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Abstract

Climate extremes such as drought and heat waves can cause substantial 
reductions in terrestrial carbon uptake. Advancing projections of the carbon 
uptake response to future climate extremes depends on (1) identifying 
mechanistic links between the carbon cycle and atmospheric drivers, (2) 
detecting and attributing uptake changes, and (3) evaluating models of land 
response and atmospheric forcing. Here, we combine model simulations, 
remote sensing products, and ground observations to investigate the impact 
of climate variability on carbon uptake in the Texas‐northern Mexico region. 
Specifically, we (1) examine the relationship between drought, carbon 
uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North 
Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator 
(JULES) biosphere simulations from 1950–2012, (2) quantify changes in 
carbon uptake during record drought conditions in 2011, and (3) evaluate 
JULES carbon uptake and soil moisture in 2011 using observations from 
remote sensing and a network of flux towers in the region. Long‐term 
simulations reveal systematic decreases in regional‐scale carbon uptake 
during negative phases of ENSO and NAO, including amplified reductions of 
gross primary production (GPP) (−0.42 ± 0.18 Pg C yr−1) and net ecosystem 
production (NEP) (−0.14 ± 0.11 Pg C yr−1) during strong La Niña years. The 
2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C 
yr−1) and NEP (−0.23 Pg C yr−1) in our simulations. In 2011, consistent 
declines were found in observations, including high correlation of GPP and 
surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based 
products. These results suggest a large‐scale response of carbon uptake to 
ENSO and NAO, and highlight a need to improve model predictions of ENSO 



and NAO in order to improve predictions of future impacts on the carbon 
cycle and the associated feedbacks to climate change.

1 Introduction

Terrestrial ecosystem feedbacks to environmental changes result in global 
carbon sinks that are thought to mitigate greenhouse gas warming, but 
climate extremes such as drought and heat waves can cause substantial 
changes in regional carbon stocks that could release CO2 to the atmosphere 
and potentially negate current and future sinks [Reichstein et al., 2013; 
Schwalm et al., 2012; Zscheischler, 2014a]. In North America, which 
represents a net sink of CO2 in the present climate [Xiao et al., 2011; King et 
al., 2015], variations in carbon uptake are linked to changes in precipitation 
that affect ecosystem productivity [Knapp et al., 2002; Xiao et al., 2011; 
Schwalm et al., 2011]. In the western and Great Plains regions, declines in 
carbon sinks are observed during drought associated with drying and loss of 
productivity in croplands and grasslands [Craine et al., 2012; Schwalm et al., 
2012; Rajan et al., 2013]. Droughts over the Great Plains, a key agricultural 
sector in the United States with a total market value of about $92 billion 
[U.S. Department of Agriculture, 2014], represent a threat to food security 
and energy production [Smith and Katz, 2013]. In the southern Great Plains 
region, which includes northern Mexico and Texas (denoted the TexMex 
domain, Figure 1, (106°W–93°W, 26°N–38°N), including Texas and 
surrounding grid cells), dramatic increases in the intensity and frequency of 
droughts are expected over the next century [Seneviratne et al., 2012; 
Collins et al., 2013]. Thus, projected drying will add stress to already limited 
water resources, affect management choices related to irrigation, municipal 
use, and energy generation [Colby and Tanimoto, 2011; Shafer et al., 2014], 
and potentially exacerbate climate‐carbon feedbacks [Collins et al., 2013]. 
To obtain more reliable estimates of the sign and magnitude of future carbon
cycle feedbacks and to improve drought preparedness in this critical 
agricultural region, improved quantification of the relationship between 
carbon uptake and drought in TexMex within the present climate is needed.



Historically, climate models have failed to predict record droughts in TexMex 
[Hoerling et al., 2013; Seager et al., 2014]. It has been hypothesized that 
anomalies in atmospheric circulation patterns over the Great Plains related 
to ocean thermal forcing, atmospheric internal variability, and land‐



atmosphere feedbacks play important and underrepresented roles [Seager 
et al., 2014]. The most commonly accepted cause of drought in TexMex has 
been cold tropical Pacific sea surface temperature (SST) anomalies 
associated with La Niña patterns, which can coalesce with other SST 
anomalies in the Atlantic and Indian Oceans and lead to extreme droughts 
[Nigam et al., 2011, and references therein]. La Niñas are characterized by 
anticyclonic high anomalies in the North Pacific that merge with a zonal band
of high pressure across North America into the mid‐Atlantic Ocean [Seager et
al., 2014]. This typically leads to dry conditions in southern parts of North 
America, especially along the Gulf Coast, with peak drying in winter, weak 
drying in spring, and a return to normal conditions in summer.

However, La Niñas do not necessarily lead to summer droughts, and some 
severe to extreme droughts occurred without clear forcing from SST 
anomalies [e.g., Namias, 1991]. These droughts have been often attributed 
to atmospheric internal variability including negative winter phases of the 
North Atlantic Oscillation (NAO) [Hoerling et al., 2013; Seager et al., 2014], 
which help initiate or intensify droughts, and land surface feedbacks [e.g., 
Myoung and Nielsen‐Gammon, 2010, and references therein], which can 
sustain droughts. The NAO is characterized by positive geopotential height 
anomalies over the Icelandic region and below normal heights in the western
Atlantic and across eastern and southern North America [Hurrell and Deser, 
2009]. The resulting decreased pressure gradient reduces the westerlies and
causes high‐latitude blocking of storm tracks, which drives advection of cold 
and dry air from Alaska and Canada into the United States and can lead to 
negative precipitation anomalies in TexMex. Through land‐atmosphere 
feedbacks, low soil moisture availability and evapotranspiration (ET) can feed
back onto the atmospheric processes controlling clouds, rainfall, and 
radiation, which can reinforce drying [Seneviratne et al., 2010]. Reduced 
stomatal conductance through increased vapor pressure deficit can lead to 
additional reductions of ET rates across the land surface [Sellers et al., 
1997]. Modeling the impact of these processes on drought persistence relies 
fundamentally on the ability to represent soil moisture‐vegetation 
interactions.

In 2011, TexMex experienced one of the worst droughts on record (denoted 
as TMD11), with severe drought conditions lasting from winter 2010‐2011 
through fall 2011 and with record low precipitation (40% of average) during 
the 2011 water year [Long et al., 2013]. Although short relative to the 
record‐setting multiyear droughts of the 1930s and 1950s, TMD11 was the 
worst drought period in the region since the mid‐1950s [LeComte, 2012]. 
Abnormally dry conditions persisted from winter through summer, with 
record warm summer temperatures throughout TexMex [Hoerling et al., 
2013; Seager et al., 2014].

The abnormally dry conditions during peak rainy months in late winter/early 
spring cut off a critical supply of soil moisture for plants and agriculture 
during the summer growing season [Long et al., 2013], leading to $7.6 billion



in agricultural losses [Fannin, 2012] and conversion of a pasture site in 
northern Texas from a CO2 sink in 2012 to a source in 2013 driven by 
declines in gross primary production (GPP) [Rajan et al., 2013]. 
Semiempirical evidence suggests that drought‐induced GPP loss was 
widespread and significant, likely impacting the entire TexMex region and 
representing one of the largest negative spatiotemporal GPP anomalies over 
the last 30 years in North America [Zscheischler et al., 2014a].

During typical TexMex droughts the primary forcing mechanisms of La Niña, 
internal atmospheric variability, and land surface feedbacks work separately.
TMD11, however, was likely driven by a combination of all three, with 
drought onset in winter and spring forced initially by La Niña, and then 
sustained and likely exacerbated into summer by atmospheric moisture 
divergence across the TexMex region related to the negative phase of the 
NAO in winter 2010‐2011 and land surface feedbacks [Hoerling et al., 2013; 
Seager et al., 2014]. TMD11 was well represented in models constrained by 
observed SST anomalies and atmospheric observational reanalysis but poorly
represented in coupled climate models [Hoerling et al., 2013].

These studies imply a regional‐scale (~1000 km's) sensitivity of semiarid 
ecosystem productivity across the TexMex region to drought‐induced water 
stress associated with atmospheric circulation anomalies during negative 
phases of El Niño–Southern Oscillation (ENSO) and the NAO. This link has 
been observed at small scales in the case of TMD11, but it is unclear whether
there is a systematic regional‐scale response of net carbon uptake in TexMex
to variations of ENSO and the NAO.

Here we examine the regional‐scale carbon uptake response of TexMex 
region to La Niña and negative NAO events from 1950 to 2012. We first 
examine the relationship between drought, carbon uptake, and variability of 
ENSO and the NAO using simulations of the Joint UK Land‐Environment 
Simulator (JULES) terrestrial biosphere model from 1950 to 2012. This will 
help determine the sensitivity of TexMex carbon uptake to variations of La 
Niña and the NAO and provide a climatological context to evaluate the 
significance of the extreme 2011 drought event. Due to limitations in the 
predictability of ENSO and the NAO in free‐running climate models, JULES 
simulations are forced by observed climate to ensure proper atmospheric 
forcing and attribution of carbon uptake drivers. We then compare JULES 
predictions of carbon uptake and soil moisture to observations from flux 
towers and satellites during TMD11. Thus, TMD11 serves as a case study to 
evaluate JULES and to determine the predictability of the impact of 
meteorological drought on modeled soil moisture and carbon uptake.

We ask four main questions: (1) Are large‐scale changes in TexMex carbon 
uptake linked fundamentally to water deficits associated with negative 
phases of ENSO and the NAO? And (2) are these relationships robust over the
climatological record? (3) Are carbon uptake changes during TMD11 present 
and detectable with remote sensing techniques and consistent with in situ 



measurements from flux towers? (4) How well does JULES predict this 
impact?

2 Methods

2.1 Approach

We first examine the relationship between La Niña, the NAO, drought, and 
carbon uptake using JULES simulations from 1950 to 2012, which provides a 
long time scale over which we seek to capture a large sample size of climate 
events and establish potentially statistically meaningful relationships. JULES 
predictions of soil moisture and carbon uptake anomalies during TMD11 are 
then evaluated against a suite of satellite and flux tower observations. Soil 
moisture anomalies are compared to measurements of total column and 
surface soil moisture from the Gravity Recovery and Climate Experiment 
(GRACE) and Soil Moisture and Ocean Salinity (SMOS) satellites, respectively.
GPP and net ecosystem production (NEP) are evaluated at local scale against
eddy covariance flux tower sites. GPP is also evaluated regionally using 
observations of canopy photosynthesis derived from satellite retrievals of 
solar‐induced chlorophyll fluorescence (SIF) from the Greenhouse gases 
Observing SATellite (GOSAT). All model and observation time series are 
based on the average of pixels within the TexMex domain (106°W–93°W, 
26°N–38°N).

2.2 Observations

2.2.1 Regional Carbon Uptake

Simulations of regional GPP anomalies are evaluated against three remote 
sensing‐based GPP estimates. The first, denoted GOPT, is derived from an 
ensemble of terrestrial biosphere models constrained by GOSAT SIF 
measurements. The second, denoted MOD17 (Moderate Resolution Imaging 
Spectroradiometer (MODIS) MOD17A2 GPP product), is derived from a light 
use efficiency model constrained by MODIS canopy greenness observations. 
The third, denoted as Max Planck Institute (MPI), is derived from a flux tower 
data based upscaling approach using the Max Planck Institute for 
Biogeochemistry (MPI‐BGC) model. These three semiempirical GPP estimates
are described in order below.

SIF is visible solar energy reemitted at longer wavelengths from the 
chlorophyll of assimilating leaves, and thus originates from the core 
complexes of the photosynthetic machinery. Global measurements of SIF 
have opened up the possibility to estimate the rate of planetary 
photosynthesis at increasing spatial resolution (down to ~10.5 km diameter 
in GOSAT), providing direct seasonal constraints on global GPP [Frankenberg 
et al., 2011]. Near global retrievals of SIF from GOSAT correlate strongly (r2 
= 0.80) at global annual scale with flux measurement‐based GPP 
extrapolated globally from the MPI approach [Frankenberg et al., 2011; Beer 
et al., 2010; Jung et al., 2011]. There are two key advantages for using SIF in 
the present study.



1. SIF is directly proportional to absorbed photosynthetically active 
radiation seen by chlorophyll, rather than the nonphotosynthesizing 
parts of the plant and/or soil/surfaces. Spaceborne SIF measurements 
are, therefore, sensitive only to variations in the rate of photosynthesis
rather than changes in reflectance not associated with vegetation. This
is an important benefit in sparsely vegetated semiarid regions such as 
TexMex.

2. SIF can be used to estimate actual photosynthesis rather than 
potential photosynthesis and can detect plant physiological effects and
plant productivity changes linked to water limitation and temperature 
stress [Daumard et al., 2010; Lee et al., 2013]. SIF remote sensing 
data, therefore, offers crucial insight into regional impacts of drought 
events such as TMD11.

For GOPT, we use a Bayesian analysis framework to estimate monthly 
averaged GPP at 5° × 4° grid spacing that optimally accounts for 
uncertainties in predictions of GPP from terrestrial biosphere models, 
estimates of GPP inferred from satellite observations of midday SIF, and 
relationships between SIF and GPP [Parazoo et al., 2014]. Here prior GPP is 
predicted from 1950 to 2012 using JULES (see below). Uncertainty is 
estimated using the spread of eight biosphere models from the TRENDY 
model intercomparison project over the period 2000–2009 
(http://dgvm.ceh.ac.uk/node/9) [Sitch et al., 2015]. Midday SIF is taken from 
GOSAT from 2009 to 2012 and scaled to monthly GPP using the empirical 
linear relationship with MPI GPP with careful accounting for uncertainties in 
SIF measurements and the MPI approach [Frankenberg et al., 2011; Parazoo 
et al., 2014].

We note that while this method provides an uncertainty range based on 
model climatology, the limited period of available model data means we are 
unable to account for possible changes in uncertainty during the 2011 
drought. However, this methodology does provide estimates of posterior 
uncertainty based on assimilation of year specific satellite SIF data, leading 
to significant uncertainty reductions (exceeding 50% in many cases) in 
regions where observational coverage and prior uncertainty are high. The 
combination of GOPT and uncertainty in this study provides a regional 
semiempirical GPP constraint, helps to quantify the significance of regional 
GPP changes, and provides a range of uncertainty for determining the 
significance of predicted GPP.

Although GOPT is constrained by critical satellite SIF measurements, it relies 
fundamentally on GPP output from terrestrial biosphere models, which in this
study is JULES. Consequently, GOPT cannot be used as an independent 
model evaluation product for regional GPP. For this, we rely on data sets 
from the MODIS MOD17A2 GPP product (MOD17) [Running et al., 2004; 
Myneni et al., 2007] and from the Biogeochemical Model‐Data Integration 
Group of the Max Planck Institute for Biogeochemistry (MPI) [Beer et al., 



2010; Jung et al., 2011]. Both the MOD17 and MPI GPP data sets rely on 
satellite‐derived estimates of the fraction of absorbed photosynthetically 
active radiation (FAPAR) to model GPP. MODIS GPP is based on the 
combination of tabulated light use efficiency with meteorological parameters
and FAPAR, whereas MPI GPP is produced by the global upscaling of flux 
tower measurements of CO2, water, and energy fluxes.

2.2.2 Regional Soil Moisture

Changes in soil water from 2009 to 2012 are derived from GRACE [Swenson 
and Wahr, 2006; Landerer and Swenson, 2012] and SMOS. GRACE, which 
consists of two satellites that monitor distances between each other to track 
temporal variation in Earth's gravity field [Tapley et al., 2004], provides 
global estimates of satellite‐derived changes in liquid water equivalent (LWE)
thickness (units of cm's) and therefore acts as a remote sensing drought 
indicator [e.g., Long et al., 2013]. We use 2009–2012 LWE from Release 05 
GRACE‐Tellus, which is provided at monthly resolution on a global 1° × 1° 
grid (data access from http://catds.ifremer.fr/Products/Products‐access).

SMOS is a passive microwave interferometer, using the band at 1.4 GHz [Kerr
et al., 2010]. It provides surface soil moisture (top 5 cm) at 6 A.M. and 6 P.M. 
and covers the entire Earth surface within 3 days. The satellite was launched 
in November 2009, and data are available since 2010. SMOS soil moisture 
from 2010 to 2011 is taken from the reprocessed Version 1 Level 3 Centre 
Aval de Traitement des Données (CATDS) aggregated monthly product on a 
25 km × 25 km equal area scalable Earth grid, using the average of 
ascending and descending orbits [Jacquette et al., 2010] (data access from 
www.catds.fr/sipad).

2.2.3 Flux Tower Measurements

We used direct measurements of half‐hourly net ecosystem productivity 
(NEP) from five eddy covariance flux tower sites in New Mexico (New Mexico 
Elevation Gradient) and Texas (Table 1) to quantify the biosphere‐
atmosphere CO2 exchange. GPP was estimated from measured nighttime 
NEP (total ecosystem respiration, TER) with extrapolated temperature 
response functions. These data were collected and processed as described in
Anderson‐Teixera et al. [2011], gap‐filled using meteorological data, and 
aggregated to monthly sums of CO2 exchange.



2.3 Biosphere Model Simulations

JULES (the Joint UK Land‐Environment Simulator) is the land surface model of
the Hadley Centre climate model [Cox et al., 2000; Cox, 2001; Essery et al., 
2003]. It simulates fluxes of carbon, water, and energy on nine tiles, 
including five plant functional types (broadleaf tree, needleleaf tree, C3 and 
C4 grasses, and shrub). The biophysics is based on Collatz et al. [1991, 
1992] for C3 and C4 photosynthesis. Potential (nonwater stressed) 
photosynthesis is calculated as a smoothed minimum of three rates: rubisco 
limited, light limited, and either rate of transport of photosynthetic products 
(for C3) or phosphoenolpyruvic acid carboxylase limitation (for C4). The 
JULES canopy has 10 layers, with the leaf area index for each being divided 
into sunlit and shaded fractions. A two‐stream approximation of radiation 
interception [Sellers, 1985] is used to calculate spectral albedos and 
absorbed incoming radiation for each layer, allowing for penetration of 
direct‐beam sunflecks into the canopy. A soil moisture stress factor directly 
reduces the potential photosynthesis rate. Leaf‐level net photosynthesis is 
related to stomatal conductance based on a CO2 diffusion equation and the 
leaf humidity deficit [Jacobs, 1994; Cox et al., 1998]. Within JULES, Top‐down 
Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) 
predicts fractional coverage of each plant functional type (PFT), soil carbon, 
vegetation carbon, and leaf area index. For each PFT, the change in 
fractional coverage is based on the net carbon available to it and a Lotka‐
Volterra competition scheme [Cox, 2001]. Soil carbon is modeled in four 
pools, and respiration is based on the RothC model. Full model details are 
available in Clark et al. [2011] and Best et al. [2011].

JULES is forced over the period 1860–2013 at 1.875° × 1.25° using a factorial
set of sensitivity simulations. Here we use monthly mean GPP output from 
“S3” simulations forced with changing CO2, land use change, and climate 
information from the Climatic Research Unit‐National Centers for 
Environmental Prediction (CRU‐NCEP) data set, representing the combination
of CRU TS.3.2 0.5° × 0.5° monthly climatology and NCEP reanalysis 2.5° × 
2.5° 6‐hourly data 
(ftp://nacp.ornl.gov/synthesis/2009/frescati/model_driver/cru_ncep/analysis/
readme.htm).



We are interested in anomalies of climate and ecosystem function during a 
subset of negative ENSO and NAO years relative to 1950–2012 climatology. 
To calculate anomalies over this period, data are deseasonalized (mean 
seasonal average removed), averaged temporally over the period of interest,
and then detrended using a forward and reverse low‐pass frequency filter of 
order 5 and cutoff frequency 0.15. After deseasonalizing and detrending, 
variables are either averaged over growing season months of April to 
September to reflect the peak period of photosynthetic activity or January to 
June to reflect the period of peak precipitation deficits in La Niña years.

We test for significance of anomalies using a bootstrap approach [e.g., Efron,
1979] in which we create a sample of 5000 random samples each of length 
M subsampled from the simulated time series of length N. For this study, N = 
63, representing the number of years from 1950 to 2012, and M varies for 
different composite subsamples. We then test for 90% significance by 
searching for composite averages that either fall above the highest 10 
percentile level (for positive anomalies) or below the lowest 10 percentile 
level (for negative anomalies) of the bootstrap average and denote 
significance graphically with symbol (circles for time series and crosses for 
maps). We note that significance estimates were recalculated using 1000 
random samples with nearly identical results, suggesting that our choice of 
5000 samples is considered large enough for significance testing.

2.4 Semiarid Ecosystems in TexMex

We quantify semiarid and individual PFT contribution to TexMex carbon 
budgets during the 2011 drought using PFT classifications from (1) JULES and
(2) the International Geosphere‐Biosphere Programme (IGBP). JULES consists 
of five main vegetation PFTs including needleleaf forests (1%), broadleaf 
forests (2%), C3 grass (25%), C4 grass (33%), shrublands (2%), and other 
nonvegetated tiles including 36% bare soil. Croplands are not included in this
model version. For IGBP, we use a modified classification following 
Frankenberg et al. [2011] consisting of needleleaf (<1%), evergreen 
broadleaf (<1%), deciduous broadleaf (5%), shrubland (31%), savannah 
(9%), grassland (38%), cropland (11%), and other nonvegetated tiles (5%). 
Based on these classifications, we estimate that semiarid ecosystems 
(shrublands, savannah, grassland, cropland, and bare soil) represent 96% 
and 89% of TexMex vegetation, respectively. PFT contributions to GPP loss in
semiempirical (GOPT) and model (JULES) estimates are discussed in section 
3.4.

2.5 Climate Indices for La Niña and the NAO

ENSO conditions are defined based on SST variations and their persistence 
along the equatorial Pacific Ocean and determined from the Oceanic Niña 
Index (ONI), which is based on a 3 month running mean of SST anomalies in 
the Niño‐3.4 region (5°S–5°N, 120°W–170°W) calculated by the National 
Oceanic and Space Administration (NOAA) climate prediction center (CPC) 
(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/



ensoyears.shtml) [L'Heureux et al., 2012]. NOAA defines El Niño and La Niña 
episodes based on a monthly ONI threshold of ± 0.5°C; in this study, we 
define these episodes based on a winter average (December‐January‐
February, or DJF) ONI threshold of ± 0.0°C. We refer to DJF ONI averages as 
ENSO and El Niño/La Niña episodes as ENSO > 0 and ENSO < 0, respectively. 
ENSO episodes over the period 1950–2012 are shown in Figure 2a.



The NAO index consists of a north‐south dipole of surface pressure 
anomalies, with one centered over Greenland and the other of opposite sign 
spanning the North Atlantic from 35°N to 40°N [Barnston and Livezey, 1987].
Here we use the monthly tabulated NAO index from 1950 to 2012 calculated 
by the CPC and based on monthly standardized 500 mb height anomalies 



obtained from the NCEP/National Center for Atmospheric Research reanalysis
data set 
(http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml). The 
NAO, unlike ENSO, is normalized using the 1981–2010 base period. 
Consequently, the NAO DJF average shows significant decadal trends 
resembling a sinusoid (Figure 2b), with low values in the 1960s and high 
values in the late 1980s/early 1990s. To examine the sensitivity of 
interannual variability in ecosystem function to interannual variability in 
winter NAO, we remove the decadal harmonic using a high‐pass filter. 
Detrended values are shown in Figure 2c and will be used for the remainder 
of this study. However, we repeat this analysis with the decadal trend 
retained to investigate sensitivity of carbon uptake and ET to persistent 
decadal NAO effects.

Note that the ENSO/NAO indices are the CPC values rather than the indices 
computed using the CRU‐NCEP fields; however, this is not expected to 
influence the conclusions of this study since CRU‐NCEP fields are based on 
assimilated meteorological observations. Unless stated otherwise, all results 
are based on negative index winters (ENSO < 0 and NAO < 0) and denoted 
throughout the paper as ENSO/NAO < 0 years. ENSO/NAO < 0 years, circled in
Figures 2a and 2c, occur 22% of the time, or 14 out of 63 years (see Table 2),
with at least two events per decade over the 63 year record.

3 Results and Discussion

3.1 Changes in Carbon Uptake During Negative Phases of ENSO and the NAO

Analysis of CRU‐NCEP meteorology from January to June over the period 
1950–2012 show strong negative precipitation (PPT) anomalies during La 
Niña years (ENSO < 0) throughout the southern portion of North America, 
including TexMex, the Midwest, and most strongly along the Gulf Coast 
(Figure 1a), with most grid points exceeding 90% significance (estimated 
from a bootstrap test and indicated by crosses). Negative anomalies also 
occur in NAO < 0 years (Figure 1b) but are more regional, limited primarily to 
eastern Texas and extending north‐northeast to the Great Lakes region. 
However, negative anomalies are strongly amplified in TexMex during 



overlapping negative phases of ENSO and the NAO (ENSO/NAO < 0 years, 
Figure 1c), leading to a 10% deviation from climatology in winter and spring 
when PPT is near its annual minimum (Figure 3a). While negative anomalies 
of monthly area integrated PPT are generally not significant during this 
period (with the exception of December and March as indicated by circles in 
Figure 3), grid‐scale time integrated values exceed 90% significance 
throughout TexMex in ENSO/NAO < 0 years (crosses in Figure 1c). These 
results suggest that La Niña drives precipitation decreases throughout 
southern North America, including TexMex, with amplification of precipitation
decreases in TexMex during concurrent phases of negative winter NAO.



Model results show corresponding declines of carbon flux (GPP and NEP) and 
ET in winter, spring, and summer in ENSO/NAO < 0 years (Figures 3b–3d). 
Negative GPP anomalies exceed 90% significance at the beginning of the 
growing season (April and May) and are the primary driver of reduced carbon
uptake by NEP (Figure 3c), which is subject to the strongest declines during 
winter (stronger source) and spring (weaker sink). Negative anomalies of 
TER, representing ~75% of GPP, reduce the overall magnitude of NEP 
anomalies. This simultaneous decrease in GPP and TER during drought 
including stronger GPP reductions is consistent with model and observational
studies [Law et al., 2001; Schwalm et al., 2010; Zscheischler et al., 2014b]. 
ET is composed primarily of soil evaporation in this region (~80% of total 
ET); and hence, negative anomalies of ET are driven mainly by reductions in 
evaporation rather than plant transpiration. GPP, NEP, and ET reductions in 
ENSO/NAO < 0 years are generally much weaker toward the end of the 
growing season as precipitation returns to normal.

Anomalies of spring PPT and growing season carbon flux and ET are weakly 
(correlation ranges from 0.16 to 0.22), but positively, correlated with ENSO 
(grey points in Figure 4) with net negative anomalies during ENSO < 0 years 
and positive anomalies for ENSO > 0 years. However, high standard error and
weak slope of regression indicate that ENSO by itself does not explain a 
significant amount of PPT and carbon flux variability in TexMex. These 
relationships are much stronger during ENSO/NAO < 0 years (black points in 
Figure 4), including a factor of 8–10 higher regression slopes and a factor of 
3–4 higher correlation (correlation ranges from 0.53 to 0.64), and thus the 
amount of variance explained by ENSO is much higher when indices for 
ENSO and the NAO are both negative.



Similar results are obtained for ENSO/NAO < 0 years when repeating the 
analysis with decadal NAO trends retained (not shown) including the positive 
correlation of GPP and ET with ENSO (r = 0.43 ± 0.20 (p = 0.11) and 0.38 ± 
0.21 (p = 0.11), respectively). The model relationships are degraded, 
however, suggesting that year‐to‐year variability in climate plays a strong 
role in ecosystem function in TexMex during this period. More broadly, these 
results strongly support a mechanistic link between atmospheric circulation 
patterns and regional carbon cycles across TexMex during overlapping 
negative phases of ENSO (La Niña) and the NAO in which spring precipitation
deficits are correlated with reductions of growing season carbon uptake and 
ET.



3.2 Drivers of Reduced Carbon Uptake During Concurrent Negative Phases of
ENSO and the NAO

Perturbations to ecosystem function are forced by a combination of 
environmental impacts and changes to plant structure. For example, field 
experiments at a semiarid pasture site in Texas provide evidence of an 
immediate physiological response of GPP to soil moisture stress in 2011 
related to stomatal closure and reduced photosynthesis [Rajan et al., 2013]. 
Texas incurred $7.6 billion in agricultural losses [Fannin, 2012], suggesting 
large‐scale decline in biomass in 2011, which is related to losses in GPP and 
NEP. We investigate climate (soil moisture and temperature) and plant 
structure (leaf area index) effects in JULES using correlation statistics.

JULES shows a weak positive relationship of ENSO with total soil moisture 
anomalies (SoilW, r = 0.35 ± 0.12, p = 0.036) and weak negative relationships
with downward shortwave radiation (SWdwn, r = −0.35 ± 0.12, p = 0.012), 
and air temperature (Ts, r = −0.12 ± 0.13, p = 0.054) over the period 1950–
2012. These sensitivities are strongly enhanced, however, during ENSO/NAO 
< 0 years (SoilW: r = 0.56 ± 0.24, p = 0.01; SWdwn: r = −0.65 ± 0.22, p = 
0.0036; Ts: r = −0.52 ± 0.25, p = 0.51). Moreover, anomalies of SoilW and 
GPP are well correlated (r = 0.94 ± 0.10, p = 0.0038), consistent with 
observational evidence in this and previous studies. Negative soil moisture 
anomalies also explain our findings of reduced ET driven by soil evaporation.

We note that negative precipitation anomalies peak from November through 
May, while GPP anomalies peak later into the growing season (Figure 4a). 
Enhanced correlation of PPT with GPP and SoilW at a time lag of 2 months (r 
= 0.93 ± 0.11 (p = 0.000001) and 0.83 ± 0.16 (p = 0.0002), respectively) 
compared to zero time lag (r = 0.65 ± 0.22 (p = 0.014) and 0.45 ± 0.26 (p = 
0.11)) indicates a delayed response of soil moisture and plant physiology to 
precipitation deficits, suggesting that winter and spring precipitation 
anomalies produce carbon cycle feedbacks well into summer (hence, the 
choice of the February to July averaging period for PPT in Figure 4a and Table
2).

JULES shows a significant positive correlation of leaf area index (LAI) with 
ENSO in ENSO/NAO < 0 years (r = 0.72 ± 0.20, p = 0.12) and strong sensitivity
of LAI to ENSO intensity (slope = 0.19 m2 m−2/ENSO index, factor of 10 
stronger than slope of all years combined). Despite high correlation of JULES 
LAI and ENSO, total LAI loss in ENSO/NAO < 0 years is small compared to 
average LAI in this region (<5%) and is therefore unlikely to have a 
significant impact on simulated GPP.

Typically, JULES GPP is very closely balanced by TER in TexMex such that 
annual NEP is close to zero (−0.004 Pg C yr−1) and TexMex is carbon neutral. 
However, we have shown that JULES GPP anomalies (−0.069 ± 0.29 Pg C yr−1)
exceed TER anomalies (−0.053 ± 0.20 Pg C yr−1) during ENSO/NAO < 0 years 
leading to reduced NEP and converting the region into a slightly stronger 
(though still insignificant) carbon source (−0.017 ± 0.20 Pg C yr−1). TER is 



driven by a combination of autotrophic respiration (RA) during plant growth 
and maintenance and heterotrophic respiration (RH) by microbial 
decomposition of soil carbon. In JULES, both terms are sensitive primarily to 
changes in soil moisture and soil temperature, with high RH sensitivity to soil 
moisture in dry soils well reproducing observed responses [Clark et al., 
2011]. Low soil moisture in Texas in 2011 caused a decrease in RA nearly 
proportional to GPP (through photosynthesis), but water limitation effects on 
RH were partly balanced by high soil temperature, driving an increase in RH 
and net decrease of NEP [Rajan et al., 2013]. However, during typical ENSO/
NAO < 0 years, JULES shows negative anomalies of both terms, with 65% of 
the anomaly driven by RA (−0.034 Pg C yr−1) and 35% by RH (−0.018 Pg C 
yr−1). Given the very small change in JULES Ts during these years (+0.15 K), 
it is likely that soil moisture deficits drive decreased RA and RH during 
ENSO/NAO < 0 years and heat stress effects are small.

The above analysis suggests that decreases in carbon uptake and ET are 
driven by a combination of environmental stress and degradation of plant 
biomass, and that these responses are amplified with increasing La Niña 
strength during ENSO/NAO < 0 years. There is, however, significant variability
across the 14 identified events (see Figure 2), which precludes a potential 
systematic environmental and ecosystem response to spring precipitation 
deficits during these periods. For example, if we classify a “negative 
response” as enhanced environmental stress (negative anomalies of PPT and
SoilW and positive anomalies of SWdwn and Ts) and reduced ecosystem 
function (negative anomalies of carbon uptake, ET, and LAI) and a “positive 
response” as the reverse, we find in general a negative response during 
strong La Niña years and a positive response during weak La Niña years 
(Figure 4). The average of anomalies and corresponding variability for each 
of these fields during ENSO/NAO < 0 is shown numerically in Table 2 (column 
2). In all cases, variability exceeds the anomaly; and hence, these anomalies 
are not considered significant. The implication is that changes in ecosystem 
function are not predictable given only information about the sign of ENSO 
and NAO phases. In order to identify a potentially systematic ecosystem 
response to atmospheric circulation anomalies associated with internal 
atmospheric variability, further filtering of ENSO and NAO conditions is 
needed.

3.3 Enhanced Carbon Uptake Reduction With Increasing Intensity of ENSO 
and the NAO

We investigate these relationships further by sorting ENSO/NAO < 0 years 
based on ENSO and the NAO strength, since these events can affect 
precipitation in TexMex independent of each other (see Figure 2). We classify
these new conditions using 1σ deviations of ENSO and NAO from zero. 
Sorting by negative ENSO years (ENSO < 0) and strongly negative NAO years
(NAO < −1σ, σ = 0.68) reduces the total number of events from 14 to 6 
(1955, 1963, 1979, 1985, 1996, and 2011; Table 2, column 3). This increases
the magnitude of annual anomalies for each environmental and ecosystem 



anomaly, with the strongest effects on PPT, carbon uptake, and SoilW in late 
spring and summer (Figure 3, blue), but these anomalies are still exceeded 
by year‐to‐year variability. Increasing severity of NAO alone does not lead to 
systematic changes in carbon uptake across TexMex.

Sorting based on strong La Niña years (ENSO < −1σ, σ = 1.02) and negative 
NAO years (NAO < 0) further reduces the number of events from 14 to 3 
(1956, 1971, and 2011) and leads to strongly amplified (factors 4–10) and 
statistically significant reductions in PPT, carbon uptake, ET, and 
environmental stresses through the entire year (Table 2, column 4; Figure 3, 
cyan). JULES shows stronger negative TER anomalies compared to previously
discussed ENSO/NAO conditions, but the ratio of anomalies of NEP to GPP 
increases from 24% in the first case (ENSO/NAO < 0) to 33% in the present 
case, indicating an increasing impact of low water availability and GPP loss 
on regional carbon uptake and conversion of TexMex to net carbon source in 
every season except autumn. These anomalies are some of the largest in 
TexMex over the last 63 years (Figure 4), with 2011 ranking as one of the 
largest anomalies in North America over the last 30 years [Zscheischler et 
al., 2014a]. Given the significance of these anomalies relative to climatology 
and year‐to‐year variability, it appears likely that increasing severity of La 
Niña during negative phases of NAO has led to significant reductions in 
carbon uptake on at least three different occasions since 1950 tied to 
enhanced soil moisture and heat stress.

Finally, we sort events based by strong NAO (NAO < −1σ) and La Niña (ENSO 
< −1σ) years and find that only the 2011 drought matches this criteria. In 
other words, 2011 represents the only year in the 63 year climatology that 
negative phases of NAO and ENSO both exceed −1σ, where the NAO = −1.61
exceeds −2σ (second largest event on record next to 2010 after filtering) 
and ENSO = −1.38 exceeds −1σ (seventh largest event on record). This 
climatologically rare event leads to further amplification of all anomalies. 
JULES shows especially high PPT deficits in winter and spring which, unlike 
normal ENSO/NAO < 0 years, extends well into summer and fall (Figure 3a, 
red line). This exceeds climatological variability by 2σ, precipitation loss in 
ENSO < −1σ and NAO < 0 years by 40%, and precipitation loss in ENSO/NAO 
< 0 years by an order of magnitude.

Spring and summer precipitation deficits in 2011 were strongly amplified 
relative to ENSO/NAO < 0 years and the most extreme over the 63 year 
record (Figure 4a). This had extreme effects on environmental stress 
indicators, including directly producing negative SoilW anomalies and 
indirectly producing positive SWdwn and Ts anomalies (through decreased 
cloudiness), the latter two of which also approach their highest anomalies on 
record. Effects on ecosystem function include highest negative anomalies of 
GPP (−0.50 Pg C yr−1), ET (−0.42 kg m−2 s−1), and NEP (−0.23 Pg C yr−1) on 
record (see Figure 4 and Table 2, column 6), and third highest anomaly of LAI
(−0.085 m2 m−2). The ratio of simulated NEP to GPP loss also increases to 
45% in 2011, such that GPP loss drives a 50% increase in CO2 flux to the 



atmosphere, likely due to record high temperatures (1 K warmer on average)
and relative increase in heterotrophic respiration, consistent with findings by 
Rajan et al. [2013].

Given the extreme nature of the 2011 drought relative to the 1950–2012 
climatology, we repeat our analysis excluding 2011 to test for robustness. In 
general, we find similar spatial patterns of precipitation in Figure 1 but with 
fewer significant grid points, including elimination of significant grid points in
south and east Texas in ENSO < 0 years (Figure 1a) and in north Texas in 
ENSO/NAO < 0 years (Figure 1c). While removal of 2011 leads to a reduction 
in the magnitude of negative anomalies at seasonal scale and a loss of 
significance for NEP, the negative anomalies of PPT, GPP, and ET retain their 
significance throughout the entire year for ENSO < −1σ and NAO < 0 years 
(Table 2, column 5). These results support our primary finding that strong La 
Niña years and negative NAO years have led to significant impairments of 
ecosystem function.

In summary, model simulations constrained by observed climate show that 
hot, dry, and sunny conditions associated with strong La Niña's and 
exacerbated by negative phases on the NAO lead to climatologically 
significant reductions of carbon uptake in the TexMex regions, with impacts 
to GPP (−312 g C m−2 yr−1 or −0.42 ± 0.18 Pg C yr−1) representing one third of 
typical TexMex gross productivity (1.3 Pg C yr−1) and impacts to NEP (−103 g 
C m −2 yr−1 or −0.14 ± 0.11 Pg C yr−1) causing a carbon neutral region to 
become a significant carbon source. This drought‐induced carbon source is 
amplified under extremely warm temperatures such as during the 2011 
drought due to smaller decreases in heterotrophic respiration relative to 
GPP.

3.4 Evaluation of JULES Carbon Fluxes During 2011 TexMex Drought

Estimates of GPP constrained satellite SIF observations (GOPT) show 
decreased GPP throughout TexMex during TMD11 (Figure 5a). From GOPT, 
we estimate a total annual GPP reduction of 0.42 ± 0.04 Pg C yr−1 in the 
TexMex domain, representing a 37% decrease in GPP from 2010 (1.13 Pg C 
yr−1) to 2011 (0.70 Pg C yr−1), with strongest reductions in central and eastern
Texas (Figure 5a). This GPP decrease is strongest in semiarid ecosystems 
(0.60 Pg C for JULES and 0.34 Pg C for IGBP) and driven primarily by 
grasslands (0.28 Pg C and 0.19 Pg C, respectively). GPP is reduced throughout
the year (Figure 5c, solid) but most significantly in the growing season, with 
a slight recovery or increase of GPP at the end of the year in late fall/early 
winter. SIF is also reduced in 2011 (Figure 5c, dashed) but only by half as 
much as GOPT, reflecting a combination of enhanced a priori constraint 
(higher agreement among eight biosphere models) and reduced 
observational constraint (assimilation of fewer SIF data). Cross marks 
indicate grid points where ΔGOPT exceeds posterior uncertainty and hence 
where GOPT tendencies are determined to be statistically significant. 
Assimilation of satellite SIF strongly reduces prior uncertainty from the 



ensemble of eight TRENDY models and produces significant GPP reductions 
in the eastern portions of Texas and Oklahoma.

The geographic distribution of JULES GPP tendencies in 2011 is consistent 
with GOPT throughout TexMex (Figures 5a and 5b). However, JULES GPP 
reductions, estimated as 0.63 ± 0.09 Pg C yr−1 (0.50 Pg C semiarid) from 2010 
(1.34 Pg C yr−1) to 2011 (0.71 Pg C yr−1), exceed GOPT (0.42 ± 0.04 Pg C yr−1) 
by nearly 50% in the TexMex region, largely due to higher‐simulated GPP 
during the 2010 growing season (Figure 5d). High uncertainty of JULES GPP 
tendencies is driven by high spread among eight biosphere models in this 
region (fewer cross marks in Figure 5b and higher‐uncertainty range in 2011 
in Figure 5d). A model intercomparison study of carbon flux sensitivity to 
climate extremes shows similar high spread across model ensembles but 
general agreement of GPP loss during drought [Zscheischler et al., 2014b].

JULES shows a fairly wide range of negative GPP tendencies throughout 
TexMex, with increasing magnitude of GPP loss from west to east. This 
spatial pattern is highly consistent with GOPT, and the high slope (y = 1.5x + 



0.026) supports the findings above, indicating a 50% greater GPP variability 
in JULES. The high correlation (r = 0.91 ± 0.17, p = 0.0015) is encouraging but
expected given the use of JULES as a prior in the GOPT estimation 
methodology. Thus, we also check for consistency against independent 
estimates from the flux tower‐based MPI and reflectance based MOD17. 
Comparison to MPI indicates high correlation of GPP tendencies (r = 0.84 ± 
0.22, p = 0.0097) but factor of 2 stronger variability (y = 1.9x − 0.073). 
Comparison to MOD17 shows reduced correlation of GPP tendencies (r = 
0.43 ± 0.37, p = 0.29) but improved agreement of GPP variability (y = 1.2x − 
0.12). In all cases, model and semiempirical products show GPP loss in all 
TexMex grid points. In general, these comparisons show consistency of 
spatial patterns and a likely overestimate of GPP loss.

Eddy covariance observations show consistent patterns of decreasing CO2 
uptake across Texas and New Mexico in 2011 relative to 5+ year averages 
from 2005 to 2012 in Texas and 2007 to 2012 in New Mexico (Table 1 and 
Figure 6). NEP decreases (less CO2 uptake) across all sites relative to both 
the previous year and the 5+ year average and thus represents a potentially 
significant departure from the long‐term average. NEP increases slightly at 
first at the beginning of the year but decreases quickly during the growing 
season (~April–September) and into autumn. We also find simultaneous 
decreases in GPP and TER during drought, consistent with experiments [Shi 
et al., 2014] and other observational studies [Law et al., 2001; Ciais et al., 
2005; Schwalm et al., 2010, 2012]. NEP reductions due to reduced canopy 
photosynthesis are slightly offset by NEP increases by suppressed microbial 
respiration. While these processes have competing effects on ecosystem 
carbon sink capacity, the GPP effect is larger and thus primarily responsible 
for the reduced NEP in 2011. Growing season NEP reduction averaged across
towers is 144 g C m−2 relative to 2010, about half of that observed in northern
Texas over the same period [Rajan et al., 2013], and 82 g C m−2 relative to 
the multiyear average (based on the average of available months and 
extrapolated annually).



Comparison of JULES 2011 CO2 flux anomalies to the five flux tower sites 
analyzed here shows highly consistent patterns of GPP, TER, and NEP 
reductions across TexMex (Figure 7). We find high correlation of negative 
GPP anomalies (r = 0.92 ± 0.23, p = 0.027) with increasing GPP reductions 
from west to east and highest GPP loss in southern Texas (represented by 
FR2). JULES GPP variability is roughly 33% that observed from flux towers (y 
= 0.36x − 0.15). We note that JULES GPP tendencies are unique for each flux 
tower despite identical sampling of JULES grid boxes for two different sets of 
flux towers (Mpj/Vcm and Vcp/Wjs) which are geographically close in 
proximity. Differences in JULES GPP tendencies for these locations arise due 
to different flux tower sampling times, record length, and coarse model 
spatial scale.



Negative TER anomalies in JULES are also highly correlated with flux towers 
(r = 0.93 ± 0.22, p = 0.023) and significantly smaller (25%) than observed (y 
= 0.25x − 0.089). In theory, a significant difference between GPP and TER in 



either of these statistics could lead to NEP predictions that are inconsistent 
with observations, such that a model correctly predicts component fluxes but
fails to reproduce the net flux. However, JULES shows a similar low bias for 
both GPP and TER anomalies (33% and 25% of observed, respectively). Since
JULES simulates consistent ranges of variability for component fluxes 
including stronger GPP loss, it also captures observed patterns of NEP loss at 
all sites (r = 0.69 ± 0.42, p = 0.2) and with a smaller overall bias than 
component fluxes (y = 0.48x − 0.074).

Our model evaluation of carbon flux changes during TMD11 provides high 
confidence that JULES simulates spatial patterns of GPP reductions across 
TexMex with high fidelity. We note, however, that the magnitude of JULES 
estimates has a high bias compared to estimates constrained at similar 
scales by remote sensing observations. We can adjust simulated estimates 
assuming the 50% high bias implied by our regional remote sensing 
observational analysis and assuming the low bias relative to flux towers is 
related to scale mismatches. In this case, expected reductions during the 
three major drought events from 1950 to 2012 (1956, 1971, and 2011) 
associated with strong La Niña's and negative NAO's are more likely closer to
−208 g C m−2 yr−1 for GPP and −69 g C m−2 yr−1 for NEP. These adjusted losses 
are highly consistent with carbon uptake losses observed at FLUXNET eddy 
covariance sites in grassland and woody savannah ecosystems in western 
North America during a long‐term drought from 2000 to 2004, including a 
total GPP loss of −177 g C m−2 yr−1 and NEP loss of −69 g C m−2 yr−1 [cf. 
Schwalm et al., 2012, Figure 3]. These results suggest that linkages of 
TexMex carbon uptake to variability of ENSO and the NAO have played a 
major role in carbon uptake variability in North America over the recent 
historical record.

3.5 Evaluation of JULES Water Fluxes During 2011 TexMex Drought

Satellite observations show widespread decreases in soil moisture in 2011 
(Figure 8). In particular, SMOS indicates decreases in surface soil moisture 
throughout southern and middle portions of North America, with peak loss in 
east Texas (Figure 8a) and a 40% decrease from 2010 to 2011 in TexMex 
(Figure 8c). GRACE also shows widespread decreases in total column water 
in similar regions as SMOS, with peak loss in central Texas (Figure 8b). 
However, negative tendencies in GRACE tend to decrease more gradually 
moving outward from central Texas than is apparent in SMOS, indicating 
more spatial variability in the soil moisture response to drought than in total 
column water. Satellite soil moisture tendencies in TexMex are highly 
consistent with predicted total soil moisture (SoilW) reductions in JULES, with
a correlation of SMOS/JULES tendencies of r = 0.94 ± 0.14 (p = 0.0005) and 
GRACE/JULES tendencies of 0.71 ± 0.29 (p = 0.046). Observed soil moisture is
also highly correlated with semiempirical GPP reductions (Figure 9) with 
correlation of SMOS/GOPT tendencies of r = 0.82 ± 0.23 (p = 0.12; Figure 9a) 
and GRACE/GOPT tendencies of r = 0.92 ± 0.16 (p = 0.0013; Figure 9b).





The combination of CO2 flux and soil moisture data from satellites and flux 
towers provides convincing empirical evidence, supporting our JULES 
simulations of decreasing carbon uptake across semiarid ecosystems of 
TexMex driven by soil water stress during concurrent negative phases of 
ENSO and NAO. These results are consistent with key findings by 
Zscheischler et al. [2014a, 2014c] that drought and low water availability are
the main cause for regional GPP loss across the planet including the TexMex 
region.

4 Conclusions



We have used a robust model‐observational analysis over the period 1950–
2012 to capture a clear relationship between climate variability, drought, 
and carbon uptake in semiarid ecosystems of the Texas‐northern Mexico 
region (i.e., TexMex). Increasing intensity of overlapping negative phases of 
ENSO and the NAO leads to systematic impairment of ecosystem function, 
including significantly reduced biological uptake of CO2 and reduced flux of 
groundwater to the atmosphere. JULES predictions of carbon uptake 
reductions during the 2011 record drought fall within the range of estimates 
from remote sensing and flux tower data in the region, with an overestimate 
of carbon uptake reductions relative to remote sensing‐based estimates and 
an underestimate relative to flux towers. Predictions of the sign and spatial 
distribution of 2011 carbon flux (GPP, TER, and NEP) and soil moisture 
(surface and deep) anomalies are highly consistent with ground‐based and 
remote sensing observations.

Future La Niña's and negative NAO's are likely to continue to reduce the 
capacity of semiarid ecosystems in the southern Great Plains to absorb CO2 
and emit water, and projected drying and increasing intensity and frequency 
of droughts in this region will exacerbate these effects [Seneviratne et al., 
2012; Collins et al., 2013; Walsh et al., 2014]. However, the magnitude of 
these effects in future climates is confounded by several other processes 
happening in parallel, including future CO2 fertilization, which is expected to 
increase water use efficiency through partial stomata closure and 
consequently increase the rate of carbon uptake per unit of water lost 
[Morgan et al., 2011; Keenan et al., 2013; Xu et al., 2013; Zscheischler et al.,
2014d], and increasing fractional vegetation, which will increase total carbon
assimilation in semiarid ecosystems [Donohue et al., 2013]. Future studies 
should therefore examine the expected carbon and water cycle responses of 
the TexMex region to La Niña and the NAO under future climate projections 
with and without elevated CO2 and with a special focus on grasslands which 
dominate the region.

The ability to predict the carbon‐climate feedbacks in response to future La 
Niña's depends fundamentally on atmospheric model fidelity in representing 
ENSO, the NAO, and associated changes in precipitation. While these 
atmospheric patterns show up in observational analyses, coupled ocean‐
atmosphere simulations, including those from phase 5 of the Coupled Model 
Intercomparison Project (CMIP5), strongly underestimate the intensity of the 
2011 Texas‐Mexico drought [Hoerling et al., 2013; Seager et al., 2014] and 
hence the magnitude of carbon uptake reductions. Even when these models 
are driven by prescribed sea surface temperatures, they fail to represent the 
spatial patterns and magnitudes of precipitation in North America [Hoerling 
et al., 2013]. This is attributed partly to model inability to simulate the NAO 
as well as the extreme difficulty in modeling precipitation and is likely to lead
to biases in carbon cycle projections from CMIP5 models [e.g., Ahlström et 
al., 2012]. Results from this study highlight a need to improve atmospheric 
model predictions of ENSO and the NAO in order to improve predictions of 



future impacts on the carbon cycle and the associated feedbacks to climate 
change.
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