;
5
6 // no enclave id is null.
7 if (!valid_enclave_id(cpu_enclave_id) || !tap_enclave_metadata_valid[cpu_enclave_id]) {
8 status := enclave_op_failed; return;
9 }

10
11 status := enclave_op_success;
12
13 eid := cpu_enclave_id;
14 tap_enclave_metadata_addr_valid[eid] := cpu_addr_valid;
15 tap_enclave_metadata_addr_map[eid] := cpu_addr_map;
16 tap_enclave_metadata_pc[eid] := tap_enclave_metadata_entrypoint[eid];
17 tap_enclave_metadata_paused[eid] := false;
18
19 cpu_enclave_id := tap_null_enc_id;
20 cpu_regs := untrusted_regs;
21 cpu_addr_valid := untrusted_addr_valid;
22 cpu_addr_map := untrusted_addr_map;
23 cpu_pc := untrusted_pc;
24 status := enclave_op_success;
25 }

Figure A.5 : Reference implementation of exit, used by enclave to transfer control back to the
untrusted calling code

1 procedure pause()
2 returns (status : enclave_op_result_t)
3 {
4 var eid : tap_enclave_id_t;
5
6 // no enclave id is null.
7 if (!valid_enclave_id(cpu_enclave_id) || !tap_enclave_metadata_valid[cpu_enclave_id]) {
8 status := enclave_op_failed; return;
9 }

10
11 status := enclave_op_success;
12
13 eid := cpu_enclave_id;
14 tap_enclave_metadata_regs[eid] := cpu_regs;
15 tap_enclave_metadata_addr_valid[eid] := cpu_addr_valid;
16 tap_enclave_metadata_addr_map[eid] := cpu_addr_map;
17 tap_enclave_metadata_pc[eid] := cpu_pc;
18 tap_enclave_metadata_paused[eid] := true;
19
20 cpu_enclave_id := tap_null_enc_id;
21 cpu_regs := untrusted_regs;
22 cpu_addr_valid := untrusted_addr_valid;
23 cpu_addr_map := untrusted_addr_map;
24 cpu_pc := untrusted_pc;
25 status := enclave_op_success;
26 }

Figure A.6 : Reference implementation of pause, used by the untrusted OS to interrupt the enclave.
This models an asynchronous interrupt e.g. timer or device interrupt.
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1 procedure destroy(eid: tap_enclave_id_t)
2 returns (status: enclave_op_result_t)
3
4 {
5 var pa : wap_addr_t;
6 // no enclave id is null.
7 if (!valid_enclave_id(eid) || !tap_enclave_metadata_valid[eid] || cpu_enclave_id != tap_null_enc_id) {
8 status := enclave_op_invalid_arg;
9 return;

10 }
11
12 // we have to clear out the enclaves registers and memory.
13 pa := k0_wap_addr_t;
14 while (LT_wapa(pa, kmax_wap_addr_t)) {
15 if (cpu_owner_map[pa] == eid) {
16 cpu_owner_map[pa] := tap_blocked_enc_id;
17 }
18 pa := PLUS_wapa(pa, k1_wap_addr_t);
19 }
20 if (cpu_owner_map[kmax_wap_addr_t] == eid) {
21 cpu_owner_map[kmax_wap_addr_t] := tap_blocked_enc_id;
22 }
23
24 // and now we mark the enclave invalid.
25 tap_enclave_metadata_valid[eid] := false;
26 tap_enclave_metadata_regs[eid] := kzero_regs_t;
27 tap_enclave_metadata_pc[eid] := k0_vaddr_t;
28
29 status := enclave_op_success;
30 }

Figure A.7 : Reference implementation of destroy, used to tear down an enclave
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Appendix B

Model of Intel SGX

In this appendix chapter, we present our model of Intel SGX in full detail, which was
described earlier in Chapter 4.

//********************* Types *********************
type sgx_api_result_t = bv1;
type page_table_map_t = [vaddr_t] wap_addr_t;
type page_table_valid_t = [vaddr_t] bool;
//processor id
type core_id_t = int;
type core_state_t;
type gpregs_t; //registers, but left abstract
type lr_register_t;
type page_t = bv2;
type epcm_entry_t;
type key_t = int;
type sgx_measurement_t = int;
type hashtext_t a; //unary type constructor
type ciphertext_t a;
type mactext_t a;
type attributes_t;
type targetinfo_t;
type report_t;
type report_maced_t;
type keyname_t;
type keyrequest_t;
type einittoken_t;
type sigstruct_t;
type sigstruct_signature_t = ciphertext_t (hashtext_t sigstruct_t);
type sigstruct_signed_t;
type secinfo_t;
type pcmd_t;
type pageinfo_t;
type secs_t;
type tcs_t;

//********************* States *********************
var page_table_map : page_table_map_t;
var page_table_valid : page_table_valid_t;
var curr_core : core_id_t;
var gpregs : [core_id_t] gpregs_t;
var core_state : [core_id_t] core_state_t;
var mem_secs : [wap_addr_t] secs_t;
var mem_tcs : [wap_addr_t] tcs_t;
var mem_reg : [wap_addr_t] word_t;
var epcm : [wap_addr_t] epcm_entry_t;
var arbitrary_write_count : int;

//********************* Constants *********************
const CSR_INTELPUBKEYHASH : hashtext_t key_t;
const EPC_LOW : wap_addr_t; axiom EPC_LOW =4096bv22; //arbitrary value
const EPC_HIGH : wap_addr_t; axiom EPC_HIGH =45056bv22; //arbitrary value
const PAGE_SIZE : vaddr_t; axiom PAGE_SIZE =12bv32;

const dummy_signing_key : key_t;
const sgx_api_invalid_value : sgx_api_result_t; axiom sgx_api_invalid_value =0bv1;
const sgx_api_success : sgx_api_result_t; axiom sgx_api_success =1bv1;
const abort_page : wap_addr_t; axiom abort_page =0bv22;
const dummy_lsrr : lr_register_t;
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const dummy_gpregs : gpregs_t;
const pt_secs : page_t; axiom pt_secs =0bv2;
const pt_tcs : page_t; axiom pt_tcs =1bv2;
const pt_reg : page_t; axiom pt_reg =2bv2;

//********************* Functions *********************

function { : inline} pageof_va(va : vaddr_t) : vaddr_t { va[32 : 12] ++ 0bv12 }
function { : inline} pageof_pa(pa : wap_addr_t) : wap_addr_t { pa[22 : 12] ++ 0bv12 }

//linear range register : (lbase, lsize)
function Lr_register(lbase : vaddr_t, lsize : vaddr_t) : lr_register_t;
function Lr_register_lbase (lr : lr_register_t) : vaddr_t;
function Lr_register_lsize (lr : lr_register_t) : vaddr_t;
axiom (∀ lbase : vaddr_t, lsize : vaddr_t •{Lr_register(lbase,lsize)}

Lr_register_lbase(Lr_register(lbase, lsize)) =lbase);
axiom (∀ lbase : vaddr_t, lsize : vaddr_t •{Lr_register(lbase,lsize)}

Lr_register_lsize(Lr_register(lbase, lsize)) =lsize);
axiom (∀ lr : lr_register_t •{Lr_register_lbase(lr)} {Lr_register_lsize(lr)}

Lr_register(Lr_register_lbase(lr), Lr_register_lsize(lr)) =lr);

function in_register_range (vaddr_t, lr_register_t) : bool;
axiom (∀ la : vaddr_t, lr : lr_register_t •{in_register_range(la,lr)}

in_register_range(la,lr) ⇐⇒
(LE_va(Lr_register_lbase(lr), la) ∧
LT_va(la, PLUS_va(Lr_register_lbase(lr), Lr_register_lsize(lr)))));

//Enclave related memory : all physical memory is partitioned into EPC memory and non-EPC memory
function is_epc_address (wap_addr_t) : bool;
axiom (∀ i : wap_addr_t •{is_epc_address(i)}

is_epc_address(i) ⇐⇒(LE_wapa(EPC_LOW, i) ∧LT_wapa(i, EPC_HIGH)));

//********************* Processor *********************
//processor state is type-cast to data when storing to memory
function gpregs_to_word(gpregs_t) : word_t;
function word_to_gpregs(word_t) : gpregs_t;
axiom (∀ w : word_t •{word_to_gpregs(w)}

gpregs_to_word(word_to_gpregs(w)) =w);
axiom (∀ x : gpregs_t •{gpregs_to_word(x)}

word_to_gpregs(gpregs_to_word(x)) =x);

function Core_state(cr_enclave_mode : bool,
cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t)
: core_state_t;

function Core_state_cr_enclave_mode (cores : core_state_t) : bool;
function Core_state_cr_tcs_pa (cores : core_state_t) : wap_addr_t;
function Core_state_cr_active_secs (cores : core_state_t) : wap_addr_t;
function Core_state_cr_elrange (cores : core_state_t) : lr_register_t;
function Core_state_ssa_pa (cores : core_state_t) : wap_addr_t;
axiom (∀ cr_enclave_mode : bool,

cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t •
{Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)}

Core_state_cr_enclave_mode(Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)) =cr_enclave_mode);
axiom (∀ cr_enclave_mode : bool,

cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t •
{Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)}

Core_state_cr_tcs_pa(Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)) =cr_tcs_pa);
axiom (∀ cr_enclave_mode : bool,

cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t •
{Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)}

Core_state_cr_active_secs(Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)) =cr_active_secs);
axiom (∀ cr_enclave_mode : bool,

cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t •
{Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)}

Core_state_cr_elrange(Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)) =cr_elrange);
axiom (∀ cr_enclave_mode : bool,

cr_tcs_pa : wap_addr_t,
cr_active_secs : wap_addr_t,
cr_elrange : lr_register_t,
ssa_pa : wap_addr_t •
{Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)}
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Core_state_ssa_pa(Core_state(cr_enclave_mode, cr_tcs_pa, cr_active_secs, cr_elrange, ssa_pa)) =ssa_pa);

axiom (∀ cores : core_state_t •
{Core_state_cr_enclave_mode(cores)}
{Core_state_cr_tcs_pa(cores)}
{Core_state_cr_active_secs(cores)}
{Core_state_cr_elrange(cores)}
{Core_state_ssa_pa(cores)}

Core_state( Core_state_cr_enclave_mode(cores),
Core_state_cr_tcs_pa(cores),
Core_state_cr_active_secs(cores),
Core_state_cr_elrange(cores),
Core_state_ssa_pa(cores) ) =cores);

//********************* SGX structs *********************

function Attributes(einittokenkey : bool) : attributes_t;
function Attributes_einittokenkey(attributes : attributes_t) : bool;
axiom (∀ einittokenkey : bool •
{Attributes(einittokenkey)}
Attributes_einittokenkey(Attributes(einittokenkey)) =einittokenkey);

axiom (∀ attributes : attributes_t •
{Attributes_einittokenkey(attributes)}
Attributes(Attributes_einittokenkey(attributes)) =attributes);

function Targetinfo(attributes : attributes_t, measurement : sgx_measurement_t) : targetinfo_t;
function Targetinfo_attributes(targetinfo : targetinfo_t) : attributes_t;
function Targetinfo_measurement(targetinfo : targetinfo_t) : sgx_measurement_t;
axiom (∀ attributes : attributes_t, measurement : sgx_measurement_t •
{Targetinfo(attributes, measurement)}
Targetinfo_attributes(Targetinfo(attributes, measurement)) =attributes);

axiom (∀ attributes : attributes_t, measurement : sgx_measurement_t •
{Targetinfo(attributes, measurement)}
Targetinfo_measurement(Targetinfo(attributes, measurement)) =measurement);

axiom (∀ targetinfo : targetinfo_t •
{Targetinfo_attributes(targetinfo)}
{Targetinfo_measurement(targetinfo)}
Targetinfo(Targetinfo_attributes(targetinfo), Targetinfo_measurement(targetinfo)) =targetinfo);

function Report(isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t) : report_t;

function Report_isvprodid(report : report_t) : int;
function Report_isvsvn(report : report_t) : int;
function Report_attributes(report : report_t) : attributes_t;
function Report_reportdata(report : report_t) : word_t;
function Report_mrenclave(report : report_t) : sgx_measurement_t;
function Report_mrsigner(report : report_t) : hashtext_t key_t;
axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,

reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_isvprodid(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =isvprodid);

axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •

{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_isvsvn(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =isvsvn);

axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •

{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_attributes(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =attributes);

axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •

{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_reportdata(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =reportdata);

axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •

{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_mrenclave(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =mrenclave);

axiom (∀ isvprodid : int, isvsvn : int, attributes : attributes_t,
reportdata : word_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •

{Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)}
Report_mrsigner(Report(isvprodid, isvsvn, attributes, reportdata, mrenclave, mrsigner)) =mrsigner);

axiom (∀ report : report_t •
{Report_isvprodid(report)}
{Report_isvsvn(report)}
{Report_attributes(report)}
{Report_reportdata(report)}
{Report_mrenclave(report)}
{Report_mrsigner(report)}
Report(Report_isvprodid(report),

Report_isvsvn(report),
Report_attributes(report),
Report_reportdata(report),
Report_mrenclave(report),
Report_mrsigner(report)) =report);
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function Report_maced(report : report_t, mac : mactext_t report_t) : report_maced_t;
function Report_maced_report(report_maced : report_maced_t) : report_t;
function Report_maced_mac(report_maced : report_maced_t) : mactext_t report_t;
axiom (∀ report : report_t, mac : mactext_t report_t •
{Report_maced(report, mac)}
Report_maced_report(Report_maced(report, mac)) =report);

axiom (∀ report : report_t, mac : mactext_t report_t •
{Report_maced(report, mac)}
Report_maced_mac(Report_maced(report, mac)) =mac);

axiom (∀ report_maced : report_maced_t •
{Report_maced_report(report_maced)}
{Report_maced_mac(report_maced)}
Report_maced(Report_maced_report(report_maced),

Report_maced_mac(report_maced)) =report_maced);

const unique launch_key : keyname_t;
const unique provision_key : keyname_t;
const unique provision_seal_key : keyname_t;
const unique report_key : keyname_t;
const unique seal_key : keyname_t;

function Keyrequest(keyname : keyname_t, isvsvn : int,
keypolicy_mrenclave : bool, keypolicy_mrsigner : bool) : keyrequest_t;

function Keyrequest_keyname(keyrequest : keyrequest_t) : keyname_t;
function Keyrequest_isvsvn(keyrequest : keyrequest_t) : int;
function Keyrequest_keypolicy_mrenclave(keyrequest : keyrequest_t) : bool;
function Keyrequest_keypolicy_mrsigner(keyrequest : keyrequest_t) : bool;
axiom (∀ keyname : keyname_t, isvsvn : int,

keypolicy_mrenclave : bool, keypolicy_mrsigner : bool •
{Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)}
Keyrequest_keyname(Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)) =keyname);

axiom (∀ keyname : keyname_t, isvsvn : int,
keypolicy_mrenclave : bool, keypolicy_mrsigner : bool •

{Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)}
Keyrequest_isvsvn(Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)) =isvsvn);

axiom (∀ keyname : keyname_t, isvsvn : int,
keypolicy_mrenclave : bool, keypolicy_mrsigner : bool •

{Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)}
Keyrequest_keypolicy_mrenclave(Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)) =keypolicy_mrenclave);

axiom (∀ keyname : keyname_t, isvsvn : int,
keypolicy_mrenclave : bool, keypolicy_mrsigner : bool •

{Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)}
Keyrequest_keypolicy_mrsigner(Keyrequest(keyname, isvsvn, keypolicy_mrenclave, keypolicy_mrsigner)) =keypolicy_mrsigner);

axiom (∀ keyrequest : keyrequest_t •
{Keyrequest_keyname(keyrequest)}
{Keyrequest_isvsvn(keyrequest)}
{Keyrequest_keypolicy_mrenclave(keyrequest)}
{Keyrequest_keypolicy_mrsigner(keyrequest)}
Keyrequest(Keyrequest_keyname(keyrequest),

Keyrequest_isvsvn(keyrequest),
Keyrequest_keypolicy_mrenclave(keyrequest),
Keyrequest_keypolicy_mrsigner(keyrequest)) =keyrequest);

function Einittoken(valid : bool, attributes : attributes_t,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t) : einittoken_t;

function Einittoken_valid(einittoken : einittoken_t) : bool;
function Einittoken_attributes(einittoken : einittoken_t) : attributes_t;
function Einittoken_mrenclave(einittoken : einittoken_t) : sgx_measurement_t;
function Einittoken_mrsigner(einittoken : einittoken_t) : hashtext_t key_t;
axiom (∀ valid : bool, attributes : attributes_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{Einittoken(valid, attributes, mrenclave, mrsigner)}
Einittoken_valid(Einittoken(valid, attributes, mrenclave, mrsigner)) =valid);

axiom (∀ valid : bool, attributes : attributes_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{Einittoken(valid, attributes, mrenclave, mrsigner)}
Einittoken_attributes(Einittoken(valid, attributes, mrenclave, mrsigner)) =attributes);

axiom (∀ valid : bool, attributes : attributes_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{Einittoken(valid, attributes, mrenclave, mrsigner)}
Einittoken_mrenclave(Einittoken(valid, attributes, mrenclave, mrsigner)) =mrenclave);

axiom (∀ valid : bool, attributes : attributes_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{Einittoken(valid, attributes, mrenclave, mrsigner)}
Einittoken_mrsigner(Einittoken(valid, attributes, mrenclave, mrsigner)) =mrsigner);

axiom (∀ einittoken : einittoken_t •
{Einittoken_valid(einittoken)}
{Einittoken_attributes(einittoken)}
{Einittoken_mrenclave(einittoken)}
{Einittoken_mrsigner(einittoken)}
Einittoken(Einittoken_valid(einittoken),

Einittoken_attributes(einittoken),
Einittoken_mrenclave(einittoken),
Einittoken_mrsigner(einittoken)) =einittoken);

function Sigstruct(modulus : key_t, enclavehash : sgx_measurement_t,
attributes : attributes_t, isvprodid : int, isvsvn : int) : sigstruct_t;

function Sigstruct_modulus(sigstruct_t) : key_t;
function Sigstruct_enclavehash(sigstruct_t) : sgx_measurement_t;
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function Sigstruct_attributes(sigstruct_t) : attributes_t;
function Sigstruct_isvprodid(sigstruct_t) : int;
function Sigstruct_isvsvn(sigstruct_t) : int;
axiom (∀ modulus : key_t, enclavehash : sgx_measurement_t,

attributes : attributes_t, isvprodid : int, isvsvn : int •
{Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)}
Sigstruct_modulus(Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)) =modulus);

axiom (∀ modulus : key_t, enclavehash : sgx_measurement_t,
attributes : attributes_t, isvprodid : int, isvsvn : int •

{Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)}
Sigstruct_enclavehash(Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)) =enclavehash);

axiom (∀ modulus : key_t, enclavehash : sgx_measurement_t,
attributes : attributes_t, isvprodid : int, isvsvn : int •

{Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)}
Sigstruct_attributes(Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)) =attributes);

axiom (∀ modulus : key_t, enclavehash : sgx_measurement_t,
attributes : attributes_t, isvprodid : int, isvsvn : int •

{Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)}
Sigstruct_isvprodid(Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)) =isvprodid);

axiom (∀ modulus : key_t, enclavehash : sgx_measurement_t,
attributes : attributes_t, isvprodid : int, isvsvn : int •

{Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)}
Sigstruct_isvsvn(Sigstruct(modulus, enclavehash, attributes, isvprodid, isvsvn)) =isvsvn);

axiom (∀ sigstruct : sigstruct_t •
{Sigstruct_modulus(sigstruct)}
{Sigstruct_enclavehash(sigstruct)}
{Sigstruct_attributes(sigstruct)}
{Sigstruct_isvprodid(sigstruct)}
{Sigstruct_isvsvn(sigstruct)}
Sigstruct(Sigstruct_modulus(sigstruct),

Sigstruct_enclavehash(sigstruct),
Sigstruct_attributes(sigstruct),
Sigstruct_isvprodid(sigstruct),
Sigstruct_isvsvn(sigstruct)) =sigstruct);

function Sigstruct_signed(signature : sigstruct_signature_t, sigstruct : sigstruct_t) : sigstruct_signed_t;
function Sigstruct_signed_signature(sigstruct_signed_t) : sigstruct_signature_t;
function Sigstruct_signed_sigstruct(sigstruct_signed_t) : sigstruct_t;
axiom (∀ signature : sigstruct_signature_t, sigstruct : sigstruct_t •
{Sigstruct_signed(signature, sigstruct)}
Sigstruct_signed_signature(Sigstruct_signed(signature, sigstruct)) =signature);

axiom (∀ signature : sigstruct_signature_t, sigstruct : sigstruct_t •
{Sigstruct_signed(signature, sigstruct)}
Sigstruct_signed_sigstruct(Sigstruct_signed(signature, sigstruct)) =sigstruct);

axiom (∀ sigstruct_signed : sigstruct_signed_t •
{Sigstruct_signed_signature(sigstruct_signed)}
{Sigstruct_signed_sigstruct(sigstruct_signed)}
Sigstruct_signed(Sigstruct_signed_signature(sigstruct_signed),

Sigstruct_signed_sigstruct(sigstruct_signed)) =sigstruct_signed);

function Secinfo(flags_r : bool, flags_w : bool, flags_x : bool, flags_pt : page_t) : secinfo_t;
function Secinfo_flags_r(secinfo : secinfo_t) : bool;
function Secinfo_flags_w(secinfo : secinfo_t) : bool;
function Secinfo_flags_x(secinfo : secinfo_t) : bool;
function Secinfo_flags_pt(secinfo : secinfo_t) : page_t;
axiom (∀ flags_r : bool, flags_w : bool, flags_x : bool, flags_pt : page_t •

{Secinfo(flags_r, flags_w, flags_x, flags_pt)}
Secinfo_flags_r(Secinfo(flags_r, flags_w, flags_x, flags_pt)) =flags_r);

axiom (∀ flags_r : bool, flags_w : bool, flags_x : bool, flags_pt : page_t •
{Secinfo(flags_r, flags_w, flags_x, flags_pt)}
Secinfo_flags_w(Secinfo(flags_r, flags_w, flags_x, flags_pt)) =flags_w);

axiom (∀ flags_r : bool, flags_w : bool, flags_x : bool, flags_pt : page_t •
{Secinfo(flags_r, flags_w, flags_x, flags_pt)}
Secinfo_flags_x(Secinfo(flags_r, flags_w, flags_x, flags_pt)) =flags_x);

axiom (∀ flags_r : bool, flags_w : bool, flags_x : bool, flags_pt : page_t •
{Secinfo(flags_r, flags_w, flags_x, flags_pt)}
Secinfo_flags_pt(Secinfo(flags_r, flags_w, flags_x, flags_pt)) =flags_pt);

axiom (∀ secinfo : secinfo_t •
{Secinfo_flags_r(secinfo)}
{Secinfo_flags_w(secinfo)}
{Secinfo_flags_x(secinfo)}
{Secinfo_flags_pt(secinfo)}
Secinfo(Secinfo_flags_r(secinfo),

Secinfo_flags_w(secinfo),
Secinfo_flags_x(secinfo),
Secinfo_flags_pt(secinfo)) =secinfo);

function Pageinfo(linaddr : vaddr_t, srcpge : vaddr_t,
secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t) : pageinfo_t;

function Pageinfo_linaddr(pageinfo : pageinfo_t) : vaddr_t;
function Pageinfo_srcpge(pageinfo : pageinfo_t) : vaddr_t;
function Pageinfo_secinfo(pageinfo : pageinfo_t) : secinfo_t;
function Pageinfo_pcmd(pageinfo : pageinfo_t) : pcmd_t;
function Pageinfo_secs(pageinfo : pageinfo_t) : wap_addr_t;
axiom (∀ linaddr : vaddr_t, srcpge : vaddr_t,

secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t •
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{Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)}
Pageinfo_linaddr(Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)) =linaddr);

axiom (∀ linaddr : vaddr_t, srcpge : vaddr_t,
secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t •

{Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)}
Pageinfo_srcpge(Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)) =srcpge);

axiom (∀ linaddr : vaddr_t, srcpge : vaddr_t,
secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t •

{Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)}
Pageinfo_secinfo(Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)) =secinfo);

axiom (∀ linaddr : vaddr_t, srcpge : vaddr_t,
secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t •

{Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)}
Pageinfo_pcmd(Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)) =pcmd);

axiom (∀ linaddr : vaddr_t, srcpge : vaddr_t,
secinfo : secinfo_t, pcmd : pcmd_t, secs : wap_addr_t •

{Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)}
Pageinfo_secs(Pageinfo(linaddr, srcpge, secinfo, pcmd, secs)) =secs);

axiom (∀ pageinfo : pageinfo_t •
{Pageinfo_linaddr(pageinfo)}
{Pageinfo_srcpge(pageinfo)}
{Pageinfo_secinfo(pageinfo)}
{Pageinfo_pcmd(pageinfo)}
{Pageinfo_secs(pageinfo)}
Pageinfo(Pageinfo_linaddr(pageinfo),

Pageinfo_srcpge(pageinfo),
Pageinfo_secinfo(pageinfo),
Pageinfo_pcmd(pageinfo),
Pageinfo_secs(pageinfo)) =pageinfo);

function Secs(baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int,
attributes : attributes_t) : secs_t;

function Secs_baseaddr (secs : secs_t) : vaddr_t;
function Secs_size (secs : secs_t) : vaddr_t;
function Secs_initialized (secs : secs_t) : bool;
function Secs_mrenclave (secs : secs_t) : sgx_measurement_t;
function Secs_mrsigner (secs : secs_t) : hashtext_t key_t;
function Secs_isvprodid (secs : secs_t) : int;
function Secs_isvsvn (secs : secs_t) : int;
function Secs_attributes (secs : secs_t) : attributes_t;
axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,

mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_baseaddr(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =baseaddr);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_size(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =size);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_initialized(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =initialized);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_mrenclave(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =mrenclave);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_mrsigner(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =mrsigner);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_isvprodid(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =isvprodid);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_isvsvn(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =isvsvn);

axiom (∀ baseaddr : vaddr_t, size : vaddr_t, initialized : bool,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t,
isvprodid : int, isvsvn : int, attributes : attributes_t •

{Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)}
Secs_attributes(Secs(baseaddr, size, initialized, mrenclave, mrsigner, isvprodid, isvsvn, attributes)) =attributes);

axiom (∀ secs : secs_t •
{Secs_baseaddr(secs)}
{Secs_size(secs)}
{Secs_initialized(secs)}
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{Secs_mrenclave(secs)}
{Secs_mrsigner(secs)}
{Secs_isvprodid(secs)}
{Secs_isvsvn(secs)}
{Secs_attributes(secs)}
Secs(Secs_baseaddr(secs), Secs_size(secs), Secs_initialized(secs),

Secs_mrenclave(secs), Secs_mrsigner(secs),
Secs_isvprodid(secs), Secs_isvsvn(secs), Secs_attributes(secs)) =secs);

function Tcs(active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t) : tcs_t;
function Tcs_active (tcs : tcs_t) : bool;
function Tcs_interrupted (tcs : tcs_t) : bool;
function Tcs_ossa (tcs : tcs_t) : vaddr_t;
function Tcs_nssa (tcs : tcs_t) : vaddr_t;
function Tcs_cssa (tcs : tcs_t) : vaddr_t;
axiom (∀ active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t •

{Tcs(active, interrupted, ossa, nssa, cssa)}
Tcs_active(Tcs(active, interrupted, ossa, nssa, cssa)) =active);

axiom (∀ active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t •
{Tcs(active, interrupted, ossa, nssa, cssa)}
Tcs_interrupted(Tcs(active, interrupted, ossa, nssa, cssa)) =interrupted);

axiom (∀ active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t •
{Tcs(active, interrupted, ossa, nssa, cssa)}
Tcs_ossa(Tcs(active, interrupted, ossa, nssa, cssa)) =ossa);

axiom (∀ active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t •
{Tcs(active, interrupted, ossa, nssa, cssa)}
Tcs_nssa(Tcs(active, interrupted, ossa, nssa, cssa)) =nssa);

axiom (∀ active : bool, interrupted : bool, ossa : vaddr_t, nssa : vaddr_t, cssa : vaddr_t •
{Tcs(active, interrupted, ossa, nssa, cssa)}
Tcs_cssa(Tcs(active, interrupted, ossa, nssa, cssa)) =cssa);

axiom (∀ tcs : tcs_t •
{Tcs_active(tcs)}
{Tcs_interrupted(tcs)}
{Tcs_ossa(tcs)}
{Tcs_nssa(tcs)}
{Tcs_cssa(tcs)}
Tcs(Tcs_active(tcs), Tcs_interrupted(tcs), Tcs_ossa(tcs), Tcs_nssa(tcs), Tcs_cssa(tcs)) =tcs);

//this is meant to be used for writes made by hardware within an SGX instruction. They don’t need access permission checks.
function arbitrary_secs_val(int) : secs_t;
function arbitrary_tcs_val(int) : tcs_t;
function arbitrary_reg_val(int) : word_t;

procedure { : inline 1} unchecked_write_secs(pa : wap_addr_t, val : secs_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
mem_secs[pa] :=val;
mem_reg[pa] :=arbitrary_reg_val(arbitrary_write_count);
mem_tcs[pa] :=arbitrary_tcs_val(arbitrary_write_count);
arbitrary_write_count :=arbitrary_write_count + 1;

}

procedure { : inline 1} unchecked_write_tcs(pa : wap_addr_t, val : tcs_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
mem_tcs[pa] :=val;
mem_reg[pa] :=arbitrary_reg_val(arbitrary_write_count);
mem_secs[pa] :=arbitrary_secs_val(arbitrary_write_count);
arbitrary_write_count :=arbitrary_write_count + 1;

}

procedure { : inline 1} unchecked_write_reg(pa : wap_addr_t, val : word_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
mem_reg[pa] :=val;
mem_secs[pa] :=arbitrary_secs_val(arbitrary_write_count);
mem_tcs[pa] :=arbitrary_tcs_val(arbitrary_write_count);
arbitrary_write_count :=arbitrary_write_count + 1;

}

function Epcm(valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t) : epcm_entry_t;
function Epcm_valid(epcm_entry : epcm_entry_t) : bool;
function Epcm_R(epcm_entry : epcm_entry_t) : bool;
function Epcm_W(epcm_entry : epcm_entry_t) : bool;
function Epcm_X(epcm_entry : epcm_entry_t) : bool;
function Epcm_pt (epcm_entry : epcm_entry_t) : page_t;
function Epcm_enclavesecs (epcm_entry : epcm_entry_t) : wap_addr_t;
function Epcm_enclaveaddress (epcm_entry : epcm_entry_t) : vaddr_t;
axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •

{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_valid(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =valid);

axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •
{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_R(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =r);

axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •
{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
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Epcm_W(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =w);
axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •

{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_X(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =x);

axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •
{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_pt(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =pt);

axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •
{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_enclavesecs(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =enclavesecs);

axiom (∀ valid : bool, r : bool, w : bool, x : bool, pt : page_t, enclavesecs : wap_addr_t, enclaveaddress : vaddr_t •
{Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)}
Epcm_enclaveaddress(Epcm(valid, r, w, x, pt, enclavesecs, enclaveaddress)) =enclaveaddress);

axiom (∀ epcm_entry : epcm_entry_t •
{Epcm_valid(epcm_entry)}
{Epcm_R(epcm_entry)}
{Epcm_W(epcm_entry)}
{Epcm_X(epcm_entry)}
{Epcm_pt(epcm_entry)}
{Epcm_enclavesecs(epcm_entry)}
{Epcm_enclaveaddress(epcm_entry)}
Epcm(Epcm_valid(epcm_entry),

Epcm_R(epcm_entry),
Epcm_W(epcm_entry),
Epcm_X(epcm_entry),
Epcm_pt(epcm_entry),
Epcm_enclavesecs(epcm_entry),
Epcm_enclaveaddress(epcm_entry)) =

epcm_entry);

const dummy_epcm : epcm_entry_t;
axiom dummy_epcm =Epcm(false, false, false, false, pt_reg, abort_page, 0bv32);

procedure { : inline 1} is_accessible(core : core_id_t, la : vaddr_t) returns (result : bool)
{
var pa : wap_addr_t; //pagetable[la]
var ea : bool; //is this access to enclave memory?
var mapped_la : bool; //does pagetable map this to an address 6=abort_page

ea :=Core_state_cr_enclave_mode(core_state[core]) ∧
in_register_range(la, Core_state_cr_elrange(core_state[core]));

pa :=page_table_map[la];
mapped_la :=page_table_valid[la];
result :=mapped_la ∧

(ea =⇒((Epcm_valid(epcm[pageof_pa(pa)]) ∧is_epc_address(pa)) ∧
Epcm_pt(epcm[pageof_pa(pa)]) =pt_reg ∧
Epcm_enclavesecs(epcm[pageof_pa(pa)]) =Core_state_cr_active_secs(core_state[core]) ∧
Epcm_enclaveaddress(epcm[pageof_pa(pa)]) =pageof_va(la)));

}

procedure { : inline 1} translate(la : vaddr_t) returns (result : wap_addr_t)
{
var ea : bool;
var pa : wap_addr_t;
var accessible : bool;

call accessible :=is_accessible(curr_core, la);

ea :=Core_state_cr_enclave_mode(core_state[curr_core]) ∧
in_register_range(la, Core_state_cr_elrange(core_state[curr_core]));

pa :=page_table_map[la];

if (¬page_table_valid[la] ∨¬accessible ∨(¬ea ∧is_epc_address(pa))) {
result :=abort_page;

} else {
result :=pa;

}
}

//********************* Helper predicates *********************
//Is cpu represented by cores running an enclave thread whose secs is pa?
function thread_in_enclave(core_state_t, wap_addr_t) : bool;
axiom (∀ cores : core_state_t, pa : wap_addr_t •
{thread_in_enclave(cores, pa)}
thread_in_enclave(cores,pa) ⇐⇒
(Core_state_cr_enclave_mode(cores) ∧(Core_state_cr_active_secs(cores) =pa)));

function no_threads_in_enclave([core_id_t] core_state_t, wap_addr_t) : bool;
axiom (∀ core_state : [core_id_t] core_state_t, pa : wap_addr_t •
{no_threads_in_enclave(core_state, pa)}
no_threads_in_enclave(core_state, pa) ⇐⇒
(∀ core : core_id_t •¬thread_in_enclave(core_state[core], pa)));

function page_in_enclave(epcm_entry_t, wap_addr_t, wap_addr_t) : bool;
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axiom (∀ epcm_entry : epcm_entry_t, pa : wap_addr_t, ps : wap_addr_t •
{page_in_enclave(epcm_entry, pa, ps)}
page_in_enclave(epcm_entry, pa, ps) ⇐⇒
(is_epc_address(pa) ∧
Epcm_valid(epcm_entry) ∧
Epcm_enclavesecs(epcm_entry) =ps ∧
pa 6=ps));

function no_pages_in_enclave([wap_addr_t] epcm_entry_t, wap_addr_t) : bool;
axiom (∀ epcm : [wap_addr_t] epcm_entry_t, ps : wap_addr_t •
{no_pages_in_enclave(epcm, ps)}
no_pages_in_enclave(epcm, ps) ⇐⇒
(∀ pa : wap_addr_t •¬page_in_enclave(epcm[pageof_pa(pa)], pa, ps)));

function cssa_addr(secs_t, tcs_t) : vaddr_t;
axiom (∀ secs : secs_t, tcs : tcs_t •
{cssa_addr(secs,tcs)}
cssa_addr(secs,tcs) =
PLUS_va(Secs_baseaddr(secs),
PLUS_va(LSHIFT_va(Tcs_ossa(tcs), PAGE_SIZE),

LSHIFT_va(Tcs_cssa(tcs), PAGE_SIZE))));

function pssa_addr(secs_t, tcs_t) : vaddr_t;
axiom (∀ secs : secs_t, tcs : tcs_t •
{pssa_addr(secs,tcs)}
pssa_addr(secs,tcs) =
MINUS_va(cssa_addr(secs,tcs), LSHIFT_va(k1_vaddr_t, PAGE_SIZE)));

//axiom constraining sha256 to be injective
function sha256(val : int) : sgx_measurement_t;
axiom (∀ val1 : int, val2 : int •
{sha256(val1), sha256(val2)}
(val1 6=val2 =⇒sha256(val1) 6=sha256(val2)));

function cmac<a>(k : key_t, x : a) : mactext_t a;
axiom (∀ <a> k : key_t, x1 : a, x2 : a •
{cmac(k,x1), cmac(k,x2)}
(x1 6=x2 =⇒cmac(k,x1) 6=cmac(k,x2)));

axiom (∀ val1 : int, val2 : int •
{sha256(val1), sha256(val2)}
(val1 6=val2 =⇒sha256(val1) 6=sha256(val2)));

//axiom constraining chained sha256 to be injective
function sha256update(prev : sgx_measurement_t, update : int) : sgx_measurement_t;
axiom (∀ prev1 : sgx_measurement_t, update1 : int, prev2 : sgx_measurement_t, update2 : int •
{sha256update(prev1,update1), sha256update(prev2,update2)}
(prev1 6=prev2 ∨update1 6=update2) =⇒
(sha256update(prev1,update1) 6=sha256update(prev2,update2)));

//injective axiom for hash (we use hash only when its unclear which hash algorithm Intel is using)
function hash<a>(x : a) : hashtext_t a;
axiom (∀ <a> x1 : a, x2 : a •{hash(x1), hash(x2)}

(x1 6=x2 =⇒hash(x1) 6=hash(x2)));

function derive_key_ereport(attributes : attributes_t, measurement : sgx_measurement_t) : key_t;
function derive_key_egetkey(keyname : keyname_t,

isvprodid : int, isvsvn : int, attributes : attributes_t,
mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t) : key_t;

axiom (∀ attr1 : attributes_t, meas1 : sgx_measurement_t,
keyname : keyname_t, isvprodid : int, isvsvn : int,
attr2 : attributes_t, mrenclave : sgx_measurement_t, mrsigner : hashtext_t key_t •
{derive_key_ereport(attr1, meas1), derive_key_egetkey(keyname, isvprodid, isvsvn, attr2, mrenclave, mrsigner)}
(attr1 =attr2 ∧meas1 =mrenclave ∧keyname =report_key) =⇒
(derive_key_ereport(attr1, meas1) =derive_key_egetkey(keyname, isvprodid, isvsvn, attr2, mrenclave, mrsigner)));

function decrypt<a>(key : key_t, ciphertext : ciphertext_t a) : a;
function encrypt<a>(key : key_t, p : a) : ciphertext_t a;
axiom (∀ <a> k : key_t, c : ciphertext_t a •{decrypt(k, c)} encrypt(k, decrypt(k, c)) =c);
axiom (∀ <a> k : key_t, p : a •{encrypt(k,p)} decrypt(k, encrypt(k, p)) =p);

//concatenation must be injective
function concat_two_int_to_one(fst : int, snd : int) : int;
axiom (∀ fst1 : int, fst2 : int, snd1 : int, snd2 : int •
{concat_two_int_to_one(fst1, snd1), concat_two_int_to_one(fst2, snd2)}
(fst1 6=fst2 ∨snd1 6=snd2) =⇒(concat_two_int_to_one(fst1,snd1) 6=concat_two_int_to_one(fst2,snd2)));

function vaddr_to_int(v : vaddr_t) : int;

//cast a regular page to an int
function reg_to_int(val : word_t) : int;
//would like the cast to be one-to-one
axiom (∀ val1 : word_t, val2 : word_t •
{reg_to_int(val1), reg_to_int(val2)}
(val1 6=val2 =⇒reg_to_int(val1) 6=reg_to_int(val2)));
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//cast a regular page to an int
function tcs_to_int(val : tcs_t) : int;
//would like the cast to be one-to-one
axiom (∀ val1 : tcs_t, val2 : tcs_t •
{tcs_to_int(val1), tcs_to_int(val2)}
(val1 6=val2 =⇒tcs_to_int(val1) 6=tcs_to_int(val2)));

//********************* SGX Instructions *********************

procedure { : inline 1} ecreate_unchecked(la : vaddr_t, secs : secs_t)
modifies epcm, mem_secs, mem_reg, mem_tcs, arbitrary_write_count;
{
var pa : wap_addr_t;
var measurement : sgx_measurement_t; //computing value for mrenclave
var ssaframesize : int;

pa :=page_table_map[la];

ssaframesize :=1;

//valid epcm of type secs and enclave address of 0, enclavesecs undefined thus set to 0
//arg1 : valid, arg2-4 : rwx, arg5 : page type, arg6 : enclavesecs, arg7 : enclaveaddress
epcm[pageof_pa(pa)] :=Epcm(true, false, false, false, pt_secs, k0_wap_addr_t, k0_vaddr_t);

//set baseaddr and size from the input secs struct, initialized must be false, mrsigner is not yet set
call unchecked_write_secs(pageof_pa(pa), //writing to secs[pa]

Secs(Secs_baseaddr(secs), //baseaddr (evrange base)
Secs_size(secs), //size (evrange high - evrange base)
false, //initialized
measurement, //value doesn’t matter for this model
hash(dummy_signing_key), //value doesn’t matter for this model
0, //ISV product id
0, //ISV version number
Secs_attributes(secs))); //Attributes

}

//la : pagetable[la] holds the secs page of this enclave
//secs : secs struct to populate
procedure { : inline 1} ecreate(la : vaddr_t, secs : secs_t)
returns (result : sgx_api_result_t)
modifies epcm, mem_secs, mem_reg, mem_tcs, arbitrary_write_count;
{
var pa : wap_addr_t;
pa :=page_table_map[la];

if (pageof_va(la) 6=la) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[la]) { result :=sgx_api_invalid_value; return; }
if (¬is_epc_address(pa) ∨Epcm_valid(epcm[pageof_pa(pa)])) { result :=sgx_api_invalid_value; return; } //must be a free epc address
if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; } //enclave cannot call ecreate
if (¬ (GT_va(Secs_size(secs), k0_vaddr_t)) ) { result :=sgx_api_invalid_value; return; } //positive sized enclave

call ecreate_unchecked(la, secs);
result :=sgx_api_success;

}

//rcx : address of destination epc page
//rbx_linaddr : linear address with which one addresses this epc page
//rbx_secs : linear address of the SECS page
//d : data to write to the epc page
procedure { : inline 1} eadd_unchecked(rbx_linaddr : vaddr_t, rbx_secs : vaddr_t, rcx : vaddr_t, r : bool, w : bool, x : bool, d : mem_t)
modifies epcm, mem_secs, mem_reg, mem_tcs, arbitrary_write_count;
{
var epc_pa : wap_addr_t;
var secs_pa : wap_addr_t;

epc_pa :=page_table_map[rcx];
secs_pa :=page_table_map[rbx_secs];
epcm[pageof_pa(epc_pa)] :=Epcm(true, r, w, x, pt_reg, secs_pa, pageof_va(rbx_linaddr));
havoc mem_reg;
assume (∀ a : wap_addr_t •((LT_wapa(a, epc_pa) ∧GE_wapa(a, PLUS_wapa(epc_pa, 4096bv22))) =⇒mem_reg[a] =old(mem_reg)[a]) ∧

((GE_wapa(a, epc_pa) ∧LT_wapa(a, PLUS_wapa(epc_pa, 4096bv22))) =⇒mem_reg[a] =d[a]));
mem_secs[pageof_pa(epc_pa)] :=arbitrary_secs_val(arbitrary_write_count);
mem_tcs[pageof_pa(epc_pa)] :=arbitrary_tcs_val(arbitrary_write_count);
arbitrary_write_count :=arbitrary_write_count + 1;

}

procedure { : inline 1} eadd(rbx_linaddr : vaddr_t, rbx_secs : vaddr_t, rcx : vaddr_t, r : bool, w : bool, x : bool, d : mem_t)
returns (result : sgx_api_result_t)
modifies epcm, mem_secs, mem_reg, mem_tcs, arbitrary_write_count;
{
var epc_pa : wap_addr_t;
var secs_pa : wap_addr_t;

epc_pa :=page_table_map[rcx];
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secs_pa :=page_table_map[rbx_secs];

if (pageof_va(rcx) 6=rcx) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_va(rbx_secs) 6=rbx_secs) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(epc_pa) 6=epc_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(secs_pa) 6=secs_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[rcx]) { result :=sgx_api_invalid_value; return; }
if (¬page_table_valid[rbx_secs]) { result :=sgx_api_invalid_value; return; }
if ( ¬(is_epc_address(secs_pa) ∧

Epcm_valid(epcm[pageof_pa(secs_pa)]) ∧
Epcm_pt(epcm[pageof_pa(secs_pa)]) =pt_secs ∧
¬Secs_initialized(mem_secs[secs_pa])) ) { result :=sgx_api_invalid_value; return; }

if ( ¬(GE_va(rbx_linaddr, Secs_baseaddr(mem_secs[secs_pa])) ∧
LT_va(rbx_linaddr, PLUS_va(Secs_baseaddr(mem_secs[secs_pa]), Secs_size(mem_secs[secs_pa])))) ) { result :=sgx_api_invalid_value;

return; }
if ( ¬(is_epc_address(epc_pa) ∧(¬Epcm_valid(epcm[pageof_pa(epc_pa)]))) ) { result :=sgx_api_invalid_value; return; } //must be a free epc

address
if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; } //enclave cannot call eadd

call eadd_unchecked(rbx_linaddr, rbx_secs, rcx, r, w, x, d);
result :=sgx_api_success;

}

// remove EPC page at EPC address la
procedure { : inline 1} eremove_unchecked(rcx : vaddr_t)
modifies epcm;
{
var epc_pa : wap_addr_t;
epc_pa :=page_table_map[rcx];
//set valid bit to false, which dummy_epcm has
epcm[pageof_pa(epc_pa)] :=dummy_epcm;

}

procedure { : inline 1} eremove(rcx : vaddr_t)
returns (result : sgx_api_result_t)
modifies epcm;
{
var epc_pa : wap_addr_t;
epc_pa :=page_table_map[rcx];

if (pageof_va(rcx) 6=rcx) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(epc_pa) 6=epc_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[rcx]) { result :=sgx_api_invalid_value; return; }
if (¬ (is_epc_address(epc_pa)) ) { result :=sgx_api_invalid_value; return; }
if (¬ ((Epcm_valid(epcm[pageof_pa(epc_pa)]) ∧

Epcm_pt(epcm[pageof_pa(epc_pa)]) =pt_secs) =⇒
no_pages_in_enclave(epcm, epc_pa)) ) { result :=sgx_api_invalid_value; return; }

if (¬ ((Epcm_valid(epcm[pageof_pa(epc_pa)]) ∧
Epcm_pt(epcm[pageof_pa(epc_pa)]) 6=pt_secs) =⇒
no_threads_in_enclave(core_state, Epcm_enclavesecs(epcm[pageof_pa(epc_pa)]))) ) { result :=sgx_api_invalid_value; return; }

if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; }

call eremove_unchecked(rcx);
result :=sgx_api_success;

}

// take measurement of a 256 byte region, must be invokes 16 times to measure a page
// However, this model takes the entire measurement of the page at once
procedure { : inline 1} eextend_unchecked(rcx : vaddr_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
var secs : secs_t;
var tmp_enclaveoffset : vaddr_t;
var tmp_mrenclave : sgx_measurement_t;
var epc_pa : wap_addr_t;

epc_pa :=page_table_map[rcx];
secs :=mem_secs[Epcm_enclavesecs(epcm[pageof_pa(epc_pa)])];

tmp_enclaveoffset :=MINUS_va(Epcm_enclaveaddress(epcm[pageof_pa(epc_pa)]), Secs_baseaddr(secs));
tmp_enclaveoffset :=PLUS_va(tmp_enclaveoffset, (0bv20 ++ rcx[12 : 0]));

tmp_mrenclave :=Secs_mrenclave(secs);
tmp_mrenclave :=sha256update(tmp_mrenclave, vaddr_to_int(tmp_enclaveoffset));
if (Epcm_pt(epcm[pageof_pa(epc_pa)]) =pt_reg) {
tmp_mrenclave :=sha256update(tmp_mrenclave, reg_to_int(mem_reg[epc_pa]));

} else {
tmp_mrenclave :=sha256update(tmp_mrenclave, tcs_to_int(mem_tcs[epc_pa]));

}

call unchecked_write_secs(Epcm_enclavesecs(epcm[pageof_pa(epc_pa)]),
Secs(Secs_baseaddr(secs), Secs_size(secs), Secs_initialized(secs),
tmp_mrenclave, Secs_mrsigner(secs),
Secs_isvprodid(secs), Secs_isvsvn(secs), Secs_attributes(secs)));

}
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procedure { : inline 1} eextend(rcx : vaddr_t)
returns (result : sgx_api_result_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
var epc_pa : wap_addr_t;
epc_pa :=page_table_map[rcx];

if (¬page_table_valid[rcx]) { result :=sgx_api_invalid_value; return; }
if (¬ (is_epc_address(epc_pa)) ) { result :=sgx_api_invalid_value; return; }
if (¬ (Epcm_valid(epcm[pageof_pa(epc_pa)]) ∧

(Epcm_pt(epcm[pageof_pa(epc_pa)]) =pt_reg ∨
Epcm_pt(epcm[pageof_pa(epc_pa)]) =pt_tcs)) ) { result :=sgx_api_invalid_value; return; }

if (Secs_initialized(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(epc_pa)])])) { result :=sgx_api_invalid_value; return; }
if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; }

call eextend_unchecked(rcx);
result :=sgx_api_success;

}

//rbx : targetinfo struct, rcx : reportdata struct, rdx : addr containing output report struct
procedure { : inline 1} ereport_unchecked(targetinfo : targetinfo_t, reportdata : word_t)
returns (report_maced : report_maced_t)
{
var tmp_reportkey : key_t;
var tmp_currentsecs : secs_t;
var report : report_t;
var tmp_report_mac : mactext_t report_t;

tmp_reportkey :=derive_key_ereport(Targetinfo_attributes(targetinfo),
Targetinfo_measurement(targetinfo));

tmp_currentsecs :=mem_secs[Core_state_cr_active_secs(core_state[curr_core])];
report :=Report(Secs_isvprodid(tmp_currentsecs),

Secs_isvsvn(tmp_currentsecs),
Secs_attributes(tmp_currentsecs),
reportdata,
Secs_mrenclave(tmp_currentsecs),
Secs_mrsigner(tmp_currentsecs));

tmp_report_mac :=cmac(tmp_reportkey, report);
report_maced :=Report_maced(report, tmp_report_mac);

}

procedure { : inline 1} ereport(targetinfo : targetinfo_t, reportdata : word_t)
returns (report_maced : report_maced_t, result : sgx_api_result_t)
{
if (¬ (Core_state_cr_enclave_mode(core_state[curr_core]))) { result :=sgx_api_invalid_value; return; }
call report_maced :=ereport_unchecked(targetinfo, reportdata);
result :=sgx_api_success;

}

// initialize enclave whose SECS page is located at EPC address ls
//rbx -> sigstruct, rcx -> secs, rdx -> einittoken
procedure { : inline 1} einit_unchecked(sigstruct_signed : sigstruct_signed_t, rcx : vaddr_t, einittoken : einittoken_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
var secs : secs_t;
var tmp_mrsigner : hashtext_t key_t;
var sigstruct : sigstruct_t;
var secs_pa : wap_addr_t;

secs_pa :=page_table_map[rcx];

sigstruct :=Sigstruct_signed_sigstruct(sigstruct_signed);
tmp_mrsigner :=hash(Sigstruct_modulus(sigstruct));

secs :=mem_secs[secs_pa];

call unchecked_write_secs(secs_pa,
Secs(Secs_baseaddr(secs), Secs_size(secs), true,

Secs_mrenclave(secs), tmp_mrsigner,
Sigstruct_isvprodid(sigstruct), Sigstruct_isvsvn(sigstruct),
Secs_attributes(secs)));

}

procedure { : inline 1} einit(sigstruct_signed : sigstruct_signed_t, rcx : vaddr_t, einittoken : einittoken_t)
returns (result : sgx_api_result_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
var secs_pa : wap_addr_t;
secs_pa :=page_table_map[rcx];

if (pageof_va(rcx) 6=rcx) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(secs_pa) 6=secs_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[rcx]) { result :=sgx_api_invalid_value; return; }
if (¬ (Epcm_valid(epcm[pageof_pa(secs_pa)]) ∧Epcm_pt(epcm[pageof_pa(secs_pa)]) =pt_secs) ) { result :=sgx_api_invalid_value; return; }
if (¬ (is_epc_address(secs_pa) ∧¬Secs_initialized(mem_secs[secs_pa])) ) { result :=sgx_api_invalid_value; return; }
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if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; } //enclave cannot call einit

call einit_unchecked(sigstruct_signed, rcx, einittoken);
result :=sgx_api_success;

}

//Enter an enclave via a thread whose TCS lives at EPC address la
procedure { : inline 1} eenter_unchecked(rbx : vaddr_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs, core_state;
{
var tcs_pa : wap_addr_t;
var secs_pa : wap_addr_t;
var pcssa : wap_addr_t;

tcs_pa :=page_table_map[rbx];
secs_pa :=Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)]);
pcssa :=page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])];

call unchecked_write_tcs(tcs_pa, Tcs(true,
Tcs_interrupted(mem_tcs[tcs_pa]),
Tcs_ossa(mem_tcs[tcs_pa]),
Tcs_nssa(mem_tcs[tcs_pa]),
Tcs_cssa(mem_tcs[tcs_pa])
));

//Core_state(cr_enclave_mode : bool, cr_tcs_pa : wap_addr_t, cr_active_secs : wap_addr_t, cr_elrange : lr_register_t, ssa_pa : wap_addr_t)
core_state[curr_core] :=Core_state(true, //cr_enclave_mode

tcs_pa, //TCS pa
secs_pa, //SECS pa
Lr_register(Secs_baseaddr(mem_secs[secs_pa]), Secs_size(mem_secs[secs_pa])), //evrange base and size
pcssa
);

}

procedure { : inline 1} eenter(rbx : vaddr_t)
returns (result : sgx_api_result_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs, core_state;
{
var tcs_pa : wap_addr_t;
tcs_pa :=page_table_map[rbx];

if (pageof_va(rbx) 6=rbx) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(tcs_pa) 6=tcs_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[rbx]) { result :=sgx_api_invalid_value; return; }
if (¬is_epc_address(tcs_pa)) { result :=sgx_api_invalid_value; return; }
if (¬ (¬Tcs_active(mem_tcs[tcs_pa]) ∧¬Tcs_interrupted(mem_tcs[tcs_pa])) ) { result :=sgx_api_invalid_value; return; }
if (¬ (Epcm_enclaveaddress(epcm[pageof_pa(tcs_pa)]) =rbx ∧Epcm_pt(epcm[pageof_pa(tcs_pa)]) =pt_tcs ∧Epcm_valid(epcm[pageof_pa(tcs_pa)]))

) { result :=sgx_api_invalid_value; return; }
if (¬ (LT_va(Tcs_cssa(mem_tcs[tcs_pa]), Tcs_nssa(mem_tcs[tcs_pa])) ∧

is_epc_address(page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])]) ∧
Epcm_valid(epcm[pageof_pa(page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) ∧
Epcm_pt(epcm[pageof_pa(page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) =pt_reg ∧
Epcm_enclaveaddress(epcm[pageof_pa(page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) =

cssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa]) ∧
Epcm_enclavesecs(epcm[pageof_pa(page_table_map[cssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) =

Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)]) ∧
Secs_initialized(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])])) ) { result :=sgx_api_invalid_value; return; }

if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; }

call eenter_unchecked(rbx);
result :=sgx_api_success;

}

//Resume an enclave via a thread whose TCS lives at la
procedure { : inline 1} eresume_unchecked(rbx : vaddr_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs, core_state, gpregs;
{
var tcs_pa : wap_addr_t;
var secs_pa : wap_addr_t;
var ppssa : wap_addr_t;

tcs_pa :=page_table_map[rbx];
secs_pa :=Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)]);
ppssa :=page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])];

call unchecked_write_tcs(tcs_pa, Tcs(true, //active
false, //interrupted
Tcs_ossa(mem_tcs[tcs_pa]),
Tcs_nssa(mem_tcs[tcs_pa]),
MINUS_va(Tcs_cssa(mem_tcs[tcs_pa]), k1_vaddr_t)));

core_state[curr_core] :=Core_state(true,
tcs_pa,
secs_pa,
Lr_register(Secs_baseaddr(mem_secs[secs_pa]), Secs_size(mem_secs[secs_pa])),
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ppssa
);

gpregs[curr_core] :=word_to_gpregs(mem_reg[ppssa]);
}

procedure { : inline 1} eresume(rbx : vaddr_t)
returns (result : sgx_api_result_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs, core_state, gpregs;
{
var tcs_pa : wap_addr_t;
tcs_pa :=page_table_map[rbx];

if (pageof_va(rbx) 6=rbx) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (pageof_pa(tcs_pa) 6=tcs_pa) { result :=sgx_api_invalid_value; return; } //la must be aligned
if (¬page_table_valid[rbx]) { result :=sgx_api_invalid_value; return; }
if (Tcs_active(mem_tcs[tcs_pa])) { result :=sgx_api_invalid_value; return; }
if (¬is_epc_address(tcs_pa)) { result :=sgx_api_invalid_value; return; }
if (¬ (Epcm_valid(epcm[pageof_pa(tcs_pa)])) ) { result :=sgx_api_invalid_value; return; }
if (¬ (Epcm_enclaveaddress(epcm[pageof_pa(tcs_pa)]) =rbx) ∧(Epcm_pt(epcm[pageof_pa(tcs_pa)]) =pt_tcs) ) { result :=

sgx_api_invalid_value; return; }
if (¬ (GT_va(Tcs_cssa(mem_tcs[tcs_pa]), k0_vaddr_t)) ) { result :=sgx_api_invalid_value; return; }
if (¬ (is_epc_address(page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])]) ∧

Epcm_valid(epcm[pageof_pa(page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) ∧
Epcm_pt(epcm[pageof_pa(page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) =pt_reg) ) { }

if (¬ (Epcm_enclaveaddress(epcm[pageof_pa(page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[tcs_pa])], mem_tcs[tcs_pa])])]) =
pssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])) ) { result :=sgx_api_invalid_value; return; }

if (¬ (Epcm_enclavesecs(epcm[pageof_pa(page_table_map[pssa_addr(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])], mem_tcs[tcs_pa])])]) =
Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])) ) { result :=sgx_api_invalid_value; return; }

if (¬ (Secs_initialized(mem_secs[Epcm_enclavesecs(epcm[pageof_pa(tcs_pa)])])) ) { result :=sgx_api_invalid_value; return; }
if (Core_state_cr_enclave_mode(core_state[curr_core])) { result :=sgx_api_invalid_value; return; }

call eresume_unchecked(rbx);
result :=sgx_api_success;

}

function AES_GCM_ENC_reg(plaintext : word_t) : word_t;
function AES_GCM_DEC_reg(ciphertext : word_t) : word_t;
axiom (∀ ptxt : word_t, ctxt : word_t •{AES_GCM_ENC_reg(ptxt), AES_GCM_DEC_reg(ctxt)}

AES_GCM_ENC_reg(ptxt) =ctxt =⇒AES_GCM_DEC_reg(ctxt) =ptxt);
axiom (∀ ptxt : word_t, ctxt : word_t •{AES_GCM_ENC_reg(ptxt), AES_GCM_DEC_reg(ctxt)}

AES_GCM_DEC_reg(ctxt) =ptxt =⇒AES_GCM_ENC_reg(ptxt) =ctxt);

function AES_GCM_ENC_tcs(plaintext : tcs_t) : word_t;
function AES_GCM_DEC_tcs(ciphertext : word_t) : tcs_t;
axiom (∀ ptxt : tcs_t, ctxt : word_t •{AES_GCM_ENC_tcs(ptxt), AES_GCM_DEC_tcs(ctxt)}

AES_GCM_ENC_tcs(ptxt) =ctxt =⇒AES_GCM_DEC_tcs(ctxt) =ptxt);
axiom (∀ ptxt : tcs_t, ctxt : word_t •{AES_GCM_ENC_tcs(ptxt), AES_GCM_DEC_tcs(ctxt)}

AES_GCM_DEC_tcs(ctxt) =ptxt =⇒AES_GCM_ENC_tcs(ptxt) =ctxt);

function AES_GCM_ENC_secs(plaintext : secs_t) : word_t;
function AES_GCM_DEC_secs(ciphertext : word_t) : secs_t;
axiom (∀ ptxt : secs_t, ctxt : word_t •{AES_GCM_ENC_secs(ptxt), AES_GCM_DEC_secs(ctxt)}

AES_GCM_ENC_secs(ptxt) =ctxt =⇒AES_GCM_DEC_secs(ctxt) =ptxt);
axiom (∀ ptxt : secs_t, ctxt : word_t •{AES_GCM_ENC_secs(ptxt), AES_GCM_DEC_secs(ctxt)}

AES_GCM_DEC_secs(ctxt) =ptxt =⇒AES_GCM_ENC_secs(ptxt) =ctxt);

//copy a page from EPC page la to dst_la in unprotected memory
procedure { : inline 1} ewb(la : vaddr_t, pageinfo : pageinfo_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs, epcm;
requires (¬Core_state_cr_enclave_mode(core_state[curr_core])); //only OS/VMM allowed to call ewb
requires (is_epc_address(page_table_map[la]) ∧Epcm_valid(epcm[page_table_map[la]]));
requires ((Epcm_pt(epcm[page_table_map[la]]) =pt_reg) ∨

(Epcm_pt(epcm[page_table_map[la]]) =pt_tcs)) =⇒
no_threads_in_enclave(core_state, Epcm_enclavesecs(epcm[page_table_map[la]]));

requires (Epcm_pt(epcm[page_table_map[la]]) =pt_secs) =⇒
(no_threads_in_enclave(core_state, page_table_map[la]) ∧
no_pages_in_enclave(epcm, page_table_map[la]));

requires (¬is_epc_address(page_table_map[Pageinfo_srcpge(pageinfo)]));
{
var pa : wap_addr_t;
var tmp_srcpge : vaddr_t;

pa :=page_table_map[la];
tmp_srcpge :=Pageinfo_srcpge(pageinfo);

if (Epcm_pt(epcm[pa]) =pt_reg) {
call unchecked_write_reg(page_table_map[tmp_srcpge], AES_GCM_ENC_reg(mem_reg[pa]));

} else if (Epcm_pt(epcm[pa]) =pt_tcs) {
call unchecked_write_reg(page_table_map[tmp_srcpge], AES_GCM_ENC_tcs(mem_tcs[pa]));

} else if (Epcm_pt(epcm[pa]) =pt_secs) {
call unchecked_write_reg(page_table_map[tmp_srcpge], AES_GCM_ENC_secs(mem_secs[pa]));

}

epcm[pa] :=dummy_epcm;
}
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//copy a page from src_la to EPC page la
procedure { : inline 1} eldu(la : vaddr_t, pageinfo : pageinfo_t)
modifies mem_reg, mem_tcs, mem_secs, epcm, arbitrary_write_count;
requires (is_epc_address(page_table_map[la]) ∧¬Epcm_valid(epcm[page_table_map[la]]));
requires ((Secinfo_flags_pt(Pageinfo_secinfo(pageinfo)) =pt_reg) ∨

(Secinfo_flags_pt(Pageinfo_secinfo(pageinfo)) =pt_tcs)) =⇒
(is_epc_address(Pageinfo_secs(pageinfo)) ∧
Epcm_valid(epcm[Pageinfo_secs(pageinfo)]) ∧
Epcm_pt(epcm[Pageinfo_secs(pageinfo)]) =pt_secs);

requires (Secinfo_flags_pt(Pageinfo_secinfo(pageinfo)) =pt_secs) =⇒
(Pageinfo_secs(pageinfo) =k0_wap_addr_t);

{
var tmp_srcpge : vaddr_t;
var tmp_secs : wap_addr_t;
var tmp_secinfo : secinfo_t;
var pa : wap_addr_t;
var tmp_header_secinfo_flags_pt : page_t;

pa :=page_table_map[la];
tmp_srcpge :=Pageinfo_srcpge(pageinfo);
tmp_secs :=Pageinfo_secs(pageinfo);
tmp_secinfo :=Pageinfo_secinfo(pageinfo);

tmp_header_secinfo_flags_pt :=Secinfo_flags_pt(tmp_secinfo);
if (tmp_header_secinfo_flags_pt =pt_reg) {
call unchecked_write_reg(pa, AES_GCM_DEC_reg(mem_reg[page_table_map[tmp_srcpge]]));

} else if (tmp_header_secinfo_flags_pt =pt_tcs) {
call unchecked_write_tcs(pa, AES_GCM_DEC_tcs(mem_reg[page_table_map[tmp_srcpge]]));

} else if (tmp_header_secinfo_flags_pt =pt_secs) {
call unchecked_write_secs(pa, AES_GCM_DEC_secs(mem_reg[page_table_map[tmp_srcpge]]));

}

epcm[pa] :=Epcm(true, true, true, true,
tmp_header_secinfo_flags_pt,
Pageinfo_secs(pageinfo),
Pageinfo_linaddr(pageinfo));

}

procedure { : inline 1} eexit()
returns (result : sgx_api_result_t)
modifies mem_reg, gpregs, core_state, mem_tcs, mem_secs, arbitrary_write_count;
{
var ptcs : wap_addr_t;
if (¬ (Core_state_cr_enclave_mode(core_state[curr_core])) ) { result :=sgx_api_invalid_value; return; }

ptcs :=Core_state_cr_tcs_pa(core_state[curr_core]);

core_state[curr_core] :=Core_state(false,
Core_state_cr_tcs_pa(core_state[curr_core]),
Core_state_cr_active_secs(core_state[curr_core]),
Core_state_cr_elrange(core_state[curr_core]),
Core_state_ssa_pa(core_state[curr_core])
);

call unchecked_write_tcs(ptcs, Tcs(false,
Tcs_interrupted(mem_tcs[ptcs]),
Tcs_ossa(mem_tcs[ptcs]),
Tcs_nssa(mem_tcs[ptcs]),
Tcs_cssa(mem_tcs[ptcs])

));
result :=sgx_api_success;

}

procedure { : inline 1} aexit(interrupt : bool)
returns (result : sgx_api_result_t)
modifies mem_reg, gpregs, core_state, mem_tcs, mem_secs, arbitrary_write_count;
{
var pt : wap_addr_t;
var pc : wap_addr_t;

if (¬ (Core_state_cr_enclave_mode(core_state[curr_core])) ) { result :=sgx_api_invalid_value; return; }

pt :=Core_state_cr_tcs_pa(core_state[curr_core]);
pc :=Core_state_ssa_pa(core_state[curr_core]);

call unchecked_write_reg(pc, gpregs_to_word(gpregs[curr_core]));
gpregs[curr_core] :=dummy_gpregs;
core_state[curr_core] :=Core_state(false,

Core_state_cr_tcs_pa(core_state[curr_core]),
Core_state_cr_active_secs(core_state[curr_core]),
Core_state_cr_elrange(core_state[curr_core]),
Core_state_ssa_pa(core_state[curr_core])
);

call unchecked_write_tcs(pt, Tcs(false,
interrupt,
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Tcs_ossa(mem_tcs[pt]),
Tcs_nssa(mem_tcs[pt]),
PLUS_va(Tcs_cssa(mem_tcs[pt]), k1_vaddr_t)
));

result :=sgx_api_success;
}

procedure { : inline 1} interrupt()
returns (result : sgx_api_result_t)
modifies mem_reg, gpregs, core_state, mem_tcs, mem_secs, arbitrary_write_count;
{
if (Core_state_cr_enclave_mode(core_state[curr_core])) {
call result :=aexit(true);

}
}

procedure { : inline 1} exception()
returns (result : sgx_api_result_t)
modifies mem_reg, gpregs, core_state, mem_tcs, mem_secs, arbitrary_write_count;
{
if (Core_state_cr_enclave_mode(core_state[curr_core])) {
call result :=aexit(false);

}
}

//rbx : input keyrequest struct, rcx : output outputdata struct
//return sealing and attestation keys
procedure { : inline 1} egetkey(keyrequest : keyrequest_t) returns (result : key_t)
requires (Core_state_cr_enclave_mode(core_state[curr_core]));
requires (Keyrequest_keyname(keyrequest) =seal_key) =⇒

(Keyrequest_isvsvn(keyrequest) > Secs_isvsvn(mem_secs[Core_state_cr_active_secs(core_state[curr_core])]));
requires Keyrequest_keyname(keyrequest) =seal_key ∨

Keyrequest_keyname(keyrequest) =report_key;
{
var tmp_currentsecs : secs_t;
var keyname : keyname_t;
var tmp_mrenclave : sgx_measurement_t;
var tmp_mrsigner : hashtext_t key_t;
tmp_currentsecs :=mem_secs[Core_state_cr_active_secs(core_state[curr_core])];
keyname :=Keyrequest_keyname(keyrequest);

if (keyname =seal_key) {
tmp_mrenclave :=0;
//include enclave identity?
if (Keyrequest_keypolicy_mrenclave(keyrequest)) {
tmp_mrenclave :=Secs_mrenclave(tmp_currentsecs);

}
tmp_mrsigner :=hash(dummy_signing_key);
//include enclave author?
if (Keyrequest_keypolicy_mrsigner(keyrequest)) {
tmp_mrsigner :=Secs_mrsigner(tmp_currentsecs);

}
result :=derive_key_egetkey(seal_key,

Secs_isvprodid(tmp_currentsecs),
Keyrequest_isvsvn(keyrequest),
Secs_attributes(tmp_currentsecs),
tmp_mrenclave,
tmp_mrsigner);

}
else if(keyname =report_key) {
result :=derive_key_egetkey(report_key,

0,
0,
Secs_attributes(tmp_currentsecs),
Secs_mrenclave(tmp_currentsecs),
hash(dummy_signing_key));

}
}

//********************* All other operations *************************

procedure { : inline 1} sgx_store(la : vaddr_t, d : word_t)
returns (result : sgx_api_result_t)
modifies arbitrary_write_count, mem_reg, mem_secs, mem_tcs;
{
var is_writeable : bool;
var pa : wap_addr_t;

call is_writeable :=is_accessible(curr_core, la);
if (¬is_writeable) { result :=sgx_api_invalid_value; return; }

call pa :=translate(la);
if (pa =abort_page) { result :=sgx_api_invalid_value; return; }
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call unchecked_write_reg(pa, d);
result :=sgx_api_success;

}

procedure { : inline 1} sgx_load(la : vaddr_t)
returns (d : word_t, result : sgx_api_result_t)
{
var is_readable : bool;
var pa : wap_addr_t;

call is_readable :=is_accessible(curr_core, la);
if (¬is_readable) { result :=sgx_api_invalid_value; return; }

call pa :=translate(la);
if (pa =abort_page) { result :=sgx_api_invalid_value; return; }

d :=mem_reg[pa];
result :=sgx_api_success;

}

procedure { : inline 1} switch_thread (core : core_id_t)
modifies curr_core;
{
curr_core :=core;

}

//Abstract computation
procedure { : inline 1} compute()
modifies gpregs;
{
var x : gpregs_t;
gpregs[curr_core] :=x;

}

//Adversary update to page tables
procedure { : inline 1} update_page_table_map(l : vaddr_t, p : wap_addr_t)
modifies page_table_map;
{
page_table_map[l] :=p;

}
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Appendix C

Model of Sanctum

In this appendix chapter, we present our model of Sanctum in full detail, which was
described earlier in Chapter 4. We include the reference implementation (in BoogiePL [14])
of all the operations supported by the Sanctum platform, except the mailbox API used for
remote attestation.

/**********************************
* Ghost State *
**********************************/

var owner : [region_t] enclave_id_t;
var blocked_at : [region_t] int;

var enclave_metadata_valid : eid2bool_map_t;
var enclave_metadata_is_initialized : eid2bool_map_t;
var enclave_metadata_ev_base : [enclave_id_t] vaddr_t;
var enclave_metadata_ev_mask : [enclave_id_t] vaddr_t;
var enclave_metadata_bitmap : [enclave_id_t] bitmap_t;
var enclave_metadata_load_eptbr : [enclave_id_t] ppn_t;
var enclave_metadata_dram_region_count : [enclave_id_t] word_t;
var enclave_metadata_last_load_addr : [enclave_id_t] paddr_t;
var enclave_metadata_thread_count : [enclave_id_t] int;
var enclave_metadata_measurement : [enclave_id_t] measurement_t;

var thread_metadata_valid : [thread_id_t] bool;
var thread_metadata_eid : [thread_id_t] enclave_id_t;
var thread_metadata_entry_pc : [thread_id_t] vaddr_t;
var thread_metadata_entry_stack : [thread_id_t] vaddr_t;
var thread_metadata_fault_pc : [thread_id_t] vaddr_t;
var thread_metadata_fault_stack : [thread_id_t] vaddr_t;

var os_bitmap : bitmap_t;

var os_pc : vaddr_t;
var dram_regions_info_block_clock : int;

/**********************************
* Constants *
**********************************/

const enclave_metadata_valid_init : eid2bool_map_t;
axiom (∀ i : enclave_id_t •enclave_metadata_valid_init[i] =false);
const thread_metadata_valid_init : [thread_id_t] bool;
axiom (∀ i : thread_id_t •thread_metadata_valid_init[i] =false);
const mem_zero : mem_t;
axiom (∀ p : wap_addr_t •mem_zero[p] =k0_word_t);

const monitor_ok : api_result_t;
axiom monitor_ok =0bv3;
const monitor_invalid_value : api_result_t;
axiom monitor_invalid_value =1bv3;
const monitor_invalid_state : api_result_t;
axiom monitor_invalid_state =2bv3;
const monitor_unknown_error : api_result_t;
axiom monitor_unknown_error =3bv3;
const monitor_access_denied : api_result_t;
axiom monitor_access_denied =4bv3;
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const monitor_unsupported : api_result_t;
axiom monitor_unsupported =5bv3;

/** numbers for each Sanctum API. **/
const code_api_create_enclave : int;
const code_api_load_page_table : int;
const code_api_load_page : int;
const code_api_assign_dram_region : int;
const code_api_load_thread : int;
const code_api_init_enclave : int;
const code_api_enter_enclave : int;
const code_api_exit_enclave : int;
const code_api_block_dram_region : int;
const code_api_free_dram_region : int;
const code_api_flush_cached_dram_regions : int;
const code_api_delete_thread : int;
const code_api_delete_enclave : int;
// values for each constant.
axiom code_api_create_enclave =10;
axiom code_api_load_page_table =20;
axiom code_api_load_page =30;
axiom code_api_assign_dram_region =40;
axiom code_api_load_thread =50;
axiom code_api_init_enclave =60;
axiom code_api_enter_enclave =70;
axiom code_api_exit_enclave =80;
axiom code_api_block_dram_region =90;
axiom code_api_free_dram_region =100;
axiom code_api_flush_cached_dram_regions =110;
axiom code_api_delete_thread =120;
axiom code_api_delete_enclave =130;
/** end numbers for each Sanctum API. **/

function { : inline} assigned(r : enclave_id_t) : bool
{ r 6=null_enclave_id ∧r 6=free_enclave_id ∧r 6=blocked_enclave_id ∧r 6=metadata_enclave_id } //can the region be freed and reassigned?

/**********************************
* Sanctum Monitor APIs *
**********************************/
procedure initialize_sanctum();
modifies cpu_evbase,

cpu_evmask,
cpu_eptbr,
cpu_ptbr,
cpu_drbmap,
cpu_edrbmap,
cpu_parbase,
cpu_eparbase,
cpu_parmask,
cpu_eparmask,
cpu_dmarbase,
cpu_dmarmask,
owner,
mem,
core_info_enclave_id,
core_info_thread_id,
enclave_metadata_valid,
enclave_metadata_is_initialized,
thread_metadata_valid,
os_bitmap;

ensures cpu_evbase =k0_vaddr_t;
ensures cpu_evmask =k0_vaddr_t;
ensures cpu_eptbr =k0_ppn_t;
ensures cpu_ptbr =k2_ppn_t;
ensures cpu_drbmap =k1_bitmap_t;
ensures cpu_edrbmap =k0_bitmap_t;
ensures cpu_parbase =0bv9 ++ 0bv3 ++ 0bv12;
ensures cpu_parmask =0bv9 ++ 0bv3 ++ 255bv12;
ensures cpu_eparbase =cpu_parbase;
ensures cpu_eparmask =cpu_parmask;
ensures cpu_dmarbase =0bv9 ++ 0bv3 ++ 256bv12;
ensures cpu_dmarmask =0bv9 ++ 0bv3 ++ 255bv12;
// most regions free.
ensures (∀ r : region_t •

if r =k0_region_t
then owner[r] =null_enclave_id
else owner[r] =free_enclave_id);

// no enclave executing.
ensures core_info_enclave_id =null_enclave_id;
ensures os_bitmap =1bv8;
// no enclaves.
ensures (∀ e : enclave_id_t •¬enclave_metadata_valid[e]);
ensures (∀ e : enclave_id_t •¬enclave_metadata_is_initialized[e]);
// no threads.
ensures (∀ t : thread_id_t •¬thread_metadata_valid[t]);
// mem zero.
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ensures (∀ p : wap_addr_t • mem[p] =k0_word_t);

procedure { : inline 1} create_metadata_region(region : region_t)
returns (result : api_result_t)
modifies owner;

{
//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬is_valid_dram_region(region)) {
result :=monitor_invalid_value; return;

}

//can only convert a free region into a metadata region
if (owner[region] 6=free_enclave_id) {
result :=monitor_invalid_state; return;

}

owner[region] :=metadata_enclave_id;

result :=monitor_ok; return;
}

procedure { : inline 1} create_enclave(eid : enclave_id_t, evbase : vaddr_t, evmask : vaddr_t)
returns (result : api_result_t)
modifies enclave_metadata_valid,

enclave_metadata_is_initialized,
enclave_metadata_ev_base,
enclave_metadata_ev_mask,
enclave_metadata_bitmap,
enclave_metadata_thread_count,
enclave_metadata_load_eptbr,
enclave_metadata_dram_region_count,
enclave_metadata_last_load_addr,
enclave_metadata_measurement;

{
var dram_region : region_t;
var measurement : measurement_t;

//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬is_valid_range_va(evbase, evmask)) {
result :=monitor_invalid_value; return;

}

//enclave must get at least a page of virtual address space
if (LT_va(PLUS_va(evmask, k1_vaddr_t), kPGSZ_vaddr_t)) {
result :=monitor_invalid_value; return;

}

//metadata must live within DRAM
if (¬is_dram_address(eid) ∨¬is_page_aligned_pa(eid)) {
result :=monitor_invalid_value; return;

}

dram_region :=dram_region_for(eid);
if (owner[dram_region] 6=metadata_enclave_id) {
result :=monitor_invalid_value; return;

}

/* BUG : missing check */
if (enclave_metadata_valid[eid]) {
result :=monitor_invalid_state; return;

}

/* BUG : missing check */
if (¬assigned(eid)) {
result :=monitor_invalid_value; return;

}

enclave_metadata_valid[eid] :=true;
enclave_metadata_thread_count[eid] :=0;
enclave_metadata_is_initialized[eid] :=false;
enclave_metadata_ev_base[eid] :=evbase;
enclave_metadata_ev_mask[eid] :=evmask;
enclave_metadata_bitmap[eid] :=k0_bitmap_t;
enclave_metadata_load_eptbr[eid] :=k0_ppn_t;
enclave_metadata_dram_region_count[eid] :=k0_word_t;
enclave_metadata_last_load_addr[eid] :=k0_paddr_t;
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/* do the measurement. */
measurement :=code_api_create_enclave;
measurement :=update_digest(enclave_metadata_thread_count[eid], measurement);
measurement :=update_digest(vaddr2int(evbase), measurement);
measurement :=update_digest(vaddr2int(evmask), measurement);
enclave_metadata_measurement[eid] :=measurement;

result :=monitor_ok; return;
}

procedure _clear_mapped_pages(ptbr : ppn_t);
modifies ptbl_acl_map;
ensures (∀ p : ppn_t, v : vpn_t •

if p =ptbr
then ptbl_acl_map[p, v] =k_pg_invalid_acl
else ptbl_acl_map[p, v] =old(ptbl_acl_map)[p, v]);

procedure _clear_page(ppn : ppn_t);
modifies mem;
ensures (∀ pa : wap_addr_t •

if wpaddr2ppn(pa) =ppn
then mem[pa] =k0_word_t
else mem[pa] =old(mem)[pa]);

procedure { : inline 1} load_page_table(eid : enclave_id_t, vaddr : vaddr_t, paddr : paddr_t, acl : pte_acl_t, level : int)
returns (result : api_result_t)
modifies enclave_metadata_load_eptbr, cpu_ptbr;
modifies enclave_metadata_measurement;
modifies ptbl_addr_map, ptbl_acl_map;

ensures ((core_info_enclave_id 6=null_enclave_id) ∨
(level < 0 ∨level > 2) ∨
¬is_dram_address(paddr) ∨
¬is_page_aligned_pa(paddr) ∨
(eid 6=null_enclave_id ∧¬is_valid_enclave_id(enclave_metadata_valid, eid)) ∨
(eid =null_enclave_id ∧level 6=2) ∨
(enclave_metadata_is_initialized[eid]) ∨
(owner[dram_region_for(paddr)] 6=eid ∧level > 0) ∨
(level 6=2 ∧
((eid =null_enclave_id ∧cpu_ptbr =k0_ppn_t) ∨
(eid 6=null_enclave_id ∧enclave_metadata_load_eptbr[eid] =k0_ppn_t))))
=⇒(result 6=monitor_ok);

{
var pte : word_t;
var ptbr : ppn_t;
var eptbr_p : ppn_t;
var paddr_region : region_t;
var eid_region : region_t;
var success : bool;
var measurement : measurement_t;
var new_ptbl_acl_map : ptbl_acl_map_t;

//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (level < 0 ∨level > 2) {
result :=monitor_invalid_value;
return;

}

if (¬is_dram_address(paddr)) {
result :=monitor_invalid_value; return;

}

if (¬is_page_aligned_pa(paddr)) {
result :=monitor_invalid_value; return;

}

// valid enclave?
if (eid 6=null_enclave_id ∧¬is_valid_enclave_id(enclave_metadata_valid, eid)) {
result :=monitor_invalid_value;
return;

}

if (eid =null_enclave_id ∧level 6=2) {
result :=monitor_invalid_value;
return;

}

if (enclave_metadata_is_initialized[eid]) {
result :=monitor_invalid_state;
return;

}
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// FIXME : verify this.
// we don’t own this region so can’t allow page tables to be outside it.
paddr_region :=dram_region_for(paddr);
if (owner[paddr_region] 6=eid ∧level > 0) {
result :=monitor_invalid_value;
return;

}

if (level 6=2 ∧
((eid =null_enclave_id ∧cpu_ptbr =k0_ppn_t) ∨
(eid 6=null_enclave_id ∧enclave_metadata_load_eptbr[eid] =k0_ppn_t)))

{
result :=monitor_invalid_state;
return;

}

if (level =2) {
if (eid =null_enclave_id) {
cpu_ptbr :=paddr2ppn(paddr);

} else {
enclave_metadata_load_eptbr[eid] :=paddr2ppn(paddr);
call _clear_mapped_pages(paddr2ppn(paddr));
assert (∀ p : ppn_t, v : vpn_t •if p =paddr2ppn(paddr)

then ptbl_acl_map[p, v] =k_pg_invalid_acl
else ptbl_acl_map[p, v] =old(ptbl_acl_map)[p, v]);

assert (∀ e : enclave_id_t •e 6=eid =⇒enclave_metadata_load_eptbr[e] =old(enclave_metadata_load_eptbr[e]));
}
result :=monitor_ok;

} else {
ptbr :=if (eid =null_enclave_id) then cpu_ptbr else enclave_metadata_load_eptbr[eid];
// update page tables.
call success :=create_page_table_mapping(ptbr, vaddr, paddr, acl);
result :=if (success) then monitor_ok else monitor_unknown_error;
// update measurement.
measurement :=enclave_metadata_measurement[eid];
measurement :=update_digest(measurement, code_api_load_page_table);
measurement :=update_digest(pte_acl2int(acl), measurement);
measurement :=update_digest(vaddr2int(vaddr), measurement);
enclave_metadata_measurement[eid] :=measurement;

assert (result =monitor_ok =⇒ptbl_acl_map[enclave_metadata_load_eptbr[eid], vaddr2vpn(vaddr)] =acl);
assert (result =monitor_ok =⇒translate_vaddr2paddr(ptbl_addr_map, enclave_metadata_load_eptbr[eid], vaddr) =

(paddr2ppn(paddr) ++ vaddr2offset(vaddr)));
}

}

//api_result_t load_page(enclave_id_t enclave_id, uintptr_t phys_addr, uintptr_t virtual_addr, uintptr_t os_addr, uintptr_t acl);
procedure load_page_impl(eid : enclave_id_t, vaddr : vaddr_t, src_paddr : paddr_t)
returns (result : api_result_t);
modifies mem;
ensures ((core_info_enclave_id 6=null_enclave_id) ∨

(¬is_page_aligned_va(vaddr)) ∨
(¬is_dram_address(src_paddr)) ∨
(¬is_page_aligned_pa(src_paddr)) ∨
(eid =null_enclave_id ∨¬is_valid_enclave_id(enclave_metadata_valid, eid)) ∨
(enclave_metadata_is_initialized[eid]) ∨
(¬is_in_evrange(enclave_metadata_ev_base[eid], enclave_metadata_ev_mask[eid], vaddr)) ∨
(enclave_metadata_load_eptbr[eid] =k0_ppn_t) ∨
(¬acl2valid(ptbl_acl_map[enclave_metadata_load_eptbr[eid], vaddr2vpn(vaddr)]))) ⇐⇒
(result 6=monitor_ok);

ensures (result 6=monitor_ok) =⇒(mem =old(mem));
ensures (result =monitor_ok) =⇒

(∀ p : wap_addr_t •
if (wpaddr2ppn(p) =ptbl_addr_map[enclave_metadata_load_eptbr[eid], vaddr2vpn(vaddr)])

then (mem[p] =mem[paddr2ppn(src_paddr) ++ wpaddr2offset(p)])
else (mem[p] =old(mem)[p]));

procedure { : inline 1} load_page(eid : enclave_id_t, vaddr : vaddr_t, src_paddr : paddr_t)
returns (result : api_result_t)
modifies mem;
modifies enclave_metadata_measurement;
ensures ((core_info_enclave_id 6=null_enclave_id) ∨

(¬is_page_aligned_va(vaddr)) ∨
(¬is_dram_address(src_paddr)) ∨
(¬is_page_aligned_pa(src_paddr)) ∨
(eid =null_enclave_id ∨¬is_valid_enclave_id(enclave_metadata_valid, eid)) ∨
(enclave_metadata_is_initialized[eid]) ∨
(¬is_in_evrange(enclave_metadata_ev_base[eid], enclave_metadata_ev_mask[eid], vaddr)) ∨
(enclave_metadata_load_eptbr[eid] =k0_ppn_t) ∨
(¬acl2valid(ptbl_acl_map[enclave_metadata_load_eptbr[eid], vaddr2vpn(vaddr)]))) ⇐⇒
(result 6=monitor_ok);

ensures (result 6=monitor_ok) =⇒(mem =old(mem));
ensures (result =monitor_ok) =⇒
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(∀ p : wap_addr_t •
if (wpaddr2ppn(p) =ptbl_addr_map[enclave_metadata_load_eptbr[eid], vaddr2vpn(vaddr)])

then (mem[p] =mem[paddr2ppn(src_paddr) ++ wpaddr2offset(p)])
else (mem[p] =old(mem)[p]));

{
var m : measurement_t;
call result :=load_page_impl(eid, vaddr, src_paddr);
if (result =monitor_ok) {

m :=enclave_metadata_measurement[eid];
m :=update_digest(m, code_api_load_page);
m :=update_digest(m, vaddr2int(vaddr));
call m :=measure_mem(m, paddr2wpaddr(src_paddr), mem, kPGSZ_wap_addr_t);
//enclave_metadata_measurement[eid] :=m;

}
}

procedure { : inline 1} assign_dram_region(region : region_t, new_owner : enclave_id_t)
returns (result : api_result_t)
modifies owner, enclave_metadata_bitmap, os_bitmap, cpu_drbmap;

{
//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬is_valid_dram_region(region)) {
result :=monitor_invalid_value; return;

}

if (¬enclave_metadata_valid[new_owner]) {
result :=monitor_invalid_value; return;

}

if (enclave_metadata_is_initialized[new_owner]) {
result :=monitor_invalid_state; return;

}

//can only assign free dram regions
if (owner[region] 6=free_enclave_id) {
result :=monitor_invalid_state; return;

}

owner[region] :=new_owner;
if (new_owner =null_enclave_id) {
os_bitmap :=bitmap_set_bit(os_bitmap, region);
cpu_drbmap :=os_bitmap;

} else {
enclave_metadata_bitmap[new_owner] :=bitmap_set_bit(enclave_metadata_bitmap[new_owner], region);

}

result :=monitor_ok;
}

procedure { : inline 1} load_thread(eid : enclave_id_t, tid : thread_id_t, entry_pc : vaddr_t, entry_stack : vaddr_t, fault_pc : vaddr_t,
fault_stack : vaddr_t)

returns (result : api_result_t)
modifies thread_metadata_valid,

thread_metadata_eid,
thread_metadata_entry_pc,
thread_metadata_entry_stack,
thread_metadata_fault_pc,
thread_metadata_fault_stack,
enclave_metadata_thread_count,
enclave_metadata_measurement;

{
var measurement : measurement_t;

// must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬is_valid_enclave_id(enclave_metadata_valid, eid)) {
result :=monitor_invalid_value; return;

}

if (enclave_metadata_is_initialized[eid]) {
result :=monitor_invalid_state; return;

}
//if (enclave_metadata_load_eptbr[eid] =k0_paddr_t) {
// result :=monitor_invalid_state; return;
//}
// tid’s are integers and not pointers.
//if (tid 6=enclave_metadata_thread_count[eid]) {
// result :=monitor_invalid_state; return;
//}
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// set thread metadata.
thread_metadata_valid[tid] :=true;
thread_metadata_eid[tid] :=eid;
thread_metadata_entry_pc[tid] :=entry_pc;
thread_metadata_entry_stack[tid] :=entry_stack;
thread_metadata_fault_pc[tid] :=fault_pc;
thread_metadata_fault_stack[tid] :=fault_stack;
// enclave metadata.
enclave_metadata_thread_count[eid] :=enclave_metadata_thread_count[eid] + 1;
// update measurement.
measurement :=enclave_metadata_measurement[eid];
measurement :=update_digest(code_api_load_thread, measurement);
measurement :=update_digest(vaddr2int(entry_pc), measurement);
measurement :=update_digest(vaddr2int(entry_stack), measurement);
measurement :=update_digest(vaddr2int(fault_pc), measurement);
measurement :=update_digest(vaddr2int(fault_stack), measurement);
measurement :=update_digest(enclave_metadata_thread_count[eid], measurement);
enclave_metadata_measurement[eid] :=measurement;

result :=monitor_ok;
}

procedure { : inline 1} init_enclave(eid : enclave_id_t)
returns (result : api_result_t)
modifies enclave_metadata_is_initialized;

{
//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬assigned(eid) ∨¬is_valid_enclave_id(enclave_metadata_valid, eid)) {
result :=monitor_invalid_state; return;

}
if (enclave_metadata_is_initialized[eid]) {
result :=monitor_invalid_state; return;

}
if (owner[dram_region_for(enclave_metadata_load_eptbr[eid] ++ 0bv12)] 6=eid) {
result :=monitor_invalid_state; return;

}

enclave_metadata_is_initialized[eid] :=true;
result :=monitor_ok;

}

procedure { : inline 1} enter_enclave(eid : enclave_id_t, tid : thread_id_t)
returns (result : api_result_t)
modifies core_info_enclave_id,

core_info_thread_id,
cpu_evbase,
cpu_evmask,
cpu_edrbmap,
cpu_eptbr,
rip;

{
//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

if (¬assigned(eid) ∨¬is_valid_enclave_id(enclave_metadata_valid, eid)) {
result :=monitor_invalid_value; return;

}
if (¬enclave_metadata_valid[eid] ∨
¬thread_metadata_valid[tid] ∨
thread_metadata_eid[tid] 6=eid)

{
result :=monitor_invalid_state; return;

}
if (¬enclave_metadata_is_initialized[eid]) {
result :=monitor_invalid_state; return;

}

core_info_enclave_id :=eid;
core_info_thread_id :=tid;
cpu_evbase :=enclave_metadata_ev_base[eid];
cpu_evmask :=enclave_metadata_ev_mask[eid];
cpu_edrbmap :=enclave_metadata_bitmap[eid];
cpu_eptbr :=enclave_metadata_load_eptbr[eid];
// FIXME : cpu_ptbr? What happens to this?

rip :=thread_metadata_entry_pc[tid];

result :=monitor_ok;
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}

procedure { : inline 1} exit_enclave()
returns (result : api_result_t)
modifies core_info_enclave_id, rip;

{
//must be called by OS
if (core_info_enclave_id =null_enclave_id) {
result :=monitor_invalid_value; return;

}

core_info_enclave_id :=null_enclave_id;
rip :=os_pc;
result :=monitor_ok;

}

procedure { : inline 1} block_dram_region(region : region_t)
returns (result : api_result_t)
modifies owner,

enclave_metadata_bitmap,
os_bitmap, cpu_drbmap,
cpu_edrbmap, blocked_at,
dram_regions_info_block_clock;

{
if (¬is_dynamic_dram_region(region)) {
result :=monitor_invalid_value; return;

}

if (owner[region] 6=core_info_enclave_id) {
result :=monitor_access_denied; return;

}

if (owner[region] =null_enclave_id) {
os_bitmap :=bitmap_clear_bit(os_bitmap, region);
cpu_drbmap :=os_bitmap;

} else {
enclave_metadata_bitmap[owner[region]] :=bitmap_clear_bit(enclave_metadata_bitmap[owner[region]], region);
cpu_edrbmap :=enclave_metadata_bitmap[owner[region]];

}

owner[region] :=blocked_enclave_id;
blocked_at[region] :=dram_regions_info_block_clock;
dram_regions_info_block_clock :=dram_regions_info_block_clock + 1;

result :=monitor_ok;
}

// Frees a DRAM region that was previously blocked.
procedure free_dram_region(region : region_t)
returns (result : api_result_t);
modifies owner, mem; //, os_bitmap;
ensures (result =monitor_ok ∨result =monitor_invalid_value ∨result =monitor_invalid_state);
ensures (is_valid_dram_region(region) ∧old(owner)[region] =blocked_enclave_id ∧core_flushed_at ≥blocked_at[region])

⇐⇒(result =monitor_ok);
ensures (result 6=monitor_ok) =⇒(owner =old(owner));
ensures (result 6=monitor_ok) =⇒(mem =old(mem));
//ensures (result 6=monitor_ok) =⇒(os_bitmap =old(os_bitmap));
ensures (result =monitor_ok) =⇒

(∀ r : region_t •if r =region then owner[r] =free_enclave_id
else owner[r] =old(owner)[r]);

ensures (result =monitor_ok) =⇒
(∀ p : wap_addr_t •if dram_region_for_w(p) =region

then mem[p] =k0_word_t
else mem[p] =old(mem)[p]);

//ensures (result =monitor_ok) =⇒
// (os_bitmap =bitmap_set_bit(os_bitmap, region));

procedure { : inline 1} flush_cached_dram_regions()
returns (result : api_result_t)
modifies core_flushed_at;

{
//must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}

//hardware TLB flush, which we won’t model
core_flushed_at :=dram_regions_info_block_clock;
result :=monitor_ok;

}

procedure { : inline 1} delete_thread(tid : thread_id_t)
returns (result : api_result_t)
modifies thread_metadata_valid, enclave_metadata_thread_count;

{
var eid : enclave_id_t;
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// must be called by OS
if (core_info_enclave_id 6=null_enclave_id) {
result :=monitor_invalid_value; return;

}
// is this a valid thread?
if (¬thread_metadata_valid[tid]) {
result :=monitor_invalid_value; return;

}
// find enclave id.
eid :=thread_metadata_eid[tid];
// (for now), can only be called before initialization.
if (enclave_metadata_is_initialized[eid]) {
result :=monitor_invalid_state; return;

}

thread_metadata_valid[tid] :=false;
enclave_metadata_thread_count[eid] :=enclave_metadata_thread_count[eid] - 1;
result :=monitor_ok;

}

procedure delete_enclave(eid : enclave_id_t)
returns (result : api_result_t);
modifies enclave_metadata_valid, enclave_metadata_is_initialized, owner;

// result is one of these values.
ensures (result =monitor_ok ∨result =monitor_invalid_value ∨result =monitor_invalid_state);
// conditions for success.
ensures (core_info_enclave_id =null_enclave_id ∧

assigned(eid) ∧
old(enclave_metadata_valid)[eid] ∧
enclave_metadata_thread_count[eid] =0) ⇐⇒
(result =monitor_ok);

// no changes upon failure.
ensures (result 6=monitor_ok) =⇒

(enclave_metadata_valid =old(enclave_metadata_valid) ∧
enclave_metadata_is_initialized =old(enclave_metadata_is_initialized) ∧
owner =old(owner));

// must destroy enclave metadata on success.
ensures (result =monitor_ok) =⇒¬enclave_metadata_valid[eid];
ensures (result =monitor_ok) =⇒¬enclave_metadata_is_initialized[eid];
ensures (result =monitor_ok) =⇒(∀ ri : region_t •owner[ri] 6=eid);
ensures (result =monitor_ok) =⇒

(∀ ri : region_t •
if old(owner)[ri] =eid

then owner[ri] =blocked_enclave_id
else owner[ri] =old(owner)[ri]);

// change only enclave metadata for e.
ensures (∀ e : enclave_id_t •e 6=eid =⇒

(enclave_metadata_valid[e] =old(enclave_metadata_valid[e])));
ensures (∀ e : enclave_id_t •e 6=eid =⇒

(enclave_metadata_is_initialized[e] =old(enclave_metadata_is_initialized[e])));
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Appendix D

Proof of Theorem 3 and Theorem 4

D.1 Preliminaries
While we have a machine-checked proof of Theorem 3 and Theorem 4 (stated in Chap-

ter 8), we describe our proof skeleton in this chapter. We prove both Theorem 3 and 4 by
performing automated verification on a meta-program, which is specified using BoogiePL
syntax [14]. Since the language used to specify UM (defined in Figure 3) is not BoogiePL,
we first define the BoogiePL equivalent of each statement in our language.

• reg := load(a) is syntactic sugar for reg := mem[a].

• store(a, d) is syntactic sugar for mem := mem[a := d].

• jmp l is syntactic sugar for rip := l, where rip is the instruction pointer

• call l is syntactic sugar for rsp := rsp− 8; mem[rsp] := next(rip); rip := l, where next
returns the next x64 instruction.

• ret is syntactic sugar for rip := mem[rsp]; rsp := rsp + 8.

• havoc φ statement scrambles all memory locations specified by predicate φ. Intuitively,
this creates a new memory mem′ whose content is the same as in memory mem for all
addresses that do not satisfy φ, as follows:

assume ∀a. ¬φ(a)⇒ mem′[a] = mem[a];

mem := mem′

assert, assume and skip statements are present in BoogiePL, and are semantically equiva-
lent.
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D.2 Proof of Theorem 3
We prove Theorem 3 by performing automated verification on a meta-program, which

we describe below. The meta-program models all possible user programs UM using non-
deterministic choice of instruction sequences, and asserts the condition needed to prove The-
orem 3. We prove the assertion of the meta-program using the Boogie program verifier [14],
thus proving Theorem 3.

We describe the structure of the meta-program p1 in Figure D.1 (written in Boogie
syntax). Program p1 models an arbitrary execution of UM i.e. each trace of UM is an
allowed trace of p1. To model unbounded length executions containing arbitrary state-
ments, p1 has a while loop (line 10) that arbitrarily chooses a statement from the set
{call l, ret, jmp l, reg := a, store(a, d), reg := load(a), havoc mem¬evrange and executes it with
symbolic values for arguments of the statement (e.g. a in reg := load(a)). The symbolic
values are unconstrained—we havoc them in each iteration (line 13). A call may either
target a procedure in UM (line 31) or an API of L (lines 37, 39, 41, 44). In the case of call to
a procedure in UM , we transfer control to the new procedure and continue execution (as a
processor would do). In the case of call to L’s API, the call is modeled by havocing memory
and registers and assuming the postconditions of the API (because the postconditions of L
are proved correct separately).

The intuition behind the proof is as follows. Theorem 3 states that if UM satisfies
WCFI-RW and L satisfies the functional correctness properties (given in Section 8.2.2), then
UM can only modify non-enclave memory by invoking the send API of L or by having M
invoke havoc mem¬evrange. In order to make an arbitrary UM satisfy WCFI-RW, we effectively
compose UM with the monitor automaton W (defined in Definition 6). That is, each state-
ment of UM must also satisfy the validity check on the corresponding transition in W . This
is encoded as assume statements in p1 (lines 19, 22, 25, 28, 31, 34, 37, 39, 41, 44). To prove
this theorem, we prove that for any statement i ∈ instr(π), if the validity checks in W are
valid, then executing that statement preserves IRC.

We prove Theorem 3 inductively by asserting the IRC property after each statement
of UM in line 51. After manually supplying the loop invariant legal(rip) && AddrInU(rsp),
Boogie is able to verify this program. The loop invariant guarantees that the input received
by W corresponds to the instruction executed by the processor, making our meta program
p1 sound. Temporal induction on the length of UM ’s execution establishes that either an
assert in p1 will fail, or p1 will over-approximate an arbitrary UM .

D.3 Proof of Theorem 4
We prove Theorem 4 by performing automated verification on a meta-program, which

we describe below. The meta-program models all possible user programs UM using non-
deterministic choice of instruction sequences, and asserts the conditions needed to prove
Theorem 4. We prove the assertions of the meta-program using the Boogie program veri-
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fier [14], thus proving the theorem.
The proof of Theorem 4 uses induction over the length of an execution. Theorem 4 states

that any execution π (of unbounded length) that satisfies each assertion in I(instr(π)) must
satisfy WCFI-RW. To prove this theorem, we prove that for any statement i ∈ instr(π),
if the assertions in I(i) are valid, then there exists a valid transition in W on input i.
Our meta-program models this by assuming that the assertions in I(i) are valid, and then
asserting the validity check on the corresponding transition inW . To that end, we introduce
Î : Instr → Instr , which replaces each occurrence of assert in the definition of I with
assume.

We describe the structure of the meta-program p2 in Figure D.2 (written in Boogie
syntax). Program p2 models the execution of an arbitrary procedure of UM . The execution
of a procedure starts with a call statement (line 8) and ends in a ret statement (line 34), with
an unbounded number of statements in between. To model unbounded length executions
containing arbitrary statements, p2 has a while loop (line 10) that arbitrarily chooses a
statement from the set {call l, ret, jmp l, reg := e, store(a, d), reg := load(a)} and executes it
with symbolic values for arguments of the statement (e.g. a in reg := load(a)). The symbolic
values are unconstrained—we havoc them in each iteration (line 19). Calling a procedure
of UM is modeled by recursively calling p itself (line 31). This recursive call allows p2 to
encode executions of UM that reach arbitrary stack depths. We also allow p2 to call APIs
of L, but this can also be modeled as a recursive call to p — we additionally check that the
functional contracts on L imply the postcondition φ (lines 37, 38, 39, 40) Note that we also
assume that UM cannot read from L’s memory (line 25), which is automatically enforced by
the CPU based on the configuration of the page tables.

The justification of why p2 models an arbitrary UM involves an inductive use of WCFI-RW
itself. The argument requires that: (1) UM cannot jump into the code of L at locations other
than the entrypoints of L and (2) UM follows a stack discipline of procedure calls and returns.
Each of these properties are assumed for the construction of p2 but also asserted by p2 itself.
For each control transfer statement in UM (call and jmp ) the policy constrains the target
location. Further, the assertions on ret enforce the stack discipline. Temporal induction on
the length of U’s execution establishes that that either an assertion in p2 will fail, or it will
over-approximate an arbitrary UM .

We manually supply an inductive invariant (lines 11, 14, 17), after which Boogie is able
to proves all assertions in p2, thereby proving Theorem 4.
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1 var mem: [bv64] bv8,
2 var rax, rsp, ...: bv64;
3 var rip: bv64;
4 procedure U();
5 modifies mem, rax, rsp, rip, ... ;
6 {
7 var addr, data, target: bv64;
8 var buf, size: bv64;
9

10 while (*)
11 invariant legal(rip) && AddrInU(rsp);
12 {
13 havoc a, d, l;
14 mem_old := mem;
15 is_send := false;
16 is_havoc := false;
17
18 if (*) {
19 assume ψrsp

20 rsp := a;
21 } else if (*) {
22 assume ψload;
23 rax/... := load(a);
24 } else if (*) {
25 assume ψstore;
26 store(a,d);
27 } else if (*) {
28 assume ψjmp;
29 jmp l;
30 } else if (*) {
31 assume ψcall;
32 call l;
33 } else if (*) {
34 assume ψret;
35 ret;
36 } else if (*) {
37 havoc mem, rax,...; assume ψmalloc;
38 } else if (*) {
39 havoc mem, rax,...; assume ψfree;
40 } else if (*) {
41 havoc mem, rax,...; assume ψsend;
42 is_send := true;
43 } else if (*) {
44 havoc mem, rax,...; assume ψrecv;
45 } else if (*) {
46 havoc mem;
47 assume ∀i. ¬evrange(i)⇒ mem[i] = mem_old[i];
48 is_havoc := true;
49 }
50
51 assert (¬is_send && ¬is_havoc) ⇒
52 (∀i. ¬evrange(i) ⇒ mem[i] = mem_old[i]);
53 }
54 }

Figure D.1 : Meta Program p1
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1 var mem: [bv64] bv8, rax: bv64, ...;
2 procedure p() ensures φ;
3 modifies mem, rax...;
4 {
5 var a, d, l;
6 var old_rsp: bv64;
7 var mem_old : [bv64] bv8;
8 Î(call p); assert ψcall;
9 old_rsp := rsp; mem_old := mem;

10 while (*)
11 invariant
12 ∀i. (AddrInStack(i) && i >= old_rsp) ⇒
13 (writable(mem,i) = writable(mem_old,i));
14 invariant
15 ∀i (AddrInStack(i) && i >= old_rsp + 40 && ¬writable(mem,i)) ⇒
16 (mem[i] = old_mem[i]);
17 invariant rsp <= old_rsp && rsp[3:0] = 000;
18 {
19 havoc a, d, l;
20 memold := mem; bsend := false;
21 if (*) {
22 Î(rsp := d); assert ψrsp;
23 } else if (*) {
24 Î(rax/... := load(a));
25 assume ¬AddrInL(a); assert ψload;
26 } else if (*) {
27 Î(store(a,d)); assert ψstore;
28 } else if (*) {
29 Î(jmp l); assert ψjmp;
30 } else if (*) {
31 havoc mem, rax,...; assume φ
32 }
33 }
34 Î(ret); assert ψret;
35 }
36
37 assert ψmalloc ⇒ φ;
38 assert ψfree ⇒ φ;
39 assert ψsend ⇒ φ;
40 assert ψrecv ⇒ φ;

Figure D.2 : Meta Program p2
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